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Application of metabolomics to the evaluation of renal function in kidney transplantation 

 

Kidney transplantation (KTx) represents nowadays the best treatment for patients with end-stage 

kidney disease. Allograft dysfunction post-transplantation currently represents the leading cause of 

altered kidney function and rejection. For this reason, the long-term success of a transplantation 

depends on the graft quality at transplantation time and of a continuous follow-up of kidney transplant 

recipient. In this work we propose the application of a metabolomics approach to explore several 

challenges linked to KTx: (1) the accurate assessment of graft quality before-transplantation; (2) a 

consistent and precise monitoring of patients during post-transplantation period.  To achieve these 

goals two different cohorts were analyzed in parallel. The first cohort consists of urine samples 

collected at 3-and 12-months post-transplantation with patient’s stratification based on mGFR value. 

Combination of NMR and MS-based metabolomics approaches were used to predict and monitor 

kidney function decline. For the second cohort, samples of perfusate collected during transplantation 

were used for the analysis. NMR metabolomics was employed in this cohort with the aims to define a 

panel of biomarkers predicting the occurrence of kidney dysfunction in post-graft period. The primary 

goals of this thesis are to create tools helping clinicians in patient management and follow-up within 

their clinical practice.  
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Application de la métabolomique à l'évaluation de la fonction rénale en transplantation rénale 

 

La greffe rénale est le traitement de choix pour les patients atteints de graves problèmes rénaux. 

Cependant les dysfonctions post-transplantation du greffon sont la principale cause de complications 

rénales et de rejet chez les patients transplantés. Afin d'améliorer la durabilité et l'efficacité des 

transplantations, l'évaluation de la qualité du greffon et la surveillance continue sont essentielles, bien 

que l'évaluation actuelle soit encore imprécise. Ce projet vise à deux objectifs principaux : (1) une 

évaluation précise de la qualité du greffon avant-transplantation ; (2) un suivi précis de l'état des 

patients post-transplantation. Pour atteindre ces objectifs, deux cohortes de patients ont été examinées. 

La première cohorte comprend des échantillons d'urine prélevés à 3 et 12 mois post-transplantation, 

classés en fonction de la valeur mGFR. La combinaison des approches métabolomiques par RMN et 

MS été utilisé pour prédire et monitorer la diminution de la fonction rénale. La deuxième cohorte 

comprend des échantillons de perfusate collectés lors de la transplantation et analysés par approche 

métabolomique par RMN pour identifier de nouveaux biomarqueurs précoces de la dysfonction rénale. 

L’objectif globale de ce travail était donc la mise en place de nouveaux outils afin d’aider les cliniciens 

dans le suivi et le management des patients. 
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1 Introduction 

1.1 Background-Metabolomics 

1.1.1 Omics sciences 
“Omics” defines the group of fields analyzing large-scale data describing a specific biological 

system at a particular level. The core concept on which all “omics” are founded is that a specific 

complex system can be better understood if considered in his whole environment and as strictly 

interconnected to this. In the last decades the improvement reached in computer science and 

instrumental technologies have allowed the generation of “big” data sets that represents the 

subject of study of omics technologies. Specifically, omics science embraces the wholeness of 

tools, approach and technique able to assess and quantify relationship between a set of 

molecules and a biological, biochemical, physiological or pathological process. Due to the high 

versatility of this domain, the application area of omics science is broadly various by including 

toxicology, drug development, biomarker discovery, food and environmental science and 

personalized medicine.  

Depending on the type of molecules on which the “omics” is focused we can distinguish four 

major fields: genomics, transcriptomics, proteomics and metabolomics.  

The term "genomics" emerged in the late 1980s to describe the study of an organism's entire set 

of genes, or its genome. The Human Genome Project, launched in 1990, aimed to sequence the 

entire human genome and was completed in 2003. This marked a significant milestone in omics 

science, providing a foundation to understanding genetic variations and their implications1. 

Transcriptomics involves the study of all RNA molecules produced by a cell or organism, 

collectively known as the transcriptome. In 1990, this field gained momentum with the 

development of microarray technology and later, RNA sequencing (RNA-seq) 2. 

Transcriptomics enabled researchers to simultaneously measure the expression levels of 

thousands of genes and allowed insights into gene regulation, cellular responses, and disease 

mechanisms. Proteomics focuses on the large-scale study of proteins and their functions within 

a biological system. In late 1990s the development of mass spectrometry techniques facilitated 

the identification and quantification of proteins in complex mixtures 3. Proteomics research 

unveiled details about protein interactions, post-translational modifications, and their roles in 

health and disease. Metabolomics involves the study of small molecules, or metabolites, that 

are produced as a result of cellular processes. This field provides insights into the metabolic 

state of an organism and how it responds to environmental changes, nutrition, and disease. 
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Advancement in analytical techniques, such as nuclear magnetic resonance  and mass 

spectrometry in early 2000s, played a key role in advancing metabolomics research4. 

The complementarity of these sciences is evident and can give a holistic picture of a biological 

system. From the top to the bottom of this cascade (Figure 1) a multitude of possible 

combinations and modifications can happen by modifying the end-product represented by the 

phenotype. Particularly, when we look at the omics cascade, metabolomics represents the 

downstream output of the genome, transcriptome and proteome and directly reflect the 

functional status of an organism5,6. For instance, metabolomics bridges the gap between 

molecular components of an organism and the observable traits that define its phenotype.  

 

1.1.2 Generalities and history 
Metabolomics is a field of scientific study that involves the comprehensive analysis and 

profiling of small molecules, known as metabolites, within a biological system. These 

metabolites are the end products of various cellular processes, reflecting the biochemical 

activity and interactions occurring within an organism. 

Metabolomics aims to provide a holistic understanding of the metabolic status and dynamics of 

a biological system. This approach allows a systematic profiling of metabolites and their 

Figure 1 Omics" cascade where Metabolomics represents the downstream output of the 
genome but also the upstream input from the environment (Steuer, Andrea E et al. 

“Metabolomic Strategies in Biomarker Research-New Approach for Indirect Identification of 
Drug Consumption and Sample Manipulation in Clinical and Forensic Toxicology?” DOI: : 

10.3389/fchem.2019.00319.) 

http://dx.doi.org/10.3389/fchem.2019.00319
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changes issue by environmental factor, diet, lifestyle, pathologies or drug assumption. 

Metabolites are represented by small molecules (80-1500 Da) produced as a result of various 

biochemical reactions and processes within living organisms. These molecules play the roles of 

intermediates and end products of metabolic pathways, which are intricate networks of 

chemical reactions that occur within cells. 

Metabolites covers diverse range of compounds, including sugars, amino acids, fatty acids, 

vitamins, hormones, neurotransmitters, and many others. These molecules serve as building 

blocks to constructing cellular structures, as well as the energy suppliers for cellular functions; 

furthermore, they act as signaling molecules that orchestrate a diverse array of biological 

processes. Analyzing the alterations of metabolites within tissues, cells, or biofluids provides 

distinct insights into the physiological or pathological condition, furnishing invaluable 

information. The idea of follows changes in metabolites and consequently in metabolomes is 

not as new as we can imagine as we can see from the Figure 2. The first use of metabolomics 

can be spot back to the ancient Chinese culture (2000–1500 BC) when traditional Chinese 

doctors evaluated glucose level in urine of diabetic patients using ants. In 300BC, both Egypt 

and Greece practiced the traditional method of diagnosing human diseases by assessing the taste 

of urine 7. However, it was only with the development of modern analytical techniques, such as 

chromatography and spectroscopy, in the 20th century that the systematic study of metabolites 

gained importance. These advancements allowed scientists to identify and quantify specific 

metabolites in biological samples, laying the groundwork for the field of metabolomics 8, 9. The 

term "metabolomics" itself emerged in late 1990s as technologies like nuclear magnetic 

resonance (NMR) and mass spectrometry (MS) became more sophisticated and accessible 10; 

these technologies enabled researchers to analyze complex mixtures of metabolites in a 

comprehensive and systematic manner. Since then, the interest to metabolomics exploded with 

a particular interest to its domain of application potential going from agriculture to medicine 

and other related areas in the biological sciences. The important place occupied by 

metabolomics on biomedical research fields,  allowed, in 2007, the publication of the first  

human metabolome database (HMDB) today known as the most comprehensive database of 

measurable metabolites in human biofluids11. Currently, the database records a total of 220.945 

metabolites, a notable increase from the 2.180 metabolites documented in 2007. This 

remarkable growth serves as proof of the growing user community and the increasing amount 

of research being conducted in the field of metabolomics. From 2000 to 2016, numerous 

pathways analysis tools have been developed (including KEGG, MELTIN, iPath, MetPA, 
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BioCyc, etc.) to aid in the visualization of metabolite profiles within biochemical network 

diagrams and the identification of metabolic patterns associated with specific biological states. 

 

1.1.3 Modern metabolomics and trends 
In the post-metabolomics era, substantial progress in analytical platforms and bioinformatics 

tools has led to a notable rise in the utilization and publication of metabolomics across a wide 

spectrum of disciplines. As shown in Figure 3a the number of articles reported in the context 

of metabolomics has seen a considerable grow since the first time the term “metabolomics” was 

coined. Specifically, the main research subjects are represented by biomedicine, agriculture, 

toxicology, and environment (Figure 3b).  

 

Figure 2 Timeline of metabolomics science starting from the “pre-metabolomics era” with instrumental 
and technologies development until the “post-metabolomics era” with databases and tools generation. 

The pre metabolomics era goes from  Santorio Sanctorius,  founding father of metabolic balance studies 
(in 1614) to pioneers of mass spectrometry and nuclear magnetic resonance techniques (respectively in 

1913 and 1946) until the first study on urine sample aiming to investigate biological variability 
conducted by Pauling and his team (1971). Few years later, we enter in the post-metabolomics era 

marked by the inaugural use of the term "metabolomics." Remarkable events have signed this era by 
passing from the foundation of "Metabolomics Society” in 2004 until the publication of the first Human 
Metabolome Database in 2007 and the following advances in tools and databases nowadays available 
and in continuous development.  (Kusonmano, Kanthida et al. “Informatics for Metabolomics” DOI: 

10.1007/978-981-10-1503-8_5). 



Chapter 1 – Introduction 
 

 
 

20 

 

In the context of medical science, metabolomics has already been employed to identify 

biomarkers, enabling both disease diagnosis and prognosis, while also enhancing our 

mechanistic comprehension of metabolic pathways linked to pathological conditions 12,13. In 

agriculture area, the use of this approach allowed the study of agricultural products and their 

relation to nutritional content, effect of pesticide and herbicide and elucidation of metabolites 

responsive for aroma and flavors 14. 

In toxicology, the study of how toxins and pollutants disrupt normal metabolic pathways and 

impact health has become an indispensable tool 15. In environmental field, a deeper 

understanding of how organisms and ecosystems respond to changes in their surroundings  is 

nowadays primordial, and in this context,  metabolomics see its application in pollution 

monitoring and climate change effect16.  Metabolomics' interdisciplinarity and its capacity for 

comprehensive analysis contribute to its growing significance within the contemporary 

scientific landscape. Therefore, as technology and methodologies continue to evolve, 

metabolomics remains a crucial instrument for investigating the dynamic metabolome of 

diverse biological systems.  

 

1.1.4 Metabolomics strategies 
The extensive range of applications and diversified goals in metabolomics research, coupled 

with the high number and varied spectrum of detectable metabolites, has led to the classification 

of this field into two major distinct approaches: untargeted metabolomics and targeted 

metabolomics. The two approaches as shown in Figure 4 are here explained: 

• Targeted approach: is also called “biology driven” 17 and is focused on the 

quantification of a specific set of pre-defined metabolites. These metabolites are often 

Figure 3 (a) Number of publications per year listed in Scopus when searching [metabolomics]; (b) percentages 
of documents by subject area obtained when searching [metabolomics]in Scopus. 
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chosen based on prior knowledge of their involvement in specific pathways, diseases, 

or biological processes 18,19. Because it relies on pre-existing knowledge, this method 

does not allow the identification of novel molecules that might have a significant role 

in characterizing a biological process. This strategy proves especially valuable when the 

research question is well-defined and demands accurate quantification of specific 

compounds. This method is selected to set the baseline metabolites level in an organism 

or to determine a threshold that can differentiate between “healthy” and “perturbed” 

states. 

 

• Untargeted approach: has as goal to measure the complete set of molecules found in 

a sample. Through a single analysis, is possible to access the quantities of all molecules 

present within an individual, enabling the creation of a distinct metabolic profile. 

Despite the comprehensive character of untargeted metabolomics, the number of 

substances that can be evaluated in a single analysis is limited by the broad spectrum 

of physiochemical characteristics within the metabolome20,21. In comparison to targeted 

approach, this profiling technique is especially adapted when the aim is to delineate a 

metabolic profile associated with a specific condition of the studied individual or for 

the discovery of new biomarkers. Furthermore, by comparing metabolomics profiles 

between “healthy” and “perturbed” individuals, is possible to obtain predictive model 

for the subsequent classification of unknown samples. 

In summary, both approaches aim to identify variations within the metabolomes of a biological 

system; however, targeted metabolomics focus on one or a limited number of defined 

Figure 4 Scheme of approaches used in metabolomics divided in untargeted and targeted with  analytical techniques used  
and different goals (Adaptedfrom: De San-Martin, Breno Sena et al. “Metabolomics as a potential tool for the diagnosis of 

growth hormone deficiency (GHD): a review.” DOI: 10.20945/2359-3997000000300) 



Chapter 1 – Introduction 
 

 
 

22 

metabolites, while untargeted metabolomics includes a wide and novel array of metabolites for 

analysis 22,23. Because targeted and untargeted strategies have different scopes, a range of 

analytical platforms can be utilized. Alongside Fourier Transform Infrared Spectrometry (FT-

IR), and Raman spectroscopy, the most frequently employed methods include Nuclear 

Magnetic Resonance (NMR) and mass spectrometry (MS). For targeted approaches, the MS 

technique (coupled to gas or liquid chromatography) is often favored due to its sensitivity, 

serving as an excellent method to quantify specific metabolite sets. Conversely, NMR is well-

suited for an untargeted approach as it does not require prior knowledge about sample 

composition; furthermore, its quantitative nature makes it suitable for targeted analyses of the 

most concentrated metabolites. 

 

In recent years, another emerging approach has gained prominence, combining the strengths of 

both targeted and untargeted techniques: the semi-targeted approach. This analytical strategy 

enables the merge of several aspects from both targeted and untargeted methods, addressing the 

limitations inherent in these approaches. The fundamentals of the semi-targeted method involve 

the quantification of a broad panel of selected metabolites without a priori hypotheses. While 

only a group of pre-selected metabolites is annotated, this approach allows for the reanalysis of 

data to identify global metabolic changes that were not part of the original focus24,25 . An 

illustrative example of the potential of this approach is evident in a study within the field of 

cancer research, which took advantage of both hypothesis-based targeted verification and 

discovery through untargeted data acquisition. This study, by enabling the precise 

quantification of 110 cancer-related metabolites alongside untargeted profiling of thousands of 

features, highlighted the adaptability and all-encompassing nature of the semi-targeted 

approach26. 

 

1.1.5 Analytical platforms used in untargeted metabolomics 

As previously shown, the metabolome is a complex mixture of molecules belonging to most 

disparate class of metabolites, each with unique structures and possessing distinct chemical 

properties. Indeed, from a physiochemical standpoint, metabolites display various 

characteristics in term of pKa, solubility, polarity, volatility, charge, reactivity and stability. 

Adding to these chemical and physiochemical considerations, their concentrations in biological 

systems vary significantly across several orders of magnitude.  
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Given this intricate complexity, there is currently no single analytical platform capable of 

comprehensively analyzing the entire metabolome. Starting from the post-metabolomics era, 

and benefiting from significant advancements in technological techniques, two predominant 

platform currently find application in metabolomics: nuclear magnetic resonance (NMR) and 

mass spectrometry (MS).  These two methods are both complementary and supplementary to 

one another (see table 1) 27.  

 

Mass spectrometry is a sensitive technique widely used in metabolomics method able to detect 

feature at the till the nano- or picomolar range 28. Because of the complex mixture of metabolites 

present in metabolomics samples, MS is generally coupled to a separation system such as liquid 

chromatography (LC-MS), gas chromatography (GC-MS), supercritical fluid chromatography 

(SFC-MS) and capillary electrophoresis (CE-MS). The most advanced LC-MS platform allows 

to measure tens of thousands of distinct features within a single experiment giving access to 

elemental formula with high mass resolution (HRMS) and matching metabolites to huge MS 

databases with tandem mass spectrometry analysis (MS/MS) 29.  Indeed, while a considerable 

number of features can be detected through LC-MS metabolomics, these features do not always 

lead to the identification of specific metabolites. This is due to various factors, including the 

challenges posed by overlapping peaks, co-elution of compounds, and the incomplete coverage 

of existing metabolome databases. Nevertheless, advances in the field of annotation process 

help today the discovery and the knowledge of the “dark metabolome” 30,31.  

The primary limitation of NMR technique when compared to MS is its relatively low sensitivity 

(sub mM), which makes it less suitable to analyzing metabolites that are present in low 

Table 1 Comparison of analytical pro and cons pf NMR and MS-based metabolomics 
(adapted from https://hdl.handle.net/2268/301865)                                                          

*price for a targeted analysis available on The Metabolomics Innovative Center           
(TMIC : https://www.tmicwishartnode.ca/)    

https://hdl.handle.net/2268/301865


Chapter 1 – Introduction 
 

 
 

24 

concentrations, anyway recent advancements, have addressed this issue by enhancing the 

sensitivity of NMR through hardware improvements in NMR systems 32. Additionally, NMR's 

sensitivity is not influenced by ionization or separation methods of the metabolites, allowing 

for a broader coverage of the metabolome in a single analysis compared to MS; furthermore, 

minimal or absent sample preparation as well as nondestructive aspect are part of the advantages 

of NMR. In longitudinal studies, both reproducibility and robustness are important factors, 

while accurate quantification and structural elucidation play a crucial role in ensuring the 

quantitative and qualitative aspects 33. Together, these elements form the core strengths of 

NMR.  

By examining the strengths and weaknesses of each platform individually, it becomes evident 

that the challenge of achieving comprehensive coverage of the metabolome using a single 

technique is a complex issue34 (Figure 5).  

Recognizing the high complementarity between NMR and MS platforms in detecting different 

chemical classes of metabolites, a solution has emerged in recent years: the adoption of a 

multiplatform approach.  

Figure 5 The Venn diagram illustrates metabolite coverage for NMR, GC-MS, and LC-MS platforms in urine samples using a 
targeted approach (LC-MS quantification and identification were performed using the Biocrates AbsoluteIDQ p180 Kit, capable of 

quantifying a maximum of 188 metabolites). A total of 3079 metabolite structures (corresponding to known and highly probable 
metabolites) can be measured in urine metabolome by using NMR ,GC-MS, DFI/LC-MS/MS ,ICP-MS and HPLC assays (with UV or 

FD detection). In this specific reported study, NMR spectroscopy, successfully identified and quantified 209 compounds, GC-MS 
identified  and quantified 179 compounds , while DFI/LC-MS/MS identified 555 metabolite structures and quantified 127 

compounds. NMR, GC-MS, and LC-MS collectively identified a common set of 17 metabolites, including 15 amino acids, creatinine, 
and hexose/glucose. Nearly all non-volatile metabolites (87) identified by GC-MS analyses were also detected by NMR. Exceptions 
included oxalic acid, phosphate, and uric acid, each of which was identified by GC-MS but not by NMR . As we can see,  NMR is 

able to measure ∼7% (209/3079) of the human urine metabolome; GC-MS is able to measure ∼6% (179/3079); DFI/LC-MS/MS is 
able to measure ∼18% (555/3079) of the urine metabolome. When combined, the 3 analytical techniques can cover >26% of the 
known and probable or putative urinary metabolome (>824/3079). (Bouatra, Souhaila et al. “The human urine metabolome.”     

DOI: 10.1371/journal.pone.0073076). 

https://doi.org/10.1371/journal.pone.0073076
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The general concept of multiplatform approach is still not well described in literature but since 

2008 an increasing number of publications are reported by highlighting the interest of this novel 

technique (Figure 6). While the utilization of the multiplatform approach is on the rise, several 

limitations can impede its implementation. These include factors such as cost, lower 

throughput, a shortage of expertise, and the complexity of data analysis. Nevertheless, these 

challenges can be overcome through preventive measures such as meticulous experimental 

design, selection of appropriate analytical methods or optimizing sample preparation protocols 
35,36. By addressing these challenges, researchers can improve the synergistic benefits of a 

multiplatform approach and achieve more comprehensive insights into complex biological 

systems.   

Figure 6 Number of publications per year find by searching on Scopus [MS-
metabolomics], [NMR-metabolomics] and [multiplatform metabolomics] 
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1.2 NMR-based metabolomics 

1.2.1 Principles of Nuclear Magnetic Resonance 37,38,39 

Nuclear magnetic resonance spectroscopy, known as NMR spectroscopy, is a spectroscopic 

technique used to analyze the local magnetic field around the atomic nucleus and it is based on 

the homonymous physical phenomena. The phenomena were described and measured by Isidor 

Rabi in 1938 that received for that the Nobel Prize 40, and in 1952 the technique was developed 

by Edward Mills Purcell and Felix Bloch that won Nobel Prize in Physics for their discoveries41.   

NMR spectroscopy exploits a fundamental intrinsic property of atomic nuclei, referred to as 

"spin." This nuclear spin property is intrinsic to subatomic particles like protons, neutrons, and 

electrons and is defined by quantum number I. Notably, certain atomic nuclei have a total spin 

of zero, rendering them unobservable in NMR. Only atomic nuclei with I ≠ 0 are detectable, 

and specifically, this means that nuclei possessing an odd number of protons or neutrons, or 

both, are observable through NMR. Examples include 1H, 13C, 15N, 19F and 31P, which all 

exhibit a spin of ½. Among these observable nuclei, 1H is the most abundant in nature, making 

it a prominent focus of investigation in metabolomic research. 

1.2.1.1 Energetic states 

All atomic nuclei have a charged structure, and in certain nuclei, this charge undergoes rotation 

around the nuclear axis. This rotational motion of the charges within nuclei generates a 

localized magnetic field along the axis and its magnitude is quantified by the nuclear magnetic 

moment (μ). In the absence of an external magnetic field, the nuclear magnetic moment, or 

dipole, exhibits random orientations, resulting in no net magnetization. When an external 

magnetic field (denoted as B0) is applied, the nuclear magnetic moments align themselves in 

accordance with this field. The number of possible orientations that a nucleus can assume in an 

external magnetic field depends on its quantum spin number (I) and is determined by the 

formula 2I+1. For nuclei with a spin of 1/2, such as 1H , two orientations are allowed based on 

energy levels: parallel (α-state, m = +1/2) and antiparallel (β-state, m = -1/2) to the external 

magnetic field. In this scenario, the parallel orientation (α-state) is energetically favored     

(Figure 7). This leads to a vector sum of all nuclear magnetic moments, resulting in a non-zero 

value directed along the B0 field. This sum, known as nuclear magnetization (M), is directly 
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proportional to the number of nuclei within the sample. Consequently, this magnetization is the 

subject of modification and measurement of NMR techniques. 

In essence, the application of an external magnetic field causes the alignment of nuclear 

magnetic moments, generating nuclear magnetization, which forms the basis for the 

measurements performed in NMR experiments. 

 

1.2.1.2 Resonance 

When an external magnetic field (B0) is applied to a sample containing nuclei with non-zero 

nuclear spin, the nuclear magnetic moments align themselves 

with the direction of the field. However, due to the intrinsic 

angular momentum (spin) of the nuclei, these magnetic 

moments do not remain perfectly aligned. Instead, they start to 

precess or rotate around the direction of the magnetic field at a 

given angle generating the precession movement (Figure 8). 

Its precession frequency (ω) which is defined as the number of 

precessions by second, depends upon the strength of B0 and is 

calculated according to the Larmor equation: ω= γB0 (where  γ 

represent the gyromagnetic ratio and is a constant characteristic 

of each nucleus).  

Figure 7 Orientations of magnetic moments of protons without and with external magnetic field 
(https://kpu.pressbooks.pub/organicchemistry/chapter/6-5-the-nmr-theory/) 

Figure 8 Representation of the rotation 
of magnetic nuclei and its magnetic field 
in addition to the precession movement 

(http://brussels-scientific.com/?p=6273) 
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At that moment both B0 and M are orientated in parallel in z axis. When an extra magnetic field 

B1(or radio frequency RF) is introduced perpendicular to B0 and at a precise energy matching 

the precession frequency of specific atomic nuclei, it becomes possible to switch M from its 

initial position to the y axis. This change is achieved through the absorption of energy by the 

atomic nuclei, prompting their transition from lower energy states to higher energy states 

(Figure 9).  

Stopping RF allows the nuclei to release the excess energy acquired during resonance by 

reverting to a stable state. Concurrently magnetization M returns to its equilibrium alignment 

to B0 through a precession movement around the main magnetic field named relaxation (Figure 

10). 

  

Figure 9 Transition from the α to β state in the resonance process involves an initial magnetic field 
(B0) and an energetic difference (ΔE) between the α and β 

states.(https://kpu.pressbooks.pub/organicchemistry/chapter/6-5-the-nmr-theory/) 

Figure 10 Demonstration of the NMR experiment: (a) In the absence of a magnetic field, spins exhibit random orientations. Upon 
applying a B0 field along the z-axis, spins undergo precession around this axis, leading to (b) the establishment of equilibrium 
magnetization aligned along the z-axis. The equilibrium magnetization is manipulated toward the transverse xy-plane by the 
influence of an RF-pulse (B1) applied at the resonance frequency (c). Upon cessation of the RF-excitation, the magnetization 

gradually returns to its equilibrium state (d) with a precession frequency determined by the magnetic properties of the 
isochromatic being studied. Notably, the magnetization shift induced by the RF-pulse occurs at a rate approximately two or three 

orders of magnitude faster than the relaxation process. 
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1.2.1.3 Signal detection 

The NMR signal acquired after RF pulse is turned off and during the return of the magnetization 

to its equilibrium state. The way the magnetization decreases over the time is depended on two 

different relaxation processes: longitudinal relaxation (T1) and transverse relaxation (T2). The 

longitudinal relaxation T1 corresponds to the return of M in the alignment with B0 when RF 

pulse is stopped. Particularly, T1 corresponds to the time interval required for the longitudinal 

magnetization to recover 63% of its initial value. This value is influenced by molecular motions 

and chemical interactions and differs on different types of nuclei and their chemical 

environments. The transverse relaxation T2 refers to the decay of the transverse magnetization 

component perpendicular to the main magnetic field B0.  

Specifically, T2 represents the time required from the transverse magnetization to lose 63% of 

its value after the RF stops. The value of T2 is always shorter or equal to T1 and depends on 

the interactions between neighbor spins. As the RF stops, the nuclei start to precession 

movement in way to return magnetization to equilibrium; this oscillating movement emits a 

radio frequency signal known as Free Induction Decay (FID). The FID contains information 

about the frequencies of the nuclei in precession and their interactions with their surroundings. 

To obtain a spectrum, a Fourier Transform (FT) need to be applied; this method allows to 

separate the several frequencies and determine their respective intensities forming a spectrum 

by converting the signal from a time domain (FID) to a frequency domain (NMR spectrum) 

(Figure 11).  

 

 

Figure 11 Simplified diagrams to illustrate NMR experiment 
(https://kpu.pressbooks.pub/organicchemistry/chapter/6-5-the-nmr-theory/) 
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1.2.2 Interpretation of 1H-NMR spectra 

The following sections elucidate the key parameters that defines a spectrum acquired through 
1H-NMR represented by chemical shift, multiplicity and intensity and peak area. These features 

play a crucial role in interpreting the spectral data (Figure 12).  

 

1.2.2.1 Chemical shift 

The chemical shift (δ) refers to the displacement of NMR resonance frequencies of atomic 

nuclei caused by their surrounding chemical environment.  In particular, when looking at an 
1H-NMR spectrum, the position of a defined signal compound on the x-axis represents its 

chemical shift. This position is expressed in parts per million (ppm) by frequency and measured 

as follow: 

δ= �
ν− ν𝑟𝑟𝑟𝑟𝑟𝑟
ν𝑟𝑟𝑟𝑟𝑟𝑟 � × 106 

where ν corresponds to the resonance frequency of the signal observed and νref to the resonance 

frequency of the reference signal. In case of biofluids, like in this work, reference compound is 

represented by TMSP (3-(trimethylsilyl)-2,2,3,3-tetradeuteropropionic acid).  The chemical 

shift represents indeed the resonance frequency of a proton relative to a reference; in a molecule 

Figure 12 Example of 1H-NMR spectra of human urine sample; in red we can see the chemical shift scale for the 
signals; in orange the corresponding intensity; in blue the multiplicity related to each proton. 
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the chemical shift of each protonated group depends on its surrounding and in particular from 

electron density and electronegativity (Figure 13). 

-Electrondensity 

In a molecule the distribution of electrons around the nuclei determines the electron 

density within the atom. This distribution around nucleus affects its chemical shift 

through shielding and deshielding effects.  The shielding effect happens when the electron 

cloud “shield” the nucleus from the full strength of the external magnetic field B0; this 

results in a lower observed resonance frequency (downfield shift) in the NMR spectrum. 

In opposite way, the deshielding effect takes place when nucleus experiences a stronger 

effective magnetic field, resulting in a higher observed resonance frequency (upfield 

shift) in the NMR spectrum. In general, a high electron density gives a lower chemical 

shift and vice versa. 

- Electronegativity 

Electronegativity is a measure of an atom ability to pull electrons towards itself in a 

covalent bond. Atoms with higher electronegativity have a stronger attraction on shared 

electrons, creating partial charges and influencing the electron distribution around 

neighboring atoms. This higher electron density enhances the shielding effect, reducing 

the effective magnetic field experienced by those nuclei. Consequently, these nuclei 

exhibit lower chemical shift values in the NMR spectrum. 

 

 

Figure 13 Chemical shifts of protons engaged in different chemical groups. 
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1.2.2.2 Multiplicity or coupling 

The signal originating from a proton can manifest as a collection of multiple peaks. This 

phenomenon is tied to the concept of multiplicity or coupling, which provides information about 

the count of adjacent hydrogen or adjacent carbon atoms. The multiplicity of a proton's 

resonance signal, represented by a peak, is determined by considering the neighboring proton(s) 

based on the following rule: n+1 multiplet (Figure 14).  

 

1.2.2.3 Intensity and area  

If the peak intensity of two equivalent protons can give information concerning the relative 

concentration, it is more the  peak area  that will be used for quantification.  Indeed, in NMR 

spectrum, peak area is directly related to both the molar concentration of the sample and the 

number of nuclei contributing to the signal independently from its multiplicity. A weak signal 

is observed in samples with lower concentrations, whereas an increase in concentration, by a 

factor of 2 or 3, leads to a corresponding increase in peak area (Figure 15).  

Figure 14 Multiplicity of signals showing the number of corresponding neighbors’ hydrogens. 

Figure 15 The simulated spectrum shows the methyl signals from three distinct metabolites at 
different concentrations.   
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1.2.3 Instrumental platform 

The instrumental platform of NMR spectroscopy is composed of three major components: a 

superconducting magnet, a probe coil and the console. The superconducting magnet is kept 

under 9.5K with liquid helium generating the static magnetic field. The probe contains the RF 

coil and is situated in the bottom of the machine; the samples to be analyzed are placed in NMR 

tube and sent to the probe through an air flux from the top of the machine (bore). An adequate 

RF is generated by a RF transmitter and conducted to the sample through the probe; the console 

is on charge of receive the FID that are finally Fourier Transformed to produce spectra 42,43 . In 

the following Figure 16 we can spot the different components:  

 

 

 

 

 

 

 

Figure 16 Schematic representation of the instrumental platform for NMR spectroscopy                                   
(adapted from Antcliffe, David, and Anthony C Gordon. “Metabonomics and intensive care.” DOI: 

10.1186/s13054-016-1222-8 ) 
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1.3 MS-based metabolomics 

Mass spectrometry-based metabolomics is a highly utilized methodology in the field of 

metabolomics research. Among the various merits of this approach (as highlighted in the 

provided Table 1), one of its key advantages contributing to its prominence lies in its 

remarkable detection sensitivity, capable of reaching measurements as low as the pico- or 

attomole scale. A metabolomics analysis conducted via the MS platform is typically composed 

of three important steps: at first, the sample is injected into a separation system, such as 

chromatography; following this, the metabolites enter the mass spectrometry system where they 

undergo an ionization procedure; subsequently, the ionized metabolites undergo analysis using 

a mass spectrometry analyzer  and finally detected 44. All these components will be described 

in detail in the following paragraphs (Figure 17).  

 

 
  

Figure 17  MS instrumentation for a Quadrupole system with all its different components (adapted from 
Zimdahl, Anna. “Pharmacogenetic studies of thiopurine methyltransferase genotype-phenotype 

concordance and effect of methotrexate on thiopurine metabolism.” DOI:10.3384/diss.diva-163614  ).  
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1.3.1 Separation system  
The predominant approaches to separating metabolites involve liquid chromatography (LC) and 

gas chromatography (GC), which are widely employed. Additionally, alternative methods to 

separation include supercritical fluid chromatography (SFC), capillary electrophoresis (CE), 

and ion chromatography (IC). The choice of separation technique depends on the nature of the 

metabolites being analyzed, the complexity of the sample, and the desired level of separation 

and resolution45 as shown in Table 2. In this work, liquid chromatography will be the technique 

mostly detailed. 

1.3.1.1 Liquid Chromatography  
 
The name chromatography takes its origins from the Greek words “Khroma” that means 

“Colors” and “Graphein” that mean “Writing” in way to define the technique able to separate 

the colored pigments of plants. Invented in 1903 by a Russian Italian botanist Mikhail 

Semyonovich Tsvet, liquid chromatography represents today the separative technique of 

reference 46,47.  

Liquid Chromatography operates on the principle of separating molecules while in a liquid 

state, and this separation is characterized by the measurement of retention time (RT), which 

denotes the time taken by a molecule to traverse the chromatographic column.  

Molecules separation is achieved through injection of a mixture of molecules is carried by the 

mobile phase into a column containing a stationary phase; this stationary phase is made up of 

functionalized particles that interact differently based on the different physio-chemical 

properties of molecules.  Based on the type of molecules being studied, a different type of 

mobile and stationary phases can be used. In MS-metabolomics the two commonly used are 

Table 2 Separation systems coupled with MS platforms with corresponding advantages and disadvantages (Zheng, Xueyun et 
al. “Coupling Front-End Separations, Ion Mobility Spectrometry, and Mass Spectrometry For Enhanced Multidimensional 

Biological and Environmental Analyses.” DOI:  10.1146/annurev-anchem-061516-045212 ) 
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Reverse Phase Liquid Chromatography (RPLC or reverse phase) and Hydrophilic Interaction 

Liquid Chromatography (HILIC) 48 .  

 

Reverse Phase Liquid Chromatography (RPLC or reverse phase) is mainly used to 

analyzing semi-polar and non-polar molecules. It is composed of a non-polar stationary phase 

(silica containing C18 and C8 particles) in which flows a mobile phase that varies between H2O 

and organic solvent (such as acetonitrile and methanol) in way to generate a polarity gradient. 

Additives such as Formic acid or Ammonium formate can be added to mobile phase to adjust 

the pH and favorize molecules ionization 29. This type of chromatography allows the rapid 

elution of higher polarity compounds that could be less retained by the stationary phase; at the 

opposite the less polar molecules could be strangely retained by the stationary phase and eluted 

at the end. 

Hydrophilic Interaction Liquid Chromatography (HILIC) is mainly dedicated to the 

analysis of polar compounds. The silica of stationary phase is characterized by the presence of 

polar groups (such as alcohol, amino, amide or others) that may allow the retention of polar 

molecules through the mobile phase which composition varies between organic solvent and 

H2O. In metabolomics these methods see an increasing application for the analysis of lipids 

and polar compounds 49. 

 

The efficiency in separation of LC methods is not only depending on the type of mobile and 

stationary phase but also from other factors linked to length of LC column and the particle size 

in the stationary phase 50.  Based on these column features two major methods of LC can be 

reported: high performance liquid chromatography (HPLC) and ultra-high performance 

liquid chromatography (UHPLC) that differ on the size of particles present in column (5µm 

and 1.8µm respectively). Precisely, the elution time and, consequently, the analysis time are 

influenced by the particle size and column length. A reduced internal diameter of the column 

and smaller particle size enhance the efficiency and resolution of LC by restricting the 

longitudinal diffusion of analyte particles. Additionally, this configuration leads to a shorter 

elution time, offering two significant advantages of UHPLC. 
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1.3.2 Mass spectrometry 

Mass spectrometry (MS) is a sophisticated technology extensively employed in the branch of 

metabolomics. Beginning with the revelation of the electron's properties and its mass-to-charge 

ratio (m/z) measurement by J.J. Thomson in 1897, and subsequently the construction of the first 

mass spectrometer in 1912 by the same scientist, the domain of MS has undergone remarkable 

advancements and continues to be a central area of dedicated research. This technique measures 

the m/z in way to determine the monoisotopic mass of a given ion.  Through the ion’ detection 

information regarding its quantity in the samples can be obtained. In fact, the MS acquires a 

mass spectrum consisting of two dimensions:  the x axis is the m/z range, and the ordinate is the 

intensity of the measured m/z (Figure 18). The diverse types of available spectrometers 

necessitate a selection based on the objectives and purposes of the intended investigation. From 

a broad perspective, a mass spectrometer can be envisioned as a composite of three components: 

an ion source (for sample ionization), an analyzer (to measure m/z values), and a detector 

(responsible for ion detection and generating the mass spectrum). These components are 

elucidated further in the ensuing sections. 

