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Iterated Invariant Extended Kalman Filter
(IterIEKF)

Sven Goffin, Axel Barrau, Silvère Bonnabel, Olivier Brüls, and Pierre Sacré

Abstract—We study the mathematical properties of the In-
variant Extended Kalman Filter (IEKF) when iterating on the
measurement update step, following the principles of the well-
known Iterated Extended Kalman Filter. This iterative variant
of the IEKF (IterIEKF) systematically improves its accuracy
through Gauss-Newton-based relinearization, and exhibits addi-
tional theoretical properties, particularly in the low-noise regime,
that resemble those of the linear Kalman filter. We apply the
proposed approach to the problem of estimating the extended
pose of a crane payload using an inertial measurement unit. Our
results suggest that the IterIEKF significantly outperforms the
IEKF when measurements are highly accurate.

Index Terms—Nonlinear state estimation, Invariant Kalman
filtering, Lie groups, Nonlinear systems, Gauss-Newton method

I. INTRODUCTION

In the field of state estimation and observer design, the
Extended Kalman Filter (EKF) is one of the most widespread
methods used in practice. However, it is based on linearization,
and the associated errors were early recognized as possi-
bly degrading performance [1]. This motivated the devel-
opment of iterative filtering algorithms such as the iterated
EKF (IterEKF) [2]–[4], iterated EKF on Lie groups (LG-
IterEKF) [5]–[7], and smoothers [8], where the discrepancy
between the nonlinear output function and its first-order ap-
proximation is reduced, by refining the operating point.

On another note, observer design has benefited from ge-
ometric approaches over the past two decades. They may
be traced back to attitude and pose estimation [9]–[11].
When turning to the more general problem of inertial navi-
gation and localization, the Invariant Extended Kalman Fil-
ter (IEKF) [12], [13] has become a key alternative to the
standard EKF. Its theoretical properties include convergence
guarantees [12], consistency properties in the presence of
unobservability [13], see also related works [14]–[16], and
have led to applications in various fields, e.g., [8], [13], [14],
[17]–[20] and in the industry [13]. The field of observers has
benefited from the introduction of new groups brought by the
IEKF theory, see e.g., [21]–[23], namely the groups SE2(3)
and SEk(d) introduced in [12], [24] and their relation to the
navigation equations, see [25] for a recent perspective. The
equivariant observer framework, see [26], is closely related.
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In this technical note, we introduce the Iterated Invari-
ant Extended Kalman Filter (IterIEKF), a refinement of
the IEKF [13] that leverages the Gauss-Newton (GN) method
to enhance its measurement update step, and which systemat-
ically improves its accuracy. Our main contribution is then a
comprehensive analysis of the IterIEKF properties, revealing
rare properties in nonlinear estimation that remind of the linear
case, and offering new tools and insights into the theory of
invariant filtering. Finally, to highlight the practical relevance
of our approach, we apply the IterIEKF to a problem of
engineering interest, and show it outperforms the IEKF when
observations are very accurate (low measurement noise).

While the ultimate goal of invariant filtering is to recover
properties of the linear Kalman filter in a nonlinear setting, and
to identify systems of interest that lend themselves to this goal,
a parallel line of work has been concerned with how to ac-
commodate in general the geometric nature of the state space,
without seeking further properties. In particular, the “Lie-
Group EKF” (LG-EKF) from [27] proposes a generic intrinsic
version of the EKF on Lie groups, that accounts for geometric
features such as curvature. An iterated version, called LG-
IterEKF was proposed in [5]. See, e.g., [28] and applications to
inertial-lidar navigation [29] for recent references in this field.
When tailored to the specific class of problems we consider,
namely by using the groups from invariant filtering and the
choice of errors that it advocates, the LG-IterEKF (that we
call then adapted) is close to the proposed IterIEKF, although
slightly different. As a result, we can prove the properties
of the IterIEKF carry over to this adapted LG-IterEKF. This
novel result constitutes a secondary contribution.

Section II introduces the proposed IterIEKF algorithm for
both noisy and noise-free measurements. Section III derives
theoretical properties of the IterIEKF in the context of noise-
free measurements. We prove they carry over to the LG-
IterEKF from [5] under some conditions. Section IV evaluates
in simulations the performance of the proposed algorithm
compared to other state-of-the-art filters for estimating the
extended pose (orientation, velocity, and position) of a crane
hook, equipped with an Inertial Measurement Unit (IMU).

In the following, the acronym IEKF is reserved for the
invariant EKF, whereas IterEKF is used for the iterated EKF.

II. THE ITERATED INVARIANT EKF (ITERIEKF)
In this section, we first recall the equations of the IEKF and

then introduce the IterIEKF, its iterated version.

A. The IEKF equations
The invariant framework assumes the state χk is an element

of a matrix Lie group G ⊂ GLN (R) having dimension n,
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where GLN (R) denotes the group of N ×N invertible matri-
ces. An example of such a state χ is given below, in (15). The
exponential map of G is defined as expG(·) := expm(Lg(·)),
where expm(·) is the matrix exponential and Lg(·) is the
bijective linear map identifying the Lie algebra g with Rn,
see e.g., [12]. The IEKF comes in two versions, the left-
or the right-invariant version, depending on the form of the
observations, see [13]. This note focuses on the left-IEKF.
Transposition to the right-IEKF is straightforward.

