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Motivation to improve WSS model for turbulent separation
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Observation: Misprediction of (1) separation and (2) reattachment location, and (3) underestimation
of friction peak. There is room for improvement.
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Data-driven WSS model - Motivations

Recent advances in hardware
(mostly GPUs and now TPUs)

Exponential generation and ac-
cumulation of high-quality data

Now possible to train deeper
and deeper neural networks

Making no-prior as-
sumptions on the data

Among all the possible solutions to im-
prove WSS model, we selected neural

networks, the core element of Deep Learning.

Better prediction of the
instantaneous behaviors
of the wall shear stress

Moreover, to cope with the lack of vari-
ance, the network is trained to predict a
distribution rather than a point estimate.
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Feature Selection - Pearson and distance correlation

Prior to training the NN model on the collected data, need to evaluate the relevance of the input
variables (u, ∇p) w.r.t. the target variable (τw ).
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Feature Selection - Pearson and distance correlation

R(uξ, τξ)

at separation vicinity

✗

This analysis results in an appropriate stencil:

ξ

η

+10 points−5 points
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Preprocessing - Non-dimensionalization

The non-dimensionalization of the input features is helpful to train a model on a limited dataset that
will then be able to generalize to flows with different length scales, velocity scales, and fluid properties.

Inputs Outputs

Velocity Pressure gradients Curvature Wall shear stress

u∗ =
u hwm
ν

u∗
p =

up hwm
ν

K∗ = Khwm τ ∗
w = sign (τw )

y

ν

√
|τw |
ρ

where up =
(

ν
ρ∇p

)1/3

is a velocity based on the pressure gradient.
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Neural Network for predicting statistics

Mixture Density Networks (MDN) are the NN implementation of the Gaussian Mixture Models ...

p(τw |x) =
K∑

k=1

πkpk =
K∑

k=1

πkN (τw |µk(x), σk(x))

... and are trained with the Negative Log-Likelihood.
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Data-driven WSS model - A priori testing

A priori prediction on the lower wall of the two-dimensional periodic hill,
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Data-driven WSS model - A priori testing

A priori prediction on the upper wall of the two-dimensional periodic hill,
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Data-driven WSS model - A posteriori testing

”The production environment is different from the training environment because
the wall model will interact with the resolved volume data.

Moreover, the reattachment location is very sensitive to small errors.”
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Data-driven WSS model - A posteriori testing

Friction coefficient on the lower wall,
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Data-driven WSS model - A posteriori testing

Friction coefficient on the upper wall,
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Data-driven WSS model - A posteriori testing

Mean velocity profile
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Data-driven WSS model - A posteriori testing

Mean Reynolds stress profile
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Data-driven WSS model - Conclusion

• Objective. Development of a novel WSS model for the separation/reattachment phenomenon.

• Scientific contribution. Generate a data-driven WSS model to predict a distribution that better
captures the instantaneous behaviour of wall shear stress.

• Positive impact. A great improvement in the WSS curve is observed on both the upper and
lower walls of the two-dimensional periodic hill.

• Points to be improved. The reattachment location is underestimated and this affects the physics
in the whole domain. Dupuy et al. [1, 2] have also observed this underestimation on other test
cases featuring separation. The volume data may be more influenced by the direction of the wall
shear stress (which is currently randomly generated) than its amplitude.
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