1.3.2.1 Ionization sources 

Different types of ionization sources are available in MS-based metabolomics, and they are 

often classified into hard and soft ionization methods. This classification depends on the amount 

Figure 18 Mass spectrometry urine spectrum showing in the x axis the m/z ration and on the 
y axis the intensity. 
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of internal energy received by the ions during their production 51. Specifically, hard ionization 

techniques like Electron Impact (EI) and Chemical Ionization (CI) result in substantial 

fragmentation of the analyte molecules. In contrast to this technique, soft ionization such as 

Electrospray ionization (ESI) operates with low energy in way to ionize the molecules without 

dissociating them. This technique is well-suited to preserving the structural integrity of 

molecules, making them suitable to identifying molecular masses and determining molecular 

formulas. Several other techniques exist for such modes 52, but in this manuscript only one 

mode will be exploited: the electrospray ionization. 

1.3.2.2 Electrospray ionization  

Electrospray ionization is an ionization method described by Fenn in 1974 and is one of the 

most widely used method to ionizing liquid-phase samples 53. The underlying principle of ESI 

centers on applying a high-voltage electric potential between the infusion capillary needle and 

the MS inlet. Specifically, the sample emerging from chromatography undergoes nebulization 

and is shaped into a Taylor cone, aided by elevated temperatures and a coaxial flow of gas. 

Within this mechanism, the droplet size diminishes due to solvent evaporation, resulting in 

increased electrical density on the droplet  surface. Through this progression, a crucial threshold 

known as the "Rayleigh stability limit" is attained, at which juncture, electrostatic repulsion 

leads to a Coulombic explosion. This explosion, coupled with oxidation-reduction reactions, 

results in the release of ions in the gaseous state  (Figure 19) 54. 

Figure 18 Representation of how ESI source works (https://www.chm.bris.ac.uk/ms/esi-ionisation.xhtml) Figure 19 Representation of how ESI source works (https://www.chm.bris.ac.uk/ms/esi-ionisation.xhtml) 
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The ionization can be performed in positive mode (ESI+) and negative mode (ESI-). In positive 

mode the ionization of molecules with base properties is enhanced as they are able to capture 

positive charged proton (e.g. -NH2 , -CO ,-CN etc.). The ESI- favors the ionization of molecules 

with acid properties that are vulnerable to deprotonation (e.g. -OH, -COOH etc.). ESI stands as 

a soft ionization technique facilitating the generation of molecular ions with minimal 

fragmentation by achieving high sensitivity and being easily coupled to commonly employed 

separation techniques like liquid chromatography (HPLC-MS and UPLC-MS)55. In the field of 

metabolomics, ESI is widely used because of its tendency to minimize ion fragmentation, which 

aids in the identification of molecules. However, it introduces complexities in result analysis 

due to redundancies in datasets. Therefore, the ability to analyze liquid samples encompassing 

polar and semi-polar, nonvolatile, and thermally unstable metabolites positions this approach 

as a cornerstone within LC-MS-based metabolomics 56,57. 

1.3.2.3 Mass analyzer  

Following the ionization process, the resultant ions are separated based on their m/z values 

through the mass analyzer. This component is responsible to performing m/z measurements 

through the separation of ions according to their respective m/z ratios. Generally, several 

attributes are employed to evaluate the performance of a mass analyzer and to guide the 

selection process for metabolomics analysis (Table 3) : 

• The scan rate denotes the speed at which the mass analyzer conducts m/z ratio 

measurements across a specified range of masses. It is quantified as the number of mass 

units analyzed per second or per millisecond. 

• Mass accuracy, often referred to as the error in the m/z value, reflects the precision 

with which the analyzer measures the m/z value of an ion in comparison to its 

theoretical value. This metric is expressed in parts per million (ppm) and is calculated 

using the formula:  mass accuracy = [(mexperimental – mtheoretical)/ 

mtheoretical]x106 

• Resolving power (RP) is associated with the capacity of a mass analyzer to 

differentiate between two overlapping m/z peaks (where the intensity valley between 

them reaches 10% of their intensities). It is computed using the formula RP = M / ∆M, 

where M represents the measured m/z value and ∆M signifies the disparity between the 

m/z ratios of the overlapping peaks. 
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• In terms of resolving power, analyzers can be categorized into two primary types: “low 

resolution” analyzers 58, which encompass the Quadrupole (Q), Ion Trap (IT), and 

Linear Time-of-Flight (ToF); and “high resolution” analyzers, which include the 

Reflectron Time-of-Flight, Fourier Transform Orbitrap, Magnetic Field and/or Electric 

Field Sectors, and Fourier Transform-Ion Cyclotron Resonance (FT-ICR) mass 

spectrometers. Within the scope of this thesis, our attention will be directed towards 

the Fourier Transform Orbitrap. 

 

1.3.2.4 Quadrupole 

The quadrupole, a low-resolution mass analyzer, was invented in 1953 by Wolfgang Paul and 

Helmut Steinwedel 59, marking it one of the earliest analyzers to be employed. Its configuration 

consists of four parallel metallic rods organized in a square or rectangular pattern. Each pair of 

opposing rods is connected to the same voltage. An alternating combination of Radio 

frequency/Direct current (RF/DC) voltage is applied between the two pairs of rods.  As an ion 

enters the quadrupole, an attractive force is generated on it by the rod whose charge opposes its 

ionic charge. With a periodic voltage applied, alternated attraction and repulsion forces in the 

x and y directions over time (stable trajectory), permits the ion to traverse the analyzer without 

colliding with the rods and ultimately reaching the detector 60. Under specific electric 

conditions, only ions possessing defined m/z ratios can traverse the analyzer by making the 

quadrupole works as a mass filter (Figure 20).  

Table 3 Table showing resolving power and mass accuracy for each type of mass analyzer 
( Ntai, Ioanna, and Neil L. Kelleher. “Approaches for Natural Product Detection and 

Structural Elucidation Using Mass Spectrometry with High Mass Accuracy.”              
DOI: 10.1017/CBO9780511996634.010) 
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1.3.2.5 Fourier Transform Orbitrap 

The Orbitrap, a frequently employed high-resolution mass spectrometry instrument for 

metabolomics profiling experiments, has evolved since its initial appearance in 1923 within a 

physical review61. Numerous technological improvements have been made over the years, 

culminating in the 1999 version developed by Alexander Alexeyevich Makarov, which 

represents the base of the current commercially available62 version. 

This device is constituted by an ion trap composed by two electrodes: an external barrel-shape 

electrode and a coaxial electrode. Ions are trapped within the inner region of the analyzer 

through an electrostatic field produced by these two electrodes. The movement of ions within 

the electrodes involves a combined motion, including both a rotational component around the 

central electrode and an axial movement along the same electrode. Each ion possessing a 

specific m/z ratio consequently experiences a distinctive velocity (or time of flight), leading to 

a corresponding rotational frequency. This frequency gets recorded by a detector and 

subsequently amplified; then, the recorded signals undergo a Fourier Transform, enabling the 

calculation of the precise m/z ratio for each identified ion  (Figure 21) 63,64,65.  

Figure 20 Quadrupole instrument with its components and its way to work 
(https://www.chm.bris.ac.uk/ms/quadrupole.xhtml) 
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Enhanced precision of m/z is achieved when the duration of ion trapping is extended. 

Furthermore, the resolution of the Orbitrap is based on the scan rate; as the scan rate rises, both 

the resolution and the precision of m/z measurement decrease.  

 

1.3.2.6 Hybrid mass spectrometers for Tandem mass spectrometry 

Tandem mass spectrometry (MS/MS) is a dual stage MS technique that target the fragmentation 

of an ion in order to identify its structure. It involves the use of two sequential mass 

spectrometry experiments, where the output of the first mass spectrometry stage (called “parent 

ion or “precursor”) serves as the input for the second stage. This precursor traverses a “Collision 

Cell,” a site where its fragmentation occurs. This process results in the acquisition of an MS/MS 

spectrum, which can be employed for determining structural characteristics or conducting 

spectral data searches. Various mechanisms exist for MS/MS fragmentation; however, our 

focus in this study centers on Higher-energy C-trap Dissociation (HCD). HCD operates by 

introducing the precursor into a collision cell containing a high-pressure inert gas (e.g., Argon, 

Nitrogen).  Once in the collision cell, the ion experiences defined RF and collision energy, 

inducing its motion; this movement initiates collisions between the precursor ion and gas 

molecules, augmenting the ion’s internal energy and leading to fragmentation in accordance 

with the applied collision energy 66,67. In the case of instruments like the Q ExactiveTM Plus, 

two available acquisition mode are available: the first mode is represented by the simple MS 

acquisition (full scan), and the second is in tandem mode. After being passed through ESI 

source, ions pass through the quadrupole, that works as a prefilter based on the selected m/z 

ratios; at this point, pre-filtered ions pass in the C-trap. In full scan mode the ions pass directly 

Figure 21 Orbitrap mass analyzer: from sample injection until mass spectrum acquisition                                                  
(adapted from Savaryn, John P et al. “A researcher's guide to mass spectrometry-based proteomics.”                                  

DOI: 10.1002/pmic.201600113) 
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in Orbitrap analyzer for m/z detection and spectra acquisition. In case of MS/MS mode, ions 

are transferred from C-trap into HCD cell filled with Nitrogen gas where fragmentation 

happens; once the ions have been fragmented, they accumulate within the C-trap before being 

directed to the orbitrap for enhanced sensitivity of detection (Figure 22). .  

Figure 22 Tandem Mass spectrometer with two different acquisition modes showed: MS/MS mode and full-scan MS    
(adapted from Kaufmann, Anton. “Analytical performance of the various acquisition modes in Orbitrap MS and MS/MS.” •  

DOI: 10.1002/jms.4195 ) 

  

https://doi.org/10.1002/jms.4195
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1.4 Untargeted metabolomics workflow 

The metabolomics workflow involves a series of steps designed to comprehensively analyze 

the small molecules present in a biological sample. It aims to provide insights into the metabolic 

pathways, biomarkers, and overall biochemical composition. The typical untargeted 

metabolomics workflow aims to explore all possible metabolites linked to a defined condition 

in way to improve the knowledge about biochemical processes and pathways and by positioning 

itself as a comprehensive exploratory tool. The several generic and essential steps of a 

metabolomics workflow need to be accurately defined before the analysis and may differ 

according to several aspects, such as biofluid choice or instrumental technique (Figure 23). 

Several metabolomics-based studies have been published in the last decades each characterized 

by its distinctive original workflow68,69,70.  In the forthcoming sections, an in-depth exploration 

of the multiple stages constituting the untargeted metabolomics workflow will be presented. 

This exploration will encompass both NMR and MS platforms. 

 

1.4.1 Biological problem and experimental design 

A well-structured experimental design is crucial to obtaining reliable and meaningful results in 

a metabolomics study.  A thoughtful experimental design includes several key aspects that help 

minimize bias and ensure that the study objectives are met. The process starts by deciding on 

the focus and purpose of the experiment. Based on the focus of the study, the design of the 

metabolomics experiment can begin to take shape 71.  As first point the scientist must pose 

himself these questions: What aspect of the metabolome do you intend to investigate? Are you 

Figure 23 General workflow for metabolomics studies (Lee AY, Troisi J, Symes SJK. “Experimental design in metabolomics.” 
DOI: 10.1016/B978-0-323-85062-9.00002-7) 

https://doi.org/10.1016/B978-0-323-85062-9.00002-7
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looking for biomarkers, elucidating pathways, or exploring responses to specific treatments? 

Once this point is elucidated, the subsequent essential phase involves determining the 

appropriate sample size and type. It is crucial to meticulously select the biological specimen 

(Tissue? Urine? Plasma?) that can best answer the biological question. Conducting a power 

analysis to determine the most suitable sample size according to research’s goal is another 

intricate aspect to address, aiming to achieve the expected effect size. This aspect is closely 

linked with considering the type of study design, which entails deciding among options like 

cross-sectional, longitudinal, case-control, or other designs, based on the inherent nature of the 

research question. In the case of a case-control study, ensuring an adequate number of samples 

for each group becomes imperative to attain a meaningful biological response. Another crucial 

aspect to carefully manage is the selection of participants, aiming to minimize variations in 

inter-individual factors (such as age, sex, BMI, lifestyle, etc.) and intra-individual factors (such 

as diet, circadian cycle), which may introduce confounding factors. In way to overcome these 

biases, the most homogenous population is needed, and in this sense, a well-defined 

inclusion/exclusion criteria list can be edit helping researchers or clinicians in patients’ 

recruitment. Based on these considerations, correct sample size should be based on statistical 

power analysis. Particularly in metabolomics studies characterized by significant variability 

influencing metabolites and in which multiple outcomes are tested, ensuring an adequate and 

minimum sample size is mandatory. To achieve this, integrating power analysis into the 

experimental design of metabolomics studies becomes essential to enhance robustness of study 

findings by allowing detection of meaningful effects with a good level of confidence. 

1.4.2 Sample collection and preparation 

Inadequate sample collection, storage and pretreatment represent some of the many sources of 

variation and crucial limits in metabolomics studies. All these pre-analytical factors play a key 

role in the repeatability and robustness of metabolomics studies and need to be well controlled 
72 ,73. Nutritional status and circadian cycle are two of the major impact factors on variability of 

metabolites; indeed, when collecting plasma or serum, the collection of these specimens in a 

fasting or non-fasting condition can have a high impact in concentration of glucose and other 

amino acids. For example, fasting condition is mandatory to investigate plasmatic difference in 

population with diverse dietary habits 74; the concomitant impact of sleeping and feeding was 

also reported  as strongly affecting the metabolome in another interesting study 75. 
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In the context of urine, representing the biofluid of choice of this thesis, sampling time can be 

done over 24 hours or by timed collection (first- or second-day urine). Several factors 

differentiate the two-sampling time such as the feasibility of collection and metabolites 

concentration. The easiest and less-invasive approach is represented by timed sampling such as 

the second-day urine, like done in our work. This approach allowed us to better monitor the 

evolution of specific biomarkers that may be less concentrated in 24h urine and additionally to 

“standardize” patient urine collection in hospital during medical examination. The choice of 

one or another sampling time strongly affects the level of metabolites; indeed a  study conducted 

on healthy volunteers shows how urinary content strongly depends on time collection due to 

feeding status, physical activity or other factors76. Concerning sample preservation the addition 

of antimicrobial additives (such as sodium azide or boric acid) to prevent bacterial overgrowth 

is commonly used  in urine protocols 77,78 . In terms of sample storage, no changes in metabolites 

were observed after 6 months at −80 °C, in opposite to freeze–thaw cycles that exhibit to 

significantly change urine sample composition 79,80. In case of urine specimen, dilution effect 

represents a major problem due to difference in metabolites concentration. For these reasons, 

several normalization strategies can be applied, and they can be divided in pre- or post-

acquisition normalization (this last procedure will be better discussed in section 1.4.5). In case 

of pre-acquisition normalization, samples can be diluted to a common concentration before 

analysis based on specific gravity or osmolarity values specific to each sample. The use of one 

normalization or another is strictly dependent from sample cohort.  
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1.4.3 Data acquisition 

1.4.3.1 One dimensional 1H-NMR metabolomics 

Depending on the type of biofluids and the goals of the study, different acquisition sequences 

can be adopted in 1H-NMR analysis. Indeed, the choice of a sequence which matches the 

specific composition of a samples is a fundamental step in way to enhance the metabolite 

coverage and spectral resolution. The major challenges for metabolite profiling in biofluids are 

represented by the presence of water, and in some cases by interference from massive amounts 

of proteins.  

By revisiting the principles of 1H-NMR, we can recognize the primary advantage of this 

method, which lies in the abundant presence of 1H atoms within nearly all recognized 

metabolites facilitating their straightforward identification in biofluids. However, these same 
1H atoms are also present in water molecules, which serve as standard medium to suspending 

biological metabolites. Consequently, this main challenge arises when examining urine or 

filtered plasma/serum samples, as the dominating resonance of water can overshadow the NMR 

signal.  The most effective approach to overcome the influence of water is through the use of 

1-D-NOESY (Nuclear Overhauser Effect Spectroscopy, also known as NOESY-presat). This 

sequence yields NMR spectra characterized by remarkable reproducibility and a substantial 

decrease in water signal, all while maintaining the integrity of the other spectral peaks. This 

methodology involves a sequence of three consecutive pulses, where the final two pulses serve 

as the NOESY filter. These two pulses are separated by a brief mixing time, allowing a more 

uniform sample excitation and enhanced water suppression 27,81. Consequently, this pulse 

sequence currently represents  the reference choice for NMR-based metabolomics studies of 

biofluids. 

When dealing with intact serum or plasma samples, a major challenge in metabolite profiling 

arises from the substantial interference posed by a substantial protein content (6-8 g/dL). 

Without the application of an appropriate sequence, the NMR spectra will be overwhelmed by 

the prevalence of wide resonance peaks coming from these molecules, resulting in insufficient 

resolution of the sharper signals originating from other metabolites. In such scenarios, 

employing a sequence that filters protein signals while amplifying the sharper peaks originating 

from smaller molecules, becomes essential. The Carr-Purcell-Meiboom-Gill (CPMG) 

experiment is based on the distinction in relaxation time (T2) between large molecules like 
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proteins, lipoproteins, and lipids, and smaller molecules. By being coupled a water presaturation 

pulse to suppress the water signal, this filter effectively enhances resolution by reducing signals 

from quickly relaxing species. Consequently, it improves the resolution of smaller molecules. 
27,82 (Figure 24).  

 

1.4.3.2  Two-dimensional NMR metabolomics 

Two-dimensional nuclear magnetic resonance (2D NMR) is increasingly being investigated as 

a tool for metabolomics due to its superior resolution compared to one-dimensional NMR. 

Indeed, the major advantage of 2D NMR spectra is represented by the peaks distribution along 

two orthogonal dimensions (typically 1H–1H or 1H-13C) instead of an unique one, effectively 

reducing peak overlap while providing essential insights into atomic connectivity. The most 

commonly employed 2D pulse sequences include Correlation Spectroscopy (COSY) and 

Heteronuclear Single Quantum Correlation (HSQC), each focusing on distinct aspects of 

molecular structure analysis. The COSY sequence primarily examines homonuclear H 

correlations, uncovering through-bond interactions to delve into the structure of molecules and 

reveal their specific interconnections. In contrast, HSQC is an experiment designed to visualize 

connections between H spins and their directly linked C spins83.  

By leveraging the primary strengths of these experiments, 2D NMR techniques were employed 

in this thesis to enhance signal resolution and improve metabolite elucidation. However, despite 

these advantages, several limitations characterize 2D NMR. The time-consuming nature of 

Figure 24 Spectra of human plasma analyzed through CPMG and NOESY-presat sequences. As we can see, the green spectra 
(upper) represent the plasma sample on which the CPMG filter allows to obtain a better resolution of smaller molecules by filtering 
protein signals; in the red spectra (down) NOESY-presat sequence is applied to the same sample by showing the interference of wide 

peaks from protein content which generate loss of signals of all other small metabolites present in the sample. 
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these experiments can potentially impact the stability of analyzed biofluids over time. 

Furthermore, the lengthy acquisition time makes the analysis of large sample cohorts 

impractical. Another significant drawback is the current lack of tools capable of adequately 

preprocessing 2D NMR data. Extracting meaningful information from raw data remains a 

challenging task, and routine utilization of these techniques is still distant 13,84. 

1.4.3.3 MS metabolomics 

Different strategies for data acquisition have been introduced in metabolomics to better capture 

the composition of metabolites within a biological sample. The choice of acquisition method, 

like other parameters, depends on the research objectives, the complexity of the sample or the 

sensitivity required. These methods allow researchers to gain insights into the types and 

quantities of metabolite and are represented by three major modes: full-scan, data-dependent 

acquisition (DDA), and data-independent acquisition (DIA). 

Full scan mode allows, through the processes explained in paragraph 1.3.2.4, the acquisition 

of an MS spectra composed by the entire set of m/z ratio and metabolites abundance. It provides 

an overview of the entire mass range and a detailed chromatographic peak shape in MS1 

data85,86.  

The principle of data dependent acquisition (DDA) involves an initial high-resolution MS 

analysis where the complete range of m/z ratio is acquired. In the subsequent step, the most 

intense signals (ion exceeding a predefined threshold) are selected, fragmented, and the 

subjected to MS/MS analysis. The MS/MS data generated in DDA holds valuable information 

for metabolite identification by comparing it with a spectral library86,87.  

In data independent acquisition (DIA) in contrast to DDA mode, a larger precursor ion mass 

width to fragment is selected to obtain MS/MS data. Through this mode a higher quantity of 

MS2 spectra is acquired with the major advantage of detection of metabolic features with lower 

MS abundance. This aspect determines also its primary handicap related to increased spectra 

complexity and higher difficulties in features identification since the link between precursors 

and their fragment ions are dissociate (fragment ions may result from multiple precursor ions 

present in the same m/z range). 
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By taking advantage of the extensive coverage of full scan mode and the qualitative insights 

from DDA allowing an easier features identification, modern untargeted metabolomics studies, 

including this work, combine these approaches. As first, each sample undergoes LC-full scan 

MS analysis to gather precise m/z ratio and relative abundance data for all metabolic features. 

Following data preprocessing and the selection of interesting features, DDA analysis is 

performed to acquire fragmentation spectra, thus verifying the chemical identity of the chosen 

metabolites 88 (Figure 25). In the context of this thesis, a full-scan analysis was done on all 

samples and DDA mode was only performed on pool sample for features identification 

purposes.  

   

Figure 25 Differences between Full-scan and DDA acquisition modes. In full-scan all the m/z ration 
detected are reported; in DDA mode only selected ions are fragmented for generate singles MS spectra. 

(adapted from: Villalta, Peter W., and Silvia Balbo "The Future of DNA Adductomic Analysis"            
DOI: 10.3390/ijms18091870) 
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1.4.4 Data preprocessing 

Analysis through NMR and LC-MS platforms generate a big amount of data with high level of 

complexity. In way to pass from spectral data to interpretable results, a fundamental step is need 

which can ensure the quality of raw data and limit possible biases. This step is represented by 

the preprocessing. Preprocessing aims to correct for technical variations, remove noise, and 

standardize the data, ultimately ensuring that meaningful patterns and differences in metabolite 

levels are accurately captured. Effective preprocessing enhances the reliability and 

interpretability of metabolomics data, enabling meaningful comparisons, pattern recognition, 

and biomarker discovery. Throughout the preprocessing phase, there is a transition in 

terminology from "feature" to "peak" and ultimately to "metabolite." Specifically, the term 

"feature" serves as a broad descriptor for a measurable characteristic derived from analytical 

data, such as data points or variables in the dataset. More specific terms include "metabolite", 

which refers to a specific chemical compound identified in the sample, and "peak", which 

represents a distinct signal in spectra indicating the presence of a particular compound 

(observed at specific m/z values or chemical shifts). This progression in terminology reflects 

the refining of the analytical information from broad characteristics to specific chemical entities 

during the preprocessing of metabolomics data which enable the switch from spectra 

information to interpretable biological results. The specific preprocessing steps adopted can 

vary depending on the nature of the data, the used analytical techniques, and the research 

objectives. In this thesis, the principal preprocessing steps of NMR and MS based metabolomics 

will be detailed. 

1.4.4.1 NMR preprocessing  

NMR-preprocessing is composed of several steps which allow to pass from the FID or raw data 

to a table containing all the features used for the statistical analysis and data interpretation. In 

the last decades several commercial software and web-based platforms have been develop each 

one including all the essential steps for a correct data preprocessing. The commercial tools 

nowadays available are composed by MestReNova and TopSpin which allows an easy and 

friendly solution for NMR preprocessing. In the case of TopSpin only simple spectra 

manipulations are allowed such as baseline and phase corrections; instead, MestReNova 

software allows a complete manipulation of spectra by proposing different steps that must be 

well chosen and handled by the user in way to obtain a robust workflow. Free web-based 
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available tools and R packages are composed by WorkflowforMetabolomics (W4M) 

NMRProcFlow and PepsNMR. Concerning W4M 89 which includes several steps of PepsNMR 

packages,  is a tool working on Galaxy platform which allows data treatment starting from the 

FID until the statistical analysis. This represent a powerful tool whose only disadvantage is 

represented by its non-friendly interface. NMRProcFlow 90 is an open-source software 

providing a complete set of tools for processing and visualization of NMR data, with and 

interactive interface based on a friendly spectra visualization. As R package, PepsNMR 91 

developed by M. Martin and B. Govaerts  from UCLouvain in collaboration with J. Leenders 

and P. de Tullio from ULiege allows robustness and flexibility among a complete series of pre-

processing functions. All the cited tools are operator dependent thanks to the variety of 

parameters that can be set based on the specific biospecimen or cohort analyzed.  In the current 

of this work TopSpin for baseline and phase correctios and MestReNova for alignment and 

bucketing were used for preprocessing of NMR spectra (Figure 26).  

Apodization 

Apodization refers to a signal processing technique used to modify the appearance of a spectral 

line in an NMR spectrum.  This step involves multiplying the FID signal by a mathematical 

function before performing a Fourier Transform to convert the signal into a frequency-domain 

spectrum. For instance, considering the function e^(-πLB), where LB represents line 

broadening, when LB is increased, the signal-to-noise ratio (SNR) also increases. In the case of 

NOESY-presat, a value of 0.3 is typically employed for LB 92,91. 

 

 

Figure 26 General workflow for NMR data preprocessing reporting the main step from data importation until generation of 
features' table; several preprocessing tools and platforms are reported. 
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Fourier Transform 

This procedure enables the conversion of the intricate signal into a comprehensible spectrum. 

Each signal undergoes transformation into peaks characterized by a specific height, position, 

and width, determined by the proton's aptitude, frequency, and relaxation time (T1). The 

resulting spectrum exhibits peaks with a chemical shift, commencing from 0 ppm and 

progressing towards the left. 

Phase correction 

The purpose of phase correction is to eliminate unwanted phase shifts that can result from 

instrumental imperfections, magnetic field inhomogeneities, or other factors. The goal is to 

align the baseline of the spectrum and eliminate unwanted distortions such as baseline tilting or 

peak distortion. Two type of phase correction can be applied. Correction to order 0 is applied 

to the whole spectrum in the same way and aims to account to any phase shift independently of 

the signal frequency. Correction to order 1 is a correction type proportional to the frequency of 

the signal.  

Baseline correction 

Baseline distortion can appear in NMR spectra due to pulse imperfections and non-linearity of 

electronic detection process. The process of baseline corrections consists in correcting the 

baseline to zero or a consistent reference level, allowing for better visualization and analysis of 

the actual NMR peaks. 

Alignment  

Alignment refers to the process of adjusting and matching the positions of peaks or signals in 

multiple NMR spectra. I isa crucial preprocessing step in cases where multiple spectra need to 

be compared though bucketing process as happens in metabolomics studies.  Several parameters 

can influence the misalignment of signals in different samples such as instrumental factor or 

sample variability. The major cause of misalignment is generated by pH variation, that 

especially in urine samples, represents a great source of errors. Different algorithms are 

available for alignment process each with its advantages and limitation 93,94; the choice of one 

compared to another strictly depends from the obtained results. 
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Bucketing  

Bucketing (or binning) is a step that allows to reduce the complexity of the data and facilitate 

downstream analysis by generating a table composed by all the features present in the spectrum. 

It consists in cut the spectrum into discrete regions or “buckets” all having the same width 

(usually between 0.05 and 0.02 ppm).  Bucketing simplifies the data by reducing the number of 

variables (individual data points) while maintaining the relevant information about the 

metabolite profiles by making them more amenable to statistical analysis, visualization, and 

pattern recognition. Moreover, in analysis of biospecimen such as urine, it allows to partially 

overcome problems due to peaks alignment by englobing all the signals placed in a defined 

spectra width to a single bucket. Even if this technique has several advantages like the variable 

reduction, this segmentation generates sometimes the separation of a unique signal in two 

different buckets dividing the chemical information between several bins. As previously 

showed, the application of this method must be done carefully since the “quality” of the bins 

are highly dependents from the alignment step.  

Spectral deconvolution 

As we have previously discussed, a straightforward method to quantifying metabolites in 1H-

NMR spectra involves integrating peaks following a bucketing process. In an ideal scenario, 

each bucket would correspond to a metabolite, and its integrated value would directly relate to 

its concentration in the sample. However, NMR spectra often display overlapping peaks, 

particularly in complex samples, leading to integrated values that may not accurately reflect 

actual metabolite concentrations. In response to this challenge, spectral deconvolution has been 

developed to address complex overlapping signals or peaks in NMR spectra. While creating a 

spectrum from a peak list, known as convolution, is a clear-cut task, the reverse process of 

determining a peak list from a given spectrum, known as deconvolution, proves to be more 

intricate95. In essence, spectral deconvolution is a computational technique that endeavors to 

reconstruct the experimental NMR spectrum by using a linear combination of reference 

compounds present in a library96. Various algorithms, available in commercialized tools like 

Chenomx NMR Suite 97, B.I. QUANTN98 and FoodScreener99 as well as in freely accessible 

tools like Batman 100, rDolphin101, ASICS102, and AQuA103 have been proposed for spectral 

deconvolution. These tools vary in their applications (biofluids or food and beverage), technical 

requirements (e.g., 600 MHz-only, Bruker-only such as Bruker IVDR), and the extent of their 

automated quantification capabilities, often preceding a preprocessing step33. However, these 
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methods even offering a promising semi-targeted approach to address identification and 

quantification challenges in H-NMR spectra, they do not provide the capability to identify 

entirely novel and unknown features. Nonetheless, they contribute to advancing the field by 

facilitating more accurate and comprehensive analyses of complex NMR spectra. 

1.4.4.2 MS preprocessing  

MS preprocessing can be done using several available tools and software reported in 

literature104. Each one of them allows to start from MS spectra until to arrive the identification 

of features and statistical analysis. Of these tools MZmine3 105, Metaboanalyst 106, and XCMS 
107 are the most employed by the user thank to the friendly interface and  the robustness of 

workflow.  In this work we used Workflow4metabolomics platform which afford different tools 

for data preprocessing. All the steps are based on R software implemented in the platform as 

XCMS algorithm for peak piking, peak grouping, and RT correction, or the CAMERA 

algorithm for features annotation (Figure 27).  

 

Peak-peaking 

The primary objective of peak picking is to identify and characterize each measured ion within 

a sample, subsequently assigning it to a specific feature represented by a combination of m/z 

(mass-to-charge ratio) and retention time (RT). Peak picking algorithms aims to captures and 

deconvolutes peaks found in the extracted ion chromatograms by taking into consideration the 

inherent structures of baselines and noise, allowing the accurate identification of peaks 108 , 109. 

Figure 27. Workflow for MS data preprocessing; several steps compose this process and can made using 
several tools of which some are here reported. 
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Alignment 

Shift in RT during chromatographic separation can lead to the elution of a same metabolites at 

different retention time between samples. This shift can be caused by different reasons such as 

changes in the mobile phase or variations in temperature or pressure. In way to face this problem 

alignment algorithm can be used aiming to group detected peaks across the samples with respect 

to a m/z and a RT window 104, 109. These grouped peaks are then assigned to a feature in the final 

data matrix. 

Gap filling 

After peak peaking process our data matrix may contain several missing values (gap). These 

missing values can occur due to various reasons such as technical limitations, instrument 

variations, or the presence of low-abundance metabolites that fall below the detection threshold. 

Gap filling is a computational technique that aims to estimate or predict these missing values 

to create a completer and more informative dataset for downstream analysis. Several algorithms 

are described in literature and can be employed; however, care must be taken in choosing 

appropriate imputation methods, as poorly handled gap filling can introduce bias or artifacts 

into the data 109. 

QCs-based features filter  

Another supplementary step that can be done in the MS-preprocessing workflow is represented 

by the feature filtration. Several algorithms permit to filter the features based on their presence 

in the QCs. In particular, this step allows to select the fraction of QCs in which the feature must 

be present for retain it in the data matrix list. The general assumption of this step is that the QCs 

are well representative of features presents in the samples. 

Batch correction 

 When planning the analysis of large cohort, it can happen to divide the samples in different 

groups that will be analyzed at different time by using the same instrumental parameters. These 

groups known as “batch” can generate a common problem known as “batch effect”. Batch 

effects can arise from different factor such as instrument performance, reagents, or other 

experimental conditions; the presence of these variations can overshadow true biological 

differences in the data and lead to inaccurate or misleading results. In way to overcome this 
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effect, a batch correction is needed. This correction can be done through simple normalization 

or scaling processes used to bring the data from different batches onto a comparable scale110 or 

through different algorithms such as Combat 111.  

1.4.5 Normalization 

Normalization is a data preprocessing technique, common to both platforms, used to standardize 

the intensity levels of signals across different spectra. The goal of normalization is to remove 

systematic variations in signal intensity that can arise due to factors such as sample dilution, 

instrument settings, or experimental conditions. Normalization process involves scaling the 

intensity values of the data points within a spectrum by a certain factor. The choice of 

normalization method depends on the characteristics of the data and the research objectives. 

Some common methods include total by sum normalization, Probabilistic Quotient 

Normalization (PQN), or normalization by an internal standard. Total by sum normalization 

represent the most standard method used for serum and plasma samples and scales the spectra 

in way that all of them have the same concentration. PQN normalization involves dividing 

each variable in a spectrum by the intensity of the corresponding variable in a reference 

spectrum; subsequently, the total spectrum is divided by the median of these quotients. This 

method can handle higher variation in features values and is particularly adapted to urine 

samples. Normalization by internal standard allows the sample normalization using the 

intensity or the integral area of this standard. The normalization step has a great importance on 

urine samples, in which the metabolite content can change due to the dilution factor. In health 

condition, urine samples can be normalized by using creatinine as internal reference even if an 

increasing number of studies link creatinine to variation to age, weight exercise or gender. This 

aspect will be better explored in chapter 3. 

1.4.6 Scaling  

Once the preprocessing of raw data is done, as end-product of our preprocessing workflow a 

table as the one showed in Figure 28 is obtained. This table known as data matrix contains in 

rows the samples name or code and in the columns all the features. Each column represents a 

metabolites or feature identified in our spectra and each row reports features concentration or 

intensities relative to each sample. This data matrix will be used for the subsequent statistical 

analysis.  Simply examining this data table allows us to identify metabolites or features that 

may exhibit significantly higher intensity compared to the others. Indeed, in metabolomics 
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spectra, it is not uncommon to observe peaks of certain metabolite be significantly more 

prominent than others. In such cases, groups of metabolites with higher concentrations might 

overshadow the rest, potentially skewing the results of statistical analyses. This dominance of 

a few concentrated metabolites can mask the presence of less abundant features, rendering their 

significance and importance largely unrecognized. In such case scaling, metabolites intensity 

in a data matrix is mandatory. This step allows to transform data through the application of 

different mathematical operation in way that at the end of the process all the variables have the 

same weight and “level of importance”. Different scaling methods are today used in 

metabolomics including pareto scaling, autoscaling, centering or range scaling 112,108. The 

choice of scaling method depends on the characteristics of the data, the specific requirements 

of the analysis, and whether preserving certain features of the data is essential. Furthermore, 

the use of each one of these methods can impact how the data is represented, how features are 

weighted, and the outcome of subsequent analyses. 

 

  

Figure 28 Data matrix table representing in row (first row colored in yellow) the list of samples and in columns the “buckets” 
and their corresponding value for each sample (in green) 
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1.4.7 Chemometrics and Statistical analysis 

In metabolomics-based studies, the substantial volume of data resulting from its vast quantity, 

intricacy, and diversity poses a substantial challenge. Indeed, once the spectra acquired 

hundreds of variables describe each sample, complicating the interpretation and comprehension 

of biological impacts. For these reasons, in metabolomic studies, in which the quantity of 

generated data is much higher than the number of samples, a set of tools able to reduce data 

dimensionality is mandatory. Within this framework, over the past decades, chemometrics tools 

have been developed to address this challenge by becoming more comprehensive and powerful 

with the growing complexity of study designs. These methods range from straightforward 

univariate statistical models to chemometrics and sophisticated machine learning techniques by 

having as aims overview of samples, clustering samples, and biological pathways investigation 

A wide list of tools and platforms are available for metabolomics chemometrics and statistical 

analysis113. Of all the tool and platforms available, SIMCA® represents a complete tool for 

statistical analysis widely used and user-friendly; Metaboanalyst114, Biostatflow115, and W4M 

are complete web-based platforms performing both univariate statistics and chemometric 

analysis. This wide family of tools can perform statistical analysis by using two distinguished 

approaches: unsupervised approach and supervised approach whose goals are respectively to 

build models giving a samples overview and generate classification and predictive models. 

1.4.7.1 Unsupervised analysis 

As the main goal of unsupervised analysis is to explore the data without “a priori”, the tool that 

better represent this philosophy is constituted by Principal component Analysis (PCA). PCA 

is an unsupervised tool that allows data mining and outlier detection by transforming a high-

dimensional dataset into a new set of uncorrelated variables called principal components (PC). 

These principal components are ranked in order of the amount of variance they capture from 

the original data. The first principal component captures the maximum variance, the second 

principal component captures the second most, and so on. Once applied, original data can be 

projected onto the principal components, effectively reducing its dimensionality while retaining 

much of the data variability (Figure29a). The representation of this variability is showcased in 

a score plot, while the influence of each variable is projected in a loading plot (Figure29b). As 

aforementioned, this approach serves not only to identify outliers, but also to spotlight 
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instrument or preprocessing discrepancies, and even to discern sample clusters devoid of prior 

assumptions. 

As seen for PCA models, outliers’ detection is a fundamental step for a correct data analysis 

and interpretation. Specifically, the term outlier refers to a data point that significantly deviates 

from the overall pattern or distribution of the data set.; they can arise due to various reasons, 

including technical errors, contamination, instrumental issues, or biological variations. In way 

to improve the accuracy of the outlier detection, the PCA model can be combined with other 

methods, such as different distance such as: Hotelling's T² for detection of “strong outliers” and 

DModX for “moderate outliers”. Hotelling's T² is a multivariate extension of the univariate t-

test; it quantifies how far a data point (sample) deviates from the mean of a group of samples 

in a multivariate space. It is used to identify outliers or samples that significantly differ from 

the central cluster by defining the normality area corresponding to 95% confidence.116,117,118,119.  

DModX is another metrics used to ameliorate the detection of” moderate outliers”. The "X" in 

DModX indicates the reference group, which can be a group of samples with similar 

characteristics, or a model built from the data. DModX quantifies the number of standard 

deviations by which a data point deviates from the center of the reference group. A high DModX 

value indicates that the data point is distant from the reference group and could be considered 

an outlier 117,118,119 . 