Consider the following nonlinear system in discrete time:

χk+1 = f(χk,uk,wk), (1a)
yk = χkdk + nk, (1b)

with uk ∈ Rm a control input, f : G × Rm × Rb → G the
function describing the system dynamics, wk ∼ N (0,Qk)
an unknown process noise with Qk ∈ Rb×b, yk ∈ RN the
observation that consists of partial and noisy measurements of
the state, dk ∈ RN a known vector, and nk ∼ N (0,Nk) an
unknown measurement noise with Nk ∈ RN×N .

The (left) IEKF assumes that the state follows a concen-
trated Gaussian distribution on G [30]–[33]. At time k, letting l
denote current time index k, or previous index k − 1,

χk = χ̂k|l expG(ξk|l), where ξk|l ∼ N (0,Pk|l), (2)

where χ̂k|l ∈ G is the (best) estimate of the state, and
the linearized error ξk|l ∈ Rn is a centered Gaussian with
covariance matrix Pk|l ∈ Rn×n. Using this model, the IEKF
linearizes the equations of the system (1) at the current
estimate, leading to the following update and propagation:

Upd.



zk = χ̂−1
k|k−1yk − dk,

N̂k = χ̂−1
k|k−1Nk(χ̂

−1
k|k−1)

T ,

Sk = HkPk|k−1H
T
k + N̂k,

Kk = Pk|k−1H
T
k S

−1
k ,

χ̂k|k = χ̂k|k−1 expG(Kkzk),

Pk|k = (I−KkHk)Pk|k−1,

Prop.

{
χ̂k+1|k = f(χ̂k|k,uk,0),

Pk+1|k = FkPk|kF
T
k +GkQkG

T
k ,

(3)

with zk the innovation (i.e., prediction error), Sk the innova-
tion covariance, and Kk the Kalman gain. As is customary
in extended Kalman filtering, Jacobian matrices Fk,Gk arise
from first-order linearizations. However, in the case of invari-
ant filtering, they are defined with respect to model (2), i.e.,

f(χ expG(ξ),u,w) = f(χ,u,0)·
expG

(
Fξ +Gw +O(∥ξ∥2, ∥w∥2, ∥ξ∥∥w∥)

)
.

(4)

When the function f possesses the group affine property
(i.e., is of the form f(χ,u,w) = f̄(χ,u)g(w) where f̄
satisfies f̄(ab,u) = f̄(a,u)f̄(I,u)−1f̄(b,u), for all a,b ∈ G,
u ∈ Rm, see [13]), the Jacobian Fk becomes independent
of the current state estimate χ̂k|k [12], [13]. Moreover, in
the absence of process noise, this results in the exact error
dynamics ξk+1|k = Fkξk|k, where the Jacobian Fk, i.e., the
first order, fully captures the nonlinearity of f . This property
called log-linearity is a key feature of invariant filtering. Note

that an IEKF can be devised even if f is not group affine,
based on expansion (4), and the theory to follow applies.

Similarly, we define Hk as the Jacobian of the innova-
tion zk w.r.t. ξk|k−1. To compute it, we first express yk

as χ̂k|k−1 expG(ξk|k−1)dk + nk. We define the innovation
zk = χ̂−1

k|k−1yk − dk = expG(ξk|k−1)dk − dk + χ̂−1
k|k−1nk,

and perform a first-order expansion w.r.t. ξk|k−1. The corre-
sponding Jacobian Hk is then defined through

expG(ξ)dk = dk +Hkξ +O(∥ξ∥2), (5)

whose detailed expression is to be found at Equation (10).
Due to the specific form of the output and the definition of
the innovation, the Jacobian Hk depends only on dk and is
thus independent of χ̂k|k−1, a feature of invariant filtering.

B. The IterIEKF equations

When receiving a noisy measurement in the left-invariant
form (1b), the IterIEKF aims to find the maximum a posteriori
(MAP) estimate, described in the following result.

Proposition 1. Starting from the prior (2), with l = k − 1,
supposed to encode the state distribution at time k condi-
tional on past information y0, . . . ,yk−1, the MAP estimate
in the light of latest measurement yk is given by χ̂⋆

k|k =
χ̂k|k−1 expG(ξ

⋆), where ξ⋆ solves the optimization problem

ξ⋆ = argmin
ξ

1

2
∥ξ∥2Pk|k−1

+
1

2
∥zk−expG(ξ)dk+dk∥2N̂k

, (6)

where zk is the innovation from (3), ∥η∥2Ξ := ηTΞ−1η, and
where matrices Pk|k−1 and N̂k are assumed to be invertible.

Proof. From Bayes’ rule p(ξk|k−1 | yk) = p(ξk|k−1 |
zk) ∝ p(ξk|k−1)p(zk | ξk|k−1), with all densities p im-
plicitly conditional on past information y0, . . . ,yk−1. Thus
p(ξk|k−1 | yk) ∝ exp(− 1

2∥ξk|k−1∥2Pk|k−1
) exp(− 1

2∥zk −
expG(ξk|k−1)dk + dk∥2N̂k

), maximized by ξ⋆.

The optimization problem (6) does not admit a closed-form
solution. The IEKF addresses this by approximating expG(ξ)
using its first-order Taylor expansion around 0. Inspired by the
iterated EKF [2], a more accurate solution can be obtained by
applying the GN algorithm to iteratively refine the estimate
until convergence. This process results in a sequence of
updates that closely resemble those of the IEKF. The resulting
Iterated IEKF (IterIEKF) is outlined in Algorithm 1. Details
are provided in Appendix A-A.

