

From constitutive modeling to THM couplings in geomaterials

Frédéric COLLIN, Université de Liège

Robert CHARLIER, Université de Liege Benoît PARDOEN, NTPE Lyon

FEM workshop - GBMS Brussels, 3rd March 2020

Long-term management of radioactive wastes

Intermediate (long-lived) & high activity wastes

Deep geological disposal Repository in deep geological media with good confining properties (Low permeability K<10⁻¹² m/s)

2

Underground structures

= network of galleries

Disposal facility of Cigéo project in France (Labalette et al., 2013)

Context	Fracture modelling	Anisotropy		

Callovo-Oxfordian claystone (COx)

Sedimentary clay rock (France).

Borehole core samples (Andra, 2005)

- Underground research laboratory

Feasibility of a safe repository France (Meuse / Haute-Marne, Bure)

Context

re modelling

ру

Repository phases

Type C wastes (Andra, 2005)

Context

ater transfer

Excavation Damaged Zone (EDZ)

Fracturing & permeability increase (several orders of magnitude)

Opalinus clay in Switzerland (Bossart et al., 2002)

Context

Creep

- Fracturing

Context	Fracture modelling	Anisotropy				
---------	--------------------	------------	--	--	--	--

2. Fractume modelling gvittishshe avabdads

- 3. Influence of mechanical anisotropy
- 4. Permeability evolution and water transfer
- 5. Creep deformation
- 6. THM couplings
- 7. Conclusions and perspectives

2.2. Constitutive models for COx

- Mechanical law - 1st gradient model

Isotropic elasto-plastic internal friction model Non-associated plasticity, Van Eeckelen yield surface :

$$F = II_{\hat{\sigma}} - m\left(I_{\sigma'} + \frac{3c}{\tan \varphi_{c}}\right) = 0$$
Softening zone
$$\phi \text{ hardening / c softening}$$

$$c = c_{0} + \frac{\left(c_{f} - c_{0}\right)\hat{\varepsilon}_{eq}^{p}}{B_{c} + \hat{\varepsilon}_{eq}^{p}} \longrightarrow \text{Strain localisation}$$
Softening zone
$$I_{1,5}$$

$$I_{2,1}$$

$$I_{3,5}$$

$$I_{3,$$

- Hydraulic law

Fluid mass flow (advection, Darcy) :

$$f_{w,i} = -\rho_w \frac{k_{w,ij} k_{r,w}}{\mu_w} \left(\frac{\partial p_w}{\partial x_j} + \rho_w g_j \right)$$

Water retention and permeability curves (Mualem - Van Genuchten's model)

Φc.f F=0 **Φ**c,0 C_0 Ισ ardening zone 12 10 8 6 4 2 0 0 0.01 0.02 0.03 0.04 0.02 0 0 0.01 0.03 0.04 ε₁ [-] ε₁ [-]

Πô

Context

ater transfer

10

- Localisation zone

Incompressible solid grains, b=1

→ For an isotropic mechanical behaviour, the appearance and shape of the strain localisation are mainly due to mechanical effects linked to the anisotropic stress state.

Water transfer

- Gallery air ventilation :

Water phases equilibrium at gallery wall (Kelvin's law)

$$RH = \frac{p_v}{p_{v,0}} = exp\left(\frac{-p_c M_v}{RT \rho_w}\right)$$

Compressibility of the solid grains: b=0.6

- Convergence:

Important during the excavation Anisotropic convergence Influence of the ventilation Experimental results (GED - Andra's URL) No strain localisation

2.5. Conclusions and outlooks

- Conclusions

- \checkmark Reproduction of EDZ with shear bands.
- ✓ Shape and extent of EDZ governed by anisotropic stress state.

- Next steps ...

- X Mechanical rock behaviour.
 - \rightarrow Material anisotropy, gallery // $\sigma_{\rm H}$.
- X HM coupling in EDZ.
 - \rightarrow Influence of fracturing on hydraulic properties.
- X Gallery air ventilation and water transfer (drainage / desaturation).