1.4.7.2 Supervised analysis 

Supervised analysis has as principal aim to maximize the separation between groups of 

predefined samples by using an “a priori” knowledge. This model allows to find a correlation 

Figure 29 Unsupervised analysis with PCA score plot and loading plot; (a) PCA score plot showing 
an overview of our samples dispersion; (b) loading plot showing the dispersion of our features across 

the space according to the sample dispersion. . All the models were generated through a test dataset on 
Metaboanalyst. 
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between the X matrix and the Y response where Y can be a quantitative variable (age, BMI 

etc.) or qualitative (healthy, ill etc.). 

Partial Least Square (PLS) represents one of the most known supervised model and widely 

used in metabolomics studies 120. PLS works by creating new variables, called latent variables 

or components, which are linear combinations of the original predictor variables. These new 

components are constructed in a way that maximizes their covariance with the response variable 

(in opposite to PCA in which the maximization is done on the variance). The outcome of this 

model is represented by a score plot (Figure 30a) in which the cluster between the two groups 

is maximize, and a loading plot in which the variables contributing to the discrimination are 

shown. In addition to loading plot, variable importance in projection (VIP) plot can be 

generated by showing the significant features explaining the discrimination between groups 

(Figure 30b). Two types of PLS models can be distinguished: a PLS discriminant analysis 

(PLS-DA), and a PLS regression model. PLS-DA is a well-known tool which has as goal to 

build a model that separates different classes based on the predictor variables (example: control 

vs treated). In PLS regression, the goal is to build a predictive model for a continuous response 

variable (example: correlate metabolome with the increasing Body mass index (BMI)). The 

second highly applied model is represented by the Orthogonal projection to latent structured 

discriminant analysis (OPLS-DA). This tool combines the power of Orthogonal signal 

correction (OSC) to the PLS discriminant model. Specifically, OSC allows to remove 

systematic variation of X not correlated to Y in way to delate the inter-subject variability and 

to describe maximum separation based on class121.  

 

 

 

 

Figure 30 PLS-DA score plot and VIP score; (a) PLS-DA score plot illustrating the separation between 
control and patient groups; (b) VIP scores listing all the important variables which allows the separation 

in PLS-DA score plot. All the models were generated through a test dataset on Metaboanalyst. 
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Despite the useful aspect of supervised models, they need to be used with carefully since they 

can lead to overfitting and unreliable results. In way to avoid this scenario, for each of our 

supervised model, different metrics can be used to evaluating their performance and validity.  

All the presented tools are part of machine learning techniques which are methods or algorithms 

that enable computers to classify, extract meaningful information from complex datasets, 

identify patterns, and make predictions. Indeed, if in traditional programming, developers write 

explicit instructions for a computer to follow, machine learning allows computers to learn from 

data and improve their performance over time. In addition to previously illustrated algorithm, 

other tools exist such as Random Forest (RF), support vector machine (SVM) and logistic 

regression (as part of supervised learning algorithm) or K-means and hierarchical clustering (as 

unsupervised learning techniques). 

1.4.7.3 Validation and performance models  

The main goal of metabolomics is to identify a list of putative and reliable biomarkers that are 

linked to a defined biological status. To obtain these features, supervised models can be 

employed; however, relying solely on this model is insufficient. As previously discussed, 

supervised models are prone to the overfitting effect, leading to a misinterpretation of results. 

Indeed, overfitting refers to the process by which a model exhibits excellent performance on 

training data but fails to effectively generalize to a new dataset.  To overcome this problem, 

validation algorithms have been developed in way to look at the validity of our models. The 

most common used validation models in metabolomics are represented by cross-validation 

methods and permutation test.  

Cross-validation method is based on two parameters that assess the model’s performance: R2 

(x and Y) and Q2Y. The R2  value represents the explained variance proportion of the matrix  of 

x and y variables, while Q2Y represents the “goodness of the fit” better known as the predictive 

quality of the model122,123 . The closer these values are to 1, the more the model separation is 

good. The theory of this method is to split the total samples into two groups, named training 

and testing groups.  The training group is used to generate a predictive model whose 

performance will be evaluated on the testing group. This process is repeated as many times as 

possible to ensure that each sample has been included in the testing group at least once. The 

objective of the permutation test is to validate that the initially generated model is superior to 

all other models created by permuting class labels and randomly assigning them to different 
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individuals123,124. The performance of this model is evaluated through a threshold named p-

value that needs to be inferior to 0.05 (Figure 31a). Once validity of the classification models 

is proven, their performance needs to be evaluated. The two most common performance 

algorithms are represented by: receiver operator characteristic (ROC) curve and confusion 

matrix. 

The multivariate ROC curve serves as a metric indicating the efficacy of a model in 

distinguishing between two distinct classes or categories; it differs from the classical ROC in 

terms of the number of variables employed for its construction (1 variable for classical one, 2 

or more variables for multivariate). In a multivariate ROC curve graph the rate of true positive 

in function of the false-positive rate is shown. This curve is expressed in terms of sensitivity 

(percentage of true positive correctly classified) and specificity (percentage of true negative 

correctly classified). The area under the curve (AUC), often used to summarize this model, is 

an index for the quality of the discrimination model (Figure 31b). Specifically, the closer this 

value is to 1, the better the separation; a value equal to or less than 0.5 indicates a lack of 

separation between the two classes.  

Confusion matrix125 is a performance measurement for machine learning classification 

problem where output can be two or more classes. This model is presented as a table with 4 

different combinations of predicted and actual values by allowing to understand how the 

classification model is “confused” when it makes predictions. To evaluate its performance and 

to better understand and analyze the models, we can look at several metrics such as: accuracy, 

recall and precision. Accuracy simply measures how often the classifier makes the correct 

prediction. It is represented by the ratio between the number of correct predictions and the total 

number of predictions. The major limitation of accuracy can be underlined in imbalanced data; 

Figure 31 Permutation test and ROC curve for a defined dataset; (a) Permutation test indicating the validation 
of the model since its p-value <0.05; (b) multivariate ROC curves showing different AUC based on the number 

of selected variables. All the models were generated through a test dataset on Metaboanalyst. 

b 
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in this case, if the model predicts that each sample belongs to the majority class label, the 

accuracy will be high, but the model will inaccurate. This is why, in unbalanced studies, it is 

important to have other metrics to which refers. Precision is a measure of correctness that is 

achieved in true prediction; particularly, it is defined as the ratio of the total number of correctly 

classified positive classes divided by the total number of predicted positive classes. Recall is a 

measure of actual observations which are correctly predicted and is defined as the ratio of 

correct predictions (true positives) divided by the total number of positive classes (Figure 32). 

 

1.4.7.4 Univariate statistical analysis 

Univariate analysis in metabolomics  involves assessing individual variables (such as 

metabolite concentrations or peak intensities) one at a time in way to extracting meaningful 

insights from complex datasets though statistical models . Univariate data analysis is 

fundamental to uncover variables that might be overlooked in multivariate models. Indeed, 

while multivariate analysis considers all metabolites and their relationships simultaneously, it 

may fail to identify metabolites that have significant effects when examined individually. 

Identifying specific metabolites that exhibit significant changes under different experimental 

conditions or disease states is essential for biomarker discovery. These aspects underscore the 

importance of integrating univariate analysis into metabolomics experimental designs126,127.  

Student's t-tests can be used in order to discover statistical significance in univariate datasets 

consisting of two sample comparisons. Several variations to this test exist in way to meet the  

assumptions on which the test is based (e.g., normal distribution of data).  

The Mann-Whitney U test, also known as the Mann-Whitney-Wilcoxon test, is a non-

parametric statistical test used to assess whether two independent groups differ significantly in 

Figure 32 Scheme of confusion matrix to simplify 
its understanding; precision, accuracy, and recall 
value are reported with their respective formula 

(TP= true positive; FP= false positive; FN= false 
negative; TN=. True negative) 
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their distribution of a continuous variable. It is particularly useful when the data are not 

normally distributed or when the sample sizes are small. 

1.4.7.5 Multiplatform approach 

Multiplatform approach has already been documented in metabolomics literature. This 

approach has been defined as the integration of data blocks from different analytical platforms 

into a single comprehensive model. The aim of this unique block is to increase the resultant 

predictive performance of the model by combining the strength of each analytical platform and 

by increasing the metabolomic coverage. Different strategies have been proposed for the 

combination of the several analytical techniques: low-level, mid-level and high-level data 

fusion128 (Figure 33).  

Low-level data fusion is the easiest approach, obtained by the horizontal concatenation of data 

matrices coming from the different analytical platforms. The great pitfall of this method is 

related to the great difference between intensity ranges of features and the high number of 

variables coming from different platforms129. Mid-level data fusion presents itself as a solution 

to the big amount of data that limits biomarkers discovery in low-level approach. Through a 

previous feature selection, operated through chemometrics tool (such as PCA or PLS), mid-

level approach proposes the concatenation of reduced dataset by which it is  easier to extrapolate 

important information130. Another proposed approach, that represents also the one applied in 

Figure 33 Multiplatform approach with the 3 major strategies explained; low-level data fusion allows a 
direct combination of dataset by generating a global model and related results; in mid-level data fusion 

variable selection for each dataset is done prior the global model and results generation; in high level-data 
fusion separate models and results for each dataset are generated before to combine it for a joint 

interpretation. (adapted from: Boccard, J. & Rudaz, S. « Harnessing the complexity of metabolomic data with 
chemometrics: Metabolomic data analysis with chemometrics. » DOI: 10.1002/cem.2567) 
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the current work, is represented by the high-level data fusion. This approach is based on the 

generation of separate discriminant models, each one coming from a different platform, whose 

results are finally “fused”. By applying  an high level data fusion we can expect an increase of 

prediction performance and a better classification model 131.  

The adoption of the multi-platform approach has seen an increase in its application, within 

metabolomics and, more broadly, in omics studies. By integrating data from various sources, 

this approach not only expands metabolomic coverage but also offers a significant advantage 

in enhancing the robustness of biomarker discovery by validating results across different 

platforms. It serves as a valuable strategy for overcoming challenges in identifying biomarkers 

and understanding metabolic pathways, often challenging aspects of the metabolomics 

workflow. While the integration of information from multiple sources remains a potent strategy 

to gain deeper insights into complex biological systems, the use of multiple analytical platforms 

introduces challenges. Differences in scale, resolution, and variability between platforms can 

be challenging, necessitating specialized expertise to effectively handle and interpret data from 

each distinct platform. Despite these challenges, the multi-platform approach remains a 

valuable and powerful method in metabolomics and omics research. 
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1.4.8 Biomarkers identification 

In the last decades, with the increase in the application of metabolomics to different field, an 

important discussion about identification step is born by ending with the constitution of 

Metabolomics Standards Initiative (MSI) 132. The MSI has as major objective to uniform and 

give guidelines to metabolomics community in way to help scientists in the difficult process of 

metabolite identification. This initiative allowed the redaction of a list of 4 levels of known 

metabolite identification (see table 4) to which all the scientists should refer in way to better 

standardize the process, harmonize procedures and obtain inter-laboratory reproducibility. 

1.4.8.1 NMR identification 

After univariate statistics and chemometric analysis, a list of significant features to discriminate 

the biological factor of interest is available. In way to go further in the analysis and have a real 

insight of the biological process that occurs, placing a name on each significant bucket or 

feature is imperative. Features identification in 1H-NMR spectra can be a challenging step that 

needs a multi-step process crossing experimental data, databases, predictive and 

complementary analytical techniques to confidently assign chemical identities to the observed 

peaks. In this context, the researcher adopts the role of a detective, employing all available clues 

derived from the spectra to uncover the “culprit”.  In the initial step of metabolite identification, 

employing chemical shift lists specific to each biofluid from the literature enables the 

identification of all potential matching features within the desired chemical shift zone34,133,134. 

Once a number of candidate metabolites have been identified for a particular spectral signal, 

the subsequent step involves referring to 2D NMR spectra. Indeed, 1H-NMR spectra, as 

discussed in section 1.4.3.2, can be challenging to interpret due to significant signal overlap, 

making it difficult to definitively attribute a signal to a single metabolite with absolute certainty. 

2D NMR spectra play a crucial role in resolving the uncertainties encountered in 1D peak 

assignments135. The key advantage of this technique is its ability to provide a distinct and unique 

signature for each molecule, which needs, however, to be present in a sufficiently high 

concentration compared to other metabolites within the complex mixture. An online and 

complete database is available to compare both 1D and 2D NMR spectra for a specific 

molecule, along with its concentration profiles under both normal and pathological conditions. 

HMDB stands out as the most comprehensive database for metabolites present in various 

human biofluids, enabling to research molecules based on their name as well as on their 

chemical shift by giving back a matching score. Another tool allowing metabolite identification, 
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and already discussed in the context of spectral deconvolution, is represented by Chenomx. 

This software enables the assignment and the identification of signals in 1D spectra using an 

internal library and by considering both chemical shift and sample’s pH for accurate metabolite 

identification. 

1.4.8.2 MS identification 

As seen for NMR identification, after statistical analysis, a list of selected features, significant 

for discrimination of biological response, is generated. The identification process in MS, also 

known as annotation, is a challenging step in MS-based metabolomics studies. In fact, if in 1H-

NMR spectra, identification is difficult due to significant signal overlap, in MS metabolomics 

the scenario is even worst. Indeed, with the advancement in instrumental technique, the 

sensitivity of machines has greatly increased by allowing, in untargeted studies and though a 

single run, to detect the global coverage of metabolome. Despite the great number of detected 

features, the main problem is represented by the impairment between the experimental output 

composed by a long list of features and signals and the minimal portion of annotated 

metabolites. As illustration of this disproportional ratio, in a study where a single run detected 

more than 25,000 features, the number of unique metabolites identified was lower than 1,000 
136.  

Indeed, in MS analysis a single metabolite can be represented by multiple features due to 

presence of adducts of different fragments. This complexity is due to the fact that majority of 

features with their accurate mass and fragmentation do not match to the available metabolomics 

databases by making them often be listed as “unknown metabolite”. The annotation in LC-MS 

is generally based on several measures referring to the feature including accurate mass (AM), 

retention time (RT) and MS/MS (fragmentation spectra).  All these criteria were included in the 

guidelines proposed by metabolomics community in way to obtain a general workflow for 

identification 137,132 (see table 4) .  
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These suggestions are divided on different level of annotation based on the information found 

on the features. Level 0 is the strongest level of annotation and includes stereochemistry 

discrimination; at level 1 the detected feature is identified by comparing its mass spectrometry 

data (at least 2 orthogonal parameters between AM, RT, or MS/MS) to an authentic chemical 

standard. Level 2 annotation involves matching the mass spectrometry data with a class-specific 

standard; level 3 is based on confirmation by one parameter (e.g., AM); level 4 signifies that 

the detected feature cannot be assigned to a known compound, chemical class, or group and is 

often referred to as "unknowns" 138. It is important to underlying that mass fragmentation 

spectra (MS/MS spectra) obtained through DDA mode of acquisition, are of fundamental 

importance to add information to the molecular structure139. To achieve one of the annotation 

levels described, various tools are documented in the literature. CAMERA for example is a tool 

also implemented in W4M that allows to search for common relationship between peaks 

facilitating the annotation step 140. Another way to facilitate this step is based on the creation of 

molecular networking.  Molecular networking relies on the calculation of spectral similarities 

between the detected features by comparing the mass spectra of these features. Features with 

high spectral similarity are connected to form a network in which each node represents a feature 

(metabolite), and edges between nodes indicate spectral similarity. GNPS (Global Natural 

Products Social Molecular Networking) is the most known tool used to generate molecular 

networking by providing an overview of the relationships between detected features even if 

their main application is on natural product field141.  In addition to these, homemade databases 

represent in both MS an NMR, fundamental tools allowing the identification step. All these 

tools and their utilization can assist scientists in the process of annotating metabolites. However, 

the future of metabolite annotation will primarily rely on databases and repositories that must 

Table 4 Confidence intervals of metabolites annotation as discussed by the Compound identification work group at 
Metabolomics Society annual meeting in 2017 (from: Blaženović, Ivana et al. “Software Tools and Approaches for 

Compound Identification of LC-MS/MS Data in Metabolomics.” DOI: 10.3390/metabo8020031) 
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be continually expanded through the collective contribution of data by the metabolomics 

community. 

1.4.9 Metabolic pathway analysis  

Over the last decades, the metabolomics workflow has seen a great enhancement in all the 

following steps by starting from more accurate sample preparation protocol, passing through 

more sensitive instrumental platforms until powerful statistical analysis. The milestone of these 

workflow, in line with the goal of metabolomics, is represented by the investigation of all the 

metabolites that affect a biological process. In this context metabolic pathway analysis is key 

corner of metabolomics study and represents a powerful tool to link changes in metabolic 

compounds to biological pathways. This process can be achieved using different available 

database containing a wide range of information concerning gene, metabolites and related 

biochemical information. One of the most famous libraries is represented by Kyoto 

encyclopedia of genes and genomes (KEGG) whose databases (GENE, PATHWAY and 

LIGAND)  are daily updated 142. Other online platforms provide insight into biochemical events 

by highlighting the pathways most affected through the inclusion of an identified list of 

metabolites. These platforms are represented by Metaboanalyst143 , Cytoscape144 and 

MetExplore 145 (Figure 34).  

 

Figure 34 Pathways analysis for an example dataset on Metaboanalyst; on the left plot, all the biochemical pathways 
implicated  (represented by the circles with shading colors from yellow to red) are showed; on the right panel a single 

metabolic pathways is showed specifically by highlighting the metabolites (in red)  implicated in the used dataset 
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1.5 Metabolomics and personalized medicine 

Personalized medicine, also known as precision medicine, is an innovative approach to medical 

treatment and healthcare that adapts medical decisions, practices, and treatments to individual 

characteristics of each patient. By considering each individual as “unique”, with variations in 

their genetics, environment, lifestyle, and biology, this approach has as principal aim to provide 

an adjusted and customized healthcare for each person. In this scenario, metabolomics places 

itself as a fundamental instrument for this approach. Indeed, metabolomics by being output of 

genomics and input of environmental stimuli represents the most representative mirror of the 

individual at a precise moment. Over the past few decades, metabolomics has gained 

prominence within the biomedical field, with its most significant contributions, as emphasized 

in this thesis, in the identification of novel therapeutic targets and biomarkers146–148. These 

advancements have the potential to greatly assist clinicians in early disease prediction and 

improved patient care thereby empowering the role of personalized medicine and patient well-

being149. 

 

Defined as the stethoscope of twenty-one century150, metabolomics have a great number of 

potential application that in the future could became the new must-have tool for clinicians in 

either illness prediction, diagnostic, or prognostic. In oncology field, for example, in which the 

prevention and the diagnosis are fundamental for patient survival, metabolomics signatures 

have be found for ovarian cancer 151, lung cancer 152 and endometrial cancer 153. Other 

biomedical fields such as neurology, rheumatology and endocrinology benefit of the powerful 

of this approach even if the transposition process from laboratory to clinic represents a long 

way. Moreover, several metabolomics discoveries have seen the light in clinical application 

such as AminoIndex® Cancer Screening (AICS®) which by using LC/MS-based measurement 

of amino acids in plasma enabling early and non-invasive detection of cancer 154; another 

application is represented by Theoreo Srl which through GC-MS platform allows the early 

noninvasive diagnosis of fetal malformations and endometrial carcinoma155. In addition to 

cancer field, another interesting application takes place in nephrology domain. AXINON® GFR 

(NMR) test156 combines the use of novel biomarkers quantified through NMR-based 

metabolomics approach with traditional renal markers (creatinine and cystatin C) to obtain 

accurate GFR results compared to standard eGFR equations157,158. 
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In summary, metabolomics plays a crucial role in the field of precision medicine by providing 

valuable insights into an individual's unique metabolic profile. Moreover, as research in 

metabolomics continues to advance, and as more evidence of its clinical utility emerges, it is 

likely that metabolomics will play an increasingly significant role in clinical diagnostics and 

personalized medicine in the future. 
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1.6 Chronic kidney disease (CKD) and kidney 

transplantation (KTx) 
1.6.1 Background – Kidney physiopathology 
The kidneys are a pair of bean-shaped organs situated on opposite sides of the spine in the 

retroperitoneal space along the posterior abdominal wall. Each kidney measures approximately 

10 to 12 centimeters in length, roughly the size of a closed fist, and is encased by a fibrous renal 

capsule that offers structural support to the soft internal tissue. On the inner side of each kidney, 

there is a central depression referred to as the renal hilum or pedicle where various structures 

such as renal blood vessels, nerves, lymphatic vessels, and the ureter enter and exit the kidney. 

The kidney is divided into two primary components: the cortex and the medulla. The cortex is 

the outer portion situated just under the renal capsule and comprising renal corpuscles, as well 

as the proximal and distal convoluted tubules. The renal medulla is the inner part of the kidney 

and is also composed by a network of capillaries.  Within the kidney's inner region are pyramid-

shaped units called Malpighian pyramids, which are oriented with their bases facing toward the 

cortex and their apexes directed toward the hilum159,160 161 (Figure 35).  

 

Scattered throughout the cortex and the medulla there are nephrons which represent the 

functional unit of kidney. Around 2 millions of nephrons per kidney are present in an adult 

individual. Each nephron consists of a renal corpuscle (glomerulus and Bowman's capsule) and 

a renal tubule (proximal convoluted tubule, loop of Henle, distal convoluted tubule, and 

collecting duct). Throughout the nephron's length, substances are selectively reabsorbed from 

Figure 35 Representation of kidney anatomy with all its most important components (from: 
https://www.nursingtimes.net/clinical-archive/renal/renal-system-1-the-anatomy-and-physiology-of-the-kidneys-23-01-2023/) 
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the filtrate into the bloodstream, and waste products and excess substances are secreted into the 

filtrate. This intricate process allows the kidneys to regulate electrolyte balance, fluid volume, 

and the excretion of metabolic waste products, ultimately producing urine. The nephron's 

efficient filtration and reabsorption processes are essential to maintain overall bodily 

homeostasis159,160. As part of nephron corpuscle, the glomerulus is another fundamental 

component of kidney which is on charge of filtration function. Glomerulus is composed by a 

tuft of capillaries loop and surrounded by Bowman’s capsule (Figure 36). The glomerular 

filtration process is a passive mechanism responsible for the formation of plasma ultrafiltrate 

called “primitive urine”. Specifically, blood coming from the bloodstream through the renal 

artery enters in the glomerular tuft where the high blood pressure and fenestrated endothelial 

capillaries act as filtration barrier. Blood cells and molecules greater than 68kDa are retained 

in contrast to water, sodium, urea and glucose which are filtrated and then reabsorbed.  In this 

process, the volume of primitive urine formed each minute by all the glomeruli of both kidneys 

is defined as glomerular filtration rate (GFR) and represent a fundamental parameter for kidney 

function measurement.  

 

In biological system, kidneys have several functions that can be resumed in these points: 

- Excretion of metabolic waste products and urine production: the primary role of kidney 

is to filter blood and remove waste products produced during the body's metabolic processes 

helping prevent the buildup of toxins in the body. The process of filtration, which results in the 

production of urine, not only clean body from waste products but also plays a crucial role in 

preserving the body acid-base equilibrium and in the regulation of the body fluid and electrolyte 

balance. 

Figure 36 Image of nephron structure and its location in the kidney (from: 
https://courses.lumenlearning.com/suny-dutchess-ap1/chapter/nephrons-structure/) 
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- Erythropoiesis regulation: kidneys produce and release erythropoietin, a hormone that 

stimulates the bone marrow to produce red blood cells (erythrocytes). This process helps 

maintain adequate oxygen-carrying capacity in the blood. 

-Hormone production: in addition to erythropoietin, the kidney converts inactive vitamin D 

(calcidiol) into its active form, calcitriol which is involved in calcium metabolism and bone 

health, and prostaglandins, which are involved in various physiological processes. 

-Blood pressure regulation: this process is done by controlling the volume of blood in the 

circulatory system and by releasing the enzyme renin, which helps regulate blood pressure. The 

renin-angiotensin-aldosterone system is a complex hormonal system that influences blood 

pressure.  

The central role of kidney in maintaining the body in a state of homeostasis, is fundamental in 

way to keep subject in healthy status; when the kidneys functions become compromised or 

abnormal, it can lead to a range of health issues, including chronic kidney disease (CKD). 
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1.7 Chronic kidney disease (CKD) 
1.7.1 Definition, causes and symptoms 
Chronic kidney disease (CKD) is a progressive with no cure disease with high morbidity and 

mortality that affects 10-15% of global adult population 162. CKD is defined by the “Kidney 

Disease: Improving Global Outcomes (KDIGO) clinical practice guideline” (KDIGO) as 

abnormalities of renal structure or functions due to a loss of functional nephrons.  An adult 

patient is defined as affected by CKD when in a period of three months or longer shows a 

glomerular filtration rate (GFR) lower than 60 ml/min/1.73 m2 or as presenting markers of 

kidney damage (for example albuminuria).  Based on the value of GFR and albuminuria, 18 

stages of the pathology can be distinguished 163 (Table 5): 

The affected population is heterogeneous, and the major causes vary globally including 

preexisting pathologies, lifestyle factor (such as tobacco use), environmental exposure or family 

history. The risk factors linked to CKD progression can be distinguished in non-modifiable risk 

factors164 such as: older age, male gender, a non-Caucasian ethnicity (such as African 

Americans, Afro-Caribbean individuals, Hispanics, and Asians); modifiable risk factors  

including systemic hypertension, diabetes, proteinuria, and metabolic determinants 165. The 

pathophysiology of this disease, particularly in the early stages of CKD injury, involves a 

complex and diversified process that may remain "invisible" for an extended period, 

underscoring the primary challenge associated with CKD: the challenging detection of its initial 

phases. 

 

Indeed, no symptoms appear in the early stages of CKD making its diagnosis difficult to 

achieve. As CKD advances, the declining kidney function leads to the accumulation of 

Table 5 Stage of CKD based on GFR and albuminuria values. 
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substances known as uremic toxins. While the precise biochemical and physiological effects of 

these molecules remain partially understood, within the context of CKD, they contribute to 

processes such as inflammation, neurological disturbances, gastrointestinal issues, and other 

mechanisms that give rise to a diverse array of symptoms166,163. The presence of these non-

specific symptoms often leads to patients being diagnosed in the advanced stages of CKD. Once 

they reach end-stage renal disease (ESRD), dialysis or transplantation becomes the only viable 

option. 
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1.8 Kidney transplantation  
For individuals facing ESRD, kidney transplantation is often considered the best treatment 

option, thanks to substantial advancements made over the past half-century. Indeed, since the 

first successful kidney transplant performed by Dr. Joseph Murray in 1954, there have been 

remarkable advancements in surgical techniques, organ preservation methods, 

immunosuppressive medications, and organ matching systems167. These improvements have 

significantly increased the success rate of kidney transplants and offers a better quality of life 

and longer life expectancy compared to patients on chronic dialysis 168,169.  

Moreover, even if kidney transplantation represents the best treatment for patients in end-stage 

of CKD, it is important to note that this option is not suitable for every ESRD patient, and the 

decision depends on various factors including the patient's overall health, age, and availability 

of suitable donors (see Figure 37). Additionally, there is a need for a lifelong commitment to 

post-transplant care and immunosuppressive medications to ensure the success of the 

transplant. 

 

1.8.1 Patients selection 
The selection of patients for kidney transplantation is a meticulous  procedure that encompasses 

the assessment of a wide range of medical, psychological, and logistical factors to maximize 

the likelihood of successful outcomes. It is important to recognize that many individuals with 

ESRD often experience multiple coexisting medical conditions that could potentially impact 

the success of the transplant. From a medical standpoint, these comorbidities can significantly 

influence the long-term health of both the recipient and the transplanted organ. Consequently, 

additional criteria beyond age and body mass index (BMI) have been incorporated into the 

evaluation process. These supplementary criteria encompass a thorough examination of the 

Figure 37 Timeline in kidney transplantation composed by several step starting from patient selection until kidney 
surgery; (LD= living donor; DBD= donation after brain death; DCD= donation after circulatory death) 
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patient's medical history, as well as specific tests to assess cardiovascular, cerebrovascular, 

pulmonary, and gastrointestinal health 170,171. 

Indeed, every potential kidney transplant candidate must undergo a battery of tests and 

examinations to provide a comprehensive evaluation This evaluation serves to determine the 

patient's suitability for transplantation and identify any potential risks or complications that may 

arise during or after the procedure. Furthermore, specific criteria and evaluation process may 

vary slightly from one transplant center to another. The goal is to identify suitable candidates 

who will benefit from kidney transplantation while minimizing the risks associated with the 

procedure172. 

 

1.8.2 Donor selection 
Two distinct types of donors are possible in kidney transplantation: living donors or deceased 

donors. Living donors (LD) are an excellent source of kidney grafts for transplantation offering 

the best graft and recipient survivals. Several advantages contribute to an enhanced graft 

survival in this type of donor such as improved compatibility which result in a better match 

between the donor and recipient, and shorter cold ischemia time that helps to preserve the 

organ's function .In opposition to these, a significant drawback associated with living donation 

is the increased complexity of surgical interventions, which is closely tied to another major 

concern represented by the risks faced by the donor.  However, by taking all that into account, 

in the context of this thesis, our attention was focused on deceased donors. This type of donors 

can be for their part divided in two classes: donation after brain death (DBD) and donation 

after circulatory deaths (DCD). Donation after brain death is possible when death occurs after 

primary brain injury or disease, resulting in the irreversible cessation of brain function. In DBD, 

cardiac circulation and respiration are maintained by medical measures.  Dead circulatory 

donors are represented by individuals in which death occurs due to permanent cardiac arrest 

before the organ procurement was done. Based on this classification, two types of donor criteria 

have been established: standard donor criteria (SDC) and extended donor criteria (EDC). 

Standard donor criteria include donors under  the age of 50 years  with no history of 

hypertension and normal values of creatinine whose death occurs under DBD condition. In 

opposite to this description, extended donor criteria (EDC) include donors over the age of 60 

with history of high blood pressure and/or high creatinine values whose death occurred in DCD 

conditions. While SDC donors are generally preferred, the increasing gap between demand and 

supply for kidney transplantation in the last decades enhanced the use of ECD donors. Indeed, 
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according to its definition, ECD kidneys exhibit lower graft survival rates when compared with 

those from SCDs, displaying a relative risk of graft failure exceeding of 1.7 173. 
Nevertheless, during the early years of the 21st century, several studies highlighted the 

necessity for improved decision-making guidelines that provide a more precise definition of 

graft quality not solely based on the classification of kidneys as SDC or EDC 174,175. A novel 

tool has been introduced to assess the risk of graft failure by combining various donor and 

recipient variables. This tool is termed the Kidney Donor Risk Index (KDRI) and is primarily 

used to assess the risk of post-transplant kidney graft failure in deceased donor kidneys, 

specifically in an average adult recipient. KDRI provides an estimate of the relative risk of graft 

failure for a particular deceased donor compared to a reference donor. Notably, this formula 

has demonstrated increased predictive accuracy for allograft survival when compared to the 

ECD classification criteria 176. Following the calculation of KDRI, another important metric, 

known as the Kidney Donor Profile Index (KDPI), can be derived. KDPI combines a range of 

donor-related factors, including clinical parameters and demographics, to condense the overall 

quality of deceased donor kidneys into a single numerical score relative to other available 

kidneys. Lower KDPI scores are indicative of kidneys with an extended long-term estimated 

function, while higher KDPI scores suggest kidneys with a shorter mid-term estimated function 
177,178. 

 

1.8.3 Organ preservation 
Organ preservation involves the careful management and maintenance of the donor kidney from 

the time it is recovered from the donor until it is transplanted into the recipient. During this 

process, once the heart stop beating, kidney undergoes a process known as ischemia. Two 

different ischemic process can be distinguished during kidney transplantation: cold ischemia 

time (CIT) and warm ischemia time (WIT). Cold ischemia time refers to the duration during 

which the kidney is stored at 4°C; during this process, the utilization of a cold storage solutions 

mandatory to help slow down the metabolic processes in kidney. Warm ischemia time (WIT) 

represents the span of time in which organ is without a blood supply and experiences warm 

conditions. Distinguishing between DBD and DCD is feasible by considering the presence of 

one or two WIT. In the case of DCD donors, following circulatory arrest and before the onset 

of CIT, an initial WIT (referred to as WIT-1) takes place; subsequently, as the cold preservation 

solution is flushed into the organ, CIT begins. The process then proceeds until reaching the 
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second WIT (WIT-2),  which is measured from the moment the organ is removed from cold 

storage to allograft reperfusion. This interval is commonly referred to as anastomosis time. 

In contrast, in DBD donors, where blood circulation is still active after death, the kidney is 

directly flushed with a cold storage solution, initiating CIT without any preceding. The 

prolonged duration of these processes has been demonstrated to affect negatively the graft 

outcome (as we will see more in details in the following paragraphs) 179,180,181,182. Another 

critical point of organ preservation is represented by the cold preservation solution flushed in 

the organ during CIT.  Preservation solutions are specifically formulated to rapidly cooling the 

organ while preserving and protecting the organ from cellular damage. These solutions contain 

a combination of various components, including impermeant, colloids, buffers, electrolytes, 

and other substances which primary goal is to maintain cellular viability during the storage of 

the kidney at a temperature of 4 °C 183. Among all the possible preservation solutions used in 

kidney transplantation practice (such as UW, HTK etc..), a special focus is directed in this work 

to IGL-1.  This preservation solution has in fact demonstrated that its low potassium 

concentration in extracellular compartments  allows a reduction of vasospasm occurrence 

linked to potassium-induced smooth muscle cell depolarization184 that translates in clinical 

practice in equal or superior graft outcome compared to classical storage solutions185,186,187. In 

addition to preservative solutions, two preservation methods can be distinguished for kidney 

graft: static and dynamic. The static approach involves flushing the kidney with a preservation 

solution and subsequently storing it in a static state at 4 °C. This procedure helps extend the 

viability of the kidney during the storage period by reducing metabolic activity which 

minimizes the risk of cellular damage and deterioration occurring when a non-constant oxygen 

and nutrients supplies are available. Dynamics preservation methods requires dynamic 

movements of their fluids to improve preservation state.  Three different methods are nowadays 

used and are represented by: hypothermic machine perfusion (HMP), normothermic machine 

perfusion and venous oxygen per sufflation. HMP technique involves perfusing the kidney with 

a cold preservation solution at temperatures below normal body temperature by allowing a 

continuous supply of kidney tissue in oxygen.  The main advantage of this technique compared 

to static storage is represented by an improved graft quality post-transplantation. Indeed, several 

studies have shown to improve recovery of DCD kidneys and to reduce primary kidney 

dysfunction post transplantation 188,189,190. 
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1.9 Post-transplantation follow-up 
While kidney transplantation represents the beast treatment for patients in ESRD, there can be 

various problems or complications that may arise in the post-transplantation period. This phase 

is critically important, necessitating mandatory patient follow-up to improve graft outcomes. 

Indeed, if survival rate and quality of life are increased and enhanced compared to dialyzed 

patients, survival of KTx recipients remains lower than in individuals without ESRD.  The 

primary source of challenges in transplanted patients is related to instances of graft rejection, 

which can occur shortly after the transplant or even years later. Allograft rejection can be 

classified in hyperacute, acute, and chronic rejection based on histopathology and 

immunological characteristics and multiple factors can influence it after KTx191,192 . If 

hyperacute and acute rejections can happen between first hours and three months post-

transplantation, chronic rejection can occur even years post-KTx making patients follow-up 

fundamental for management of kidney recipient patients (Figure 38) . 

Between all factors related to graft-loss a major classification can be done by distinguishing 

them based on the pre-peri-or post-operative factors 193. Pre-operative factors include 

characteristics of both the donor and recipient, including age, gender, race, and immunological 

compatibility. Peri-operative factors involve parameters such as the duration of cold and warm 

ischemia times during the surgical procedure. Additionally, post-operative considerations 

include the occurrence of delayed graft function (DGF) and the management of 

immunosuppressive treatment. Among all these factors, occurrence of delayed graft function 

(DGF) will represent the focus of the next paragraph. Independently from the risk of kidney 

Figure 38 Risk factors linked with graft loss including extended criteria donor, 
kidney dysfunction post transplantation and age (Foroutan, Farid et al. “Risk 

Factors for 1-Year Graft Loss After Kidney Transplantation: Systematic Review 
and Meta-Analysis.” DOI: 10.2215/CJN.05560519) 

 

https://doi.org/10.2215%2FCJN.05560519
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rejection, the constant and continuous patient follow-up remains a key point at least in the first-

year post-graft. During this period patients are required to present themselves to clinical visits 

in way to evaluate health status, the onset of complications, the correct dosage of 

immunosuppressors or most important the monitoring of kidney function. These clinical 

evaluations, that are common to clinical test effectuated during follow-up of CKD patients will 

be in depth illustrated in the following sections. 

 

1.9.1 Delayed graft function 
Delayed graft function defines a condition characterized by the inability of the transplanted 

kidney to function immediately after transplantation, requiring the initiation of dialysis within 

the first week following the transplant. The clinical definition of this varies among transplant 

centers, and within the context of this work, it is defined as the failure of serum creatinine 

decreasing at least of 10% daily on 3 consecutive days during the first 7 days post-Tx, 

considering the lowest serum creatinine value observed in the 3 months post-Tx. DGF 

represents a clinical complication that currently impacts approximately 25-30% of transplant 

recipients 194. From the 1990s to the first decade of the 2020s, a notable increase in incidence 

of DGF occurrence was observed with the percentage rising from 14.7% to 23% in the United 

States 195,196. This phenomenon was closely linked to the utilization of EDC and a higher 

number DCD. As in the case of rejection, DGF also have factors that can be classified based on 

donor, recipient and peri-operative characteristics (see Table 6).  