Iterating proves particularly useful when measurement noise
is low, as we will see in the sequel. However, in the limit
case where the measurement noise magnitude approaches zero,
the innovation covariance Sk may become rank-deficient [34],
in which case the Kalman gain is undefined. An adapted
version of the IterIEKF for this specific scenario is detailed in
Algorithm 2. Details are provided in Appendix A-B.

III. THEORETICAL PROPERTIES OF THE ITERIEKF

Deriving properties in the presence of measurement noise
seems out of reach, as is often the case in nonlinear filtering
(e.g., the log-linear error property of [12] only holds in the
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Algorithm 1 The iterated invariant extended Kalman filter
(IterIEKF)

1: Choose the initial state χ̂0|0 ∈ G and initial covariance
P0|0 = Cov(ξ0|0) ∈ Rn×n.

2: loop
3: Define Jacobians Fk, Gk, Hk of IEKF framework.
4: Define noise covariances Qk,Nk.
5:
6: {Update}
7: zk ← χ̂−1

k|k−1yk − dk

8: N̂k ← χ̂−1
k|k−1Nk(χ̂

−1
k|k−1)

T

9: ξik|k−1 ← 0

10: while ξik|k−1 not converged do
11: Hi

k ← expG(ξ
i
k|k−1)HkJr(ξik|k−1)

12: Si
k ← Hi

kPk|k−1(H
i
k)

T + N̂k

13: Ki
k ← Pk|k−1(H

i
k)

T (Si
k)

−1

14: zik ← zk − expG(ξ
i
k|k−1)dk + dk +Hi

kξ
i
k|k−1

15: ξik|k−1 ← Ki
kz

i
k

16: end while
17: χ̂k|k ← χ̂k|k−1 expG(ξ

i
k|k−1)

18: Kk ← Pk|k−1H
T
k (HkPk|k−1H

T
k + N̂k)

−1

19: Pk|k ← (I−KkHk)Pk|k−1

20:
21: {Propagation}
22: χ̂k+1|k ← f(χ̂k|k,uk,0)
23: Pk+1|k← FkPk|kF

T
k +GkQkG

T
k

24: end loop
Jr(ξ) denotes the right Jacobian [30] of G at ξ, see (30).

Algorithm 2 The IterIEKF with noise-free measurements
Same as Algorithm 1 with the following exceptions.

5: Find Lk|k−1 such that Pk|k−1 = Lk|k−1L
T
k|k−1.

13: Ki
k ← Lk|k−1(H

i
kLk|k−1)

†

18: Kk ← Lk|k−1(HkLk|k−1)
†

Here, (·)† denotes the Moore-Penrose pseudo-inverse.

absence of process noise). However, we show that the IterIEKF
possesses strong properties in the absence of measurement
noise (whereas the state estimate and the propagation may
be noisy). We therefore consider noise-free measurement

yk = χkdk. (7)

In this case, a measurement defines a subset of the state space.

Definition 1. We call observed set associated with the noise-
free measurement yk = χkdk the subset

S{χdk=yk} := {χ ∈ G | χdk = yk}. (8)

Definition 2 establishes criteria for local compatibility of a
Gaussian filter on Lie groups with measurement (7).

Definition 2. The estimate (χ̂k|l,Pk|l) is said to be locally
compatible with noise-free measurement yk = χkdk if

1) χ̂k|l ∈ S{χdk=yk},
2) HkPk|lH

T
k = 0,

where Hk denotes the Jacobian defined in (5).

Since these criteria are not immediately obvious, we briefly
motivate their formulation. Using model (2) and lineariz-
ing around ξk|l = 0 via (5), we obtain yk = χkdk =
χ̂k|l expG(ξk|l)dk ≈ χ̂k|ldk + χ̂k|lHkξk|l. As ξk|l ∼
N (0,Pk|l), for this linear approximation of (7) to hold (almost
surely) we must have both χ̂k|ldk = yk (letting ξk|l = 0), and
Hkξk|l = 0 whenever ξk|l in ImPk|l, that is, 1) and 2).

Before turning to the IterIEKF and its properties in this
context, let us further analyze the specific structure of the
measurements under consideration.

A. Properties of considered noise-free measurements

The theory of (left) invariant filtering focuses on measure-
ments of the form (1b), see [12], which boil down to (7) when
the noise is turned off. It turns out that the corresponding
“observed set” (8) possesses an interesting structure.

Proposition 2. Let Hk denote the Jacobian from invariant
filtering defined in (5). We have the following properties

1) Hkξ = 0, ξ ∈ Rn ⇒ expG (ξ)dk = dk,
2) s := {Lg(ξ) ∈ g | Hkξ = 0} is a Lie subalgebra of g.

Proof. As we are dealing with matrix Lie groups, the expo-
nential coincides with the matrix exponential expm as follows

expG(ξ) = expm(Lg(ξ)) = I+

+∞∑
l=1

Lg(ξ)
l

l!
. (9)

Keeping only first-order terms proves, in passing, that the
Jacobian Hk from (5) writes

Hkξ = Lg(ξ)dk. (10)

Thus Hkξ = 0⇒ Lg(ξ)
ldk = 0 by induction, and then

expG(ξ)dk = dk +

+∞∑
l=1

Lg(ξ)
ldk

l!
= dk, (11)

proving the first point. Regarding the second point, let δ, ζ ∈
Rn be such that Lg(δ),Lg(ζ) ∈ s. Considering the standard
bilinear skew-symmetric Lie bracket defined as [A,B] =
AB − BA, we have [Lg(δ),Lg(ζ)]dk = Lg(δ)Lg(ζ)dk −
Lg(ζ)Lg(δ)dk = 0 by the definition of s and (10). This
proves that [Lg(δ),Lg(ζ)] ∈ s, confirming that s is closed
under the Lie bracket and is therefore a subalgebra of g.