Creep

- 1. Context
- 2. Fracture modelling with shear bands
- 3. Influence of mechanical anisotropy
- 4. Permeability evolution and water transfer
- 5. Creep deformation
- 6. THM couplings
- 7. Conclusions and perspectives

3. Influence of mechanical anisotropy

- Linear elasticity :

Cross-anisotropic (5 param.) + Biot's coefficients

 $E_{\scriptscriptstyle //}, E_{\scriptscriptstyle \perp},
u_{\scriptscriptstyle ///},
u_{\scriptscriptstyle //\perp}, G_{\scriptscriptstyle //\perp} = b_{\scriptscriptstyle //}, b_{\scriptscriptstyle \perp}$

- Plasticity :

Cohesion anisotropy with fabric tensor

$$c_0 = a_{ij} l_i l_j$$
 $l_i = \sqrt{\frac{\sigma_{i1}^{'2} + \sigma_{i2}^{'2} + \sigma_{i3}^{'2}}{\sigma_{ij}^{'}\sigma_{ij}^{'}}}$

Cross-anisotropy

$$c_{0} = \overline{c} \left(1 + A_{////} (1 - 3l_{2}^{2}) + b_{1}A_{////}^{2} (1 - 3l_{2}^{2})^{2} + ... \right)$$

$$e_{2}$$

$$f_{2}$$

$$g_{2}$$

$$g_{3}$$

$$g_$$

3.3. Gallery excavation modelling for anisotropic initial stress state

- Stress state

Major stress in the axial direction Gallery // to $\sigma_{\rm H}$

 $\sigma_{x,0} = \sigma_h = 12.40 \text{ MPa}$ $\sigma_{y,0} = \sigma_v = 12.70 \text{ MPa}$ $\sigma_{z,0} = \sigma_H = 1.3 \text{ x } \sigma_h = 16.12 \text{ MPa}$

- Shear banding

 \rightarrow Shape modification due to $\sigma_{\rm H}$

3. Influence of mechanical anisotropy

3.4. Conclusions and outlooks

- Conclusions

- \checkmark Reproduction of EDZ in both directions.
- ✓ Shape and extent of EDZ governed by:
 - anisotropic stress state.
 - anisotropic mechanical behaviour.

- Next steps ...

- X HM coupling in EDZ.
 - \rightarrow Influence of fracturing on hydraulic properties.
- X Gallery air ventilation and water transfer.

Water transfer

Creep

- 1. Context
- 2. Fracture modelling with shear bands
- 3. Influence of mechanical anisotropy
- 4. Permeability evolution and water transfer
- 5. Creep deformation
- 6. THM couplings
- 7. Conclusions and perspectives

4. Permeability evolution and water transfer

4.1. Large-scale experiment of gallery ventilation (SDZ)

Characterise the effect of gallery ventilation on the hydraulic transfer around it.

- \rightarrow drainage / desaturation
- \rightarrow exchange at gallery wall

Pore pressure sensor

Water transfer

4. Permeability evolution and water transfer

4.4. Modelling of excavation and SDZ experiment

4. Permeability evolution and water transfer

- 2. Fracture modelling with shear bands
- 3. Influence of mechanical anisotropy
- 4. Permeability evolution and water transfer
- 5. Creep deformation
- 6. THM couplings
- 7. Conclusions and perspectives

Viscosity

Viscosity

Time-dependent plastic strain, delayed plastic deformation Progressive evolution of the material microstructure or to mechanical properties degradation (damage)

 $\dot{\varepsilon}_{ij} = \dot{\varepsilon}^e_{ij} + \dot{\varepsilon}^p_{ij} + \dot{\varepsilon}^{vp}_{ij}$