Table 6 Factors related to the development of delayed graft function dysfunction divided in 
donor related, recipient related and perioperative (Salazar Meira, F et al. “Factors Associated 

With Delayed Graft Function and Their Influence on Outcomes of Kidney Transplantation.” 
DOI: 10.1016/j.transproceed.2016.06.007). 
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As previously seen, donor type represents a fundamental factor for the outcome of graft and is 

also strictly related to the occurrence of DGF condition. Generally, deceased donors have 

demonstrated a higher risk of DGF compared to LD 197,198. This increased incidence can be 

attributed to the fact that LDs typically have shorter CIT and are healthy individuals, often with 

only minor comorbidities; additionally, LDs typically exhibit normal renal function, unlike 

deceased donors, whose medical history is often unknown or incomplete. Another factor that 

can influence this higher rate of DGF in deceased donor, and particularly for DCD, is the higher 

period of WIT to which they are subjected. Several studies have shown an increase of DGF 

risks in WIT longer than 45 minutes because of the possible hypoxia process produced during 

this ischemic event 182,181,199. The same hypoxic mechanistic process is probably involved in 

CIT which duration has to be less than 24h to be accepted, even if a decrease in its length is 

suggested as reported in a study demonstrating  how each additional hour increases the risk of 

graft failure 200. Organ preservation conditions are also essential to reduce the risk of DGF 

incidence. In this context, the choice of machine perfusion rather than static preservation seems 

to prevent from dysfunction event201, similarly to preservation solution selection. Indeed, 

several studies have demonstrate reduced DGF when using IGL-1 solution 185,187 which is also 

the preservation solution employed in the samples analyzed in this work. In addition to donor 

related factors some other factors related to recipient can generate a higher probability to 

develop DGF. Indeed, transplanted patients are often under chronic dialysis which can generate 

hemodynamic instability and hypotension problems that may aggravate with higher risk of 

DGF202.  All these factors can play an important role in triggering kidney dysfunctions. Based 

on these considerations, several precautions and preventive decisions can be taken prior, during 

and after transplantation to overcome it. However, the lack of precise tool able to predict DGF 

and the absence of a precise knowledge about the biochemical events involved in this 

pathological phenomenon open the door to the use of innovative and original approaches. 

 

1.9.2 Graft function monitoring  
Patient follow-up after kidney transplantation is a crucial aspect of post-transplant care which 

involves a comprehensive and coordinated approach to ensure the well-being of the transplant 

recipient and the success of the transplantation. As key components of patient follow-up in 

kidney transplantation, graft function monitoring represents a fundamental point allowing early 

detection of any issues or complications. Glomerular filtration is one of the key point roles 
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between the many functions carried out by the kidney and monitoring of GFR represents the 

best tool for assess evolution in kidney function.  

Since 1937 when the GFR was measured for the first time, substantial progresses have been 

done. GFR represents the rate at which a glomerulus filters plasma in way to produce “primitive 

urine”. Since real GFR cannot be measured, the monitoring of its rate is done by measuring the 

clearance or serum levels of exogenous or endogenous compounds. In clinical practice different 

techniques are nowadays used and they can be distinguished in measured GFR (mGFR) or 

estimated GFR (eGFR), as a measurement or an estimation is conducted for the rate. 

 

1.9.2.1 Measured GFR (mGFR) 203,204,205,206 

When in 1937 Homer Smith, the pioneer of GFR measurement, measured for the first time 

mGFR, he used the concept of urinary clearance to evaluate the excretion rate of inulin in urine 

for the first time207. The notion of clearance describes the volume of plasma from which a 

marker (not subject to secretion and reabsorption) is removed through excretion  per unit of 

time; specifically, two different clearance concepts can be used for GFR measurement: (1) 

plasma clearance which defines elimination of the marker from plasma without knowledge of 

its route of elimination; (2) urinary clearance refers to the elimination of the marker from 

plasma by urinary excretion. During the last decades, in addition to inulin which imposed itself 

as gold-standard, other exogenous biomarkers have been used to measure GFR through 

plasmatic or urinary clearance such as iohexol, iothalamate, technetium 99m diethylenetriamine 

pentaacetic acid (99mTc-DTPA) and chromium 51-ethylenediamine tetraacetic acid (51Cr-

EDTA). All these markers are, as defined by Homer Smith, ideal exogenous compounds since 

they do not bound plasma proteins and are freely filtered by the glomeruli while having a 

molecular weight lower than 20.000Da. If exogenous markers need to be introduced in the body 

through intravenous injection or bolus administration, the use of endogenous compounds allows 

an easy measurement of marker clearance without need of reaching a steady state plasma level.  

As part of endogenous markers creatinine, urea and cystatin C are the most common used in 

clinics. Creatinine is a derivate of phosphocreatine metabolism in muscle but can also derives 

from dietary meat intake; its level in blood is related to muscle mass and is strongly dependent 

from subject’s factors age, sex, race or drug assumption. Creatinine clearance measurement is 

the most commonly available assay in laboratories and can be done though 24h urine collection 

and a single measurement of steady-state serum creatinine. In Table 7 strengths and limitations 

of mGFR approaches and markers are highlighted. 
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Nevertheless the highly accuracy of mGFR to evaluate kidney function, its invasive aspect 

associated with high cost, need of specialized personal and equipment and time-consuming 

procedure make it be partially replaced in clinical practice by estimated GFR (eGFR). 

 

1.9.2.2 Estimated GFR (eGFR) 203,204,205,206 

Estimation of GFR is a convenient and non-invasive method commonly used in routine clinical 

practice to diagnose and manage kidney disease. The basics of eGFR are represented by the 

generation of a regression equation which aim to estimate the mGFR by using the level of 

endogenous metabolite in serum (such as creatinine) and several other independent factors such 

as age, sex, BMI etc...  As also seen in the case of measurement of GFR, creatinine has a central 

role in monitoring kidney activity and represents although the predefined marked for estimation 

of GFR. The main advantage of eGFR is linked to the absence of clearance calculation since it 

Table 7 strengths and limitations of GFR measurement methods and filtration markers 
(Levey, A S, and L A Inker. “Assessment of Glomerular Filtration Rate in Health and 

Disease: A State of the Art Review.” DOI: 10.1002/cpt.729) 
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is evaluated through levels of creatinine in serum. The value of serum creatinine used in 

combination with all other factors in the equation offers a valuable tool to monitor kidney 

function through a cost-effectiveness and non-invasive method. 

 

Starting from the second half of 90’s, in way to obtain the most precise formula, several 

equations have been developed all having their limitations linked to the high dependency of 

creatinine from muscle mass and diet; indeed, even though assay standardization for creatinine 

and adjustments on sex, race, age, BMI the equations remain imprecise. The first equation that 

was used to estimate GFR, introduced in 1976, is the Cockcroft-Gault equation; this formula 

estimates creatinine clearance (CrCl) based on age, sex, body weight and serum creatinine 

measured through Jaffe reaction a colorimetric assay made with picrate and serum under 

alkaline conditions. Several limitations are linked to (1) the use of weight factor by 

systematically underestimating CrCl in obese, (2) the measurement of serum creatinine on Jaffe 

reaction that cannot be standardized; (3) not include the race underestimating CrCl African and 

Asian races. The second equation is the MDRD which estimate GFR by using serum creatinine, 

body surface area, age, sex and race. Even by being more accurate compared to Cockcroft-

Gault equation, its main limitations are linked to (1) the race factor which only includes white, 

African, and Asian (2) systematically underestimates mGFR for eGFR levels >60 mL/min/1.73 

m2. The CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration) is the newest of all 

the mathematical equation developed and is considered more accurate and precise than earlier 

GFR estimation formulas. This equation formed in 2009 and based on serum creatinine as the 

previous formulas, take into account all the parameters used by the MDRD equation by 

including correction factors for sex and race (Black or non-Black). The CKD-EPI formula 

offers, compared to all previous equations, a higher accuracy across the range of GFR with an 

increased precision in GRF value higher than 60 mL/min/1.73. A summary of equation for GFR 

estimation in adults based on creatinine with reference methods and limitations in reported in 

Table 8.  

Table 8 Equations Estimating GFR from creatinine endogenous Filtration with large representation of north American (Levey, A 
S, and L A Inker. “Assessment of Glomerular Filtration Rate in Health and Disease: A State of the Art Review.”                       

DOI: 10.1053j.ajkd.2021.04.016) 
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The CKD-EPI equation, recommended for GFR estimation since 2012 according to 

international guidelines, has sparked debates in recent years due to the inclusion of a race 

coefficient, perceived as a potential source of discrimination. This inclusion of a "race" 

correction factor in medical algorithms has come under increasing scrutiny in the medical field, 

as it is regarded as a social construct rather than a biological one201. For these reasons, in 2021 

a new equation has been proposed without the race factor. The recently introduced European 

Kidney Function Consortium (EKFC) equation208 is a race-neutral formula derived from the 

median value of SCr (EKFCSCr). Adjustments to the Q value are applied to standardize 

creatinine levels before incorporating them into the equation, and these adjustments can be 

tailored for various populations based on factors such as age and gender.  An intriguing aspect 

of this equation lies in its adaptability to biomarkers beyond Creatinine, as explored in another 

notable study conducted on a large Swedish cohort209. This alternative equation, termed 

EKFCCysC, substitutes rescaled serum creatinine with Cystatin C as selected biomarker of 

interest. Cystatin C, an endogenous biomarker widely employed in clinics for estimating GFR, 

holds a key advantage in being unaffected by muscle mass, thus showing reduced dependence 

on age and sex factors. Despite the encouraging results obtained on different cohorts, the 

performance of these two equations is not increased compared to CKI-EPI equation but the bias 

is the same for both black and non-black populations200,210. In addition to the previous 

equations, the combination of Cystatin C and Creatinine in the EKFC equation demonstrated 

an improved performance in estimating GFR. All the mentioned equations are reported in Table 

9. 211,212  

  

Table 9 New equations estimating GFR introduced by European Kidney Function Consortium in 2021. SCr= serum 
creatinine; SCysC=serum cystatin C 
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1.10 Metabolomics and kidney transplantation: state of art   
As highlighted in the preceding sections, the process of kidney transplantation, encompassing 

both its pre-transplant and post-graft phases, demands meticulous monitoring to enhance the 

success of the graft and the overall well-being of the patient. In this context, metabolomics 

through a personalized medicine approach places itself as an important tool to evaluate, monitor 

and diagnose kidney diseases. Over the last decades, the application of metabolomics has led 

to the identification of significant biomarkers associated with biochemical pathways impacted 

by physio-pathological events. This link between disease and metabolome has shed light on 

how pathologies are distinguished by their unique metabolomic signatures, which encapsulate 

the combined effects of both external and internal cellular processes. The evolving status of 

patients during pathological condition makes metabolomics play a crucial role in detecting and 

explaining the dynamic system composed by metabolites.  

 

Thanks to its potential to provide insight into the disease mechanisms, metabolomics has been 

extensively used  to explore and investigate CKD pathology. Indeed, the first publications 

diagnosing CKD using a metabolomic approach have been published in the last decade 213,214, 

but since then a lot of other studies have been published.  Based on the complexity of this 

pathology, metabolomics has been used to investigate the most disparate aspect of CKD by 

going from identification of diagnostic biomarkers to the discrimination of panel of features 

linked to pathology’ stages until the generation of model estimating eGFR. Concerning 

diagnosis of kidney disease  several publication reported the identification of specific 

metabolites and pathways  as responsive for CKD progression  such as uremic toxins209, plasma 

phospholipids209,, or several amino acids (valine, isoleucine, and tryptophan)210 . Another 

important focus of interest for the metabolomics community in the field of CKD is represented 

by the improvement of GFR estimation. In fact, this side of the pathology is still nowadays 

challenging in clinical practice and several studies reported interesting results in this field. D-

threitol, myo-inositol, 4-deoxyerithronic acid and galacturonic acid were reported to be strictly 

correlated to GFR evolution in serum samples of CKD patients211. In kidney transplant  

recipients, serum valine and myo-inositol were found to improve GFR estimation though NMR 

technique 151. 

 

As best treatment for patients with ESRD, kidney transplantation represents another axis of 

interest for metabolomics community. Indeed, in KTx context patients’ evolution through days, 

https://www.sciencedirect.com/topics/medicine-and-dentistry/galacturonic-acid
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weeks, months, and years’ post-graft is dynamically changing and the application of 

metabolomics could represent a real help in clinical practice. Indeed, since the pre-

transplantation event metabolomics can be employed in kidney monitoring in way to evaluate 

graft quality and eventually predict the graft outcome by adding interesting and useful data to 

clinical measurements already available. During the post-graft period, monitoring patient 

progress is essential for clinicians to enhance patient outcomes, address post-transplant 

dysfunction, or manage rejection, ultimately improving the patient's overall status. 

 

By taking advantage of the dynamic aspect of metabolomics, several studies have been 

conducted in the context of graft quality prediction and post kidney transplantation events (as 

shown in Table 10). 

 

All the studies have been conducted by using different analytical platforms such as NMR and 

LC-MS and by using urine, plasma, or serum as starting materials. A particular case is reported 

for studies concerning organ preservation and kidney quality prediction in which the 

biospecimen of choice is represented by perfusate. The cohorts studied in the context of pre- 

and post-transplantation events have highlighted a variety of metabolites linked to the 

degradation of kidney function and/or kidney dysfunctions by reporting hippuric acid, TMAO, 

and other uremic toxin as strongly related to disease status. Indeed a study on KTR identified a 

dynamic model able to estimate the recovery process of kidney-transplanted patients by using 

References Year Species nº sample Sample type 
Analytical 
platform 

Kidney transplantation         
Serkova et al. 218 2005 Rat 6 Kidney tissue, blood NMR 
Stenlund et al. 219 2009 Human 19 Urine NMR 
Suhre et al. 220 2016 Human 241 Urine, kidney tissue GC-MS, LC-MS 
Blydr-Hansen et al. 221 2017 Human 396 Urine LC-MS 
Gagnebin et al. 222 2020 Human 66 Plasma LC-MS 
Iwamoto et al. 223 2022 human 50 Plasma, urine saliva CE-MS 
Colas et al. 224 2022 Human 56 Urine LC-MS 
      Kidney preservation         
Nath et al. 225 2014 Human, pig 22 Perfusate NMR 
Guy et al. 226 2015 Human 26 Perfusate NMR 
Wang et al.    2017 Human 36 Perfusate NMR 
Faucher et al. 228  2022 Human 38 Perfusate LC-MS 
Liu et al. 229 2023 Human 232 Perfusate LC-MS 

Table 10 Studies concerning kidney transplantation and kidney preservation with metabolomics 
approach reported in literature. 
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NMR on urine sample219; characterization of plasma, urine and saliva of the same kind of cohort 

allowed the identification of 3-indoxyl sulfate as predictor of  acute rejection223.  Suhre et al. 
220  in a study combining  mRNA signature  with metabolites identified  though GC-MS 3-

sialyllactose, xanthosine and quinolinate as marker of kidney allograft reject. Other studies have 

explored the pre-transplantation event though the analysis of perfusate samples for predict DGF 

outcome. Interesting is the study of Wang et al. 227 which reported 37 metabolites (i.e. alpha-

glucose taurine, citrate, betaine) being related to kidney dysfunction condition; alpha-

ketoglutarate, a propane derivate and two phosphatidylcholines were found be related  to higher 

risk of graft failure and have an significant interaction with donation after cardiac death 229 . 

 

 Despite the diversity of works reported in literature, a concrete lack of studies with direct 

applications in clinical practice is missing even if tangible efforts have been done. Indeed, 

multiple research studies have utilized the metabolomics approach to investigate the kidney 

transplantation process, in its early and later phases. These analyses share the common goal of 

advancing our understanding of the mechanistic processes associated with kidney dysfunction  

and seeking ways to mitigate adverse outcomes following KTx. However, a crucial element is 

still missing in the effort to translate these studies from laboratory to clinics.  Indeed, there is a 

need to develop new diagnostic tools that could help clinicians to routinely manage kidney 

transplant recipients. More particularly, the detection of biomarkers predicting the risk of post-

transplantation renal function decline could be a useful predictive diagnosis tool in KTx 

practice.  
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2 Aims of the thesis 
 
Kidney transplantation (KTx) is considered as the optimal treatment for individuals with end-

stage renal disease. Because of the increasing gap between demand and supply for KTx,   

deceased donors, including those from brain and circulatory death, have been incorporated 

alongside living donors. Over recent decades, donors have been categorized based on graft 

survival rates into standard and extended criteria donors. However, kidneys from extended 

criteria donors, such as those obtained after circulatory death, are subjected to prolonged 

ischemic events, resulting in heightened risks of both early and long-term graft complications. 
These data underscore the critical significance of two key aspects related to transplantation: (1) 

the accurate assessment of graft quality prior to transplantation, which can help reduce rejection 

rates through better patient management or more refined donor selection criteria; (2) a more 

precise and prognostic monitoring and follow-up of transplant patients, enabling proactive and 

personalized management. Despite the progress made over the past few decades in enhancing 

graft quality assessment through risk factor indices and improving patient follow-up with more 

accurate GFR equations, these guidelines do not provide a complete answer to the problem of 

graft rejection and restoration of renal function in clinical practice. In this context, there is a 

great need for new tools and innovative approaches to meet challenges and metabolomics has 

emerged as an interesting solution. Indeed, as discussed in the introduction, metabolomics 

offers an innovative, holistic approach that enables a focus on the dynamic aspects of biological 

systems. Hence, metabolomics seems to be particularly well suited in the context of 

transplantation process to better evaluate the graft quality in pre-KTx as well as to predict 

kidney function in 1-year post-graft period.  

Thus, in this thesis, we aim to investigate the two mains transplantation process challenges: 

 

1. Post-transplantation axis (Metarein project). On this part we focused on the prediction 

of kidney function in post-transplantation period. The peculiarity of this axis is 

represented by the longitudinal collection of urine samples at 3- and 12-month intervals 

following transplantation, with patient stratification based on mGFR delta values. The 

main goal of this section is to identify a panel of biomarkers that can  indicate at M3 a 

decline of kidney function at M12. The predictive nature of this experimental design 

aimed to discover a list of potential metabolites associated with kidney degeneration 

over time. Through this study, we expected to develop a tool that can in advance predict 
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kidney function decline and enhance patient monitoring and management during the 

post-transplantation period. 
 

2. Pre-transplantation axis (Metaperfusate project). In this part, we focused on the 

biological events impacting the graft before the transplantation and during the ischemic 

time.  This part of the work aimed to identify a metabolomic signature in perfusate 

sample that could be correlated to donor type and to the kidney function recovery in 

early post-KTx. Specifically, the set of putative biomarkers identified may be linked to 

the different ischemic events characterizing diverse donor types composing our cohort. 

The primary objective along this pre-transplantation axis is to offer valuable insights to 

clinicians in the pre-graft decision-making process by developing a model evaluating 

the impact of donor type on graft metabolomes  and warning about probably at-risk 

patients. 
 

Analyzing these two complementary cohorts enabled us to develop distinct experimental 

designs for each project, emphasizing the unique strengths of each. Firstly, Metarein cohort 

composed by a longitudinal cohort of KTR patients which will allow the delineation of a 

predictive model for kidney function decline. Secondly, Metaperfusate cohort, with its primary 

focus on the pre-transplantation process and its innovative use of perfusate samples, grants 

direct access to the donor's metabolome, facilitating correlations with kidney dysfunction in the 

recipient (Figure 39).  

Figure 39 Timeline of KTx with highlighted key point events; the main goals of the project are reported in 
relation to each phase of KTx. 
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In this work both NMR- and MS-based metabolomics approaches were employed on the first 

axis to integrate information coming from the two platforms, thereby enhancing the quantity of 

biological information related to kidney function decline. On the second axis, an NMR-based 

metabolomics approach was applied to investigate the metabolome related to early post-KTx 

dysfunction. Merging the information coming from these axes will allow us to shed light on the 

clinical events characterizing kidney transplantation, with the objectives of: (1) identifying 

potential biomarkers associated with pre- and post-KTx; (2) explore impact of donor’s types on 

the biochemical pathways; and (3) developing diagnostic instrument for patient treatment and 

follow-up.  From initial exploratory analyses to the development of predictive models, the 

primary goal of this thesis is to create tools that may assist clinicians in navigating the intricate 

landscape of kidney transplantation events within their clinical practice.
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3 Urine in 1H-NMR-based metabolomics 

3.1 Background - Urine biofluid 

3.1.1 Interest of urine in metabolomics 
The significant role of urine in metabolomics, especially as a diagnostic biofluid, is underscored 

by historical references. Since Hippocrates and by passing though Byzantine era and Middle 

Age, analysis of urine samples have always been in the first line for medical diagnosis (Figure 

40) 230,10.  Although this practice declined over time, urine has continued to be a cornerstone in 

modern medical diagnostics, playing a crucial role in identifying kidney, and bladder 

pathologies34.  

 

Nowadays, urine has gained extensive popularity in metabolomics research due to its non-

invasive sampling method, capacity for large-volume collection, and lack of interference from 

proteins and lipids (in non-pathological condition). As a filtrate of blood plasma, urine contains 

a wide range of metabolites, offering valuable insights into different metabolic pathways and 

their dysfunctions making it especially well-suited for the personalized medicine approach. 

Nevertheless, the intricate chemical composition of this biofluid presents challenges in 

achieving a comprehensive understanding of its complexities. Indeed, in metabolomics several 

analytical platforms (such as NMR, LC-MS, GC-MS etc.)  have been used to enhance the 

metabolome coverage in urine samples. Despite all the efforts, today only a small part of the 

metabolites present in urine can be identified by using a single platform and in an untargeted 

mode. Within this complex biofluid, alongside endogenous metabolites reflecting the biological 

status of an individual, there is a notable abundance of exogenous metabolites resulting from 

diet, drug intake, and other lifestyle factors. The complexity and wide range of chemical 

Figure 40 Urine wheel chart describing the possible 
color, taste and smell and how to use it for diagnosis 
(Nicholson, Jeremy K, and John C Lindon. “Systems 
biology: Metabonomics.” DOI: 10.1038/4551054a ) 
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molecules and resulting urine spectrum is only one of the problems linked to this biofluid. 

Biological variability, pH variation, and normalization between urine samples represent other 

fundamental challenges in metabolomics studies which aim to detect urinary biomarkers linked 

to pathological conditions. In the next section the development and set up of urine protocol for 

untargeted metabolomics will be elucidated by focusing on analytical and practical aspects for 

urine preparation. 

 

3.1.2 Urine spectral complexity 
Urine spectra coming from 1H-NMR technique are characterized by high signal complexity and 

very information-rich aspect. As we can see in Figure 41, which represents a spectrum from a 

healthy individual acquired through a 600MHz spectrometer, a great quantity of signals can be 

distinguish. Indeed, a known study on urine metabolome shown the possibility to identify and 

quantify 209 unique compounds within a cohort of 22 healthy volunteers through 1H-NMR 

technique34 by placing this platform as the most suitable for urine analysis in terms of 

quantification and comprehensiveness.  

 

Figure 41 The metabolites are numbered accordingly: 1: valine, 2: 3-hydroxyisobutyrate, 3: 4-deoxyerythronic acid (4-DEA), 4: 3-
aminoisobutyrate, 5: 4-deoxythreonic acid (4-DTA), 6: 3-hydroxyisovalerate, 7: threonine/lactate, 8: 2/alfa-hydroxyisobutyrate, 9: 

alanine, 10: acetate, 11: phenylacetylglutamine, 12: p-cresol sulfate, 13: citrate, 14: dimethylamine, 15: creatine, 16: creatinine, 17: 
proline betaine, 18: carnitine, 19: trimethylamine-N-oxide (TMAO), 20: taurine, 21: glycine, 22: hippurate, 23: trigonelline, 24: 
ascorbate, 25: xylose, 26: allantoin, 27: urea*, 28: 4-hydroxyphenylacetate, 29: tyrosine, 30: 3-indoxyl sulfate, 31: histidine, 32: 

formate, 33: trigonelline, *urea peak was not quantified. (Giskeødegård, Guro F et al. “Diurnal rhythms in the human urine 
metabolome during sleep and total sleep deprivation.” DOI: 10.1038/srep14843 ) 
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Despite the high number of metabolites that can be identified through NMR platform, two main 

problems characterize urine biospecimen: (1) the first strictly related to NMR platform is 

variation in pH between samples which represent a well-known phenomenon in urine 

biofluids; (2) the second is represented by the normalization step which is a general challenge 

in urine samples independent from analytical the platform (NMR, LC-MS etc.). Both these 

aspects are subjects of discussion for researchers since they highly impact the results of an 

analysis and their biological interpretation. For these reasons, these elements will be explored 

and elucidated in detail in the next sections by allowing the set-up of a defined urine protocol.  
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3.2 Urine protocol set-up: pH variation and chemical shift 

3.2.1 Introduction 
Inter-sample pH variation is a common phenomenon in human urine samples highly dependent 

from diet, lifestyle, circadian rhythm and/or drug consumptions. In NMR spectra, when pH 

variations occur, some metabolites with acid and/or basic functions are subject to variation in 

chemical shifts of some of their signals which determine their “shift” through the x-axis of the 

NMR spectrum. In this case, a same metabolite will have different chemical shifts depending 

on the pH value of  the sample. In metabolomics studies, when cohorts of urine human samples 

(especially in non-healthy status) are analyzed, variability between pH value is normal and 

needs to be taken in account. Indeed, as seen in previous chapter, one way to preprocess NMR 

data by reducing the complexity of spectra is based on bucketing step. When using this data-

reduction technique, the x-axis of spectrum is divided in region of equal width, named bucket, 

each of them representing a specific feature (or metabolites) in the final data matrix. Variation 

in pH among samples can lead to differences in the chemical shifts of some metabolites; 

therefore, the spectral bucket no longer accurately represents specific feature but instead 

captures a different metabolite for each spectrum on the basis of pH value. To avoid these 

unexpected shifts, several solutions have been proposed. In this chapter we will study 2 of these 

approaches and compare it to the gold standard sample preparation. The three different sample 

preparation conditions that were tested are : 

1. Use of phosphate buffer (pH= 7.4) as widely reported in literature; 
2. Addition of KF solution to urine aliquot; 
3. Freeze-drying urine aliquot prior analysis. 

 

Among the three protocols evaluated, the current standard in literature for NMR metabolomics 

involves adding phosphate buffer to urine aliquots, aiming to stabilize and mimic the 

physiological pH value (pH=7.4) 78,231. Another tested protocol, already established and utilized 

in our lab, focuses on freeze-drying the urine aliquot. The interest of this protocol is represented 

by the fact that the samples is totally “dehydrated” with the aim to suppress pH effect on 

chemical shift. Once freeze dreeing process is complete, samples are solubilized in a phosphate 

buffer at known pH= 7.4 in deuterated water. The third protocol involves the use of KF in urine 

aliquots. This protocol, detailed in literature232, 233, primarily aims to remove by chelation 

divalent cations like Ca2+ and Mg2+ , known to form complexes with some metabolites 

(particularly with polyvalent carboxylates functions such as citrate, Hippurate...) and thus to 
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influence their chemical shifts despite pH buffering according to these divalent ion 

concentrations. Indeed, addition of KF to urine samples has demonstrated the ability to bind 

Mg2+ and Ca2+  to form water insoluble MgF2  and CaF2, thereby preventing these ions from 

binding to certain metabolites and causing variations in their chemical shift. Evaluation of the 

efficacy and robustness of these 3 different protocols was done in way delineate the best method 

able to overcome problematics related to pH variations inter-samples. 

 

3.2.2 Materials and methods 
 
Urine collection and study cohort 

Second morning urine  samples from 4 individuals (2 males and 2 females) were collected at 

three time points (day1, day 2, day 3). For each timepoint per individual triplicate samples were 

aliquoted (Figure 42). Theses aliquots were supplemented with 2% Na azide solution in way 

to overcome bacterial contamination and stored at -80°C until analysis. 

 
Sample preparation 

Prior sample preparation pH value was measured for each sample; three different sample 

preparations were done:  

1. 500µl of urine samples was supplemented with 300µl of phosphate buffer (pH= 7.4) 

in D2O. 
2. 550µl of urine samples was supplemented with 40µl of KF solution at 5M, vortexed 

and centrifugated (14489g, 10 min, 4°C). 500µl of supernatant were taken and 

Figure 42 Workflow used for Urine protocol set-up: pH variation and chemical shift. 



Chapter 3 – Urine in NMR-based metabolomics 
 

 
 

110 

supplemented with 300µl of phosphate buffer (pH= 7.4) in D2O, then again vortexed 

and centrifugated (14489g , 10 min, 4°C) (detailed protocol in Jiang e al.232). 
3. 500µl of urine samples was freeze-dried with a 24h cycle and then solubilized in 

800µl of phosphate buffer (pH= 7.4) in D2O. 
 

pH values were measured again for each sample and for each used protocol (see measured 

pH values in supplementary information Table S1). Prior  1H-NMR analysis the samples 

were supplemented with 100µl of maleic acid 5mM used as internal standard and 10µl of 

TMSP (10mg/ml) as chemical shift reference to calibrate the scale of δ to 0 ppm . 

 

NMR-metabolomics 

All samples were measured at 298K on a 700MHz Bruker Avance HD spectrometer operating 

at 700.17MHz for proton detection. The sequence used is a 1D NOESY sequence with 

presaturation for urine samples. The Noesypresat experiment used a RD-90°-T1-90°-Tm- 90°-

acquire sequence with a relaxation delay of 4 s, a mixing time (Tm) of 10 ms and a fixed T1 

delay of 4 μs. Water suppression pulse was placed during the relaxation delay (RD). The 

number of transients is 64 (64K data points) and a number of 4 dummy scans is chosen. 

Acquisition time is fixed to 3.2769001 s. The data were processed with Bruker Topspin 4.0.8 

for baseline and phase correction and the entire δ scale was set to 0 ppm using the internal 

standard TMSP.  

 

NMR data preprocessing 

Data preprocessing on spectra was done by using MestReNova lab (v14.1.1). Normalization on 

totally by sum was performed on the spectra; bucketing process was done by using spectral 

width equal to 0.05. No algorithms for alignment were applied in way to better evaluate the 

effect of our three protocols on chemical shift variation.  

 

Multivariate analysis 

SIMCA® software was used to generate PCA score plot in way to allows data-reduction and 

overview. In addition to PCA, the concept of Metabolic informative content (MIC) and inertia 

were used by allowing to calculate the intergroup and intragroup variability. Inertia calculations 

were performed by using a R code. The concept of the MIC is closely tied to the signal-to-noise 

ratio within a spectrum. Essentially, the MIC seeks to quantify the extent to which we can 
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differentiate the "signal" attributed to a specific group or condition of interest in our analysis 

from the "noise," which includes various factors like sampling variations, bacterial degradation, 

and freezing/thawing cycles91,234. In its computation, MIC employs the calculation of two 

metrics: inertia between groups, which assesses the variability among different sample classes, 

and inertia, within groups  which measures the variability within samples belonging to the same 

class. 

 

3.2.3 Results and discussion  
No significant differences between protocols were shown when considering pH values after 

sample preparation (see supplementary information  TableS1).  To evaluate the impact of each 

tested protocol on chemical shift variation, after spectra acquirement and bucketing process 

PCA score plot was generated. Thanks to this non supervised approach, it was possible to 

examine samples and groups dispersions over the plot. In each plot of Figure 43 it is possible 

to highlight the 4 individuals encoded from 1 to 4. From these plots we can see how each 

replicate and each individual are grouped independently from their time-point. In addition, 

when comparing the three protocols, already visually is possible to spot the intra-group 

variations. Indeed, in freeze-dried protocol we can see a higher intra-group dispersion than in 

deuterated buffer and KF protocols.  

Figure 43 PCA score plots for each protocol for urine preparation; (a) PCA on deuterated buffer protocol 
(R2=0.921;); (b) PCA on freeze-dried protocol (R2=0.958); (c) PCA on KF protocol (R2=0.957) 
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 To better evaluate the effect of the three different protocols on our samples another 

supplementary metrics was used and is represented by: Metabolomic Informative Content 

(MIC)234. The MIC is an indicator which aims to quantify the percentage of total variation of 

the data (total inertia) due to the variability between groups and within groups. In the case of 

this study, our interest will be focused on the inertia linked to variability within groups. Indeed, 

the lower the value of inertia within groups, the more effectively the used protocol manages to 

overcome the problem of chemical shift variations due to pH modifications. As highlighted in 

the summary Table 11, the lowest value of inertia within groups is reached when using the KF 

protocol which shows a value equal to 4.532 compared to the other two protocols showing a 

much higher variability value. In opposite to sample preparation though KF which showed the 

lowest inertia within groups, freeze-dried protocol exhibited the highest variability. The 

primary reason to this result may be attributed to the phenomenon of hydrogen-deuterium 

exchange in creatinine when urinary sample is reconstituted in D2O solution, leading to a 

decrease in its peak intensity235. In our study, under freeze-dried conditions, this phenomenon 

could alter the intensity of creatinine peaks among samples, resulting by consequences in higher 

variability within group.  

 

3.2.4 Conclusions 
In conclusion, the study allowed us to set-up a protocol for urine preparation. By evidence, the 

PCA score plot and the MIC values, highlighted the importance of a correct sample preparation 

with KF when facing pH variation inter samples. In particular, this protocol is especially well-

suited when using bucketing method for data reduction in which features alignment is of 

fundamental importance for a correct biological interpretation. This protocol will be the 

protocol-of-choice for the urine sample preparation of Metarein project that will be shown in 

chapter 5.  

Table 11 Metabolic Inertia Content (MIC) calculated for the urine protocols tested; variability is expressed 
in terms of inertia between groups and inertia within groups. Inertia between groups describes the 

variability between samples appertaining to different groups (in these case different individual); inertia 
within groups represents the variabiliy of samples appertaining at the same subject(variation within 

replicates). 
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3.3 Urine protocol set-up: normalization 

3.3.1 Introduction 
A common problematic related to urine analysis as biofluid is represented by the natural 

variability in urine’s concentration.  Indeed, depending on hydration and physiological status 

the concentration of metabolites in urine samples can widely vary between individuals and even 

between samples coming from the same subject. Normalization step, in this context, represents 

a fundamental solution in way to minimize variations resulting from individual urine outputs.  

In physiological condition, this problematic can be overcome by normalizing urine content on 

creatinine value representing an endogenous metabolites whose renal excretion in urine is 

expected to be constant 231, 232.  However, the concentration of creatinine can vary depending 

on sex, age, diet and activity in normal condition; in addition to this, in pathological condition 

and specifically in kidney impairment status, creatinine levels are not anymore constant in urine 

and its excretion could be altered 233, 234. In metabolomics-based studies where most often 

pathological conditions are the main focus, several strategies have been developed and can be 

classified in three main categories: (1) pre-acquisition by adjusting the volume to normalize 

some specific parameters (i.e. osmolarity); (2) post-acquisition by using a data treatment step; 

(3) pre- and post- acquisition by using a combination of both previously cited methods.  

The irreversible nature of pre-acquisition normalization poses a significant disadvantage, as 

once normalization is applied, the original raw data cannot be recovered.  Given this major 

disadvantage and the challenging nature of the dataset, our study will focus on post-acquisition 

normalization by elucidating the different approaches that can be used.  

In addition to creatinine normalization, whose concentration can vary in kidney impairment 

status, another technique reported in literature as gold-standard method used in clinics, is 

represented by osmolarity. Osmolarity, defined as the concentration of solute particles in a 

solution and expressed as osmoles of solute particles per liter of solvent, is widely used in 

clinical studies to assess the concentration of solutes in biofluids such as blood and urine.  This 

normalization method allows a comprehensive evaluation of sample concentration with 

reported better results for normalization when compared to creatinine method 235. Another 

widely used method in metabolomics studies of urine is represented by Probabilistic Quotient 

Normalization (PQN) algorithm. This technique is based on the calculation of a most probable 

dilution factor by looking at the distribution of the quotients of the amplitudes of a test spectrum 

by those of a reference spectrum236. The benefic effects of this normalization are shown in 

several reported studies in literature 237,238 ,239. Despite the increasing number of metabolomics 
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studies on urine samples, normalization strategies are still source of debate within 

metabolomics community due to the lack of a unique method well-fitting to each study. Indeed, 

today scientists agree on the fact that the choice of the most suitable method may depend on the 

study objectives, characteristics of the cohort, and the metabolites of interest. Due to these 

considerations, various normalization methods were tested in order to determine the most 

suitable method for representing our datasets. 

 

3.3.2 Materials and methods 

Urine collection and study cohort 
Second-morning urine from 4 individuals (2 males and 2 females) was collected. Additionally, 

to the starting aliquot, for each sample per individual a dilution 1:1 and 1:2 in triplicate was 

done. A pool sample from each starting and diluted aliquot was done (Figure 44). The aliquots 

were supplemented with 2% Na azide solution in way to overcome bacterial contamination and 

stored at -80°C until analysis.  

 

Sample preparation 

For sample preparation 550µl of urine was supplemented with KF solution and prepared by 

following the protocol set-up in section 3.2.  For diluted samples, to aliquots of 500µl urine a 

supplementation with 550µl (x1 diluted sample) and 1100µl (x2 diluted sample) of water was 

done; then for each diluted sample a withdraw of 550µl of samples was done prior preparation 

Figure 44 Workflow for "urine protocol set-up: normalization" 
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with KF protocol. Once the samples were centrifugated and pH measured, 100µl of maleic acid 

5mM used as internal standard and 10µl of TMSP (10mg/ml) as chemical shift reference were 

added to the aliquot. Creatinine and osmolarity measurement were conducted on sample prior 

NMR analysis. Creatinine measurement was done by using COBAS 6000 C501 device (Roche-

Hitachi1). Osmolarity measurements were additionally done by using osmometer (Type 13, 

Löser Messtechnik; Berlin).  

 

NMR-metabolomics 

All samples were measured at 298K on a 700MHz Bruker Avance HD spectrometer operating 

at 700.17MHz for proton detection. The sequence used is a 1D NOESY sequence with 

presaturation for urine samples. The Noesypresat experiment used a RD-90°-T1-90°-Tm- 90°-

acquire sequence with a relaxation delay of 4 s, a mixing time (Tm) of 10 ms and a fixed T1 

delay of 4 μs. Water suppression pulse was placed during the relaxation delay (RD). The 

number of transients is 64 (64K data points) and a number of 4 dummy scans is chosen. 

Acquisition time is fixed to 3.2769001 s. The data were processed with Bruker Topspin 4.0.8 

for baseline and phase correction and the entire δ scale was set to 0 ppm using the internal 

standard TMSP.  