The first point of Proposition 2 is directly useful for proving
the compatibility properties of the IterIEKF, in the sense of
Definition 2. This will be established in the next subsection,
relying on the following key Lemma 1. We also note, in
passing, that the second point will only become relevant when
extending the present theory to the iterated EKF on Lie groups
(LG-IterEKF) of [33], under certain conditions.

Lemma 1. Let Hk denote the Jacobian from invariant filtering
defined in (5). We have

χ̂k|l ∈ S{χdk=yk} and Hkξ = 0, ξ ∈ Rn

⇓
χ̂k|l expG (ξ) ∈ S{χdk=yk}.

(12)
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Proof. Using the first point of Proposition 2 yields

Hkξ = 0⇒ χ̂k|l expG(ξ)dk = χ̂k|ldk = yk, (13)

which proves χ̂k|l expG(ξ) ∈ S{χdk=yk}.

A direct and important consequence is the following.

Proposition 3. Assume the two points of Definition 2 are
satisfied. Then, the entire probability distribution encoded
by (2) is in fact (almost surely) contained within the observed
set S{χdk=yk}, i.e., the estimate is globally compatible with
the noise-free measurement yk = χkdk.

In other words, if the filter manages to encode the com-
patibility assumptions correctly locally, it will convey an
estimated distribution being wholly consistent with available
information, beyond the first order. This shall play a key role.

B. Compatibility of the IterIEKF with the measurements

Let us first focus on the first point of Definition 2. As
the magnitude of the measurement noise tends to zero, the
optimization problem (6) boils down to finding the smallest ξ
in the sense of the metric induced by Pk, that satisfies the hard
constraint ∥zk−expG(ξ)dk+dk∥2 = 0. As zk = χ̂−1

k|k−1yk−
dk, this constraint boils down to χ̂−1

k|k−1yk = expG (ξ)dk

and the minimizer ξ⋆ we are seeking necessarily satisfies
χ̂k|k−1 expG (ξ⋆)dk = yk. Provided that the IterIEKF iterate
ξik|k−1, which is a GN descent, indeed converges to such a
minimizer, the updated state χ̂k|k = χ̂k|k−1 expG(ξ

⋆) will (by
definition) belong to the observed set, i.e., χ̂k|k ∈ S{χdk=yk},
ensuring the first point of Definition 2. As the optimization
problem is not convex, convergence of the GN descent is only
guaranteed if the true error ξk|k−1 is sufficiently close to 0.
However, by contrast, non-iterative update schemes, such as
the IEKF update, do not guarantee that χ̂k|k ∈ S{χdk=yk}
even for small initial errors. In the upcoming simulations of
Section IV, and more generally in all simulations we have
performed, the IterIEKF always converges to the observed set.

Let us now turn to the second point of Definition 2.

Theorem 1. The IterIEKF updated covariance matrix Pk|k
in the light of noise-free measurement yk = χkdk naturally
ensures HkPk|kH

T
k = 0.

Proof. This is a consequence of linear Kalman theory,
which may be proved as follows. When facing noise-free
measurements, the Kalman gain is computed as Kk =
Lk|k−1(HkLk|k−1)

†, where Pk|k−1 = Lk|k−1L
T
k|k−1. Let-

ting Ak = HkLk|k−1, we have: HkPk|kH
T
k = Hk(I −

KkHk)Pk|k−1H
T
k ,= (Ak − Ak(Ak)

†Ak)A
T
k = 0, where

we used AkA
†
kAk = Ak.

C. Consequences of the compatibility property

When fed with a measurement (7) (resp. with a measure-
ment (1b) with small noise), the information that the state
lies in (resp. is close to) the observed subset S{χdk=yk}
should be well encoded in the filter, that is, no immediate
subsequent measurement should be able to destroy that piece
of information. The following result shows that the IterIEKF

indeed can inherently “lock in” perfect information, which
is akin to the behavior of the (linear) Kalman filter when
confronted with a noise-free linear measurement.

Theorem 2. Let ȳk = χkd̄k represent a noise-free piece of
information about the true state. Consider an IterIEKF whose
current distribution is compatible with this information in the
sense of Definition 2, meaning that χ̂k|k−1 ∈ S{χd̄k=ȳk}
and that H̄kPk|k−1H̄

T
k = 0, where H̄k is the Jacobian

associated with d̄k. If the estimate is subsequently updated
using a (possibly noisy) measurement yk = χkdk + nk, then
the corresponding updated estimate (χ̂k|k,Pk|k), which incor-
porates this new measurement yk, remains compatible with the
deterministic information ȳk = χkd̄k. Mathematically,

χ̂k|k−1 ∈ S{χd̄k=ȳk} and H̄kPk|k−1H̄
T
k = 0,

⇓
χ̂k|k ∈ S{χd̄k=ȳk} and H̄kPk|kH̄

T
k = 0.