Viscoplastic loading surface and potential surface:

$$F^{vp} \equiv \sqrt{3} \ II_{\hat{\sigma}} - \alpha^{vp} \ g(\beta) \ R_c \ \sqrt{A^{vp} \left(C^{vp} + \frac{I_{\sigma'}}{3R_c}\right)} = 0$$
$$G^{vp} \equiv \sqrt{3} \ II_{\hat{\sigma}} - \left(\alpha^{vp} - \beta^{vp}\right) g(\beta) \ R_c \left(C^{vp} + \frac{I_{\sigma'}}{3R_c}\right) = 0$$
$$\dot{\varepsilon}^{vp}_{ij} = \gamma \left\langle \frac{F^{vp}}{R_c} \right\rangle^N \frac{\partial G^{vp}}{\partial \sigma_{ij}^i}$$

Delayed viscoplastic hardening function:

$$\alpha^{vp} = \alpha_0^{vp} + \left(1 - \alpha_0^{vp}\right) \frac{\varepsilon_{eq}^{vp}}{B^{vp} + \varepsilon_{eq}^{vp}}$$

3. Influence of mechanical anisotropy

- Creep deformation

Permanent strain In the long term Under constant stress below the yield strength

- <u>Viscosity</u>

Time-dependent plastic strain (Jia et al., 2008; Zhou et al. 2008)

$$\dot{\varepsilon}_{ij} = \dot{\varepsilon}_{ij}^{e} + \dot{\varepsilon}_{ij}^{p} + \dot{\varepsilon}_{ij}^{vp}$$

$$F^{vp} \equiv \sqrt{3} II_{\hat{\sigma}} - \alpha^{vp} g(\beta) R_{c} \sqrt{A^{vp} \left(C^{vp} + \frac{I_{\sigma'}}{3R_{c}}\right)} = 0$$

Mine-by experiment

- Displacements

Andra's URL

Mine-by experiment

Borehole – extensometers and pore pressure

 \rightarrow Characterise the displacements in the rock mass

Context

Mine-by experiment

- Displacements

Viscosity based on creep tests

Mine-by experiment

- Displacements

Viscosity based on in situ measurements \rightarrow Viscosity influence

Context

- 2. Fracture modelling with shear bands
- 3. Influence of mechanical anisotropy
- 4. Permeability evolution and water transfer
- 5. Creep deformation
- 6. THM couplings
- 7. Conclusions and perspectives

THM couplings : ATLAS experiment

General framework of ATLAS experiment at Mol URL

ATLAS (Admissible Thermal Loading for Argillaceous Storage)

• ATLAS I & II

Part of the EC INTERCLAY-II project (1990-1994) An experiment for modellers (blind predictions)

Heating

borehole

 Installation of instrumentation in observation borehole

• ATLAS III (April 2007 → April 2008) – EC TIMODAZ project

Investigate the characterisation of the effect of thermal loading on thermo-hydromechanical properties of Boom Clay (thermal conductivity, THM coupling in clay...)

View in a vertical plane of the ATLAS experiment

Power evolution during ATLAS III

Heating phase in 3 steps: 7 weeks, 10 weeks, 43 weeks

Results ATLAS III: evolution of the temperature with time

Context

THM

33

Results ATLAS III: evolution of pore pressure with time

34

Prediction ATLAS III: choice of the FE model (2D vs 3D)

THM couplings : ATLAS experiment

Prediction ATLAS III: 2D axisymetric (isotropic) model

Prediction ATLAS III: 3D with anisotropic constitutive model and small strain stiffness

- 2. Fracture modelling with shear bands
- 3. Influence of mechanical anisotropy
- 4. Permeability evolution and water transfer
- 5. Creep deformation
- 6. THM couplings
- 7. Conclusions and perspectives

5. Conclusions and perspectives

Conclusions

Better understand, predict, and model the behaviour of the EDZ in partially saturated clay rock, at large scale.

Fracture description

EDZ with strain localisation.

Constitutive models

Mechanics: anisotropy, viscosity.

Coupled: fracture influence on permeability.

Numerical modelling

Shape, extent.

Influence of fracturing, permeability variation, anisotropy.

Water transfer.

Contribution : Provide new elements for the prediction and understanding of the HM behaviour of the EDZ.

Innovations : Fracturing process is predicted on a **large scale** with **shear bands**. Strain localisation effects are taken into account in **coupled processes** (water flow).

Context

Creep