 

NMR data preprocessing 

Data preprocessing on spectra was done by using MestReNova lab (v14.1.1). After phase and 

baseline correction, an alignment on global spectra was done. Peaks of maleic acid and water 

were deleted from the spectra and prior to bucketing step. Different normalization types were 

tested on resulting bucket table: 

1. Normalization on Creatinine: creatinine value was measured for each sample prior 

NMR analysis. Once the raw data were processed and bucketing was done, the data 

matrix was normalized by using value of creatinine measured specific to each sample. 

2. Normalization on TMSP: Peak of TMSP placed at 0 ppm on the spectra was used as 

internal standard for normalization. TMSP value was set to 1 for all the spectra and 

following a bucketing of 0.02 spectral width was performed. 

3. Normalization on Osmolarity: the bucket table was generated by following the 

description of previously cited normalization on TMSP. Once data matrix was obtained 

each sample was normalized by its value of osmolality. 
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4. Normalization on PQN: spectra were normalized by using the algorithm probabilistic 

quotient normalization widely used in NMR-metabolomics. 

 

 

 

Multivariate analysis 

SIMCA® software was used to generate PCA score plot in way to allows data-reduction and 

overview. In addition to PCA, the concept of inertia was used by allowing to calculate the 

intergroup and intragroup variability. Inertia calculations were performed by using a R code. 

 

3.3.3 Results and discussion 
The main goal of our study was to identify the best normalization approach allowing to 

overcome problems due to the dilution effect in urine. By taking advantage of the “controlled” 

dilution effect generated to each urine subject we applied PCA model and inertia calculation to 

evaluate the reduction of dilution effect obtained through different normalization approach. 

Taking advantage of unsupervised model generated by PCA it was possible to spot the 

distribution of samples over the plot. As we can see, each point represents a sample classified 

on the basis of individuals (n=5)  and on the basis of the dilution effect applied (native sample; 

diluted x1; diluted x2) .  

By looking at PCA score plots of the different normalization methods we can spot that in TMSP 

score plot, it is more difficult to clearly cluster samples based on subject, since all the 

individuals are more dispersed over the plot compared to other methods. Indeed,  normalize on 

the internal standard as in this case,  allows to reduce experimental differences between samples 

but not to overcome variations resulting from individual urine outputs.  Concerning the other 

normalization techniques, is difficult to visually spot which method allows the better surmount 

of dilution effects on our dataset (Figure 45).  
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For this reason, in addition to PCA models, inertia between and within groups were measured. 

By comparing the value of inertia within groups, was possible to see the effect that each 

normalization methods have on the samples coming from the same individual with different 

dilution factor. Specifically, lower is the value of inertia withing groups, less is the separation 

between diluted samples from a same subject which means that the corresponding 

normalization technique works well. 

 In the context of this work, the normalization techniques can be classified as following based 

on inertia within groups and consequently on their effectiveness in reducing dilution effects 

(Table 12): 

Osmolarity > PQN > Creatinine>  TMSP.  

Table 12 Metabolic Inertia Content (MIC) value for each normalization method divided in inertia 
between and within groups. 

Figure 45 PCA score plots on the cohort using different normalization techniques (letters M,  A, D, L, P refers to the 4 subjects 
and pool samples; the following number refers respectively  to 1= native sample; 2= diluted x1; 3=  diluted x2); (a) 

normalization on creatinine (R2=0.893; Q2=0.675);(b) normalization on TMSP (R2=0.82; Q2=0.672);(c) normalization on 
osmolarity (R2=0.905; Q2=0.828);(d) normalization on PQN (R2=0.716; Q2=0.431). 
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3.3.4 Conclusions 
By taking advantage of this study, we tested the efficacy of several normalization methods 

reported in literature in a sample cohort “mimicking” the dilution effects. By being aware of 

the limits of this study represented by the linear dilution in samples that does not represent a 

real case study we were still able to look at the effect of normalization on a dataset.  However, 

through this experimental design we were able to spot how normalization step impact the 

dataset and how important is to correctly set this procedure.  Indeed, in a metabolomics study, 

reducing the variability between samples due to dilution effects is important in way to increase 

the metabolomics effect due to pathological condition of interest. In conclusion, this study 

allowed us to demonstrate that the normalization technique the most adapted and the most 

efficient is represented by normalization on Osmolarity which will be the technique used in our 

“real case study” (section 3.4).  
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3.4 Application of urine protocol: a real case study 

3.4.1 Introduction 
Urine sample preparation is an important aspect in metabolomics workflow due to its source of 

variability and its great interest for the number of detected metabolites. As discussed in the 

previous sections concerning urine protocol set-up, two fundamental steps are involved in urine 

preparation: (1) chemical shift variation and (2) normalization. These two steps have been 

widely explored and at the end of each section a precise protocol have been proposed as being 

the better fitting. In this section the identified methods respectively for urine preparation and 

data pre-treatment have been applied to a “real case study”. This cohort (Metarein cohort for 

details see chapter 4) composed of urine coming from transplanted patients and suffering from 

CKD has been used to test the validity and the applicability of the previously established urine 

protocols.  

In this particular section, apart from the more effective normalization protocol discussed earlier 

(normalization on Osmolarity), two additional methods were evaluated: normalization based on 

creatinine levels and normalization based on the dilution factor 245  . Concerning creatinine, 

represents nowadays, the normalization method of choice used in clinical practice; the dilution 

factor is a novel approach that seems to better fit the reality of urinary dilution in patients with 

kidney function impairments.  The cohort utilized in this real study presented a significant 

challenge associated with urine dilution, which proved difficult to address using the methods 

tested previously. Indeed, while the normalization techniques examined in Section 3.3 were 

well-suited and effective in addressing a "light" and linear dilution effect observed among 

healthy individuals, they were not as effective when applied to a cohort of individuals with 

CKD.  

 

3.4.2 Materials and methods 
Urine collection and study cohort 

Second-morning urine from 56 individuals were collected 3- and 12- month post-

transplantation. The aliquots were supplemented with 2% Na azide solution in way to overcome 

bacterial contamination and stored at -80°C until analysis.  

 

Sample preparation 

For sample preparation 550µl of urine was supplemented with KF solution and prepared by 

following the protocol set-up in section 3.2.  Once the sample was centrifugated and pH 
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measured, 100µl of maleic acid 5mM used as internal standard and 10µl of TMSP (10mg/ml) 

as chemical shift reference were added to the aliquot.  

NMR-metabolomics 

All samples were measured at 298K on a 700MHz Bruker Avance HD spectrometer operating 

at 700.17MHz for proton detection. The sequence used is a 1D NOESY sequence with 

presaturation for urine samples. The Noesypresat experiment used a RD-90°-T1-90°-Tm- 90°-

acquire sequence with a relaxation delay of 4 s, a mixing time (Tm) of 10 ms and a fixed T1 

delay of 4 μs. Water suppression pulse was placed during the relaxation delay (RD). The 

number of transients is 64 (64K data points) and a number of 4 dummy scans is chosen. 

Acquisition time is fixed to 3.2769001 s. The data were processed with Bruker Topspin 4.0.8 

for baseline and phase correction and the entire δ scale was set to 0 ppm using the internal 

standard TMSP.  

 

NMR data preprocessing 

Data preprocessing on spectra was done by using MestReNova lab (v14.1.1). After phase and 

baseline correction, an alignment on global spectra was done. Peaks of maleic acid and water 

were deleted from the spectra. Bucketing process with a spectral width of 0.02ppm was 

performed.  

 

Data normalization 

Normalization on osmolarity was done in way reduce dilution effects as showed in section 3.3. 

In addition to this method, normalization on Creatinine Equilibrium, dilution factor245  and PQN 

were performed. Creatinine equilibrium has been measured in a urinary sample collected 1 hour 

after the injection of 51CrEDTA ( which is the time needed for the marker to reach an 

equilibrium state). The dilution factor was calculated for each sample using 1H-NMR spectra. 

This value specifically represents the ratio between the integral of all signals originating from 

the metabolites in the samples and the integral of the internal standard (TMSP) added to the 

urine aliquot during sample preparation.  
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Multivariate analysis 

SIMCA® software was used to generate PCA score plot on pareto-scaled data in way to allows 

data-reduction and overview. PLS-DA were used as supervised model in way to look at the 

discrimination between the two groups of interest. In addition to these models, PLS regression 

was generated to correlate the whole metabolome with continuous clinical value.  

 

3.4.3 Results and discussion 
The analysis of this real case study cohort was conducted with the objective of addressing issues 

in data preprocessing that could impact statistical analysis and data interpretation. Indeed, since 

data preprocessing step represents a “manipulation” or raw data into a structured table from 

which all subsequent results are derived, it is of paramount importance to handle data accurately 

and effectively during this phase. 

During the normalization process, it is crucial to ensure that the chosen normalization factor 

does not introduce internal bias or non-biological distinctions within our model. To address this 

concern, an initial Mann-Whitney U test was conducted to assess the significance of various 

clinical and experimental variables between our two groups of interest. Specifically, the two 

groups of interest are represented by “decrease” and “stable” whose stratification was based on 

kidney function evolution between 2 visits (for details on stratification criteria see Chapter 4); 

As illustrated in Figure 46, no significant differences were observed in osmolarity, creatinine 

Eq, and dilution factor values between the two clusters. However, in contrast to these findings, 

the measurement of Creatinine peak in NMR spectra was significant to discriminate between 

group 1 and group 2 and for this reason was not considered as normalization factor. As a result, 

it was not included as a normalization factor. 

  

Figure 46 Mann Whitney U test for the several experimental and clinical measure as we can see none of these tests were 
significant expect for Creatinine value measured through NMR (p-value <0.05) 
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Once the presence of confounding factors was excluded, we proceeded to evaluate the 

suitability of these experimental and clinical values to normalize our dataset. Specifically, 

dilution factor, osmolarity and creatinine Eq in addition to PQN algorithm were employed as 

normalization factor.  

As first, PLS model were generated to evaluate the impact of dataset normalization. PLS 

regression models work by evaluating the relationship between independent spectral values 

(metabolites) and non-spectral dependent values (such as BMI and age). 

 In the context of this cohort (urinary samples collected at 3 months; n=56), where sample 

stratification was carried out based a clinical value measuring kidney function (mGFR), a PLS 

regression model was generated to examine the relationship between this clinical measure and 

the complete metabolomic content. Particularly, when we normalized the dataset using various 

experimental or clinical factors, we could observe the impact of normalization strategies on 

linear regression Figure 47a. As indicated in Figure 47b, the highest R2 values were achieved 

when employing PQN and the dilution factor as normalization methods (see FigureS1 for PLS 

regression plots of CreatEq, Dilution factor and Osmolarity) . Following this approach, the most 

representative normalization techniques for our dataset were, in order of significance, PQN, 

dilution factor, osmolarity, and lastly, creatinine Equilibrium.  

 

By examining the outcomes of this analysis concerning normalization strategies and 

juxtaposing them with those attained in section 3.3, we observe a decrease in the effectiveness 

of osmolarity as a normalization factor. Indeed, our preliminary investigation in section 3.3, 

involved an ideal sample cohort wherein urinary biospecimens underwent osmolarity 

Figure 47 (a) Example of PLS regression model; (b) table summarizing 
the value of R2 for each normalization method tested. 
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measurement and NMR analysis soon after sample collection. In contrast to this, the sample 

cohort used in this specific real case study had undergone multiple freeze-thaw cycles before 

osmolarity measurement, potentially altering the osmolarity values between sample collection 

and analysis. 

To support this hypothesis and in way to find out the best normalization strategy, a parallel 

analysis was conducted employing PLS-DA model (Figure 48a). In this instance, samples were 

stratified into two classes representing contrasting pathological conditions, and the Q2 value 

was computed for each normalization technique to assess the model discrimination’s power.  

Figure48b presents a concise summary of the Q2 values obtained for each normalization 

technique, alongside the associated results of permutation tests. 

 

 

These findings underscore the superiority of the dilution factor and PQN normalization methods 

over other approaches. More specifically, while the PQN model exhibits a higher Q2 value, the 

permutation test's p-value for the dilution factor indicates a lower score by implying a reduced 

probability of model’s overfitting.  

 

3.4.4 Conclusion 

This study has highlighted the critical role played by data pre-processing in the context 

of statistical analysis and data interpretation. It is evident that sample concentration is a 

significant source of variability in urine, which becomes even more crucial when dealing 

with kidney impairments. In our research, we aimed to enhance patient stratification by 

assessing the impact of various normalization techniques on the dataset, as reported in 

Figure 48 (a) Example of PLS-DA model by using PQN as normalization method; (b) table 
summarizing Q2 value and p-value permutation test for each normalization method tested. 
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the literature. This comparative analysis enabled us to showcase the influence of this 

pre-processing step on statistical analysis and, consequently, the interpretation of 

results. Particularly, employing the KF method for urine preparation along with 

normalization on dilution factor enabled us to establish the most effective urine protocol 

for NMR-based metabolomics studies. All the analyses conducted on this dataset serve 

as a starting point for the investigations detailed in Chapter 5, as the cohort employed in 

this study forms the core of the Metarein project. In conclusion, this work underscores 

the importance of selecting an appropriate pre-processing method fitting to the specific 

characteristics of the dataset under examination.
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4 Metarein project 

4.1 Background- Metarein cohort 
In collaboration with Pr. P. Delanaye and Dr. G.Resimont from CHU of Liège, and Pr. E.Vidal-

Petiot and Pr. M. Flamant from Bichat-Claude-Bernard Hospital where sample collection was 

done,  urine biospecimens  from 56 KTRs were prospectively collected during their protocol 

visits at 3 and 12 months post-KTx (cohort is called “MetaRein”) an classified on the basis of 

renal function decline between the two time points (Figure 49). Clinical and biological 

measurements were collected at each visit (such as protein, albumin, Na+, K+, creatinine etc.) 

in addition to mGFR measurement via urinary and plasmatic clearance of 51CrEDTA which 

represent the gold standard for the renal function measurement.  

All samples were transferred to CHU of Liege for NMR-based metabolomics analysis. Before 

this, numerous tests were conducted to establish the correct protocol for urine analysis (as 

detailed in Chapter 3). The goal was to identify sample preparation and normalization 

techniques that were better suited to this particular cohort. In addition to this, an aliquot of each 

urine sample was sent at “Laboratoire d'Etude des Residus et Contaminants dans les Aliments 

(“LABERCA”), in Nantes for MS-based metabolomics analysis.  

 

An untargeted metabolomics approach was applied to explore the correlation between 

the whole metabolome and kidney function evolution. 
This study, which seeks to identify a set of predictive biomarkers for the decline of kidney 

function in the early post-transplantation period, is currently undergoing the submission 

process. The cohort, the experimental workflow, and a concise summary of the results of this 

Figure 49 Overview of the Metarein cohort: Samples were collected from 56 transplanted recipients (KTRs), 
for whom urinary samples and clinical data (mGFR and eGFR) were obtained at two time points (3 months 
and 12 months post-transplantation). Stratification of samples was based on the decline in kidney function 

between these two time points, classifying patients into either the "decrease" or "stable" class. 
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study, titled " How metabolomics can help in the follow-up of kidney transplantation 

recipients: An untargeted metabolomics-based multiplatform study." are encapsulated in the 

graphical abstract presented in Figure 50. 

  

4.1.1 Metarein cohort and measured glomerular filtration rate 
The major strength of this cohort is based on the measurement of GFR , which was conducted 

for each patient at both 3- and 12- months post-transplantation time-points. These data enhanced 

the phenotyping of this cohort, setting it apart from most studies in the existing literature, where 

only the estimation of GFR is typically available. Indeed, mGFR value now stands as the gold 

standard for assessing renal function in clinical practice by enabling a more accurate and precise 

characterization of kidney status compared to its estimated value. Consequently, the addition 

of mGFR to the clinical data usually available, provided a unique opportunity to establish a  

direct link between the metabolome of transplanted patients and the precise status of their renal 

function.  Furthermore, the inclusion of GFR measurements for these patients at both time 

points significantly contributed to the diagnostic assessment of renal function. Specifically, in 

our study, this aspect not only represented a significant advantage in terms of patient 

characterization but also played a fundamental role in the development of a predictive model 

for the decline of renal function.
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Figure 50 Graphical abstract for "How metabolomics can help the follow-up management of kidney transplantation recipients? An untargeted based-metabolomics multiplatform study.” 
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4.2 How metabolomics can help in the follow-up of kidney 
transplantation recipients: An untargeted based multiplatform 
study. 
 

Cirillo A.¹, Resimont G.2, Massias J.3, Jouret F.2,4, Vidal-Petiot  E.5, Flamant M.5, Guitton Y.3,  
Delanaye P.2, de Tullio P.¹ 
 

1. Clinical Metabolomics Group, Center for Interdisciplinary Research on Medicines 
(CIRM), University of Liège, Liège, Belgium. 

2. Department of Nephrology-Dialysis-Transplantation, University of Liege, CHU Sart-
Tilman, Liege, Belgium 

3. Laboratoire d'étude des Résidus et Contaminants dans les Aliments (LABERCA) , Oni-
ris, INRAE, Nantes, France 

4. Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Cardiovascular 
Sciences, University of Liège, Liège, Belgium. 

5. Assistance Publique-Hôpitaux de Paris, Renal Physiology Unit, Bichat Hospital Paris, 
France 

 

4.2.1 Abstract 
Introduction: In the context of chronic kidney disease, K represents the most favorable 

solution in terms of quality of life, morbidity and mortality for patients affected by ESRD. 

However, KTx is not devoid of risks and the follow-up of kidney graft function is crucial in the 

management of kidney transplantation recipients (KTRs). Currently used techniques for 

monitoring kidney function remains rather imprecise in the case of its estimation or time-

consuming and rarely performed in case of its measurement. Because of these limits the need 

of new biomarkers able to precisely reflect the renal function or even predict its evolution in 

KTRs is a key challenge to improve patients‘ management. 

Objective: This study aims to identify a new panel of biomarkers able to predict kidney 

function  post KTx. 

Methods: 56 Patients from a well-phenotyped French KTR cohort has been followed for 1-

year post transplantation. Urinary samples have been collected at 3 and 12 month and the 

patients have been stratified as “decrease” or “stable” based on the decline or the stability of 

their kidney function after 1 year (decrease= 13; stable= 43). Untargeted NMR- and MS-based 

metabolomic approaches were applied to the cohort followed by integration of results coming 

from this dual-method. 

Results: Chemometrics analyses deriving by both techniques allowed the identification of 

panels of biomarkers that could be linked to a GFR evolution and used as predictive markers. 

Merged results from the dual approach, enabled an increase of discrimination and predictive 
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performances delineating a metabolomic signature that may forecast kidney function decline at 

12-month post-KTx though analysis of urinary sample at 3 months. 

Conclusions: Analysis of urinary metabolome of KTR patients in early post- transplantation 

shows the possibility to predict GFR evolution at 1 year. These findings may represent an 

innovative and helpful tool for clinicians to enhance patient care in post-transplantation period. 

 

4.2.2 Introduction 
Chronic kidney disease is a common disease characterized by a chronic alteration and 

progressive decline in kidneys’ function that affects 5 to 10% of the general population 206. By 

definition, CKD affects patients at different degrees and when its most severe form called “end 

stage renal disease” (ESRD) occurs dialysis or kidney transplantation (KTx) are mandatory 241.  

Nowadays, KTx represents the best treatment for patients with ESRD and is currently regarded 

as the most favorable patient’s care in terms of quality of life, morbidity and mortality 247.  

However, KTx is not devoid of risks and its main issues are linked to allograft dysfunction that 

led to altered kidney function and/or to graft rejection. Indeed, 30-40% of the patients lose their 

graft less than 10 years after KTx248,249. It remains clear and evident that the long-term success 

of a transplantation highly depends on the quality of the graft at the time of transplantation and 

of a continuous follow-up of the kidney transplant recipient. 

In this context, the monitoring of kidney function in the kidney transplantation recipients 

(KTRs) is mandatory and represents a crucial issue during the follow-up phase. Measured GFR 

represents the gold-standard by being the best and most accurate method to determinate 

GFR242,243.For practical reasons, the use of equations estimating the GFR, mainly based on 

blood and patient’s data, is nowadays much more current in clinical practice211. However, the 

limited precision of these formulas in accurately assessing kidney function underscores the 

current need to improve the prediction of kidney dysfunction and enhance the management of  

KTR follow-up. In this sense, the discovery of novel biomarkers predicting for early post-KTx 

kidney function, and its decline might play a significant role in helping clinicians in patients 

care and follow-up. 

 

In this context, metabolomics could represent a cornerstone. Indeed, metabolomics, as part of 

the omics sciences allows to have a snapshot of an organism status at a defined time point 244,245. 

Metabolomics is nowadays increasingly used for detection of disease’ s profile such as renal 

dysfunction. Several metabolomics studies have already highlighted the link between 
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biomarkers and CKD 246,247,224,248,249,250. Nuclear magnetic resonance (NMR) and mass 

spectrometry (MS) stand as the two mains and complementary analytical platforms utilized in 

metabolomics studiess.251 

We therefore planned to use the multi-platform NMR-MS metabolomic approach to explore 

whether the metabolome and certain metabolites could enable us to predict the evolution of 

renal function in transplant patients. To do this, we will be able to take advantage of a cohort 

and urine samples from more than 50 KTR whose renal function was measured 3 months and 

12 months post-transplant. Specifically, by taking advantage of the longitudinal nature of this 

cohort, urine of KTR patients collected 3 months post-transplantation were analyzed and 

correlate with the evolution kidney function between 3-and 12-months post-graft. The major 

strength of this cohort is based on the measurement of GFR, which represent the gold standard 

in renal function measurement. These data enhanced the phenotyping of this cohort, setting it 

apart from most studies in the existing literature, where only the estimation of GFR is typically 

available. Consequently, the addition of mGFR to the clinical data usually available, provided 

a unique opportunity to establish a direct link between the metabolome of transplanted patients 

and the precise status of their renal function.  Furthermore, the inclusion of GFR measurements 

for these patients at both time points significantly contributed to the diagnostic assessment of 

renal function. Specifically, in our study, this aspect not only represented a significant 

advantage in terms of patient characterization but also played a fundamental role in the 

development of a predictive model for the decline of renal function.  
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4.2.2 Methods 
Cohort and clinical data 

Second morning urine from 56 kidney transplanted patients have been collected at two time 

points corresponding to 3- and 12-months post-transplantation at Bichat-Claude-Bernard 

Hospital. At the time of sample collection, mGFR  (deindexed=non-indexed by BSA) via 

urinary clearance of 51CrEDTA was performed in addition to conventional blood and urine 

assessments (proteins, albumin, Na+, K+, creatinine and Cystatin-C standard measurements). 

eGFR values (ml/min) were obtained by using MDRD equation (non-indexed by BSA). MDRD 

« de-indexed » recommended by the KDIGO were computed by multiplying eGFR by each 

individual’s body surface area, using actual body weight, and by dividing this intermediate 

result by 1.73 m2. 

o MDRD deindexed in mL/min = (eGFR in mL/min/1.73m2 x BSA) / 1.73m2 
 

No specific criteria of inclusion/exclusion were applied for patients’ recruitment. 

 

Urine sample collection 

Urinary samples, corresponding to the second morning urine in fasting conditions was 

systematically collected and frozen without additives at −80° C.  

 

Patients’ stratification 

Fifty-six patients transplanted in Paris and whose GFR was measured at 3 and 12 months at 

Bichat-Claude-Bernard Hospital were included. Samples and clinical measures collected at two 

consecutive time points enable the stratification of patients based on measured GFR (mGFR) 

evolution. Particularly, the value considered of mGFR was obtained by measuring the urinary 

clearance of 51CrEDTA, which is considered a reference method. We used the absolute values 

of mGFR (non-indexed for body surface area) and calculated the variation of GFR between 3 

and 12 months (expressed in %)  (Figure 51). 

Figure 51 Equation used to calculate renal function % at 12 months based on which samples at 3 months 
(analyzed and used in this study) were stratified. 
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Knowing the relative change of mGFR (ΔGFR), we classified the patients as “decrease” or 

“Stable”. “Decrease” were patients whose ΔGFR was declining of more than 7% and other were 

considered as “stable”. The use of 7% as threshold in our stratification method is based on the 

concept of critical difference obtained at Bichat-Claude-Bernard Hospital were samples and 

clinical data were collected. Specifically, the critical difference can be defined as the smallest 

change in results of creatinine measurement which is not due to chance264.  

 

Sample preparation.  

NMR   

Aliquots of 500µl of urine samples collected at 3-month were thawed on ice, supplemented 

with KF (see protocol 3.2.2) and prepared by following an optimized procedure for reduce inter-

sample chemical-shift variations 232.  After this procedure urine samples were supplemented 

with 200µl of deuterated phosphate buffer (DPB, pH 7.4), 100µl of a 5mM solution of maleic 

acid and 10μl of a 10 mg/ml TMSP D2O solution for NMR analysis. Urine pH and osmolality 

were measured before sample preparation and analysis. 

LC-MS  

An aliquot of 500µl of urine sample collected at 3-month was placed in 10kDa centrifugal filter 

and centrifuged at 13000g during 30min at 5°C. Once filtered, internal deuterated standards 

(leucine-5,5,5-d3, L-tryptophan-2,3,3-d3, indole-2,4,5,6,7-d5-3-acetique acid et 1,14 

tetradecanedoic-d24 acid) were added to each sample and nitrogen blowdown was done. For 

each sample pH and osmolality were measured. 

 

Sample measurements. 

Metabolomics analyses were performed on urine samples collected at three months in all 

patients. 

 

NMR  

All samples were recorded at 298 K on a Bruker Avance HD spectrometer operating at 700.17 

MHz for the proton signal acquisition. The instrument was equipped with a TCI 5-mm 

cryoprobe with a Z-gradient. Maleic acid was used as the internal standard for quantification 

and trimethylsilyl-3-propionic acid-d4 (TMSP) for the zero for the zero calibration. 1H-NMR 

spectra were acquired using a 1D NOESY sequence with presaturation. The Noesypresat 

experiment used a RD-90°-T1-90°-Tm-90°-acquire sequence with a relaxation delay of 4 s, a 

mixing time (Tm) of 10 ms and a fixed T1 delay of 4 μs. Water suppression pulse was placed 
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during the relaxation delay (RD). The number of transients is 64 (64K data points). The data 

were processed with the Bruker Topspin 4.0.8 software with a standard parameter set. Phase 

and baseline corrections were performed manually over the entire range of the spectra and the 

δ scale was calibrated to 0 ppm using the internal standard TMSP. 

 

LC-MS  

All samples were analyzed on ultrahigh performance liquid chromatography with high-

resolution mass spectrometry (UHLPC/MS) by following described method253 for reversed 

phase(RP) UHPLC/MS. Tacking advantage of the MS2 capacities of the hybrid 

quadrupole-orbitrap (Q-Exactive TM) mass spectrometer (Thermo Fisher Scientific, Bremen, 

Germany) QC samples (i.e. pooled samples) were analyzed, in ESI positive and ESI negative 

modes, with three cycles of iterative Data Dependent MS2. The acquisition of the raw data was 

performed using a full scan mode within the m/z 65-1000 range at a resolving power of 70,000 

at m/z 200,000 Da. Compound separation was performed using a Hypersil GOLD-C18 column 

(1.9 µm, 100 mm x 2.1 mm) from Thermo-Scientific (USA). The column temperature was set 

at 35°C. The mobile phases were composed of 0.1% of acetic acid in water (solvent A) and in 

acetonitrile (solvent B). Acetonitrile LC/HRMS grade CHROMASOLV™ LC-MS (Riedel-de 

Haën), Water LC/HRMS grade CHROMANORM® (VWR Chemicals). The applied gradient 

(A:B, v/v) was as follows: 95:5 from 0 to 2.4 min, 75:25 at 4.5 min, 25:75 at 11 min, 0:100 

from 14 at 16.5 min and 95:5 from 19 to 25 min. The flow rate was set to 0.40 mL/min. The 

injection volume was 5 µL. All samples were analyzed in one batch without any stopping or 

recalibration step. The quality control sample (QC) was injected regularly throughout the run 

after every ten samples approximately. Data acquisition was settled with an automatic gain 

control of 5.105 and a C-Trap inject time of 20 ms. The acquisition spectrometric parameters 

were as follows: the spray voltage (+3 kV), the S-Lens RF level (50), the tube lens voltage 

(+100 V), the capillary temperature (350°C), the heater temperature (300°C), the sheath gas 

pressure (55 arbitrary units), the auxiliary gas flow rate (10 arbitrary units) and the sweep gas 

flow rate (0 arbitrary units). Full instrument calibration was performed using a MSCAL5 

ProteoMassT LTQ/FT-Hybrid ESI Pos/Neg. In addition, Xcalibur V2.2 (Thermo Scientific®, 

Bremen, Germany) software was used for the generation of all chromatographic peaks acquired 

in full scan mode. 
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Data pre-treatment 

NMR 

MestReNova (v14.1.1) was used for NMR data pretreatment. Non informative zones were 

removed from NMR spectra such as water region (4.7 to 5 ppm) and maleic acid (5.6 to 6.2 

ppm). Alignment step was done in way to reduce the residual chemical shift effect due to inter-

sample pH variations. Spectra were then reduced to integrated regions of equal width 

(0.02ppm), named “bins”, corresponding to the 0.5 to 9.0 ppm region. 

 

LC-MS 

Data preprocessing was performed by using workflow4Metabolomics.org (W4M) platform on 

Galaxy environment. The raw data were at first transformed into a data matrix containing all 

the peaks present in the samples; centWave algorithm was used for peak detection and a “peak 

grouping” step was done in way to align the peaks. At this point, undetected ions were 

integrated with according to m/z and RT through “peak filling” step.  Final data matrix table 

was composed of variables that were repeatable in at least 50% of the samples. Batch correction 

was done by using Metaboanalyst R package on R environment by using EigenMS as algorithm. 

At this point, samples were normalized by using dilution factor value calculated through NMR 

technique and log transformed. 

 

Metabolites identification 

NMR 

For NMR platform metabolites identification was done using Chenomx profiler 9.0 (Chenomx 

Inc., Edmonton, AB, Canada), the free web-based tool HMDB (https://hmdb.ca) and tables; 2D 

NMR (COSY and HSQC) measurements were also done to confirm the identification of 

metabolites. 

 

LC-MS 

For LC-MS platform metabolites identification MS and MS2 data were used. In MS data 

isotopologue and adduct were searched by using CAMERA140 annotation package on W4M.   

MS2 data were generated from pool samples with iterative data dependent MS2 acquisition 

(iDDA) and processed through msPurity package254 included in W4M. All features of interest 

were searched in MS2 files with 0.0005 filter for m/z and +/-5s for rt. At this point MS2 spectra 

was compared to external databases for spectra matching(MassBank 

https://hmdb.ca/
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https://massbank.eu/MassBank/, HMDB https://hmdb.ca/, GNPS http://gnps.ucsd.edu). 

Through this process it was possible to reach an annotation level 3 on the Schymanski scale255. 

 

Data normalization 

Data matrices obtained from both NMR and LC-MS platforms underwent normalization based 

on dilution factor values. Dilution factors for individual samples were determined using the 

NMR technique. For each 1H-NMR spectrum, the total integral of peaks corresponding to 

metabolites within the range of 0.5-9.0 ppm was computed. Additionally, the signal of the 

internal standard (TMSP) at 0 ppm was integrated, and its integral was set to 0. The dilution 

factor value was computed by calculating the ratio between the integral of all metabolites and 

the integral of the internal standard (for further details, refer to section 3.4.2). 

 

Multivariate and statistical analysis and data integration 

For both NMR and UHPLC-MS, statistical analysis was conduct by using SIMCA-P software 

(v17.0; Umetrics, Malmö, Sweden), BioStatFlow webtool (biostatflow.org) and GraphPad 

Prism version 9.4.1 (GraphPad Software, La Jolla, CA,).  Samples included in NMR, MS and 

data integration analysis are resumed in Figure 52.  

Principal component analysis (PCA) was used to explore samples without any classification 

knowledge and spot any separation trend, groups, or outliers. PCA score plot was also used to 

identify “strong outliers” represented by samples placed outside the 0.95 Hotelling’s T2 ellipse; 

DmodX was used for the detection of samples exceeding the 0.05 cutoff value defined as critical 

distance of significance. Orthogonal signal correction (OSC) was applied to discriminant model 

in way to remove the inter-subject variability and to describe maximum separation based on 

class; its quality was evaluated by the predictability calculated based on the fraction correctly 

predicted in one-seventh cross-validation (Q²) by considering model with Q²> 0.5 as “good” 

and Q²> 0.9 as “excellent”. Permutation tests were performed to validate models 121. For both 

NMR and MS platforms, OSC-PLS models and their loading plot were used to identify relevant 

metabolites. Variable important projection (VIP) higher than 1 was considered as significant 

and considered for univariate statistical analysis. Wilcox-Mann–Whitney U test was performed 

for comparisons between “decrease” and “stable” groups.   

The selected features were worn to generate receiver operating characteristic (ROC) curves 

with the aim to evaluate the performance of biomarker models created through automated 

feature selection; PLS-DA was used as classification algorithm and univariate T-test as feature 

ranking method with 2 latent variables. Confusion matrix was used as classifier model for 

https://massbank.eu/MassBank/
https://hmdb.ca/
http://gnps.ucsd.edu/
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binary response; this tool allows to visually evaluate the performance of classification through 

the measurement of accuracy, precision and recall values. The detailed analysis of the metabolic 

pathways was performed by Metaboanalyst (www.metaboanalyst.ca) using the metabolomic set 

enrichment analysis (MSEA) tool by using the high-quality SMPDB metabolic pathways as the 

backend knowledgebase. Over representation analysis (ORA) on list of metabolites was 

implemented using the hypergeometric test to evaluate whether a particular metabolite set 

is represented more than expected by chance within the given compound list. One-tailed p 

values are provided after adjusting for multiple testing. 

Data integration of NMR and Orbitrap-MS data was investigated through a high-level approach 

leading  to merge results coming from the different blocks 129,128.   

After blocks’ integration, chemometric  analysis was done by performing OSC-PLS model, 

multivariate ROC curve and confusion matrix as already done for the single blocks. 

 

  

  

Figure 52 Scheme of samples involved in NMR, LC-MS and integrated models. For NMR analysis only 45 samples were 
included in chemometric analysis due to the presence of 11 detected outliers. These 11 samples were excluded from 

multivariate data analysis due to the presence of exogenous molecules hiding spectral zones of interest. The presence of 
these signals hampers the building of performant chemometrics model aiming a correct feature selection. However, 

after feature selection these samples were again included in univariate and integrated predictive models.   
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4.2.3 Results  
Study population 

A preliminary statistical analysis was conducted on the cohort considering the classes 

“decrease” and “stable” which showed no confounding factors. Patients’ characteristics 

categorized by the type of renal function evolution are presented in  Table 13. 

 

 
 
 

Table 13 (Below) Descriptive statistics on clinical data of Metarein cohort for the 56 patients included in the analysis; for each clinical 
mean (standard deviation) and range are reported for the sample collected at 3months visit except for mGFREDTAPdeindex (12m) which was 

measured as indicated in parenthesis at 12 months. (clinical measures included: weigh (in kg); height (in cm) ;BSA= body surface 
area; age (in years); ethnicity; sex; CreatPjaffe= plasmatic creatinine measured though Jaffe assay; Albu U0= albuminuria measured in 

second morning urine; mGFREDTAPdeindex=  GFR measured though plasmatic clearance of 51Cr-EDTAand deindexed 
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Univariate statistics and chemometric analyses 
1H-NMR 

In way to detect outliers PCA-X, DmodX and Hoteling T2 models were used on the cohort of 

fifty-six patients, and eleven samples were excluded from chemometric analysis. The exclusion 

of these eleven samples was either due to the presence of abnormal signals in the spectral data 

or because they fell outside the 95% confidence ellipse in the outliers detection models (DmodX 

and Hotelling T2). A total of forty-five samples were thus included in the multivariate models 

(decrease=12; stable=33). A discriminant  chemometric analysis was performed by generating 

OSC-PLS model (Q2=0.775) (Figure 53a); a permutation test (p-value= 0.0361) was performed 

by validating the obtained model. A loading plot and a list of VIPs score were generated in way 

to select relevant features related to the model. Univariate statistical analysis through unpaired 

Mann-Whitney test was performed on normalized bins by including in the analysis outliers 

excluded in multivariate data analysis (n=56). A total of 14 metabolites were assessed as 

significant for separation between decrease and stable groups. However, of these 14 features 

only 12 were identified and included in the following models (Table14).  

  

 

The selected metabolites were used to perform a multivariate receiver operator characteristics 

(ROC) curve with increasing number of variables in way to evaluate the performance of our 

model through automated features selection (Figure 53b). The most performant model was 

reached by using 10 metabolites with an AUC value of 0.794 (95% CI 0.65-0.929) and a 

predictive accuracy of 67.8% . Confusion matrix was used to evaluate the performance of 

classification model; by using the same set of metabolites employed in multivariate ROC curve, 

Table 14  List of significant features identified 
though 1H-NMR platform.  
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the confusion matrix (Figure 53c) showed 3 ‘decrease’ patients and 17 ‘stable’ patients being 

misclassified (accuracy= 0.64; precision= 0.37; recall= 0.77).  

Orbitrap-MS  

Positive mode 

Fifty-six samples were included in univariate statistics and chemometrics models (n=56; 13 

decrease; 43 stable). According to OSC-PLS discriminant analysis, a good discrimination 

power between decrease and stable groups was highlighted (Q2=0.933), however its overfitting 

was evident from the results of permutation test (p-value = 0.03073) (Figure 54a). A VIP score 

list composed by 753 (S.I. TableS2) features was obtained from the discriminant model by 

using VIP >1 as threshold. A Wilcoxon-Mann-Whitney test was conduct on VIP by underlining 

a list of 145 significant features. After annotation only 36 features were associated to known 

compounds and of these only 17 were not drugs or redundant metabolites (see S.I. TableS4).  