(14)

Proof. Let us first consider the first point of Definition 2.
During the update with yk, we see at line 17 of Algorithm 1
that χ̂k|k = χ̂k|k−1 expG(ξ

i
k|k−1), where ξik|k−1 = Ki

kz
i
k ∈

ImKi
k ⊆ ImPk|k−1, with ImKi

k denoting the span of Ki
k.

Since H̄kPk|k−1H̄
T
k = 0 by assumption, we necessarily have

H̄kξ
i
k|k−1 = 0. Then, as χ̂k|k−1 ∈ S{χkd̄k=ȳk}, a direct

application of Lemma 1 ensures χ̂k|k ∈ S{χd̄k=ȳk}.
Now, regarding the second point of Definition 2, the condi-

tion H̄kPk|k−1H̄
T
k = 0 implies Pk|k−1H̄

T
k = 0 by symmetry.

The update of the IterIEKF with measurement yk, see line 19
of Algorithm 1, gives Pk|k = (I−KkHk)Pk|k−1, where Hk

is the Jacobian associated with dk. Since ImKk ⊆ ImPk|k−1,
the updated covariance Pk|k also verifies Pk|kH̄

T
k = 0,

whatever Hk. Consequently, H̄kPk|kH̄
T
k = 0.

Once the noise-free information has been properly ac-
counted for, the IterIEKF effectively “focuses” on a problem
of reduced dimensionality: the subsequent update correctly
adjusts the state within the observed set S{χd̄k=ȳk}. This
significantly improves the filter efficiency in practice, as will
be demonstrated in the simulations. By contrast, a classical
EKF or even an iterated EKF may step out of the appropriate
subset, resulting in less efficient estimation updates.

Illustration on SO(3): Albeit a simple example, it is
pedagogical to illustrate the results on a problem involving
rotation matrices. Let χk ∈ SO(3) be an unknown rotation
matrix representing the orientation of a drone in an inertial
frame. Suppose an IterIEKF is used to estimate χk, and
that prior observation has enabled perfect knowledge of the
gravity vector in the drone body frame d̄k. As a result, the
current estimate (χ̂k|k−1,Pk|k−1) is compatible, in the sense
of Definition 2, with the noise-free information g = χkd̄k.
Now, suppose a new measurement yk = χkdk+nk is received
from another sensor. When updating the estimate using yk, all
iterates of the IterIEKF, denoted by χ̂k|k−1 expSO(3)(ξ

i
k|k−1),

remain within the observed set S{χd̄k=g}. Moreover, the
update also ensures H̄kPk|kH̄

T
k = 0. Consequently, once the

noise-free information g = χkd̄k is incorporated, the IterIEKF
operates in a subset of reduced dimensionality—namely, it
seeks planar rotations within a 2D subspace. This makes the
filter significantly more efficient because 1) it performs updates
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directly within a reduced subspace that contains the true state,
and 2) it wholly preserves the information from the previous
measurements. Note that, if noise is low instead, the latter
remains approximately true—as there is a continuum between
the noise-free and low-noise cases—which should make the
filter very efficient in practice when measurement noise is low.

D. Extending the theory to the iterated EKF on Lie groups
The LG-IterEKF, introduced in [5], transposes the standard

iterated EKF to Lie group state spaces, by leveraging an
intrinsic GN method on the group, that accounts for its
manifold structure, notably curvature. LG-IterEKF of [5] is
a general algorithm, meant to address general problems on
Lie groups having no specific structure, beyond the intrinsic
nature of the state space. By contrast, our IterIEKF addresses
specific types of observations, namely (1b) (or its right-
invariant counterpart yk = χ−1

k dk + nk, in which case an
iterated right-invariant EKF should be used, by mimicking
the difference between the LIEKF and the RIEKF of [12]). It
defines a modified innovation zk = χ̂−1

k yk−dk, allowing for
the use of the invariant Kalman filter framework of [12], [13].
The standard invariant EKF has had various successes across
control, navigation, and robotics, and is clearly a different
algorithm than the LG-EKF of [27].

That said, the questions one could address are as follows.
Assume we use the theory of invariant filtering to endow the
LG-IterEKF with all the features of the IterIEKF—namely,
measurements of the form (7), uncertainty model (2), and the
Kalman gain from Algorithm 2 to address rank deficiency
issues, as well as the appropriate choice regarding left or right
versions (note that [5] chooses a systematic right-invariant
error based setting whereas we advocate to choose the error
depending on the form of the observations), resulting in an
“invariant” version of the LG-IterEKF, that we call adapted
LG-IterEKF, see Algorithm 3. Then, 1) do we actually recover
the IterIEKF, and 2) if no, does it inherit any of the properties
we have proved, given that no such properties have ever been
proved for the LG-IterEKF? The answer to point 1 is no, as
intrinsic GN on the group entails adding various Jacobians
and differs from the GN algorithm addressing (6), that directly
optimizes in a linear space. The answer to point 2 is yes, the
properties above do carry over. This is detailed, proved, and
discussed, in Appendix B.

Algorithm 3 The adapted LG-IterEKF from [5] when mea-
surements (7) are considered, uncertainty model (2) is used,
potential rank deficiency issues in the Kalman gain are ad-
dressed via the noise-free gain from Algorithm 2, and a left-
invariant error is used instead. See (30) for definition of Jr.

