

Differential Thermal Analysis to Assist the Design of Corrosion-resistant High Entropy Alloys for Laser Powder Bed Fusion

SEIDOU Herrim, BLONDIAU Catherine, DEDRY Olivier, OÑATE Angelo, TUNINETTI Victor, TCHUINDJANG Jérôme Tchoufang and MERTENS Anne

Metallic Materials Science (MMS), Aerospace and Mechanical Engineering Dpt., University of Liège, Belgium

Introduction

The common phases are FCC and BCC, while the IM are B2, Sigma and Laves.

BCC

- **High Hardness** ٠
- Good electrical and ٠ thermal conductivity
- Low thermal expansion ۲
- Good ductility ۲

FCC

- Greater mechanical strength ٠
- Better wear resistance ٠
- Better corrosion resistance •
- Better ductility ٠

- 5+ elements ٠
- Single-phase solid solution ٠
- *High configurational entropy*

- May have <5 elements
- >35% of elements ٠
- Multiple phases, ٠

Intermetallics (IM) included

Entropy does not matter ٠

The goal of this study is to design a corrosionresistant HEA through LPBF

Crystal Structure Prediction

 $\Omega = Tm\Delta S_{mix} / \Delta H_{mix} \qquad \Omega \ge 1.1$

δ: atomic size difference δ

 $\delta \leq 6.6\%$

VEC: Valence electron concentration

$$VEC = \sum_{k=1}^{n} (c_i) VEC_i$$

Stable, Solid-solution phase

TABLE I. Physiochemical properties for commonly used elements in HEAs.

Element	Atom radius (Å)	Pauling electronegativity	VEC
Al	1.432	1.61	3
В	0.820	2.04	3
С	0.773	2.55	4
Co	1.251	1.88	9
Cr	1.249	1.66	6
Fe	1.241	1.83	8
Mn	1.350	1.55	7
Мо	1.363	2.16	6
Nb	1.429	1.6	5
Ni	1.246	1.91	10
Та	1.430	1.50	5
Ti	1.462	1.54	4
V	1.316	1.63	5
W	1.367	2.36	6

Guo S. et al., J. Appl. Phys. 15 May 2011; 109 (10): 103505. https://doi.org/10.1063/1.3587228

Materials and Methods

Selected elements: Al, Cr, Fe, Mn, and Ni

Pre-screening of compositions

Differential Thermal Analysis (DTA)

% at.	Cr	Fe	Mn	Ni	VEC
CrFeMnNi	25	25	25	25	7.75
Cr ₂ Fe ₂ MnNi	33.33	33.33	16.67	16.67	7.50
CrFe ₂ MnNi ₂	16.67	33.33	16.67	33.33	8.17

CrFeMnNi-based MEA

AlCrFeMnNi-based HEA

% at.	Al	Cr	Fe	Mn	Ni	VEC
AlCrFeMnNi	20	20	20	20	20	6.80
AlCrFe ₂ MnNi ₂	14.29	14.29	28.57	14.29	28.57	7.43
AlCrFe ₂ Ni ₂	16.67	16.67	33.33	-	33.33	7.50

CrFeMnNi-based MEA: Solidification sequence

% at.	Cr	Fe	Mn	Ni	VEC
CrFeMnNi	25	25	25	25	7.75
Cr ₂ Fe ₂ MnNi	33.33	33.33	16.67	16.67	7.50
CrFe ₂ MnNi ₂	16.67	33.33	16.67	33.33	8.17

 $\begin{array}{ll} 6.87 \leq VEC < 8 \\ BCC & FCC \end{array}$

CrFeMnNi-based MEA: Composition and quantification of the phases

BCC	40,32%	million	Tan	S.M	AN.	1.6	1 Sal
and the	3.87	The Para	Within		2 4	Sold Barrier	K.9
200	Side	Litters	in the		MJ +		-AC
fini	1. 1	· · · · · · · · · · · · · · · · · · ·	P	S.M		· er	
5.	eije	A. A. A. A.	A TAN			415	
R		A.A.A.	Stores -			b ta	3
Ra	1 The	L'AL DO	18.8	400			Sec.
11.10	163	A A	and t				inter i
= R] 9	1.13	man	1	A AN	Part -		S AGA
VEC	= 7.50	. Alt	Cr ₂ Fe ₂	2 ² MnNi		8 Ber	200 µm

% at.	Cr	Fe	Mn	Ni
BCC	46.2 ± 2.0	30.3 ± 1.0	17.5 ±0.4	6.0 ± 1.4
FCC	25.0 ± 1.4	29.5 ± 2.5	26.0 ± 2.0	19.5 ± 1.7

% at.	Cr Fe		Cr Fe Mn	
BCC	47.0 ± 0.7	33.2 ± 0.5	10.9 ± 0.4	8.9 ± 0.5
FCC	28.4 ± 1.0	34.8 ± 1.5	14.8 ± 1.0	22.0 ± 1.4

AlCrFeMnNi-based HEA: Solidification sequence

AlCrFeMnNi-based HEA: Composition of the phases

AlCrFeMnNi-based HEA: Composition and EBSD analyses

% at.	Al	Cr	Fe	Mn	Ni
FCC	4.7 ± 0.4	18.6 ± 0.9	39.6 ± 0.6	14.2 ± 0.3	22.9 ± 0.8
B2	26.0 ± 0.6	2.1 ± 0.2	7.9 ± 0.4	15.9 ± 0.5	48.1 ± 0.5
BCC	20.7 ± 4.3	9,3 ± 6.8	14.3 ± 1.4	15.4 ± 7	38.4 ± 9.8

Conclusions

- > VEC crystal prediction theory is a useful tool to predict the first phases that solidify
- > VEC theory does not consider solid-state transformations
- > In Al, Cr, Fe, Mn and Ni system, FCC phase is Cr-Fe rich while BCC phase is rich in Al and Ni
- > Al promotes the BCC formation, followed by spinodal decomposition

- DTA is a rapid and cost-effective test to investigate the transformations that occur at near-equilibrium conditions
- The near-equilibrium results are used to understand the out-of-equilibrium phenomena and mechanisms of LPBF
- > This method guide the design of new alloys and the thermal treatments

Perspectives

A composition has been chosen for LPBF

- > The parameters of the LPBF were optimized
- Cubic samples were printed

Surface and microstructural characterization

Thanks for your attention

Herrim Seidou, PhD candidate

Ahb.seidou@uliege.be Metallic Materials Science (MMS) team Aerospace and Mechanical Engineering Dpt. University of Liège, Belgium

All publications of the Metallic Materials Science team are available at : <u>https://orbi.uliege.be/</u>