For the following analysis only these 17 selected features (Table 15) corresponding to identified 

endogenous metabolites have been used. A multivariate ROC curve  was generated (7 variables; 

AUC= 0.657; 95% CI 0.351-0.855; predictive accuracy= 55.3%) through automated variable 

selection (Figure 54b). In the confusion matrix (Figure 54c), 17 variables were used, yielding 

an accuracy of 0.68, with 3 “decrease” and 15 “stable” patients misclassified (precision=0.4; 

recall=0.77). 

Figure 53 Chemometric analysis of NMR platform; (a) OSC-PLS score plot of NMR data on decrease and stable groups showed a good 
performance (Q²=0.775; p-value=0.03617); (b) multivariate ROC curve based on the 12 features; (c) confusion matrix  based on the 12 

NMR features with accuracy, precision and recall metrics reported. 
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Figure 54 Multivariate statistical analysis of positive MS platform; (a) OSC-PLS score plot of positive MS data on decrease and stable groups 
showed a good performance (Q²=0.933; p-value=0.03073 );(b) multivariate ROC curve based on the 17 known annotated metabolites; (c) 

confusion matrix  based on the  positive MS  features with accuracy, precision and recall metrics reported. 

Table 15 Significant features annotated for LC-MS analysis in positive mode. These 17 metabolites were the only non-
redundant and endogenous metabolites identified in databases. 
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Negative mode 

Fifty-six samples were included in univariate statistics and chemometric  analysis (n=56; 13 

decrease; 43 stable). A supervised OSC-PLS model (Figure 55b) was run followed by a 

permutation test (Q2=0.719; p-value= 0.5381). As done for the positive mode, a list of 537 VIP 

(VIP > 1) was obtained (S.I. TableS3). Moreover, a univariate t test using Wilcoxon-Mann-

Whitney model was performed on peak intensities. A list of 40 features was found to be 

significant for discrimination between stable and decrease groups but a major part of them were 

not identified or corresponding to non-endogenous compounds (see S.I. table S5) . Only 4 

metabolites were unique features corresponding to biological compounds present in human 

body (table 16).  

The significant features were used to generate a multivariate ROC curve that show poor model’s 

performance (4 features; AUC= 0.752; 95% CI 0.596-0.91;  predictive accuracy= 67.7%) 

compared to the previous showed results (Figure 55b). The generated confusion matrix 

demonstrated, compared to previous models and in line with its ROC curve's result, a lower 

performance (accuracy= 0.77; precision= 0.5; recall= 0.77) with 3 and 10 patients incorrectly 

classified (Figure 55c).  

Table 16 In the table the significant features annotated through LC-MS analysis in negative mode are 
showed. Starting from the first 40 features detected as significant in Wilcoxon-Mann-Whitney t test only 

these 4 features found a corresponding non-exogenous metabolite in databases. 

Figure 55 Chemometric analysis of negative MS platform; (a) OSC-PLS score plot of negative MS data on decrease 
and stable groups showed a good performance (Q²=0.719; p-value=0.5381); (b) multivariate ROC curve based on 

the 4 known annotated metabolites; (c) confusion matrix  based on the 4 negative MS  features with accuracy, 
precision and recall metrics reported. 
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Data integration 

A high-level approach was used for data fusion by allowing the integration of results coming 

from the different blocks. Samples common to NMR and LC-MS platforms were included in 

the analysis (n=56; 13 decrease; 43 stable). All the possible combinations of block integration 

were tested (see S.I. FiguresS1-S2-S3); finally, the most performant models were obtained by 

integration of NMR, Positive and Negative MS modes. A total of 33 variables, coming from 

the three different blocks (combination of Tables 14-15-16), were integrated and a PCA and 

OSC-PLS model were performed. The discrimination between the two groups, that was already 

visible through the PCA score plot (see S.I. FigureS4), was highlight by the high discriminant 

performance of OSC-PLS model (Q2=0.829; p-value= 0.00214) (Figure 56a). Like previously 

done for each separate dataset, a multivariate ROC curve was performed (Figure 56b); the 

degree of separability was evaluated (33 variables; AUC=0.845; 95% CI 0.674-0.962;  

accuracy=71.2%) by showing a more performant power compared to models of single blocks. 

Only 10 “stable” and 2 “decrease” patients were misclassified in confusion matrix by showing 

a general increased classification power when coupling NMR and LC-MS selected variables 

(accuracy= 0.79; precision=0.52; recall=0.85) (Figure 56c).  

By comparing the performance of models from individual platforms and their combinations, it 

becomes evident that the integrated model incorporating NMR, both positive and negative 

modes (refer to Table 17), exhibits superior efficiency (AUCNMR,POS,NEG=0.845 versus 

AUCNMR= 0.794). Specifically, when examining the Q2 values of OSC-PLS models, only the 

model derived from the Positive mode outperformed the one integrating all three platforms. 

However, despite this, the p-value from the permutation test was lower in the integrated 

approach, affirming that the observed result is unlikely to have occurred by random chance 

Figure 56 Chemometric analysis for integrated platform; (a) OSC-PLS score plot for integrated platform on decrease and stable groups 
showed a good performance (Q²=0.829; p-value=0.00214); (b) (b) multivariate ROC curve based on the 33 metabolites coming from the 

three analysis; (c) confusion matrix  based on the 33 positive MS  features with accuracy, precision and recall metrics reported. 
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alone. Notably, considering the AUC value of the multivariate ROC curve, and the accuracy of 

the confusion matrix, the integration of NMR and the dual modes LC-MS platform yields the 

most robust model. 

 

All the 33 annotated metabolites were used to generate a pathway analysis in way to look and 

the metabolic pathways impacted by our significant metabolites. In particular, the result of this 

analysis highlights 11 metabolic pathways be involved in renal function decline with a p-value 

lower than 0.05 threshold (Table 18).  

Table 18 significant metabolic pathways impacted by metabolites coming from the platforms’ integration. (Total= total 
number of metabolites composing the pathway; Hits= number of metabolites identified in our model) 

Table 17 Comparison of models' performance for integrated and non-integrated models. In the table Q2 value for OSC-PLS 
models, permutation test p-values a, AUC of multivariate curves, and accuracy of confusion matrix are reported. 
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4.2.4 Discussion 
In the present study, the urine metabolome at 3 months post-KTx was analyzed by using a 

sample stratification predictive of renal function changes at 12 months. Through this novel 

approach the main aim of this study was to identify a metabolic signature predictive of kidney 

function decline in early post-KTx.  Indeed, after transplantation, the duration of adaptation 

stage depends on several parameters linked to graft condition, but in clinical practice, this period 

counts around three months post KTx. In addition to the innovative sample stratification, 

another primary strength of this cohort reposes on the high quality of clinical data linked to the 

collected urinary samples. Notably, to our knowledge, this cohort is among the few documented 

in the literature where the GFR for each patient is not merely estimated but accurately measured. 

The inclusion of mGFR values for characterizing patients constitutes a significant advantage 

for a deep and precise understanding of kidney function status. Moreover, the longitudinal 

nature of the sample cohort has facilitated the establishment of an innovative patient 

classification. 

From a methodological point of view, another focal point of this study was represented by the 

platform combination and the data integration that allowed an increase of prediction model 

performance. Particularly NMR quantification character represented an asset for data 

normalization constituting a crucial step in urine samples analysis; indeed, in this manner, the 

importance of normalization on creatinine continues to represent an open and fierce debate 
240,286,235. In the context of this study, several preliminary analyses were conducted before to 

access the validity of normalization on dilution factor value; furthermore, the positive outcomes 

achieved using the NMR platform convinced us to apply the same normalization procedure to 

MS data. This approach yielded effective results, thereby validating the robustness of the 

normalization method. The synergy between these platforms became apparent in our study 

conclusion, and their application in parallel helps overcome the primary limitation of NMR 

represented by its lower sensitivity. Hence, through the combination of NMR's quantitative 

aspect with MS’s higher sensitivity, a panel of predictive biomarkers elucidating the 

deterioration of kidney function was established and this will provide a more encompassing 

vision of its biochemical processes. From a biological point of view, the lack of numerous 

common metabolites between the two techniques finds its explication in the list of VIP 

identified in LC-MS platform; indeed, if we look at these tables the number of common features 

increase but no significant discrimination were revealed through univariate analysis. These 

results reflect the major challenge in LC-MS platform represented by variability due to the 

technique, possible matrix and batches effects. 
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Concerning the predictive models, by using this new stratification method, it was possible to 

explore kidney evolution in the months following transplantation and better describe the urinary 

metabolites that reflects and predict the  renal function decline.  

The multivariate statistical analysis allowed us to identify through the different platforms a list 

of putative biomarkers that could be linked to kidney function decline after transplantation. It 

is of particular interest to note that prior identification of metabolites for each separate platform, 

predictive models, and specifically confusion matrices had a higher accuracy (S.I. FigureS5-

S6-S7). The decrease in performances of these models is due to the reduction of features 

included in the models; indeed, once the identification of metabolites was done, a part of the 

features corresponding to exogenous compounds, (drugs, pesticide etc.), unknown metabolites 

and features corresponding to the same biological compound were excluded from the predictive 

model.  At this point, the selected features were used to define predictive and discriminant 

models for single and integrated datasets. Of relevance is outlined by the model merging the 

three datasets:  NMR, Positive and Negative mode. By evidence, the integration of NMR and 

MS platforms allows the model to gain in accuracy for groups prediction; indeed, by looking at 

OSC-PLS model as well as the confusion matrix scores, we can spot the highest discrimination 

and classification performance of the combined model compared to the single-platform models. 

Moreover, through the identification of the features on which these models were based it was 

possible to delineate a panel of putative biomarkers (Tables 16-17-18) able to predict the kidney 

function decline. Even if only Hippurate was find as significant in both platforms, several other 

common metabolites were in VIP scores (S.I. TableS1-S2). Furthermore, of even more interest, 

was shown how metabolites coming from LC-MS and NMR techniques were sharing the same 

metabolic pathways allowing to give us complementary information and a global view on 

metabolome of “decrease” patients. This demonstrates, if proof were needed, the value of 

combining data from different analytical platform. 

 

This analysis highlights the fact that all the identified features derive from widely various 

metabolic pathways going from amino acids metabolism (serine, glycine, phenylalanine, valine, 

hippuric acid etc..) to gut microbiota metabolism (TMAO, choline, ) whose importance in CKD 

frame has been reclaim in the last years 256. The existing link between decline in kidney function 

and some metabolites highlighted in this study has already been demonstrated.  

For example, TMAO is a well-known metabolite in the context of kidney dysfunction that has 

been proposed as potential biomarker of CKD in the last decade257. Increase in plasmatic 
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TMAO has been reported as strongly linked to CKD 258,259and inversely associate with 

estimated GFR 260,261. In our study the downregulated TMAO level could be explained by an 

impaired renal extraction with a consequent depletion of this methylamine in urine and this 

notion is also supported by some others works262,263. Similarly, dimethylamine (DMA )is 

another amine compound that has found to be downregulated in the present study. This 

metabolite has already been described in other works as being correlated to medullary damage 

and acute rejection post transplantation 264,265 . 

 

Among the metabolites whose concentration increased in the “decrease” group were choline, 

glycine and serine. Changes in choline levels may be directly related to decreased TMAO 

concentration; indeed, choline is a quaternary amino cationic alcohol that produces through 

bacterial metabolism TMAO as end-product. The higher level of choline in the present study is 

consistent with previous study and may signal underlying tubulointerstitial dysfunction 266 or 

an accumulation due to the increasing formation of TMAO. Another explanation can be found 

in the increasing levels of glycine which may derive from the choline generated through 

phosphatidylcholine’ metabolism. Indeed, the augmentation of choline with decreasing renal 

function could contribute, in part, to the increasing circulating concentration and extraction of 

glycine as also demonstrated in a previous study 267. Higher urinary serine concentrations were 

also found in patients whose kidney function declined at 12 months. Serine represents 

respectively a starting product in glycine biosynthesis and metabolism and its higher level in 

patients with renal function decrease was already found in a plasma cohort of CKD patients267. 

 

Concerning amino acids (e.g. phenylalanine, tyrosine, valine and glycine) changes in amino 

acids levels between patients with different levels of kidney function have  already been 

reported in plasma and urinary samples ; indeed, their concentration were showed to result from 

inflammatory and acidotic events or changes in their metabolism due to the metabolic 

disturbances 269,270. Relative to this, metabolic acidosis is common in transplanted patients due 

to assumption of calcineurin inhibitor therapy and is responsible of lower citrate excretion in 

post-graft complications, as showed by Bolen et al.271; in line with these results, in our study a 

downregulation of citrate was demonstrated in patients with kidney function decline post-KTx. 

 

Decreased urinary extraction of carnitine may be directly linked to decreased level of its final 

product TMAO. Contradictory results are reported in literature, by showing how administration 

of carnitine in CKD rat model resulted in improvement in renal functions267 or inversely how 
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its plasma increased levels are strictly correlated to CKD patients272,273. Data from a 

metabolomics profile of CKD patients included carnitine as one of the urinary metabolites 

predicting CKD stage 274. Our results are consistent with this study by demonstrating a 

downregulated concentration of carnitine in patients with a decreased renal function. 

 

Other well-known metabolites in kidney disease are represented by tryptophan and kynurenine. 

Tryptophane/kynurenine pathways has gained interest in the last years because of its role in 

acute injury prediction275.  In addition to this, several other studies demonstrated decrease in 

tryptophan related to eGFR in serum of patients with kidney dysfunction but no changes in 

urine biofluids were reported. Other studies reported upregulation of kynurenine or 

downregulation of serotonin (other tryptophan derived metabolite) according to eGFR 

impairment in KTR276,277. These observations suggest changes in tryptophan/kynurenine 

pathways associated with kidney GFR impairment. In our study, we hypothesize that the 

diminution of tryptophan and kynurenine levels in patients with kidney function decline can be 

linked to major GFR impairment in those patient compared to “stable” one as also showed by 

Colas et al.224 who demonstrated an urinary increase in levels of these metabolites  in tolerant 

KTR compared to non-tolerant ones.  

 

It is known that uremic toxins levels decrease in concordance to CKD severity in urine. In this 

study 3-methylhistidine and hippuric acid (the last one significant in both platforms) were found 

to be retained with a consequent downregulation in urine patients with declined renal function. 

Hippuric acid is a well-known uremic toxin associated to gut microbiome278; when its main 

elimination process, represented by active renal tubular secretion, is dysregulated this 

metabolite has a lower concentration in urine279. Concerning 3-methylhistidine it is another 

uremic toxin associated with muscle protein breakdown. Several studies have demonstrated the 

implication of this metabolite in CKD progression and development of CKD-related 

complication as specifically shown by its plasmatic increase in patients with stage 3–4 

CKD280,281. These results are confirmed in our study in which the urinary decreased level of 3-

methylhistidine could reflect its plasmatic accumulation due to an accelerated loss of muscle 

mass in patients with renal function decline with a following lower extraction of this uremic 

toxin. In addition to these, 5-methoxyindoleacetic acid is member of class of 3-indoleacetic acid 

(tryptophan derived uremic toxin). Studies on this metabolite demonstrate its upregulation in 

plasma sample of CKD patients according to eGFR decline282; since no literature is present 

concerning their behavior in urine samples, and in particular, since they are supposed to act as 
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uremic toxin, the downregulation of these molecules in “decrease “ patients in our study is in 

accordance with reported articles.  

 

Limited literature exists regarding N-phenylacetylglycine, mannitol, and amino adipic acid, 

particularly in relation to CKD or kidney dysfunction. As other metabolites previously 

described influenced by gut flora, N-phenylacetylglycine is a product of bacterial metabolism 

of phenylalanine; however, its role in CKD remains unclear283. Notably, this study identifies 

decreased mannitol levels in the "decrease" group, although the connection to declining kidney 

function lacks clarification; only one other study in the literature has mentioned this metabolite's 

decrease during graft recovery284. Amino adipic acid, stemming from lysine degradation, has 

been proposed as an oxidative stress biomarker. Consistent with our research, previous studies 

have associated it with increased levels in diabetes and renal failure285. 

 

Considering all the results derived from this study, it appears evident that analyzing the urinary 

metabolome of KTR during the early post-transplantation period can forecast the evolution of 

GFR at one year. These discoveries could serve as a novel and valuable resource for clinicians, 

augmenting patient care during the post-transplantation phase. 

 

Limitations and perspectives 

Several limitations in this study should be considered when planning future research. From a 

clinical point of view, in the stratification process, the “decrease” group is formed based on the 

GFR’s progression, but there is no available information regarding the presence of eventual 

comorbidities which may cause this decline in kidney function. Further investigation is 

warranted to gain a comprehensive understanding of the pathophysiologic events associated 

with the reduction in GFR within the “decrease” group. Similarly, the significant 

misclassification rate in the confusion matrix of the stable group may be attributed to this 

phenomenon. Indeed, the arbitrary classification of patients based on a cutoff value for kidney 

function decline, without considering the complete clinical picture, may result in incorrect 

sample stratification. Another  aspect of weakness is related to the sample size, which poses a 

significant constraint. While the number of enrolled patients might be considered as reasonable, 

the distribution of samples across each category is unbalanced, posing a challenge in identifying 

reliable biomarkers suitable for clinical application. In addition, the single-site collection and 

analysis preclude robust result comparison required for routine clinical use; consequently, 

supplementary studies are imperative to corroborate our preliminary findings.  
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Even by being aware of limitations, this study represents a valid exploratory analysis in kidney 

function decline in way to outline biomarkers set able to predict kidney function issues and 

improve patients’ management. 

 

4.2.5 Conclusion 
In the context of renal transplantation, the follow-up of transplanted patients is fundamental for 

enhancing short- and long-term graft outcomes, as well as overall more personalized patients’ 

management. Through the analysis of urine sample collected at 3-month and by using a 

patient’s stratification predictive of kidney function changes at 12-month, we demonstrate in 

this study the possibility to obtain a panel of predictive biomarkers for decline in graft function 

with a model that is close to clinics requirements and standard. Specifically, the application of 

a dual metabolomics approach by using NMR and LC-MS platforms proved valuable in 

creating a novel workflow for normalizing and analyzing urinary samples. Notably, the 

combination of NMR and MS permitted to generate a more performant predicting models of 

mGFR decline and highlights the added value from the combination of these 2 analytical 

platforms.  

Based on these results, a large panel of perspectives can be open. In way to increase the 

performance of our predictive models, it could be interesting to add a set of pertinent clinical 

and metabolomics data concerning the donor, the graft and the recipient that may better describe 

all the aspect of trio donor-graft-recipient. In addition, the enrollment of a multi-center and/or 

a wider cohort could allow to at first test the validity of our models and following increase its 

performance. Concerning this point, the recruitment of non-transplant and/or healthy patients 

could also represent a great challenge and opportunity to evaluate the findings of this work.  

While this study is preliminary and several limitations must be considered, these discoveries 

lay a substantial foundation to enhance patient care following kidney transplantation using 

metabolomics. 
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5 Metaperfusate project 

5.1 Background- Metaperfusate cohort 
This section of the study concentrated on investigating the biological events influencing the 

graft both prior to transplantation and during the ischemic period, leveraging a comprehensively 

described cohort with detailed information on the donor, kidney graft, and recipient.  

Thanks to the collaboration with surgeon team of the Department of Abdominal Surgery and 

Transplantation of CHU of Liege composed by O. Detry, M. Vandermeulen and N. Meurisse, 

the first 10 milliliters of the cold preservation solution outgoing the kidney right before 

transplantation was collected and called “perfusate”. 

 A total of 49 perfusate samples originating from the donor's kidney were collected 

prospectively during renal transplantation (Figure 57). These samples were classified 

according to (1) donor type, distinguishing between donation after brain death (DBD=36) and 

donation after circulatory death (DCD=13), and (2) the occurrence of delayed graft function 

(total n=19/49; in DBD n=14/22; in DCD n=5/8). For each sample, some clinical and 

descriptive data related to the donor, such as age, sex, BMI, cause of death, were gathered. 

Additionally, some clinical and biological characteristics of the recipients were collected based 

on graft outcomes, including sex, age, etc.  

Figure 57 Timeline of kidney transplantation and perfusate sample collection. (DBD= donation after brain death; 
DCD= donation after circulatory  death; WIT= warm ischemia time; CIT=cold ischemia time; DGF= delayed 

graft function; noDGF= no delayed graft function) 
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In addition to the human cohort, a murine model consisting of 19 perfusates was collected and 

categorized based on donor type (DBD= 9 /DCD= 10) . The analysis of this experimental model 

will allow us to simulate the donor's condition in a controlled environment, thereby validating 

the biochemical pathways linked to donor type observed in the human study. No data about 

DGF were available in the rat models.  For the experimental model (performed by Pinto Coelho 

T. from Metabolism and Cardiovascular Sciences Group of GIGA) the brain death status was 

achieved through the increase of intracranial pressure generated by the insertion of a balloon 

catheter in the extradural space (Figure 58); for the DCD group, after a previous tracheotomy 

and 6h of mechanical ventilation in rodents, the cardiac death was obtained through an 

intravenous injection of KCl. 

 

All samples were analyzed though NMR-based metabolomics approach. The multivariate 

statistical analysis on murine model highlighted a significant difference in perfusate 

metabolome of grafts derived from DBD versus DCD donors with a higher abundance of 2-

hydroxvalerate, valine, isoleucine and alanine in DCD. The same difference was similarly 

observed in human perfusates, with a higher levels of isoleucine valine and other metabolites. 

After correcting for the type of donor, the multivariate statistical analysis demonstrated a 

metabolomics signature typical of human grafts ultimately presenting DGF.  

 

The findings from this study have been published in Metabolomics in March 2024, under the 

title "Untargeted NMR-based metabolomics analysis of kidney allograft perfusates identifies 

a signature of delayed graft function." An overview of the study, including cohort 

Figure 58 Experimental model of kidney ischemia performed on rats; brain death or circulatory arrest was mimic 
and perfusate was collected after kidney retrieval (DBD= donation after brain death; DCD= donation after 

circulatory death. 
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composition, experimental design, summarized results, and concise conclusions, is provided in 

the graphical abstract presented below (Figure 59). 
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160 Figure 59 Graphical abstract for " Untargeted NMR-based metabolomics analysis of kidney allograft perfusates identifies a signature of delayed graft function.” 
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5.2.1 Abstract 
 

Introduction: Kidney transplantation (KTx) necessarily conveys an ischemia/reperfusion (I/R) 

process, which impacts on allograft outcomes. Delayed graft function (DGF) is defined as a 

non-decrease of serum creatinine by at least 10% daily on 3 consecutive days during the first 7 

days post-KTx. DGF significantly conditions both short- and long-term graft outcomes. Still, 

there is a lack of DGF-predictive biomarkers. 

Objectives: This study aimed to explore the potential of kidney graft perfusate metabolomics 

to predict DGF occurrence. 

Methods: 49 human perfusates from grafts categorized upon donor type (donation after brain 

death (DBD)/donation after circulatory death (DCD)) and DGF occurrence and 19 perfusates 

from a murine model classified upon death type (DBD/DCD) were collected and analyzed by 

NMR-based metabolomics.  

Results: The multivariate analysis of the murine data highlighted significant differences 

between perfusate metabolomes of DBD versus DCD. These differences were similarly 

observed in the human perfusates. After correcting for the type of donor, multivariate analysis 

of human data demonstrated a metabolomics signature that could be correlated with DGF 

occurrence. 

Conclusions: The metabolome of kidney grafts is influenced by the donor’s type in both human 

and pre-clinical studies and could be correlated with DGF in the human DBD cohort. Thus, 

metabolomic analysis of perfusate applied prior to KTx may represent a new predictive tool for 

clinicians in a more personalized management of DGF.  Moreover, our data paves the way to 

better understand the impact of donor’s types on the biochemical events occurring between 

death and the hypothermic storage.  
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5.2.2 Introduction 
Kidney transplantation (KTx) currently represents the best treatment for patients with end-stage 

renal disease. Even if 90,000 KTx are performed each year worldwide, kidney transplantation 

outcome highly depends on graft quality before transplantation and, at present, no reliable tools 

exist to assess it. In clinical practice, a list of standard classification criteria (SCD) was redacted 

to guarantee graft quality, including kidney procured in donation after brain death (DBD) 

conditions 287,288. The increasing gap between demand and supply for KTx has led to the use of 

suboptimal organ donors, such as donation after circulatory death (DCD) and extended criteria 

donors (ECDs) 289,290. However, kidneys coming from these donors (ECDs excluded) are 

exposed to a supplementary warm ischemia at procurement leading to higher risk of delayed 

graft function (DGF) and subsequently poorer graft outcomes 250,291–294. DGF is a pathological 

condition, often resulting from ischemic damage and defined as a non-decrease of serum 

creatinine by at least 10% daily on 3 consecutive days during the first 7 days post-KTx 295. 

Aside from early complications following KTx, the occurrence of DGF in transplanted patients 

translates in lower graft function and worse short- and long-term outcomes 193,296. This clinical 

complication currently impacting approximately 25-30% of transplant recipients 194 is 

associated to several donor-related factors including, among others, donor type (DCD at higher 

risk compared to DBD) and duration of warm and cold ischemia times (WIT/CIT) 199. In way 

to minimize the risks related to ischemic damage, the usage of a cold preservation solution to 

be flushed in the organ, can minimize these events by decreasing metabolism and slowing the 

process leading to IRI 297. In recent studies, the use of IGL-1(Institute Georges Lopez-1, France) 

cold storage solution has led to the reduction of DGF incidence 186. However, independently of 

the types of donors, reliable tools are needed to assess the quality of the graft after procurement 

and/or to better prevent DGF in clinical practice 298. In this context, metabolomics-based 

approach is particularly suited by placing itself as a solution tool adapted to personalized 

medicine setting for patient’s treatment and follow-up 13,146,150. This study hypostatized that 

perfusate solutions represent useful – still poorly explored – biofluids that could inform on what 

happened to the graft during its cold ischemic period, thereby providing the clinicians with 

informative data concerning the quality of the graft. Thus, using a Nuclear Magnetic Resonance 

(NMR)-based untargeted approach, this study aimed to analyze kidney perfusate solutions 

obtained just before transplantation in search of a metabolomic signature that could predict 

DGF occurrence in transplant patients. For this purpose, we had access to two types of perfusate 

samples, one from a human cohort and the other one from an animal model simulating the 
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donor's type of donation. The parallel use of a human and experimental samples could enable 

us to explore two main points: (1) the biochemical events occurring between death and 

hypothermic storage of kidneys related to donor type; (2) the differences in metabolomics 

content between different donor types. 

The final goals of this pilot study were (1) to demonstrate the value of perfusate metabolomic 

analysis in KTx; (2) to evaluate the impact of donor type on the graft metabolome during the 

cold ischemia period and (3) to generate a metabolomics model that could be useful as a 

predictive tool for DGF occurrence.  
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5.2.3 Materials and Methods 
WIT and CIT 

In this study, kidney transplantation events were described using the terms: warm ischemia 

time1 (WIT1), cold ischemia time (CIT), and warm ischemia time2 (WIT2). 

WIT1 was measured as the period between the circulatory arrest and the cold perfusion 

of the kidneys. CIT was defined as the period between the initiation of the cold flush 

until the removal of the graft from the cold storage to be transplanted in the recipient. 

WIT2 was defined as the time between removal from cold storage to graft reperfusion 

in the recipient (suture time). 

Surgical models of kidney graft procurements in the rat 

This experimental model has been essentially developed to mimic the different types of kidney 

graft donors. After induction of anesthesia (Isoflurane 2% in O2 2l/min), a tracheotomy was 

performed to ensure optimal ventilation using a weight-based autoregulated rodent ventilator 

(PhysioSuite – KentScientific, Torrington, Connecticut, USA). Arterial and venous catheters 

(Polyurethane 0.43x0.69m) were placed in the femoral vessels to allow continuous monitoring 

of intra-arterial pressure (Picco Monitoring Kit and BP-100; CWE inc, Ardmore, Oklahoma, 

USA) and to have a venous access for intraoperative fluid injection, respectively (Ethic 

agreement code: 2147). 

DBD model  

In the DBD group (n = 9), brain death was induced under general anesthesia as previously 

described by Saat. et al 299. In summary, after front lateral trepanation, a Fogarty balloon catheter 

(Edwards Lifesciences, Irvine, California, USA) was introduced and slowly inflated 

(100uL/min for 4 minutes) into the extradural space. Brain death was confirmed by the absence 

of corneal and pupillary reflexes, the onset of a hypertensive peak followed by major 

hypotension and a 60 s apnea test as described 300. The rats were maintained in a brain-death 

state for 6 hours. The mean arterial pressure (MAP) was maintained above 60 mm Hg after 

induction of brain death by intravenous administration of normal saline (1mL/h) and 

norepinephrine (1mg / mL, Aguettant, Lyon, France) (5-15 µg/h) in case the administration of 

a 1mL bolus of normal saline would not maintain MAP above 60 mmHg. Then, all animals 

received a continuous infusion of 1 mL/h of normal saline using an electric syringe pump 

(Becton Dickinson, Franklin Lakes, New Jersey, USA), previously warmed to body 

temperature, to compensate for insensible losses. The body temperature was maintained at 38°C 
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with a rectal probe-controlled temperature pad connected to the ventilator (PhysioSuite – 

KentScientific, Torrington, Connecticut, USA).  

 

DCD model  

In the DCD group (n=10), all animals received 1 mL normal saline/hour, previously warmed to 

body temperature, to compensate for insensible losses. After 6 hours of mechanical ventilation 

in a previously tracheostomized rat maintained under general anesthesia, circulatory arrest was 

induced by an intravenous injection of KCl (150mg/kg) as previously described in rodent DCD 

models 301. Circulatory arrest was defined upon cessation of aortic pulsatility and a fall in MAP 

below 25 mmHg.  

 

Kidney procurement and perfusate collection 

After induction of circulatory (DCD group) or brain death (DBD group), a laparotomy was 

performed to remove the kidneys. Both kidneys were  flushed with IGL-1 organ preservation 

solution through the aorta and then stored immersed in IGL-1 at 4°C for 14 hours, as a model 

of clinical CIT (left kidney). After 14h of CIT, a second cold IGL-1 flush was made through the 

renal artery to collect the perfusate, defined as the first 2 mL of effluent evacuated from the 

renal vein. The perfusate was then stored at -80°C until metabolomic analyses (9 DBD and 10 

DCD perfusates). 

Clinical kidney transplantation 

Informed consent was obtained from all KTx recipients included in the study (Ethics agreement: 

B707201524484). Clinical data about donor, graft and recipient were collected. Kidney donor 

risk index (KDRI) and kidney donor profile index (KDPI) were calculated based on donor and 

transplant factors 176. 

Human kidney grafts procured from DBD or DCD donors were cold flushed during the 

procurement with IGL-1. All kidney grafts were preserved with classical static cold storage at 

4°C during variable CIT, according to the clinical situation, and were allocated to a given 

recipient by Eurotransplant. After preparation of the renal vessels before KTx on the back-table, 

the kidney grafts were flushed through the renal artery with 1L of IGL1 solution. The first 10 

mL of liquid exiting the renal vein during the flush were collected for metabolomics analysis 

and constituted the “perfusate”. A total of 49 perfusate samples were used in this study; 36 from 

DBD and 13 from DCD donors. Prior to DBD and DCD classification, samples were 

categorized based on donor criteria classification including SDC (n=40) and ECD (n=9). 
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Among these 9 ECD donors, 7 were DBD and 2 were DCD. Concerning the post-transplantation 

status, 7 ECD donors experienced DGF, while 2 were classified as noDGF. 
 

1H-NMR metabolomics 

All samples were recorded at 298 K on a Bruker Avance HD spectrometer (Bruker, Billerica, 

USA) operating at 700.17 MHz for the proton signal acquisition. The instrument was equipped 

with a TCI 5-mm cryoprobe with a Z-gradient. Maleic acid was used as the internal standard 

for quantification and trimethylsilyl-3-propionic acid-d4 (TMSP) for the zero for the zero 

calibration. An aliquot of 200µl of perfusate samples was supplemented with 50 μl of deuterated 

phosphate buffer (DPB, pH 7.4), 25µl of a 35mM solution of maleic acid and 2 μl of a 10 mg/ml 

TMSP D2O solution. 1H-NMR spectra were acquired using a 1D NOESY sequence with 

presaturation. The Noesypresat experiment used a RD-90°-T1-90°-Tm-90°-acquire sequence 

with a relaxation delay of 4 s, a mixing time (Tm) of 10 ms and a fixed T1 delay of 4 μs. Water 

suppression pulse was placed during the relaxation delay (RD). The number of transients is 64 

(64K data points). The data were processed with the Bruker Topspin 4.0.8 software (Bruker 

BioSpin, Billerica, USA) with a standard parameter set. Phase and baseline corrections were 

per-formed manually over the entire range of the spectra and the δ scale was calibrated to 0 

ppm using the internal standard TMSP. 

 

Multivariate analysis 

Once the spectra obtained, identification and quantification of metabolites were performed 

through Chenomx profiler 9.0 (Chenomx Inc., Edmonton, AB, Canada). The profiled spectra 

were used to generate a concentration table that was imported in BioStatFlow webtool 

(biostatflow.org) for multivariate statistical analysis. Autoscaling normalization was applied to 

concentration table. Principal component analysis (PCA) was used for looking at outliers and 

cluster between samples. An orthogonal signal correction-PLS model (OSC-PLS) was 

performed as discriminant model and its quality was determined by the predictability calculated 

based on the fraction correctly predicted in one-seventh cross-validation (Q²).  Permutation tests 

were performed for validate models. Metaboanalyst (www.metaboanalyst.ca) was used for 

generating multivariate receiver operating characteristic (ROC) curves and confusion matrix to 

assess the robustness of the models. ROC curves were performed by using PLS-DA models as 

classification method and univariate AUROC as feature ranking method with 2 latent variables. 

Confusion matrix was used for calculating model sensitivity and specificity. 
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Univariate and pathways analysis 

Univariate analysis was made using GraphPad Prism version 9.4.1 (GraphPad Software, La 

Jolla, CA, www.graphpad.com). Mann–Whitney U test was performed for comparisons 

between two groups. No correction was applied to Mann-Whitney U tests. The detailed analysis 

of the metabolic pathways was performed by Metaboanalyst (www.metaboanalyst.ca) using the 

metabolomic set enrichment analysis (MSEA) tool by using the high-quality SMPDB metabolic 

pathways as the backend knowledgebase. 

 

  

http://www.graphpad.com/
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5.2.4 Results 
Study population  

A preliminary statistical analysis was conducted on the cohort considering the donor criteria 

classification including SDC and ECD, which showed no confounding factors. Donor 

characteristics categorized by the type of death event are presented in  Table 19. 

 

 

 

Table 19 : Clinical characteristics of donors. (BMI=body mass index; Serum creat= serum creatinine 
mg/dl; KDPI= kidney donor profile index (%); KDRI= kidney donor risk index). 



Chapter 5 – Metaperfusate project 

 
 

171 

Statistical analysis on recipient data (DGF= 19; noDGF=30) showed no correlation between 

DGF status and related clinical data (Table 20).  

 

 

Preliminary analysis on IGL-1 matrix 

A preliminary metabolomics analysis allowed to spot a series of peaks coming from IGL-1 

matrix represented by lactobionic acid, adenosine, raffinose, and glutathione signals (S.I. 

FigureS10-S11-S12-S13). These peaks were identified, quantified, and excluded from 

following analysis on perfusate samples.  

 

Perfusate metabolomes in rat models: differences between DBD and DCD donors 

Nineteen perfusate samples were included in the analysis. DBD and DCD kidney donor 

conditions were mimed in 9 and 10 rats, respectively. After exclusion from statistical analysis 

of matrix-linked peaks, 44 quantified metabolites that are belonging to the kidney metabolome 

were used for multivariate statistical models. Supervised statistical investigations using OSC-

PLS highlighted a significant discrimination between DBD donor type versus DCD donor type 

(Q2 =0.621); the model was validated through a permutation test (p-value=0.0393), confirming 

the absence of overfitting (Fig. 60).  

 

 

 

Table 20:  Clinical characteristics of receivers based on graft outcome (DGF or noDGF ). CIT=  cold ischemia 
time; WIT1=  warm ischemia time; WIT2= warm ischemia time 2. 
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A loading-plot was generated in way to underline all the metabolites responsible for the 

discrimination of groups according to donor type. Based on the results of multivariate models, 

univariate statistical analysis revealed that the concentrations of 7 metabolites were increased 

in DCD status compared to DBD status, including 2-hydroxyisovalerate, 2-octenoate, 2-

oxocaproate, 3-hydroxyisovalerate, alloisoleucine, creatine phosphate, lysine, o-

phosphoethanolamine, taurine and valine (Figure 61).  

 

Figure 60: OSC-PLS model of rat model showing variation of 
metabolomics profile according to donor type (Q2= 0.641; 

cross validation p-value= 0.0393; n total=19). 

Figure 61: Violin-plots of significant metabolites in rat perfusate of DBD (n=9) versus DCD (n=10) . Mann-Whitney U test 
was used. (*<0.05; **< 0.001). 
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Perfusate metabolomes in human cohort: differences between DBD and DCD donors 

Forty-nine human perfusate samples were included in the analysis. Multivariate and univariate 

analyses based on donor criteria (SCD/ECD) indicated no significant statistical impact. Once 

this confounding factor was excluded, another analysis was conducted on the samples 

categorized by donor type (DBD= 36; DCD= 13). A total of 54 metabolites were identified 

independently from IGL-1 matrix and quantified (S.I. TableS6; FigureS10-S11-S12-S13) . 

Multivariate statistical analysis was performed by generating a discriminant OSC-PLS model 

(Q2=0.540); a permutation test (p-value= 0.02192) was performed by validating the model 

obtained (Figure 62). 

 

The metabolites relevant for discrimination between groups in multivariate models were used 

to perform univariate statistical analysis. Mann-Whitney U tests highlighted 17 metabolites 

significantly differing between donor types.  Twelve metabolites were increased in DCD donor 

group (e.g., valine and cystine) while five were decreased compared to DBD group (e.g., lactate 

and trimethylamine-N-oxide) (Figure 63). 