Same as Algorithm 2 with the following exceptions.
11: Hi

k ← χ̂k|k−1 expG(ξ
i
k|k−1)HkJr(ξik|k−1)

14: zik ← yk − χ̂k|k−1 expG(ξ
i
k|k−1)dk +Hi

kξ
i
k|k−1

19: Pk|k ← Jr(ξik|k−1)(I−Ki
kH

i
k)Pk|k−1Jr(ξik|k−1)

T

IV. APPLICATION OF ENGINEERING INTEREST

We propose using the IterIEKF to estimate the position,
velocity, and orientation (extended pose) of the hook of a

crane transporting a load, equipped with an IMU. Mounting
an IMU on a crane hook for real-time sensor data transmission
is technically very feasible nowadays [35], and may open
the door to new automation capabilities since it allows for
feedback. Leveraging the Lie group SE2(3) introduced by
invariant filtering theory in [12], we represent the state as

χk =

Rk vk pk

0 1 0
0 0 1

 ∈ SE2(3), (15)

where Rk ∈ SO(3) is the rotation matrix between the IMU
and inertial frames, and vk, pk ∈ R3 are the IMU velocity
and position in the inertial frame. The inertial frame is fixed
at the crane cable attachment point with the z-axis oriented
upward, and remains stationary. The hook and IMU frames
are assumed perfectly aligned. See our preliminary conference
paper [34] for more details on this application.

Neglecting IMU biases, the system dynamics write

Rk+1 = Rk expSO(3)((ωk +wω
k )dt), (16a)

vk+1 = vk + (Rk(ak +wa
k) + g) dt, (16b)

pk+1 = pk + vk dt, (16c)

where ωk and ak denote the IMU angular velocity and linear
acceleration, wω

k and wa
k represent Gaussian noise in the

gyroscope and accelerometer, and g is the gravity vector. The
IMU is attached to a cable whose length Lk is very accurately
measured in modern cranes by motor encoders. We hence
use it as noise-free measurement. Mathematically, this writes
χkdk = 0, with dk =

[
0 0 Lk 0 1

]T
. The last two

rows of χkdk are discarded as they do not contain information.
A short simulation is carried out. The hook starts with an

initial orientation of −45◦ around the y-axis, zero velocity,
and position p0 =

[√
2/2 0 −

√
2/2

]T
. The filter and IMU

operate at 100Hz, with a time step dt of 0.01 s. The cable
length follows Lk = Lc(k·dt), where Lc(t) evolves as L̈c(t)+
12L̇c(t) + 16Lc(t) = 64, with initial conditions Lc(0) = 1m
and L̇c(0) = 0m/s.

We compare five filters: EKF, IterEKF, (adapted) LG-
IterEKF (implemented as in Algorithm 3), IEKF, and
IterIEKF. Results are averaged over 500 runs, each with
the same ground truth trajectory and a random initial error
drawn from (2). The estimation is constrained to the xz-
plane to ensure observability. Gyroscope noise has a standard
deviation of 0.974 ◦/s about the y-axis and 0 ◦/s about the
x- and z-axes. Accelerometer noise has a standard deviation
of 0.1m/s2 along the x- and z-axes and 0m/s2 along the
y-axis. The initial error covariance matrix encodes a standard
deviation of 45◦ for rotation about the y-axis and 5m/s and
5m for velocity and position along the x- and z-axes. No
measurement noise is assumed. However, although the noise-
free gain formulation used in Algorithm 2 is always well-
defined and serves as a basis for the theoretical analysis,
it is not well-suited to practical implementations, as it can
be difficult to distinguish small singular values from actual
zeros in the calculation of the pseudo-inverse. As a result,
the noise-free gain formulation from Algorithm 2 is replaced
with Algorithm 1, setting the measurement noise covariance
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Fig. 1. Evolution of the average and standard deviation of the estimation
error norm.

RMSE EKF IterEKF LG-IterEKF IEKF IterIEKF

Orientation 0.805 0.792 0.592 1.112 0.574
Velocity 1.489 1.458 1.136 6.039 1.116
Position 1.054 1.041 0.871 1.852 0.858

TABLE I
RMSE COMPUTED OVER THE FIRST 15 TIMES STEPS OF THE 500 RUNS.

THE SMALLEST VALUES ARE HIGHLIGHTED IN BOLD.

to a tiny value, namely Nk = 10−5I. For iterative filters, the
GN method stops when ∥ξik|k−1∥2 changes by less than 10−5

between iterations or reaches a maximum of 50 iterations.
Figure 1 shows the mean estimation error norm over time,

averaged across 500 runs, with standard deviation. Table I
summarizes the global Root Mean Square Error (RMSE)
computed over the first 15 time steps of the 500 runs. The
IterIEKF and LG-IterEKF exhibit similar behavior, consis-
tently outperforming all other filters. The first two updates
significantly reduce the error on average, after which subse-
quent updates continue to decrease the error, albeit at a slower
rate. Notably, both filters successfully converge across all 500
runs, regardless of the initial error. The IterIEKF performs
slightly better on average proving that considering (6) instead
of actual GN on the group does not pose problems.

The EKF and IterEKF exhibit similar performance, while
the IterEKF is slightly better. They are outperformed by the
introduced algorithm because their updates make them step out
of the observed set. The IEKF surprisingly fails to converge in
most cases. This behavior is expected with low measurement
noise: in a noise-free setting, the IEKF update fails to satisfy
the first condition in Definition 2, while still enforcing the
second. Consequently, the estimate is confined to a subset that
excludes the true state and cannot escape. This phenomenon
underscores the necessity of an iterative update in the invariant
filtering framework when handling accurate measurements.

As filtering is typically performed in real time, it is crucial
to assess the number of iterations required during the update
stage for the IterEKF, LG-IterEKF, and IterIEKF. Figure 2
presents a histogram of the iteration count for these iterative
filters. The results indicate that in over 80% of cases, both
the IterIEKF and LG-IterEKF complete the update stage in
just two iterations, making their computational cost relatively
low. In contrast, the IterEKF generally requires a higher
number of iterations on average, which could lead to increased
computational expense.

IterIEKF
LG-IterEKF
IterEKF
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Fig. 2. Histogram of the number of iterations required at the update stage of
the iterated filters, computed over 500 runs.

V. CONCLUSION

In this technical note, we introduced the IterIEKF, an iter-
ated version of the IEKF inspired by the IterEKF. We analyzed
its properties in the limit case of noise-free measurements,
expressed in left-invariant form (7) (in case of right-invariant
measurements, deriving the corresponding right-IterIEKF is
straightforward, and the results immediately apply). Specifi-
cally, we derived criteria for assessing the local compatibility
of Gaussian filters on Lie groups with this class of measure-
ments, and leveraged their specific structure to demonstrate
that these criteria also ensure global compatibility. Then,
we proved the IterIEKF update produces estimates that are
compatible, and moreover tend to inherently “hard code” this
compatibility. We also proved that the same properties hold
for the LG-IterEKF when tailored to the invariant framework.

We applied the IterIEKF to the problem of estimating the
extended pose of a crane hook equipped with an IMU, where
mechanical information is assimilated in the form of a noise-
free pseudo-measurement. The IterIEKF demonstrated the best
performance, closely followed by the adapted LG-IterEKF [5],
a fact explained by our present theory. The superiority of both
algorithms is consistent with the theoretical guarantees we
have proved, and the IEKF is outperformed in this context.

However, we recommend using the IterIEKF over the LG-
IterEKF, because the IEKF possesses convergence properties
(notably log-linearity of the error [12]) and consistency proper-
ties that have never been proved for the LG-EKF. In particular,
the unobservability consistency properties of the IEKF [13],
[19], [20] may not be inherited by the LG-IterEKF, although
proving this fact is left for future research.

Finally, simulations showed only a few iterations were
needed for the GN method used in the IterIEKF update to
converge, making the IterIEKF viable for real time.

As a perspective, we aim to apply this iterative estimation
technique to other problems where the IEKF has proven
effective, particularly in high-precision navigation. Moreover,
we will explore its application in state estimation where con-
straints could be enforced as noise-free pseudo-measurements.

APPENDIX A
THE ITERIEKF DERIVATION

A. Standard case: noisy measurements

Akin to the conventional iterated EKF [2], we intend to
solve (6) iteratively using the Gauss-Newton method.
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Lemma 2 (from [2]). Consider the optimization problem

x⋆ = argmin
x

1

2
∥x− x̄∥2A +

1

2
∥b− h(x)∥2B, (17)

with x, x̄ ∈ Rn, b ∈ Rm, A ∈ GLn(R), B ∈ GLm(R) and
h ∈ C1(Rn,Rm). The Gauss-Newton method applied to (17)
yields the sequence of estimates

xi+1 = x̄+Ki(b− h(xi)−Hi(x̄− xi)), (18)

with

Hi = h′(xi), (19a)

Ki = A(Hi)T (HiA(Hi)T +B)−1, (19b)

where h′(xi) denotes the Jacobian of h evaluated at xi.

Lemma 3. We have the following first-order expansion

expG(ξ̄ + δ)dk = expG(ξ̄)dk + expG(ξ̄)HkJr(ξ̄)δ + ∥δ∥2,

with Hk as in (10), and where the right Lie Jacobian [30] is
defined by expG(ξ+ δ) ≈ expG(ξ) expG(Jr(ξ)δ) neglecting
terms of order ∥δ∥2, see (30) for an expression.

Proof. We have the first-order expansion in δ

expG(ξ̄ + δ)dk ≈ expG(ξ̄) expG(Jr(ξ̄)δ)dk, (20a)

≈ expG(ξ̄)
(
dk + Lg(Jr(ξ̄)δ)dk

)
, (20b)

≈ expG(ξ̄)
(
dk +HkJr(ξ̄)δ

)
, (20c)

where we applied (10) with ξ = Jr(ξ̄)δ.

Letting b := zk + dk, h(ξ) := expG(ξ)dk, and x̄ = 0, we
see objectives (6) and (17) coincide, and a direct application
of Lemma 2 and Lemma 3 yields the following proposition.

Proposition 4. The sequence of GN updates for the optimiza-
tion problem (6) writes

ξi+1
k|k−1 = Ki

k

(
zk−expG(ξ

i
k|k−1)dk+dk+Hi

kξ
i
k|k−1

)
, (21)

letting Hk be the IEKF standard Jacobian from (5) and

Hi
k = expG(ξ

i
k|k−1)HkJr(ξik|k−1), (22)

Ki
k = Pk|k−1(H

i
k)

T
(
Hi

kPk|k−1(H
i
k)

T + N̂k

)−1

. (23)

Assuming the GN method converges after i⋆ iterations, the
state estimate is updated according to

χ̂k|k = χ̂k|k−1 expG

(
ξi

⋆

k|k−1

)
. (24)

Since Jacobian Hk is independent from the current estimate,
the Riccati update does not require any iteration, and the error
covariance is updated once and for all as follows

Pk|k = (I−KkHk)Pk|k−1, (25)

with Hk = H0
k and Kk = K0

k. The full algorithm is
summarized in Algorithm 1. Note that we exactly recover the
IEKF of [12] if we perform one iteration only.