Figure 62: Chemometric analysis based on donor types in 
human model (n total=39). OSC-PLS score plot showing a 

separation between DBD versus DCD donor           
(Q2=0.540; cross validation p-value= 0.02192). 
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Insights into common metabolic pathways in human and rat perfusates  

By comparing the significant metabolites obtained in the two models, it was possible to spot 

some common features such as valine and isoleucine. In way to better investigate the 

biochemical events occurring during the hypothermic storage of kidney, a pathway analysis was 

conducted. MSEA analysis led to the identification of several pathways significantly affected 

by donor type (Figure 64a-b). The most relevant cascades were, in both models, represented 

by valine/leucine/isoleucine biosynthesis and degradation, aminoacyl-t-RNA biosynthesis, 

alanine/aspartate/ glutamate metabolism and glycerophospholipid metabolism.  

 

Figure 63: Violin-plots for metabolites of human cohort with significant variation according to DBD (n=36) versus DCD 
(n=13). Comparison between groups was made by using Mann-Whitney U test. (*<0.05; **< 0.001). 

Figure 64:  Comparison of MSEA analysis in human and rat models showed common biochemical pathways involved in the 
process of DBD and DCD ; (a) MSEA analysis of human cohort based on significant metabolites related to donor type ; 

(b)MSEA analysis of rat model for DBD versus DCD groups. 
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Correlation of 1H-NMR-based human perfusate metabolome with DGF incidence post-

KTx 

By considering DGF outcome as factor (DGF=19 ; noDGF=30), OSC-PLS model was used as 

a discriminant analysis (Q2= 0.370; P-value= 0.4387). Moreover, a multivariate receiver 

operating characteristics (ROC) curve was generated by using the ratios of 54 identified 

metabolites (73 variables; AUC=0.777 ; predictive accuracy= 71.6%)  in way to evaluate the 

performance of our model through automated feature selection (Figure 65a-b). Univariate 

analysis showed twelve metabolites being significantly increased in noDGF status (such as 

cystine, leucine, alanine ...), unlike carnosine (Figure 66).  

 

 

 

Figure 65 Predictive models of DGF occurrence in the human cohort: (a) Multivariate ROC curve based on DGF versus 
noDGF analysis with automated selection of ratio features showed an AUC= 0.777 by considering 73 variables; (b) Plot 

showing the predictive accuracy with different features by reaching a value 71.6% with 73 variables. 

Figure 66 Violin plots of significant metabolites according to DGF (n=19) versus noDGF (n=30) in human model. Comparison 
between groups was made by using Mann-Whitney U test. (*<0.05; **< 0.001). 
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In the perfusates from DBD kidneys, thirty-six perfusate samples were used for the univariate 

and chemometric analyses by using DGF status as discriminant factor. A discriminant OSC-

PLS model was generated (Q2=0.747; p value= 0.2642) to look at the separation between the 

noDGF and the pathological status (Figure 67a). Furthermore, the multivariate ROC curve 

showed a good performance by using the ratios of the 54 identified metabolites generated 

through Metaboanalyst algorithm (73 variables; AUC= 0.917; predictive accuracy= 83%) 

(Figure 67b). A confusion matrix was additionally performed to cross-validate the model by 

highlighting all the automated selected ratio features used by the algorithm (Figure 67c).  

 

Mann-Whitney t-tests highlighted 15 metabolites being significantly increased (e.g., lactate, 

alloisoleucine, isovalerate...) and ethylmalonate and carnosine being decreased in noDGF 

condition in comparison to DGF condition (Figure 68). To identify biologically meaningful 

patterns a MSEA analysis was done showing that methylhistine/ beta-alanine metabolism and 

valine, leucine and isoleucine degradation are the pathways more significantly impacted. 

Figure 67 Prediction of DGF kidney outcome in DBD group (human cohort); (a) OSC-PLS score plot show a separation between groups 
(Q2=0.747; p-value=0.2642); (b) multivariate ROC curve of DBD group based on DGF versus noDGF analysis with automated selection of 

ratio features showed an AUC= 0.917 by considering 73 variables; (c) confusion matrix was generated to evaluate model performance. 
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A total of 13 perfusates from DCD donors were used for statistical analysis by using graft 

outcome as discriminant factor (data not shown). The low number of samples for each group 

(DGF=5; noDGF=8) highlighted the over fitting of the model and a consequent poor 

performance (Q2= 0.7333; P-value= 0.4995). Univariate statistical analysis by using Mann-

Whitney t-test showed only one metabolite significant for the discrimination of the two groups: 

creatinine phosphate. 

  

Figure 68 : Violin-plots of significant metabolites of DBD subgroup according to the analysis DGF (n=14) versus noDGF 
(n=22) in human model. Mann-Whitney U test was used for comparison. 
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5.2.5 Discussion 
DGF represents one major obstacle in allograft survival 302. Still, no single biomarker or a 

biochemical signature of graft quality and DGF prediction has been found and used routinely 

in clinical practice.  The metabolomics approach has already been applied in several studies 

related to renal pathology and dysfunction on urine or plasma samples, leading to the discovery 

of metabolites linked to pathological status (Humphries et al., 2023; Iwamoto et al., 2022; 

Wishart, 2006). Its non-invasive nature makes this approach have advantages over biopsy in the 

context of graft status monitoring. Thus, several metabolomic studies of renal perfusate are 

described in the literature with particular emphasis on the correlation between perfusion time 

and metabolic content. 222,223,303. In addition, other works have investigated perfusates of 

porcine models through NMR technique and have shown changes in metabolome’s profiles of 

DCD donors between different perfusion strategies 297,304,305. However, at that time, no relevant 

metabolomic signature or predictive model was reported about the occurrence of DGF 

condition.  

The first question to ask is whether there is a difference in the graft metabolome depending on 

the harvesting conditions (DCD or DBD). Using our pre-clinical experimental model, we were 

able to demonstrate that the metabolomes of the DCD and DBD groups were significantly 

different. Specifically, perfusate analysis revealed higher levels of 7 metabolites, including 

lysine, isoleucine, and valine, in DCD samples compared to DBD samples. In the human 

cohorts, these metabolic trends were confirmed with more than 17 metabolites levels that 

significantly differs according to the donner type. Some of these metabolites were common in 

both rat model and human study. More interestingly, several common biochemical pathways 

such as valine, leucine and isoleucine degradation/ biosynthesis and aminoacyl-tRNA 

biosynthesis were also identified and could be correlated with some data in the literature.  Thus, 

Hrydziuszko et al. previously observed the implication of these biochemical pathways in the 

DCD graft in the context of liver transplantation 306. These similarities, albeit partial, between 

the metabolomic profiles of the experimental model and human samples demonstrated the value 

of the animal model for mimicking the graft according to the type of donor. Moreover, in the 

human study, lactate, trimethylamine-N-oxide (TMAO) and methylmalonate were also found 

to be significantly higher in DBD graft in comparison to DCD graft. Modulations in lactate 

levels could be explained by the major change in the metabolic oxidative process following 

brain death by underling a change from aerobic to anaerobic metabolism in the graft 307,308. 

Higher levels of TMAO, could be linked to a more important renal medullary damage due to 
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ischemic events in DBD graft compared to DCD 309,310. Differences in metabolic profiles related 

to donor types may also find an explanation in metabolic changes in the kidney due to the I/R 

process, as already reported in the literature (Jouret et al., 2016), and to the warm ischemia 

typical of DCD donors. 

All these data showed that the biochemical processes that took place within the graft during the 

period of cold ischemia were different depending on the type of donor and need to be explored 

more in details. Furthermore, it could be expected that these metabolomic differences could be 

linked to the occurrence of DGF after transplantation and long-term outcomes in recipients. 

This shows that, in our view, each type of donor should be studied separately. 

This was confirmed when we studied the correlation between the graft metabolome and the 

occurrence of DGF.  Indeed, the results obtained using the data from the whole cohort (DBD 

and DCD donors together) showed a poor performance in predicting the post-transplantation 

graft outcome. While focusing our analysis on DBD-derived perfusates improved the quality of 

the predictive DGF occurrence model. Indeed, the multivariate ROC curve and the matrix of 

confusion obtained are quite relevant and compatible with a clinical predictive use for DGF 

occurrence demonstrating the interest of perfusate analysis for the recipients’ follow-up. 

Moreover, this approach led also to the identification of several biomarkers that differed in 

concentrations in the perfusates of DGF kidneys compared to noDGF kidneys. Alanine, 

isoleucine, leucine, valine and other branched chain amino acids were detected to be in 

significantly lower levels in DGF kidneys.  These metabolites were released by the graft which 

can attest the sustained metabolic activity, ischemic damage, or both. Guy et al. previously 

observed raised concentrations of amino acids that may be linked to increased cellular 

breakdown in more ischemically damaged DGF kidneys 226. However, their results were based 

on the perfusate’s analysis of DCD graft 45 minutes after perfusion with KPS-1 cold storage 

solution, which hampers direct comparison with our results. Otherwise, Carnosine and ethyl-

malonate, were significantly increased in DGF kidneys. The role of carnosine in kidney 

function has recently been investigated and shown a significantly lower urinary carnosine 

excretion in kidney transplant recipients compared to healthy group leading to higher risk of 

graft failure 311. Potential mechanism of action of this metabolite included lowering of chronic 

low-grade inflammation, as demonstrated in animal models in which treatment through 

carnosine was associated with attenuation of I/R-induced renal dysfunction 312,313. Thus, the 

higher level of carnosine in the perfusate samples of DGF kidney could be correlated to a 

possible increase of I/R damage. Levels of ethyl-malonate was increased in the more 

ischemically damaged DGF kidneys, which would suggest changes in normal function of 
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tricarboxylic acid (TCA) cycle organic anions (OAs). The biological mechanism linking TCA 

cycle organic anions with kidney dysfunction is not fully understood, but some studies have 

reported the relationship of these biomarkers with kidney function 314–316. A more fundamental 

study using rat models of kidney transplantation would provide a better understanding of the 

role of metabolites and associated biochemical pathways in graft function during cold ischemia. 

This would also allow us to better understand the impact that these metabolic pathways could 

have on the occurrence of DGF. 

Considering all these findings, we are also aware of the limitations of our present pilot study. 

Our findings need obviously to be validated and confirmed in human by studying a new cohort 

with an increased number of DCD patients.  The development of a rat transplantation models 

could also be valuable, especially for a more fundamental study of the metabolic pathways 

implied in DGF events. Another limitation of our study is the lack of complete clinical data and 

of biofluids from the donors that could allow us to obtain a more complete view on graft and 

allow to refine and complete the data concerning the graft before transplant.  
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5.2.6 Conclusion 
In KTx, a better understanding of graft quality and a better prediction of short-term renal 

function in the recipient patient are essential both to improve graft selection and to provide 

more precise, personalized patient management. By studying the fluid preserved in the graft 

obtained just before transplantation, we were able to identify, both in an animal model and in a 

human cohort, some differences in the kidney metabolome depending on the type of donor 

(DCD or DBD). These differences were directly associated with alterations in the metabolic 

pathways of the graft, potentially exerting additional influence on kidney function recovery 

post-KTx. In view of these results, it is obvious that DCD and DBD samples could be analyzed 

in separate models.  

Thus, we have demonstrated that using the perfusate sample in DBD donors could allow to 

predict the occurrence of DGF status prior to surgery and to identify a panel of metabolites that 

could be correlated to this status. Our data paves the way to better understand the impact of 

donor’s types on the biochemical events occurring between death and hypothermic storage and 

to correlate some metabolites of the storage liquid with the occurrence of DGF. This acquired 

knowledge may help clinicians in the elucidation of the biochemical events occurring between 

death and transplantation per se to improve the process of organ procurement and reduce the 

discard rate.  Obviously, our preliminary results need to be confirmed on a validation cohort 

that could also include biofluid samples and complete clinical data from both donor and 

recipients. Moreover, the development of rat models of kidney transplantation from DCD or 

DBD donors as well as a better exploration of the identified biochemical pathways implied will 

also allow a better understanding of  the ischemic events whose intricate interconnections that 

play a pivotal role in shaping the graft outcome.
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6 General conclusions and perspectives 
In the past decades, metabolomics has seen an increase of its success thanks to the variety of 

applications and its “Swiss knife” aspect. More recently, in the context of personalized 

medicine developments, the interest of this approach has grown with applications varying 

between different medicine branches such as oncology, metabolic disorders, cardiovascular 

disease, or even global routine health monitoring. Analysis of the metabolome allows to get a 

snapshot of metabolic changes and variations happening when homeostasis is broken, offering 

insights into how these changes influence the transition from a physiological to a pathological 

state and/or how it could evolve with diseases. Certainly, it is now widely recognized that 

pathological conditions result from disturbances in several metabolic pathways rather than 

being solely attributed to the over or under expression of a single biomarker. Thanks to the 

acquired knowledge, today, metabolomics serves as starting point for a more in-depth 

exploration and understanding of biological events that drive disease progression or affect 

treatment efficacy. 

 

For several years, the Clinical metabolomics group (CliMe), in close collaboration with the 

department of Nephrology of the CHU of Liège, has been delving into the exploration of 

ischemia/reperfusion (I/R) events in the kidney using an NMR-based metabolomics approach. 

The impetus for our interest in this subject originated from the limited understanding of the 

physiopathological events associated with I/R injury and the substantial repercussions it can 

have on transplanted kidneys and on kidney function. That is why, in the context of this thesis 

and following the previous works of the CliMe, our focus was directed towards the kidney 

transplantation event in its preparatory and subsequent phases. Indeed, while a considerable 

number of metabolomics publications have explored cohorts with CKD, a noticeable scarcity 

of studies is reported on transplantation in the existing literature. 

 

For this reason, the major aim of this work was to identify a panel of metabolites related to renal 

function to build predictive models which may help clinicians in clinical practice using our 

expertise in renal metabolomics. Indeed, despite significant and ongoing efforts to optimize 

patient’s follow-up, there still exists a degree of imprecision that complicates patient diagnosis; 

in that light, the development and application of predictive metabolomics models may serve as 

an innovative diagnostic tool to enhance and personalize patient management and follow-up. 

Therefore, by using two cohorts in parallel, we decided to investigate three major factors 
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determining the outcome of kidney transplantation process: (1) donor graft, (2) transplanted 

recipient and (3) patient follow-up. The combined use of samples collected from the graft after 

the ischemic period and from graft-recipient may provide complementary information 

regarding transplantation process enabling the generation of two predictive models for pre- and 

post-graft events. 

 

Based on these objectives, this work was divided in three fundamental parts whose objectives 

can be summarized as follow: (1) set-up of an optimized and precise protocol for analysis of 

urinary samples; (2) identify a metabolic signature predictive of kidney function decline during 

1year post-KTx; (3) define a metabolomic signature typical of graft-quality correlating the 

correct kidney function recovery in early post-KTx. 

 

The first part of the thesis focused on developing a urine preparation protocol to address 

technical challenges encountered during data preprocessing. Various strategies were 

implemented to mitigate issues related to chemical shift and data normalization during sample 

preparation. Both issues were successfully addressed by utilizing KF solution to reduce 

chemical shift variation and normalization on dilution factor measured though NMR to reduce 

dilution between samples.  As shown through two studies presented in sections 3.3 and 3.4, data 

pre-processing step plays a crucial role in the context of statistical analysis and biological 

interpretation. Through this work, we showed the set-up of a robust and adapted sample 

preparation and pre-processing protocol can impact the performance of statistical models and 

by consequence results interpretation.  

 

In the second part of this work a cohort of urine samples collected at two time points post-

transplantation was analyzed by combining and integrating NMR and MS-based metabolomics 

approaches. To benefit from the longitudinal character of this cohort an original sample 

stratification was adopted aiming to forecast kidney function decline at 12-month post-KTx by 

identification of predictive biomarkers in urine collected at 3 months. Additionally, by taking 

advantage of the dual-platform metabolomics approach it was possible to highlight the 

complementarity of NMR and MS techniques allowing an increase in metabolomic coverage 

and model predictive accuracy for kidney function deterioration . Employing this methodology 

enabled us to investigate alterations in the metabolomes of patients experiencing a decline in 

renal function over time and to identify a panel of biomarkers from each utilized platform. This 

investigation underscores the robust and predictive potential of the metabolomics approach, 
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which could expand the array of tools available to clinicians in the clinical management of 

KTR.  

 

As last part of this work, an NMR-based metabolomics approach was applied to a cohort of 

perfusate samples collected from donor graft just before transplantation. The interest of this 

study cohort was based on the use of samples collected from donor before transplantation 

coupled with sample stratification of recipient outcome after transplantation. Using this 

approach allowed us to put light the existing relationship between metabolome of the graft and 

the occurrence of DGF status. Moreover, the use in our cohort of two different types of donors 

in both animal model and human cohort, enables to explore differences in the kidney 

metabolome depending on the type of donor potentially exerting additional influence on kidney 

function recovery post-KTx. Considering these results, we demonstrated the potential of 

metabolomics approach applied to graft as novel tool to monitor quality graft in pre-

transplantation event and how it may serve as diagnostic predictive tools for a more 

personalized management of DGF in clinics.  

 

By looking back all the obtained results from the two cohorts analyzed in this thesis work, the 

complementarity of the results coming samples coming from the grafts and the recipients of 

kidney transplantation is clearly highlighted . However, while the predictive models 

demonstrate interesting results within our complementary cohorts, caution is advised when 

extrapolating these findings to a different or broader cohorts. Notably a key limitation of the 

metabolomics approach applied to both KTx axes in this thesis, is its challenge in generating 

models that effectively perform across multicenter sampling cohorts, which, in our study, would 

enhance their robustness and predictive accuracy. In addition to this, the limited sample size,, 

the lack of supporting literature,  make mandatory the analysis of a new prospective cohorts to 

confirm the founded metabolic profiles describing the donor types, and predicting the delayed 

graft function status and the decline in kidney functionality in in KTRs.  

Despite these limitations, the encouraging results suggest that  the utilization of a non-invasive 

and time-efficient clinical metabolomics approach may holds the potential to advance the 

development of a novel diagnostic tool for concrete application in clinical practice.  
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If through the investigation of metabolomes in pre- and post-graft status it was possible to 

identify changes in metabolomes strictly related to kidney functionality at very early and middle 

terms after transplantation, several major studies still are needed to obtain an overall vision of 

the kidney transplantation event. In this sense, in perspective, it could be interesting to study a 

cohort consisting of matched donor-recipient pairs which may have the interest of combining 

data from the donor, the graft quality and the recipient before and after the transplantation to 

establish a predictive model for early post-graft kidney dysfunction or functional decline. 

Certainly, this study design has the capability to facilitate a more detailed examination of the 

three crucial elements in the transplantation process: the donor, the recipient, and the ischemic 

event whose intricate interconnection plays a pivotal role in shaping the graft outcome. Despite 

the numerous advantages and compelling results that this type of cohort may offer, we are aware 

of the practical limitations. It is crucial to acknowledge that in clinical practice, donors and 

recipients are typically not often situated in the same hospital, city, or, in some instances, the 

same country. In such scenarios, the retrieval of patient data and the collection of samples 

present challenges that necessitate close and stringent collaboration between multiple medical 

centers, a collaboration that may not always be easy to set up. 

 

In the context of graft quality control, essential practical considerations need to be addressed: 

the timing and the setup of  the analysis. While perfusate analysis can provide valuable insights 

to clinicians regarding the graft outcome, the timing presents a critical and limiting factor during 

surgical interventions. Indeed, during a kidney transplantation, it seems challenging to request 

the medical team to collect a perfusate sample and wait for the results of its analysis. In many 

cases, once the organ is available for the kidney recipient, the surgical intervention is promptly 

carried out without delay. Based on this critical point, if information about graft quality could 

be obtained soon after the graft intervention, it may be more realistic to utilize this information, 

for early post-KTx phase. Once predictive results indicating potential kidney dysfunction are 

available, clinicians could establish preventive measures to improve patient care. Indeed, taking 

into account the metabolic pathways that could be negatively affected during the ischemic 

period, another putative approach could be a modification of the composition of the cold 

preservation solution to avoid these detrimental modulations.  

 

If all these perspectives refer to a prior or early phase of the kidney transplantation process, 

additional insights can be considered for a mid-post-graft period, such as the 3-month mark 

after transplantation. To enhance and refine current results regarding GFR evolution, several 
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options may be explored. Firstly, the utilization of a controlled murine model that mimics the 

decline of the kidney function in the post-KTx period could provide a more precise panel of 

biomarkers solely better correlated to GFR reduction over time and that could be related to 

specific biochemical pathways. Another possibility involves the combination and comparison 

of biopsies and urine results at 3 months post-KTx to broaden and redefine the panel of 

predictive biomarkers for kidney function decline. As a final suggestion, considering the 

advancements in omics sciences, a significant option may be the application of a multi-block 

approach. This method could not only establish a predictive model based on metabolites but 

also integrate proteomic or genomic information, thereby enhancing the model's robustness and 

allowing a comprehensive understanding of kidney function decline throughout the post-KTx 

period. 

 

By having an overview of all the literature, the commercialized application (such as endometrial 

carcinoma, cancer screening detection etc..) and the encouraging result of this thesis, we can 

better realize the impact that metabolomics could have on personalized medicine. Indeed, in a 

world where our daily gadgets are tailor-made ad personam to reflect “who we really are”, and 

artificial intelligence provides customized solutions to various challenges, the development of 

personalized and precision healthcare appears evident. Indeed, it seems imperative today to 

move beyond the "traditional" concept of medicine, where all patients are standardized to a 

single average subject and cut-off values are defined to categorize them into "control" or "case" 

boxes. In this scenario, clinical metabolomics stands out as an innovative approach for a new 

healthcare concept which tailor patient treatment and follow-up to the specific characteristics 

of each patient. By considering the myriad of factors influencing a patient's health, 

metabolomics provides access to clinical cases that are no longer defined solely by a single 

biomarker but by the switch of whole metabolome from at equilibrium to “disease” state.  

 

In summary, all the positive and encouraging results highlighted by this thesis allowed us to 

demonstrate the possibility to predict GFR evolution and kidney dysfunction in post-KTx 

phase, by demonstrating that metabolomics may be used in clinics for a more personalized 

approach on medicine. Finally, as also proved by various clinical applications, we are convinced 

that the evolution of precision medicine, supported by metabolomics, holds the potential to 

serve as a crucial diagnostic and prognostic tool, leading in a new era of more personalized and 

effective healthcare in clinical practice. 
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TableS 2 VIP score from LC-MS positive analysis. In the table only the features annotated and for which a match in databases 
was found are reported. Only 191 of 751 features found a match in compounds databases. 

Positive VIP  Matching compound 

M212T67 L-3,4-Dihydroxyphenylalanine methyl ester hydrochloride 
M212T49 L-3,4-Dihydroxyphenylalanine methyl ester hydrochloride 
M307T38 7'-Hydroxy-[3,4']bichromenyl-2,2'-dione 
M197T141 1,9-dimethyluric acid 
M197T162_2 1,9-dimethyluric acid 
M283T497 2-(5-formyl-3,4-dihydro-2,2-dimethyl-2H-pyran-6-yl)-Benzoic acid 
M165T43_1 2-Hydroxycinnamic acid, predominantly trans 
M165T38_2 2-Hydroxycinnamic acid, predominantly trans 
M165T57 2-Hydroxycinnamic acid, predominantly trans 
M227T100 2',3'-Dideoxythymidine 
M167T85 3-Methylxanthine 
M272T367 N-3-hydroxydecanoyl-L-Homoserine lactone 
M154T72_3 3-sulfino-L-alanine 
M133T63 3-ureidopropionate 
M237T66 3,4-dihydro-2,2-dimethyl-indeno[1,2-b]-pyran-5(2H)-one 

M233T65 
3',4',5',6'-tetrahydro-6',6'-dimethyl-spiro[isobenzofuran-1(3H),2'-
[2H]pyran]-3-one 

M233T70 
3',4',5',6'-tetrahydro-6',6'-dimethyl-spiro[isobenzofuran-1(3H),2'-
[2H]pyran]-3-one 

M255T118 
3',4',5',6'-tetrahydro-6',6'-dimethyl-spiro[isobenzofuran-1(3H),2'-
[2H]pyran]-3-one 

M255T147 
3',4',5',6'-tetrahydro-6',6'-dimethyl-spiro[isobenzofuran-1(3H),2'-
[2H]pyran]-3-one 

M246T274 4-Acetamidoantipyrin 

TableS 1 pH values of urinary samples for the 4 subjects: T0=represents the pH at samples collection 
time; Phosphate buffer= pH for sample after addition of phosphate buffer; KF= pH of sample 

aftertreatment with KF protocol; Freeze-drying= urinary pH after freeze-drying process and addition 
of buffer. 
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M105T38_3 4-aminobutanoate 
M224T77 4-Hydroxybenzoylcholine 
M235T56 4-methoxy-2-(5-methoxy-3-methylpyrazol-1-yl)-6-methylpyrimidine 
M129T48 4-Piperidinecarboxamide 
M221T84 5-hydroxy-L-tryptophan 
M192T257 5-Hydroxyindole-3-acetic acid 
M192T93 5-Hydroxyindole-3-acetic acid 
M192T106 5-Hydroxyindole-3-acetic acid 
M285T399 5,7-Dimethoxyflavanone 
M140T56 6-Hydroxynicotinic acid 
M328T297 8-Oxoerythraline_epoxide 
M287T277_2 Abacavir sulfate 
M266T277_1 Acetochlor-OXA 
M330T73 Adenosine 3',5'-cyclicmonophosphate 
M348T141 Adenosine 5'-monophosphate 
M295T244 Aspartame 
M208T152_4 Benzoylcholine 
M311T435 Bifonazol 
M311T419 Bifonazol 
M245T99 Biotin 
M266T277_2 Caffeoylcholine 
M341T298_1 Cinanserin 
M332T435 Ciprofloxacin (Cipro) 
M250T221 Conivaptan HCl (Vaprisol) 
M114T46_3 Creatinine 
M226T38_2 Cyclocytidine 
M226T63 Cyclocytidine 
M199T94 Cymoxanil 
M199T110_2 Cymoxanil 
M202T359 DEP_202.1225_16.0 
M215T51_1 DETHIOBIOTIN 
M215T56 DETHIOBIOTIN 
M305T357_1 Diazinon 
M223T565_1 Diethyl-phthalate 
M203T330 Diphenylsulfoxide 
M330T129 Epoxiconazole 
M280T340_1 Etamiphylline 
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M246T48 FEN_246.1101_16.1 
M265T277_3 Feruloylputrescine 
M196T161 Glucosaminate 
M196T178 Glucosaminate 
M147T277 Glutamine 
M147T72 Glutamine 
M173T52_1 Glycyl-L-proline 
M303T253 Hesperetin 
M303T292 Hesperetin 
M180T162_2 Hippurate 
M202T252 Hippurate 
M118T253 Indole 
M193T278 Isoproturon-monodemethyl 
M194T278_1 Isoproturon-monodemethyl 
M130T312 Isoquinoline 
M190T211 Kynurenic acid 
M190T195 Kynurenic acid 
M209T93_2 Kynurenine 
M209T103 Kynurenine 
M209T497 Kynurenine 
M164T68 L-Ethionine 
M120T91 L-Phenylalanine 
M205T153 L-Tryptophan 
M182T130_3 L-Tyrosine 
M182T108 L-TYROSINE 
M182T57 L-Tyrosine 
M136T142 L-Valine 
M338T336 Linezolid 
M181T190_1 Mannose 
M278T357 Metazachlor 
M274T147 Metazachlor-OXA 
M150T55_2 Methionine 
M206T354 Methoxyindoleacetic acid 
M326T149 Midazolam Hydrochloride 
M326T141 Midazolam Hydrochloride 
M223T124 Mitoxantrone Hydrochloride 
M223T118 Mitoxantrone Hydrochloride 
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M269T50 Diethylstilbestrol 
M269T76 Diethylstilbestrol 
M269T78 Diethylstilbestrol 
M275T177 Forsenazide 
M304T159  Fenoterol (hydrobromide) 
M160T38  Pargyline hydrochloride 
M160T60  Pargyline hydrochloride 
M160T79  Pargyline hydrochloride 
M160T71  Pargyline hydrochloride 
M160T57  Pargyline hydrochloride 
M256T197 Phenytolozamine citrate  
M357T88 trans- Sulindac 
M254T399 (9-oxo-10(9H)-acridinyl)acetic acid 
M275T53 Dexchlorpheniramine maleate 
M194T99 6-Methyl-2-(phenylethynyl)pyridine 
M288T57 Rutaecarpine 
M174T49 R-(-)-Desmethyldeprenyl hydrochloride 
M174T64 R-(-)-Desmethyldeprenyl hydrochloride 
M174T81 R-(-)-Desmethyldeprenyl hydrochloride 
M330T244 Cloperastine hydrochloride 
M218T54 Securinine 
M218T49_1 Securinine 
M218T71 Securinine 
M190T262 N-Acetyl-DL-glutamic acid 
M192T57 N-acetylL-DL-methionine 
M256T158 N-alpha-(tert-Butoxycarbonyl)-L-histidine 
M256T147_2 N-alpha-(tert-Butoxycarbonyl)-L-histidine 
M100T110 N-Methyl-2-pyrrolidone 
M100T88 N-Methyl-2-pyrrolidone 
M125T38_1 N,N-Dimethylsulfamide 
M125T38_2 N,N-Dimethylsulfamide 

M404T253 
L-Phenylalanine, N-[[(3R)-5-chloro-3,4-dihydro-8-hydroxy-3-methyl-1-
oxo-1H-2-benzopyran-7-yl]carbonyl]- 

M203T49_2 Pyrrolo[2,1-b]quinazolin-9(1H)-one, 2,3-dihydro-3-hydroxy- 
M302T128 2-Phenylethyl beta-D-glucopyranoside 

M271T69 
Pyran-2-one, 5,6-dihydro-5-hydroxy-4-methoxy-6-(2-phenylethyl)-, 
(5S,6S)- 

M248T82_2 2-(6-hydroxyhexyl)-3-methylidenebutanedioic acid 
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M293T382_2 
3-Benzoxacyclododecin-2,10(1H)-dione, 4,5,6,7,8,9-hexahydro-11,13-
dihydroxy-4-methyl- 

M289T290 
2-[(3S,3aR,5R,7aS)-3a-Acetyl-3-hydroxy-7a-methyloctahydro-1H-inden-
5-yl]acrylic acid 

M203T359 2-[5-(2-hydroxypropyl)oxolan-2-yl]propanoic acid 
M265T381 4-(2,7-dihydroxy-6-methylheptan-2-yl)-3-hydroxybenzoic acid 

M329T278_1 
Pyrano[3,2-c][2]benzopyran-6(2H)-one, 3,4,4a,10b-tetrahydro-3,4,8,10-
tetrahydroxy-2-(hydroxymethyl)-9-methoxy-, (2R,3S,4S,4aR,10bS)- 

M567T277 

(4S,5Z,6S)-5-[2-[(E)-3-(4-hydroxyphenyl)prop-2-enoyl]oxyethylidene]-4-
(2-methoxy-2-oxoethyl)-6-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxy-4H-pyran-3-carboxylic acid 

M365T299 
(3S,5Z,8S,9R)-8,9,16-Trihydroxy-14-methoxy-3-methyl-3,4,9,10,11,12-
hexahydro-1H-2-benzoxacyclotetradecine-1,7(8H)-dione 

M300T440 
1-Oxaspiro[2.5]octan-6-ol, 5-methoxy-4-[(2R,3R)-2-methyl-3-(3-methyl-
2-buten-1-yl)oxiranyl]-, (3R,4S,5S,6R)- 

M249T195 
Cyclohexen-1-one, 4,6-dihydroxy-3-[(1E)-3-hydroxy-3-methyl-1-buten-1-
yl]-6-methyl-, (4R,6S)- 

M283T86 C11H14N4O5 

M389T381_1 
Cyclopentaneacetic acid, 2-[(2Z)-5-(hexopyranosyloxy)-2-penten-1-yl]-3-
oxo-, (1R,2R)- 

M180T139 4,6-dihydroxy-3-methyl-2,3-dihydroisoindol-1-one 
M291T74 2-(4,8-Dihydroxy-4a,8-dimethyldecahydro-2-naphthalenyl)acrylic acid 
M222T287 Pyrrole-3-propanoic acid, 5-acetyl-4-(carboxymethyl)- 
M141T183 4-hydroxy-3,6-dimethylpyran-2-one 
M142T197 4-hydroxy-3,6-dimethylpyran-2-one 
M261T171 8-hydroxy-7-methoxy-3-(2-methylbut-3-en-2-yl)chromen-2-one 

M413T253 
Pyran-5-carboxylic acid, 3-ethenyl-2-(beta-D-glucopyranosyloxy)-3,4-
dihydro-4-(2-hydroxyethyl)-, methyl ester, (2S,3R,4S)- 

M289T184 Pyran-4-one, 3-(beta-D-glucopyranosyloxy)-2-methyl- 

M257T340 
(1R,4Z,9S)-4-(Hydroxymethyl)-11,11-dimethyl-8-
methylenebicyclo[7.2.0]undec-4-en-3-one 

M257T356 
(1R,4Z,9S)-4-(Hydroxymethyl)-11,11-dimethyl-8-
methylenebicyclo[7.2.0]undec-4-en-3-one 

M243T252 C11H18N2O4 
M243T290 C11H18N2O4 
M243T273 C11H18N2O5 
M247T264 Nefiracetam (Translon) 
M247T275 Nefiracetam (Translon) 
M298T88 Nelarabine (Arranon) 
M267T408_2 Nevirapine (Viramune) 
M123T38_3 Nicotinamide 
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M124T38_1 Nicotinic acid 
M124T38_3 Nicotinic acid 
M124T55 Nicotinic acid 
M209T152_2 Nicotinoylcholine 
M209T140 Nicotinoylcholine 
M207T253 Norlidocaine 
M204T38_3 O-Acetyl-L-carnitine 
M205T312 O-Acetyl-L-carnitine 
M153T52 Oxypurinol 
M153T72_2 Oxypurinol 
M152T86_1 Paracetamol 
M221T38_1 Thidiazuron 
M211T243 Phenazone / antipyrine 
M166T68 Phenylalanine 
M166T87 Phenylalanine 
M166T91_3 Phenylalanine 
M239T197 Pirimicarb 
M116T54 Proline 
M116T48 Proline 
M130T410 quinoline 
M459T333_1 Raltitrexed 
M254T126 Sulfamethoxazole 
M268T277_2 Sulfamoxole 
M233T440 teasperin 
M181T130_4 Theobromine 
M181T178_2 Theophyline 
M181T42_1 Theophylline 
M181T43 Theophylline 
M181T184 Theophylline 
M181T50 Theophylline 
M182T290 Tyrosine 
M182T287 Tyrosine 
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TableS 3 VIP score from LC-MS negative analysis. In the table only the features annotated and for which a match in databases 
was found are reported. Only 97 of 538 features found a match in compounds databases. 

Nega�ve VIP  Matching compound 

M133T48 (S)-MALATE 

M481T429 
11-(6-{[2-(3,4-dimethoxyphenyl)ethyl]amino}-4-chloro-1,3,5-triazin-
2-yl)-7,11- diazatricyclo[7.3.1.0<2,7>]trideca-2,4-dien-6-one 

M213T421_2 2-Deoxyribose-5-phosphate 
M159T46_2 2-OXOADIPATE 
M211T163 2,4,5-trimethoxybenzoic acid 
M211T249 2,4,5-trimethoxybenzoic acid 
M168T53_2 3-Methyl-L-his�dine 
M168T69 3-Methyl-L-his�dine 
M165T88 3-Methylxanthine 
M182T248 4-Pyridoxate 
M182T232 4-Pyridoxate 
M197T48_2 4,6-dinitro-o-cresol 
M463T82 4'-Methoxy-7-O-??-D-glucopyranosyl-8,3'-dihydroxyflavanone 
M190T334 5-HYDROXYINDOLEACETATE 
M328T85 Adenosine 3',5'-cyclicmonophosphate 
M328T70 Adenosine 3',5'-cyclicmonophosphate 
M229T94 Arabinose 5-phosphate 
M289T310_1 Argininosuccinate 
M109T155 Catechol 
M191T69 Citrate 
M191T86 CITRATE 
M191T49_3 Citrate 
M191T46_2 Citrate 
M191T85 CITRATE 
M178T76 Cyclamate 
M261T340 D-Sorbitol-6-phosphate 
M249T108 Dimethachlor OXA 
M250T310 Dimethachlor OXA 
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M165T330 Ethylparaben 
M165T345 Ethylparaben 
M331T471_2 Gibberellin A20 
M249T58 Heptenophos 
M249T135 Heptenophos 
M197T387 IQ 
M173T44 Isocitrate 
M173T58_2 Isocitrate 
M141T81 Kojic acid 
M159T127 L-alanyl-L-alanine 
M146T46 L-Glutamic acid 
M146T50 L-Glutamic acid 
M145T278 L-GLUTAMINE 
M145T49 L-LYSINE 
M407T153 L-Tryptophan 
M181T75 MANNITOL 
M220T445 Metaxalone 
M193T396 Monoethyl phthalate 
M319T509_5 Mycophenolic acid 
M319T424 Mycophenolic acid 
M245T370 N-ACETYL-D-TRYPTOPHAN 
M245T369 N-ACETYL-D-TRYPTOPHAN 
M245T389 N-ACETYL-D-TRYPTOPHAN 
M254T158 N-alpha-(tert-Butoxycarbonyl)-L-his�dine 
M189T77 N-Carbamylglutamate 
M503T38 Hypericin 
M503T53 Hypericin 

M397T425 
5-Benzofuranpropanoic acid, 4-(beta-D-glucopyranosyloxy)-6-
methoxy- 

M369T243 
7-hydroxy-6-methoxy-8-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxychromen-2-one 

M337T442 
(2S,3S,4aS)-2,3,7-Trihydroxy-9-methoxy-4a-methyl-2,3,4,4a-
tetrahydro-6H-benzo[c]chromen-6-one 

M477T363 
(5S)-1,7-bis(3,4-dihydroxyphenyl)-5-[(2S,3R,4S,5R)-3,4,5-
trihydroxyoxan-2-yl]oxyheptan-3-one 

M371T279 
(E)-3-[2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-
2-yl]oxyphenyl]prop-2-enoic acid 
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M371T343 
(E)-3-[2-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-
2-yl]oxyphenyl]prop-2-enoic acid 

M411T103 NCGC00380243-01! 