B. Special case: noise-free measurements

In the limit case of noise-free measurements, i.e., Nk = 0,
the innovation covariance becomes Sk = HkPk|k−1H

T
k and

can cease to be invertible, in which case the Kalman gain
Kk = Pk|k−1H

T
k S

−1
k is undefined. This occurs when the per-

fectly observed directions overlap between subsequent updates
for example. This issue is solved using the “noise-free limit
gain” developed in our preliminary conference paper [34]:

Knf
k = lim

δ→0
Pk|k−1H

T
k (HkPk|k−1H

T
k + δI)−1, (26a)

= Lk|k−1(HkLk|k−1)
†, (26b)

where (·)† is the Moore-Penrose pseudo-inverse, Pk|k−1 =
Lk|k−1L

T
k|k−1, and nf stands for “noise-free”. This gain is

always defined.
Let us analyze the behavior of the proposed IterIEKF as the

measurement noise magnitude approaches zero. Let N̂k = δI,
with δ ≪ 1. In this context, Problem (6) becomes that of
minimizing fδ(ξ) =

1
2∥ξ∥

2
Pk|k−1

+ 1
2∥zk−expG(ξ)dk+dk∥2δI.

The minimizer of fδ may be sought using the GN sequence
of estimates of Proposition 4

ξi+1
k|k−1,δ = Ki

k,δ·(
zk − expG(ξ

i
k|k−1,δ)dk + dk +Hi

k,δξ
i
k|k−1,δ

)
︸ ︷︷ ︸

zi
k,δ

, (27)

where Hi
k,δ = expG(ξ

i
k|k−1,δ)HkJr(ξik|k−1,δ) and where we

let Ki
k,δ = Pk|k−1(H

i
k,δ)

T
(
Hi

k,δPk|k−1(H
i
k,δ)

T + δI
)−1

.

Starting from ξ0k|k−1,δ = 0 and letting δ → 0, we get

lim
δ→0

ξi+1
k|k−1,δ = lim

δ→0
Ki

k,δ · lim
δ→0

zik,δ, (28)

so that the GN sequence approximating the solution to the
noise-free optimization problem becomes, recalling (26),

ξi+1
k|k−1 = Lk|k−1(H

i
kLk|k−1)

†zik. (29)

This provides the limit IterIEKF for noise-free measurements
described in Algorithm 2.

APPENDIX B
ADAPTATION AND EXTENSION TO THE LG-ITEREKF

When providing the LG-IterEKF with features from invari-
ant filtering, the two key differences between the LG-IterEKF
and the IterIEKF lie in their Riccati update: 1) the LG-IterEKF
computes Pk|k using Ki

k and Hi
k, the gain and output Jacobian

obtained in the final iteration of the GN method, and 2) it
involves Jr(ξik|k−1), the right Jacobian of G, to adjust the
linearization of the exponential map when expanding around
ξik|k−1 instead of 0. This Jacobian writes:

Lg(Jr(δ)ζ) :=
+∞∑
k=0

[. . . [Lg(ζ),

k︷ ︸︸ ︷
Lg(δ)], . . . ,Lg(δ)]

(k + 1)!
. (30)

Despite these differences, the following result holds.

Corollary 1. If noise-free measurements yk = χkdk are
considered, uncertainty model (2) is used (i.e., a left-invariant
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error), and potential rank deficiency issues in the Kalman gain
are addressed via the noise-free gain from Algorithm 2, then
Theorems 1 and 2 hold, replacing IterIEKF with LG-IterEKF.

Proof. As HkJr(ξik|k−1) = expG(−ξ
i
k|k−1)χ̂

−1
k|k−1H

i
k, see

line 11 in Algorithm 3, we have the following equivalence:

HkPk|kH
T
k = 0⇔ Hi

k(I−Ki
kH

i
k)Pk|k−1(H

i
k)

T = 0.

The right-hand side of this equivalence follows directly from
the same reasoning used in the proof of Theorem 1. Regarding
implication (14), the same reasoning as in the proof of
Theorem 2 is used to prove χ̂k|k ∈ S{χd̄k=ȳk}. Let us
show now that the equality H̄kPk|kH̄

T
k = 0 also holds.

The assumption H̄kPk|k−1H̄
T
k = 0 implies that Lg(ξ) ∈ s,

for all ξ ∈ ImPk|k−1, where s is the subalgebra of g
defined in Proposition 2. As the Lie bracket is closed in s,
the expression in (30) is such that H̄kJr(δ)ζ = 0, for all
δ, ζ ∈ ImPk|k−1. Recalling that Pk|k = Jr(ξik|k−1)(I −
Ki

kH
i
k)Pk|k−1Jr(ξik|k−1)

T , that ξik|k−1 ∈ ImPk|k−1, and
that Im(I − Ki

kH
i
k)Pk|k−1Jr(ξik|k−1)

T ⊆ ImPk|k−1, we
necessarily have H̄kPk|k = 0, and thus H̄kPk|kH̄

T
k = 0.

We stress that this result–a consequence of the Lie subal-
gebra structure related to the observation (7)–does not, at any
rate, extend to the general LG-IterEKF presented in [5].
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