M439T355 
2-Hydroxycyclohexyl 6-O-[(2E)-3-(3,4-dihydroxyphenyl)-2-
propenoyl]-beta-D-glucopyranoside 

M439T408_2 

(E)-3-[1-[(E)-but-2-en-2-yl]-9-hydroxy-10-(hydroxymethyl)-3-
methoxy-4-methyl-6-oxobenzo[b][1,4]benzodioxepin-7-yl]but-2-
enoic acid 

M444T497 

Pyrazino[2,1-b]quinazoline-3,6(1H,4H)-dione, 1-methyl-4-
[[(2S,9S,9aS)-2,3,9,9a-tetrahydro-9-hydroxy-2-methyl-3-oxo-1H-
imidazo[1,2-a]indol-9-yl]methyl]-, (1S,4R)- 

M359T53 
1-[(Z)-but-2-en-2-yl]-8-chloro-3,9-dihydroxy-4,7-
dimethylbenzo[b][1,4]benzodioxepin-6-one 

M397T88_1 
(1R)-2-chloro-1,7-dihydroxy-3,9-dimethoxy-1-
methylbenzo[c]chromene-4,6-dione 

M465T496 
1-[(2E,4E)-6,7-Dihydroxy-2,4-octadienoyl]prolyl-N-methylvalyl-
N~2~-methylalaninamide 

M465T498 
[(2E,4E)-6,7-Dihydroxy-2,4-octadienoyl]prolyl-N-methylvalyl-N~2~-
methylalaninamide 

M511T347 
1-[(2E,4E)-6,7-Dihydroxy-2,4-octadienoyl]prolyl-N-methylvalyl-
N~2~-methylalaninamide 

M275T96 
Spiro[cyclopent-4-ene-1,1'(3'H)-isobenzofuran]-3,3'-dione, 2,4'-
dihydroxy-6'-methoxy-5-methyl- 

M275T75 
Spiro[cyclopent-4-ene-1,1'(3'H)-isobenzofuran]-3,3'-dione, 2,4'-
dihydroxy-6'-methoxy-5-methyl- 

M441T324 

3-Hydroxy-3-(hydroxymethyl)-4-methylpentyl 6-O-[(2S,3R,4R)-3,4-
dihydroxy-4-(hydroxymethyl)tetrahydro-2-furanyl]-beta-D-
glucopyranoside 

M369T525 
4-hydroxy-7-methoxy-2,3,8-trimethyl-3-(4-methylpent-3-enyl)-2H-
benzo[g][1]benzofuran-6,9-dione 

M302T152 Nico�anamine 
M150T46 Paracetamol 
M150T322 Paracetamol 
M223T424 PHIP 
M164T57 Phthalamic acid 
M164T60 Phthalamic acid 
M166T51_2 Quinolinic acid 
M166T46 Quinolinic acid 
M375T273 Riboflavin 
M173T94 Shikimic acid 
M341T86 Sucrose 
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M264T277_1 Thiamine 
M338T87 Topiramate 
M180T71 Tyrosine 
M180T73 Tyrosine 
M180T287_2 Tyrosine 
M323T60 Uridine 5'-monophosphate 
M323T64_1 Uridine 5'-monophosphate 
M343T420 Usnic acid 
M167T52_1 vanillic acid 
M167T67 vanillic acid 
M167T330 vanillic acid 
M204T153 Xanthurenic acid 

 
 
 



 
Supplementary information (S.I.) 

 

 
 
 

202 

TableS 4 Significant features derived from LC-MS positive analysis. The features here listed correspond to drugs or exogenous compound significant after Wilcox-Mann-Whitney t-test but not 
used for built prediction models. 

POS Feature  Matching compound Description 

M272T367 N-3-hydroxydecanoyl-L-Homoserine lactone / 

M233T65 
3',4',5',6'-tetrahydro-6',6'-dimethyl-spiro[isobenzofuran-1(3H),2'-
[2H]pyran]-3-one / 

M255T147 
3',4',5',6'-tetrahydro-6',6'-dimethyl-spiro[isobenzofuran-1(3H),2'-
[2H]pyran]-3-one / 

M246T274 4-Acetamidoantipyrin 
drug metabolite of metamizole (analgesic and antipyretic) part of the 
human exposome 

M226T63 Cyclocytidine 
pyrimidine nucleoside  exhibiting antiviral and anticancer 
chemotherapeutic activities. 

M330T129 Epoxiconazole 
Fungicide active substance used on a significant portion of cultivated 
surfaces in France 

M304T159 Fenoterol Bromide 
A synthetic adrenergic beta-2 agonist that is used as a bronchodilator 
and tocolytic. 

M160T71  Pargyline hydrochloride a monoamine oxidase inhibitor with antihypertensive properties. 

M218T49_1 Securinine 
 plant-derived alkaloid that has previously been used as a therapeutic for 
primarily neurological related diseases 

M256T147_2 N-alpha-(tert-Butoxycarbonyl)-L-histidine / 

M404T253 
L-Phenylalanine, N-[[(3R)-5-chloro-3,4-dihydro-8-hydroxy-3-methyl-1-
oxo-1H-2-benzopyran-7-yl]carbonyl]- 

(OcratoxinA) mycotoxin with carcinogenic, nephrotoxic, teratogenic, 
immunotoxic and possibly neurotoxic properties. 

M248T82_2 2-(6-hydroxyhexyl)-3-methylidenebutanedioic acid / 
M261T171 8-hydroxy-7-methoxy-3-(2-methylbut-3-en-2-yl)chromen-2-one natural product derived from hydroxycumarin  

M413T253 
Pyran-5-carboxylic acid, 3-ethenyl-2-(beta-D-glucopyranosyloxy)-3,4-
dihydro-4-(2-hydroxyethyl)-, methyl ester, (2S,3R,4S)- 

Secologanol is a natural product found in Gentiana verna, Eucnide 
bartonioides, and Curtia tenuifolia  

M247T275 Nefiracetam (Translon) used in trials studying the treatment of Alzheimer's Disease. 
M221T38_1 Thidiazuron  plant growth regulator (pesticide) 
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TableS 5 Significant features derived from LC-MS negative analysis. The features here listed correspond to drugs or exogenous compound significant after Wilcox-Mann-Whitney t-test but not 
used for built prediction models. 

NEG Feature  Matching compound Description 

M211T163 2,4,5-trimethoxybenzoic acid used to alleviate, treat, and prevent inflammatory diseases 

M369T243 
7-hydroxy-6-methoxy-8-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
(hydroxymethyl)oxan-2-yl]oxychromen-2-one 

Fraxin is a coumarin glycoside that has been found in Fraxinus and has 
anti-inflammatory activity. 

M444T497 

Pyrazino[2,1-b]quinazoline-3,6(1H,4H)-dione, 1-methyl-4-[[(2S,9S,9aS)-
2,3,9,9a-tetrahydro-9-hydroxy-2-methyl-3-oxo-1H-imidazo[1,2-
a]indol-9-yl]methyl]-, (1S,4R)- Fumiquinazoline A is a natural product found in Aspergillus fumigatus 

M359T53 
1-[(Z)-but-2-en-2-yl]-8-chloro-3,9-dihydroxy-4,7-
dimethylbenzo[b][1,4]benzodioxepin-6-one / 

M465T496 
1-[(2E,4E)-6,7-Dihydroxy-2,4-octadienoyl]prolyl-N-methylvalyl-N~2~-
methylalaninamide / 

M150T322 Paracetamol analgesic and antipyretic 
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TableS 6 Quantified metabolites through Chenomx Suite software with mean (µM)  ± standard deviation values 
reported for all the 49 perfusate samples of human cohort. 
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FigureS 1: Chemometrics analysis for integrated Positive and negative mode of MS platform; (a) OSC-PLS score 
plot for integrated platform on decrease and stable groups showed a good performance (Q²=0.768; p-

value=0.00618); (b) multivariate ROC curves based on the grooving number of metabolites coming from the POS and 
NEG analysis analysis; (c) confusion matrix  based on the 21 positive and negative MS  features with accuracy, 

precision and recall metrics reported. 

 

FigureS 2: PLS regression plots for other used factors; (a) dataset normalized on CreatEq (R2=0.6163); (b) dataset 
normalized on dilution factor (R2=0.8956); (c) dataset normalized on osmolarity (R2=0.6786) 
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FigureS 3: Chemometrics analysis for integrated NMR and negative MS mode platforms; (a) OSC-PLS score plot for integrated 
platform on decrease and stable groups showed a good performance (Q²=0.783; p-value=0.0196); (b) multivariate ROC curve based 

on the 16 metabolites coming from the two analysis; (c) confusion matrix  based on the 16  NMR and negative MS  features with 
accuracy, precision and recall metrics reported. 

 

FigureS 4 : Chemometrics analysis for integrated positive MS mode and NMR platforms; (a) OSC-PLS score plot for integrated platform on 
decrease and stable groups showed a good performance (Q²=0.758; p-value=0.04432); (b) multivariate ROC curve based on the 29 metabolites 
coming from the two analysis; (c) confusion matrix  based on the 21 NMR and positive MS  features with accuracy, precision and recall metrics 

reported. 

FigureS 3:PCA-X for integrated platform model. As 
we can see, the separation between the two groups 
can see already spotted through this unsupervised 
method without a priori concerning samples group 

membership. 
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FigureS 7 Models generated with significant features known and unknown coming from Positive MS mode ; (a) Multivariate 
ROC curve with increasing number of variables; (b) confusion matrix with reported precision, recall and accuracy. 

 

FigureS 6 Models generated with significant features known and unknown coming from NMR platform (a) Multivariate 
ROC curve with increasing number of variables; (b) confusion matrix with reported precision, recall and accuracy. 
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FigureS 8 Models generated with significant features known and unknown coming from Negative MS mode  (a) Multivariate 
ROC curve with increasing number of variables; (b) confusion matrix with reported precision, recall and accuracy. 
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FigureS 9 Box plots of the significant identified metabolites coming from the three platforms. 
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 Online Resource S2 :  Perfusate 1H-NMR spectrum of a random sample from 0 to 9ppm recorded on Bruker Advance HD spectrometer at 700.17 MHz. FigureS 10 Perfusate 1H-NMR spectrum of a random sample from 0 to 9ppm recorded on Bruker Advance HD spectrometer at 700.17 MHz. 
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 FigureS 11 : Zoom on spectral zones between 0.5 at 3.5ppm of 1H-NMR spectrum of perfusate sample. The metabolites are numbered accordingly:  Spectral zone 1: Isocaproate, Valproate, Butyrate, 
Panthothenate, isovalerate, 2-Hydroxybutyrate, 2-Methyl-2-oxovalerate, 2-Oxocaproate, 3-Methyladipate, Alloisoleucin; 1: Leucine; 2: Isoleucine; 3: Valine; 4: Propionate; 5: 3-methyl-2-oxovalerate; 6 

fumarate; 7: 3-aminoisobutyrate; 8: isopropanol; 9: IGL-1 matrix; 10: 3-hydroxybutyrate; 11: Methylmalonate; 12: valproate; 13: Lactate;  14: 2-Phenylpropionate; 16: Leucine; 17: Lysine; 18: Pyroglutamate; 
19: Glutamate; 20: Butyrate; 21: Acetone; 22: succinate; 23: Desaminotyrosine; 24: Aspartate; 25: 2-oxocaproate; 26: Cysteine; 27: Creatinine; 28: Creatine; 29: Ethanolamine; 30: Cystine; 31: Choline; 32: 

O-Phosphoethanolamine; 33: Trimethylamine-N-oxide; 34: Taurine; 35: Myo-Inositol; 36: Glucose; 37: Inosine;  38: Creatine phosphate; 39: Urea; 40: Uracil; 41: Maleic acid (IS);  42: Desaminotyrosine; 43: 
Tau-Methylhistidine; 44: 2-phenylpropionate; 45: Phenylalanine;  46: Hippurate; 47: Hypoxantine. 
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 FigureS 12 : Zoom on spectral zones between 3.5 at 4.7ppm of 1H-NMR spectrum of perfusate sample. The metabolites are numbered accordingly:  Spectral zone 1: Isocaproate, Valproate, Butyrate, 
Panthothenate, isovalerate, 2-Hydroxybutyrate, 2-Methyl-2-oxovalerate, 2-Oxocaproate, 3-Methyladipate, Alloisoleucin; 1: Leucine; 2: Isoleucine; 3: Valine; 4: Propionate; 5: 3-methyl-2-oxovalerate; 6 

fumarate; 7: 3-aminoisobutyrate; 8: isopropanol; 9: IGL-1 matrix; 10: 3-hydroxybutyrate; 11: Methylmalonate; 12: valproate; 13: Lactate;  14: 2-Phenylpropionate; 16: Leucine; 17: Lysine; 18: 
Pyroglutamate; 19: Glutamate; 20: Butyrate; 21: Acetone; 22: succinate; 23: Desaminotyrosine; 24: Aspartate; 25: 2-oxocaproate; 26: Cysteine; 27: Creatinine; 28: Creatine; 29: Ethanolamine; 30: 

Cystine; 31: Choline; 32: O-Phosphoethanolamine; 33: Trimethylamine-N-oxide; 34: Taurine; 35: Myo-Inositol; 36: Glucose; 37: Inosine;  38: Creatine phosphate; 39: Urea; 40: Uracil; 41: Maleic acid 
(IS);  42: Desaminotyrosine; 43: Tau-Methylhistidine; 44: 2-phenylpropionate; 45: Phenylalanine;  46: Hippurate; 47: Hypoxantine. 



 
Supplementary information (S.I.) 

 

 
 

213 

FigureS 13:  Zoom on spectral zones between 5.5 at 8.5ppm of 1H-NMR spectrum of perfusate sample. The metabolites are numbered accordingly:  Spectral zone 1: Isocaproate, Valproate, Butyrate, 
Panthothenate, isovalerate, 2-Hydroxybutyrate, 2-Methyl-2-oxovalerate, 2-Oxocaproate, 3-Methyladipate, Alloisoleucin; 1: Leucine; 2: Isoleucine; 3: Valine; 4: Propionate; 5: 3-methyl-2-oxovalerate; 

6 fumarate; 7: 3-aminoisobutyrate; 8: isopropanol; 9: IGL-1 matrix; 10: 3-hydroxybutyrate; 11: Methylmalonate; 12: valproate; 13: Lactate;  14: 2-Phenylpropionate; 16: Leucine; 17: Lysine; 18: 
Pyroglutamate; 19: Glutamate; 20: Butyrate; 21: Acetone; 22: succinate; 23: Desaminotyrosine; 24: Aspartate; 25: 2-oxocaproate; 26: Cysteine; 27: Creatinine; 28: Creatine; 29: Ethanolamine; 30: 
Cystine; 31: Choline; 32: O-Phosphoethanolamine; 33: Trimethylamine-N-oxide; 34: Taurine; 35: Myo-Inositol; 36: Glucose; 37: Inosine;  38: Creatine phosphate; 39: Urea; 40: Uracil; 41: Maleic 

acid (IS);  42: Desaminotyrosine; 43: Tau-Methylhistidine; 44: 2-phenylpropionate; 45: Phenylalanine;  46: Hippurate; 47: Hypoxantine. 
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jhcmdxr-�Ansg�jhcmdxr�vdqd�fitrgdc�vhsg�HFK,0�nqf_m�oqdr,
dqu_shnm�rnktshnm�sgqntfg�sgd�_nqs_�_mc�sgdm�rsnqdc�hlldqrdc�
hm�HFK,0�_s�3 µB�enq�03 g*�_r�_�lncdk�ne�bkhmhb_k�BHS�&kdes�
jhcmdx(-�@esdq�03 g�ne�BHS*�_�rdbnmc�bnkc�HFK,0�fitrg�v_r�
l_cd� sgqntfg� sgd� qdm_k� _qsdqx� sn� bnkkdbs� sgd� odqetr_sd*�
cd“mdc�_r�sgd�“qrs�1 lK�ne�dtdms�du_bt_sdc�eqnl�sgd�qdm_k�
udhm-�Sgd�odqetr_sd�v_r�sgdm�rsnqdc�_s�°7/ µB�tmshk�lds_an,
knlhb�_m_kxrdr�&8�CAC�_mc�0/�CBC�odqetr_sdr(-
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Hmenqldc�bnmrdms�v_r�nas_hmdc�eqnl�_kk�JSw�qdbhohdmsr�
hmbktcdc�hm�sgd�rstcx�&Dsghbr�_fqddldms9�A6/61/0413373(-�
Bkhmhb_k�c_s_�_ants�cnmnq*�fq_es�_mc�qdbhohdms�vdqd�bnkkdbsdc-�
Jhcmdx�cnmnq�qhrj�hmcdw�&JCQH(�_mc�jhcmdx�cnmnq�oqn“kd�
hmcdw�&JCOH(�vdqd�b_kbtk_sdc�a_rdc�nm�cnmnq�_mc�sq_mrok_ms�
e_bsnqr�&Q_n�ds _k-*�1//8(-
Gtl_m�jhcmdx�fq_esr�oqnbtqdc�eqnl�CAC�nq�CBC�cnmnqr�

vdqd�bnkc�fitrgdc�ctqhmf�sgd�oqnbtqdldms�vhsg�HFK,0-�@kk�
jhcmdx�fq_esr�vdqd�oqdrdqudc�vhsg�bk_rrhb_k�rs_shb�bnkc�rsnq,
_fd�_s�3 µB�ctqhmf�u_qh_akd�BHS*�_bbnqchmf�sn�sgd�bkhmhb_k�
rhst_shnm*�_mc�vdqd�_kknb_sdc�sn�_ fhudm�qdbhohdms�ax�Dtqn,
sq_mrok_ms-�@esdq�oqdo_q_shnm�ne�sgd�qdm_k�udrrdkr�adenqd�JSw�
nm�sgd�a_bj,s_akd*�sgd�jhcmdx�fq_esr�vdqd�fitrgdc�sgqntfg�sgd�
qdm_k�_qsdqx�vhsg�0 K�ne�HFK0�rnktshnm-�Sgd�“qrs�0/ lK�ne�
khpthc�dwhshmf�sgd�qdm_k�udhm�ctqhmf�sgd�fitrg�vdqd�bnkkdbsdc�
enq�lds_anknlhbr�_m_kxrhr�_mc�bnmrshstsdc�sgd�’odqetr_sd·-�
@�sns_k�ne�38�odqetr_sd�r_lokdr�vdqd�trdc�hm�sghr�rstcx:�25�
eqnl�CAC�_mc�02�eqnl�CBC�cnmnqr-�Oqhnq�sn�CAC�_mc�

CBC�bk_rrh“b_shnm*� r_lokdr�vdqd�b_sdfnqhydc�a_rdc�nm�
cnmnq�bqhsdqh_�bk_rrh“b_shnm� hmbktchmf�RCB�&m�<�3/(�_mc�
DBC�&m�<�8(-�@lnmf�sgdrd�8�DBC�cnmnqr*�6�vdqd�CAC�_mc�
1�vdqd�CBC-�Bnmbdqmhmf�sgd�onrs,sq_mrok_ms_shnm�rs_str*�6�
DBC�cnmnqr�dwodqhdmbdc�CFE*�vghkd�1�vdqd�bk_rrh“dc�_r�
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@kk�r_lokdr�vdqd�qdbnqcdc�_s�187 J�nm�_�Aqtjdq�@u_mbd�
GC�rodbsqnldsdq� &Aqtjdq*�Ahkkdqhb_*�TR@(�nodq_shmf�_s�
6//-06 LGy�enq�sgd�oqnsnm�rhfm_k�_bpthrhshnm-�Sgd�hmrsqt,
ldms�v_r�dpthoodc�vhsg�_�SBH�4,ll�bqxnoqnad�vhsg�_�
Y,fq_chdms-�L_kdhb�_bhc�v_r�trdc�_r�sgd�hmsdqm_k�rs_mc_qc�
enq�pt_msh“b_shnm�_mc�sqhldsgxkrhkxk,2,oqnohnmhb�_bhc,c3�
&SLRO(�enq�sgd�ydqn�enq�sgd�ydqn�b_khaq_shnm-�@m�_khptns�ne�
1// —K�ne�odqetr_sd�r_lokdr�v_r�rtookdldmsdc�vhsg�4/ μK�
ne�cdtsdq_sdc�ognrog_sd�atñdq�&COA*�oG�6-3(*�14 —K�ne�_�
24 lL�rnktshnm�ne�l_kdhb�_bhc�_mc�1 μK�ne�_�0/ lf.lK�
SLRO�C1N�rnktshnm-�0G,MLQ�rodbsq_�vdqd�_bpthqdc�trhmf�
_�0C�MNDRX�rdptdmbd�vhsg�oqdr_stq_shnm-�Sgd�Mndrxoqdr_s�
dwodqhldms�trdc�_�QC,8/µ,S0,8/µ,Sl,8/µ,_bpthqd�rdptdmbd�
vhsg�_�qdk_w_shnm�cdk_x�ne�3 r*�_�lhwhmf�shld�&Sl(�ne�0/ lr�
_mc�_�“wdc�S0�cdk_x�ne�3 μr-�V_sdq�rtooqdrrhnm�otkrd�v_r�
ok_bdc�ctqhmf�sgd�qdk_w_shnm�cdk_x�&QC(-�Sgd�mtladq�ne�
sq_mrhdmsr�hr�53�&53 J�c_s_�onhmsr(-�Sgd�c_s_�vdqd�oqnbdrrdc�
vhsg�sgd�Aqtjdq�Snorohm�3-/-7�rnesv_qd�&Aqtjdq�AhnRohm*�
Ahkkdqhb_*�TR@(�vhsg�_�rs_mc_qc�o_q_ldsdq�rds-�Og_rd�_mc�
a_rdkhmd�bnqqdbshnmr�vdqd�odq,enqldc�l_mt_kkx�nudq� sgd�
dmshqd�q_mfd�ne�sgd�rodbsq_�_mc�sgd�δ�rb_kd�v_r�b_khaq_sdc�sn�
/ ool�trhmf�sgd�hmsdqm_k�rs_mc_qc�SLRO-

1-4� �Ltkshu‘qh‘sd�‘m‘kxrhr

Nmbd�sgd�rodbsq_�nas_hmdc*�hcdmsh“b_shnm�_mc�pt_msh“b_shnm�
ne�lds_ankhsdr�vdqd�odqenqldc�sgqntfg�Bgdmnlw�oqn“kdq�
8-/�&Bgdmnlw�Hmb-*�Dclnmsnm*�@A*�B_m_c_(-�Sgd�oqn“kdc�
rodbsq_�vdqd�trdc�sn�fdmdq_sd�_�bnmbdmsq_shnm�s_akd�sg_s�v_r�
hlonqsdc�hm�AhnRs_sEknv�vdasnnk�&ahnrs_sfinv-nqf(�enq�ltk,
shu_qh_sd�rs_shrshb_k�_m_kxrhr-�@tsnrb_khmf�mnql_khy_shnm�v_r�
_ookhdc�sn�bnmbdmsq_shnm�s_akd-�Oqhmbho_k�bnlonmdms�_m_kxrhr�
&OB@(�v_r�trdc�enq knnjhmf�_s�ntskhdqr�_mc�bktrsdq�adsvddm�
r_lokdr-�@m�nqsgnfnm_k�rhfm_k�bnqqdbshnm,OKR�lncdk�&NRB,
OKR(�v_r�odqenqldc�_r�chrbqhlhm_ms�lncdk�_mc�hsr�pt_khsx�
v_r�cdsdqlhmdc�ax�sgd�oqdchbs_ahkhsx�b_kbtk_sdc�a_rdc�nm�
sgd�eq_bshnm�bnqqdbskx�oqdchbsdc�hm�nmd,rdudmsg�bqnrr,u_kh,
c_shnm��&P1(-�Odqlts_shnm�sdrsr�vdqd�odqenqldc�enq�u_khc_sd�
lncdkr-�Lds_an_m_kxrs�&vvv-�lds_a�n_m_k�xrs-�b_(�v_r�trdc�
enq�fdmdq_shmf�ltkshu_qh_sd�qdbdhudq�nodq_shmf�bg_q_bsdqhrshb�
&QNB(�btqudr�_mc�bnmetrhnm�l_sqhw�sn�_rrdrr�sgd�qnatrs,
mdrr�ne�sgd�lncdkr-�QNB�btqudr�vdqd�odqenqldc�ax�trhmf�
OKR,C@�lncdkr�_r�bk_rrh“b_shnm�ldsgnc�_mc�tmhu_qh_sd�
@TQNB�_r�ed_stqd�q_mjhmf�ldsgnc�vhsg�svn�k_sdms�u_qh_akdr-�
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Bnmetrhnm�l_sqhw�v_r�trdc�enq�b_kbtk_shmf�lncdk�rdmrhshuhsx�
_mc�rodbh“bhsx-
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Tmhu_qh_sd�_m_kxrhr�v_r�l_cd�trhmf�Fq_ogO_c�Oqhrl�udq,
rhnm�8-3-0�&Fq_ogO_c�Rnesv_qd*�K_�Inkk_*�B@* vvv-�fq_og�
o_c-�bnl(-�L_mmflVghsmdx�T�sdrs�v_r�odqenqldc�enq�bnl,
o_qhrnmr�adsvddm�svn�fqntor-�Mn�bnqqdbshnm�v_r�_ookhdc�sn�
L_mmflVghsmdx�T�sdrsr-�Sgd�cds_hkdc�_m_kxrhr�ne�sgd�lds_,
ankhb�o_sgv_xr�v_r�odqenqldc�ax�Lds_an_m_kxrs�&vvv-�
lds_a�n_m_k�xrs-�b_(�trhmf�sgd�lds_anknlhb�rds�dmqhbgldms�
_m_kxrhr�&LRD@(�snnk�ax�trhmf�sgd�ghfg,pt_khsx�RLOCA�
lds_ankhb�o_sgv_xr�_r�sgd�a_bjdmc�jmnvkdcfda_rd-
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@�oqdkhlhm_qx�rs_shrshb_k�_m_kxrhr�v_r�bnmctbsdc�nm� sgd�
bngnqs�bnmrhcdqhmf�sgd�cnmnq�bqhsdqh_�bk_rrh“b_shnm�hmbktc,
hmf�RCB�_mc�DBC*�vghbg�rgnvdc�mn�bnmentmchmf�e_bsnqr-�
Cnmnq�bg_q_bsdqhrshbr�b_sdfnqhydc�ax�sgd�sxod�ne�cd_sg�dudms�
_qd�oqdrdmsdc�hm�S_akd 0-
Rs_shrshb_k� _m_kxrhr� nm� qdbhohdms� c_s_� &CFE�<�08:�

mnCFE�<�2/(�rgnvdc�mn�bnqqdk_shnm�adsvddm�CFE�rs_str�
_mc�qdk_sdc�bkhmhb_k�c_s_�&S_akd 1(-

2-1� �Oqdkhlhm‘qx�‘m‘kxrhr�nm HFK,0�l‘sqhw

@�oqdkhlhm_qx�lds_anknlhbr�_m_kxrhr�_kknvdc� sn� rons�_�
rdqhdr�ne�od_jr�bnlhmf�eqnl�HFK,0�l_sqhw�qdoqdrdmsdc�ax�
k_bsnahnmhb�_bhc*�_cdmnrhmd*�q_mnrd*�_mc�fkts_sghnmd�rhf,
m_kr�&R1*�R2*�R3�_mc�R4(-�Sgdrd�od_jr�vdqd�hcdmsh“dc*�pt_m,
sh“dc*�_mc�dwbktcdc�eqnl�enkknvhmf�_m_kxrhr�nm�odqetr_sd�
r_lokdr-
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Mhmdsddm�odqetr_sd�r_lokdr�vdqd�hmbktcdc�hm�sgd�_m_kxrhr-�
CAC�_mc�CBC�jhcmdx�cnmnq�bnmchshnmr�vdqd�lhldc�hm�8�
_mc�0/�q_sr*�qdrodbshudkx-�@esdq�dwbktrhnm�eqnl�rs_shrshb_k�
_m_kxrhr�ne�l_sqhw,khmjdc�od_jr*�33�pt_msh“dc�lds_ankhsdr�
sg_s�_qd�adknmfhmf�sn�sgd�jhcmdx�lds_anknld�vdqd�trdc�enq�
ltkshu_qh_sd�rs_shrshb_k�lncdkr-�Rtodquhrdc�rs_shrshb_k�hmudr,
shf_shnmr�trhmf�NRB,OKR�ghfgkhfgsdc�_�rhfmh“b_ms�chrbqhlh,
m_shnm�adsvddm�CAC�cnmnq�sxod�udqrtr�CBC�cnmnq�sxod�
�&P1�<�/-510(:�sgd�lncdk�v_r�u_khc_sdc�sgqntfg�_�odqlts_shnm�
sdrs�&o,u_ktd�<�/-/282(*�bnm“qlhmf�sgd�_ardmbd�ne�nudq“sshmf�
&Ehf- 0(-

@�kn_chmf,okns�v_r�fdmdq_sdc�hm�v_x�sn�tmcdqkhmd�_kk�sgd�
lds_ankhsdr�qdronmrhakd�enq�sgd�chrbqhlhm_shnm�ne�fqntor�
_bbnqchmf�sn�cnmnq�sxod-�A_rdc�nm�sgd�qdrtksr�ne�ltkshu_qh_sd�
lncdkr*�tmhu_qh_sd�rs_shrshb_k�_m_kxrhr�qdud_kdc�sg_s�sgd�bnm,
bdmsq_shnmr�ne�6�lds_ankhsdr�vdqd�hmbqd_rdc�hm�CBC�rs_str�
bnlo_qdc�sn�CAC�rs_str*�hmbktchmf�1,gxcqnwxhrnu_kdq_sd*�
1,nbsdmn_sd*�1,nwnb_oqn_sd*�2,gxcqnwxhrnu_kdq_sd*�_kknhrn,
kdtbhmd*�bqd_shmd�ognrog_sd*�kxrhmd*�n,ognrogndsg_mnk_lhmd*�
s_tqhmd�_mc�u_khmd�&Ehf- 1(-
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Enqsx,mhmd�gtl_m�odqetr_sd�r_lokdr�vdqd�hmbktcdc�hm�sgd�
_m_kxrhr-�Ltkshu_qh_sd�_mc�tmhu_qh_sd�_m_kxrdr�a_rdc�nm�
cnmnq�bqhsdqh_�&RBC.DBC(�hmchb_sdc�mn�rhfmh“b_ms�rs_shrshb_k�
hlo_bs-�Nmbd�sghr�bnmentmchmf�e_bsnq�v_r�dwbktcdc*�_mnsgdq�
_m_kxrhr�v_r�bnmctbsdc�nm�sgd�r_lokdr�b_sdfnqhydc�ax�cnmnq�
sxod�&CAC�<�25:�CBC�<�02(-�@�sns_k�ne�43�lds_ankhsdr�vdqd�
hcdmsh“dc�hmcdodmcdmskx�eqnl�HFK,0�l_sqhw�_mc�pt_msh“dc�
&R0*�R1*�R2*�R3�_mc�R4(-�Ltkshu_qh_sd�rs_shrshb_k�_m_kxrhr�v_r�
odqenqldc�ax�fdmdq_shmf�_�chrbqhlhm_ms�NRB,OKR�lncdk�
�&P1�<�/-43/(:�_�odqlts_shnm�sdrs�&o,u_ktd�<�/-/1081(�v_r�
odqenqldc�ax�u_khc_shmf�sgd�lncdk�nas_hmdc�&Ehf- 2(-
Sgd�lds_ankhsdr� qdkdu_ms� enq� chrbqhlhm_shnm�adsvddm�

fqntor�hm�ltkshu_qh_sd�lncdkr�vdqd�trdc�sn�odqenql�tmhu_qh,
_sd�rs_shrshb_k�_m_kxrhr-�L_mmflVghsmdx�T�sdrsr�ghfgkhfgsdc�
06�lds_ankhsdr�rhfmh“b_mskx�chñdqhmf�adsvddm�cnmnq�sxodr-�
Svdkud�lds_ankhsdr�vdqd�hmbqd_rdc�hm�CBC�cnmnq�fqnto�
&d-f-*�u_khmd�_mc�bxrshmd(�vghkd�“ud�vdqd�cdbqd_rdc�bnl,
o_qdc�sn�CAC�fqnto�&d-f-*�k_bs_sd�_mc�sqhldsgxk_lhmd,M,nw,
hcd(�&Ehf- 3(-
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Ax�bnlo_qhmf�sgd�rhfmh“b_ms�lds_ankhsdr�nas_hmdc�hm�sgd�svn�
lncdkr*�hs�v_r�onrrhakd�sn�rons�rnld�bnllnm�ed_stqdr�rtbg�
_r�u_khmd�_mc�hrnkdtbhmd-�Hm�v_x�sn�adssdq�hmudrshf_sd�sgd�ahn,
bgdlhb_k�dudmsr�nbbtqqhmf�ctqhmf�sgd�gxonsgdqlhb�rsnq_fd�
ne�jhcmdx*�_�o_sgv_x�_m_kxrhr�v_r�bnmctbsdc-�LRD@�_m_kx,
rhr�kdc�sn�sgd�hcdmsh“b_shnm�ne�rdudq_k�o_sgv_xr�rhfmh“b_mskx�
_ñdbsdc�ax�cnmnq�sxod�&Ehf- 4_fla(-�Sgd�lnrs�qdkdu_ms�b_r,
b_cdr�vdqd*�hm�ansg�lncdkr*�qdoqdrdmsdc�ax�u_khmd.kdtbhmd.
hrnkdtbhmd�ahnrxmsgdrhr�_mc�cdfq_c_shnm*�_lhmn_bxk,s,QM@�
ahnrxmsgdrhr*�_k_mhmd._ro_qs_sd.�fkts_l_sd�lds_ankhrl�_mc�
fkxbdqnognrognkhohc�lds_ankhrl-
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lds‘anknld�vhsg CFE�hmbhcdmbd�onrs,JSw

Ax� bnmrhcdqhmf� CFE� ntsbnld� _r� e_bsnq� &CFE�<�08:�
mnCFE�<�2/(*�NRB,OKR�lncdk�v_r�trdc�_r�_�chrbqhlhm_ms�
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_m_kxrhr��&P1�<�/-26/:�O,u_ktd�<�/-3276(-�Lnqdnudq*�_�ltksh,
u_qh_sd�qdbdhudq�nodq_shmf�bg_q_bsdqhrshbr�&QNB(�btqud�v_r�
fdmdq_sdc�ax�trhmf�sgd�q_shnr�ne�43�hcdmsh“dc�lds_ankhsdr�
&62�u_qh_akdr:�@TB�<�/-666:�oqdchbshud�_bbtq_bx�<�60-5 (�
hm�v_x�sn�du_kt_sd�sgd�odqenql_mbd�ne�ntq�lncdk�sgqntfg�
_tsnl_sdc�ed_stqd�rdkdbshnm�&Ehf- 5_fla(-�Tmhu_qh_sd�_m_kx,
rhr�rgnvdc�01�lds_ankhsdr�adhmf�rhfmh“b_mskx�hmbqd_rdc�hm�
mnCFE�rs_str�&rtbg�_r�bxrshmd*�kdtbhmd*�_k_mhmd�”(*�tmkhjd�
b_qmnrhmd�&Ehf- 6(-

Hm�sgd�odqetr_sdr�eqnl�CAC�jhcmdxr*�25�odqetr_sd�r_l,
okdr�vdqd�trdc�enq�sgd�tmhu_qh_sd�_mc�ltkshu_qh_sd�rs_shrsh,
b_k�_m_kxrdr�ax�trhmf�CFE�rs_str�_r�chrbqhlhm_ms�e_bsnq-�@�
chrbqhlhm_ms�NRB,OKR�lncdk�v_r�fdmdq_sdc��&P1�<�/-636:�o�
u_ktd�<�/-1531(�sn�knnj�_s�sgd�rdo_q_shnm�adsvddm�sgd�mnCFE�
_mc�sgd�o_sgnknfhb_k�rs_str�&Ehf- 7_(-�Etqsgdqlnqd*�sgd�ltk,
shu_qh_sd�QNB�btqud�rgnvdc�_�fnnc�odqenql_mbd�ax�trhmf�
sgd�q_shnr�ne�sgd�43�hcdmsh“dc�lds_ankhsdr�fdmdq_sdc�sgqntfg�
Lds_an_m_kxrs� _kfnqhsgl� &62� u_qh_akdr:� @TB�<�/-806:�

S‘akd�0� �Bkhmhb_k�bg_q_bsdqhrshbr�
ne�cnmnqr

ALH�ancx�l_rr�hmcdw*�Rdqtl�bqd_s�rdqtl�bqd_shmhmd�lf.ck*�JCOH�jhcmdx�cnmnq�oqn“kd�hmcdw�& (*�JCQH�
jhcmdx�cnmnq�qhrj�hmcdw

CAC�&M<25( CBC�&M<02( Sns_k�&M<38( o,u_ktd

Rdw /-122
 E 04�&30-6 ( 2�&12-0 ( 07�&25-6 (
 L 10�&47-2 ( 0/�&65-8 ( 20�&52-2 (
@fd /-663
 Ld_m�&RC( 34-250�&02-384( 35-581�&05-200( 34-603�&03-02/(
 Q_mfd 08-///�,�57-/// 07-///�,�56-/// 07-///�,�57-///
ALH /-237
 M,Lhrr / 0 0
 Ld_m�&RC( 14-628�&3-048( 13-4/1�&2-/05( 14-318�&2-801(
 Q_mfd 06-6//�,�24-8// 1/-///�,�2/-/// 06-6//�,�24-8//
Rdqtl�bqd_s�&lf.ck( /-166
 Ld_m�&RC( /-678�&/-142( /-6/2�&/-1/1( /-655�&/-131(
 Q_mfd /-20/�,�0-3// /-32/�,�0-01/ /-20/�,�0-3//
Vdhfgs /-837
 M,Lhrr / 0 0
 Ld_m�&RC( 66-000�&02-4/8( 65-722�&8-326( 66-/31�&01-410(
 Q_mfd 36-///�,�00/-/// 54-///�,�83-/// 36-///�,�00/-///
Ch_adsdr /-537
 M,Lhrr 4�&02-8 ( 0�&6-6 ( 5�&01-1 (
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