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Abstract
In this paper, we put forth a construction of real numbers rooted in the

Weierstraß approach. We depart from the original method by replacing
the aliquot parts with rational numbers and employing epsilontics in lieu
of comparisons relying on component parts.

1 Introduction
Weierstraß was highly interested in the soundness of calculus in general. In this
context, he gave a definition of the real numbers before Méray [27], Heine [19],
Dedekind [10], Cantor [6] or Tannery [37] (let us also acknowledge more recent
approaches in [4, 9, 29, 36, 21], for instance). The reader interested in the history
of the construction of the real numbers can consult [13, 14, 15, 25, 3, 32, 28, 42],
for example. It is important to emphasize that Weierstraß’s perspective on
this subject was an integral part of his course, which he never published. Our
understanding of his viewpoint has solely been conveyed through the notes of
his students over many versions of the course (primarily Dantscher, Hettner,
Hurwitz, Kossak, Pincherle and Thieme [12]), showing slight variations from
one version to another.

Mathematicians and historians of mathematics have expressed measured
concerns, underscoring reservations about these written notes [17, 16, 12, 14,
3, 30]. However, there is no consensus on this matter, with others considering
the theory to be perfectly rigorous [11, 39]. It is possible that this discrepancy
stems from errors in interpreting the concepts presented in diverse courseworks,
composed by different authors. Without taking a definitive stance, it is worth
noting that the existence of divergent opinions highlights the potential diffi-
culty in assimilating these concepts directly from the original sources. Given
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Weierstraß’s decision not to publish his work, Heine expressed concern about
the absence of a comprehensive source where the developed statements could be
located within their proper context (...“so dass es keine Stelle giebt, an welcher
man die Sätze im Zusammenhänge entwickelt findet.”) [19]. This observation
is one of the factors leading Heine to propose his own construction of the real
numbers (which is similar to Cantor’s view) [19]. That being said, although not
the most popular, the construction of real numbers provided by Weierstraß is
considered by some to be the most intuitive [8, 39, 33].

The constructions of Weierstraß and Cantor exhibit shared structural ele-
ments. In the realm of the real numbers they seek to define, Cantor delves
into converging sequences, while Weierstraß focuses on absolutely converging
series. Clearly, with the concept of real numbers yet to be defined, attempting
a direct recourse to the notion of convergence becomes an exercise in futility,
as it inevitably leads us into a vicious circle. Therefore, Cantor examines se-
quences of rational numbers, whereas Weierstraß considers multisets of positive
unit fractions. It is worth emphasing that Weierstraß eschews the application of
epsilon-based language, a technique often attributed to him [31], in his approach.

The goal of this work is twofold. Firstly, we endeavor to provide a mod-
ern exposition and adaptation of the Weierstraß approach, which suffers from a
lack of popularity and, to our knowledge, is not featured in any undergraduate
book, unlike those of Cantor and Dedekind, for instance. In doing so, we aim to
demonstrate that there is no well-founded reason for this relative lack of popu-
larity. Secondly, we strive to illuminate the parallels between the methodologies
of Cantor and Weierstraß in defining real numbers.

To achieve this, we base our adaptation of Weierstraß’s method on multisets
of rational numbers. As mentioned earlier, the challenge stems from the inabil-
ity to directly invoke the notion of convergence. Instead, following Weierstraß’s
approach, we deal with multisets of rational numbers whose partial sums of
absolute values are bounded. We demonstrate here the classical properties of
real numbers, delineating them as a complete totally ordered field. This char-
acterisation implies the equivalence of Cantor’s and Weierstraß’s constructions.
This approach also highlights that Weierstraß’s perspective represents a direct
continuation of Stevin’s work [34, 35], as it generalizes the construction of real
numbers from the decimal numeral system [38], as detailed in Section 6.

This paper is organized as follows. We commence by providing a concise
summary of Weierstraß’s treatment of real numbers. Next, we introduce the
concept of aggregate and their addition, enabling us to define the set of real
numbers. Subsequently, we present illustrative examples. We then endow the
set of real numbers with a total-order relation and verify that we have formed
an ordered group. Moving forward, we establish the Cauchy completeness of
these numbers. Then, we offer a brief introduction to the multiplication and
division of two real numbers within this context. Finally, we explain that the
constructions of Cantor and Weierstraß can be seen as equivalent and show that
our method comes down to Weierstraß’s.

While heavily inspired by Weierstraß’s approach, the proposed definition of
real numbers presented here diverges in certain aspects. We delineate some
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of these distinctions in the text. Notably, we utilize rational numbers without
relying on aliquot parts (unit fractions). Additionally, we eschew Weierstraß’s
notion of component, which allowed for the definition of inequality of aggregates,
in favor of employing epsilon-based language. This shift replaces the original
algorithmic thinking with a more conceptual approach [20, 24].

2 The concept of number for Weierstraß
In this section, we succinctly outline Weierstraß’s method for introducing real
numbers in his lectures “Einleitung in die Theorie der analytischen Funktionen”.
For a more comprehensive understanding, readers are encouraged to consult
references such as [12].

In his renowned course, penned by several of its students (see [23, 41, 12, 40],
for example), Weierstraß formulates the concept of numbers in a broad sense,
commencing with the familiar natural and integer numbers. He introduces the
idea that numbers of some kind share a common underlying property. Accord-
ing to Weierstraß, more complex numbers can be viewed as aggregates1 made of
numbers obtained from different units. For instance, a rational number is com-
posed of an integer and a decimal part, which can, in turn, be decomposed into
further units. He elucidates this concept using the analogy of a price, consisting
of multiple currency units (unit, superunit, and subunit).

He introduces an aliquot part (“Theil der Einheit”), which corresponds to the
inverse of a natural number. A numerical value (“Zahlgröße”) is a finite multiset
of aliquot parts along with a natural number; in Weierstraß’s terminology, it
is an aggregate consisting of a finite number of the unity and aliquot parts.
Transformations can be applied to a multiset without changing the numerical
value. For example, (1/2) can be transformed into (1/4, 1/4), since 1/2 =
1/4 + 1/4. In order to be able to consider several expressions corresponding
to a unique number, he clearly introduces the notion of equivalence2 for finite
multisets based on these transformations, denoted by the equal sign. Of course,
he does not explicitly use the term “equivalence relation”, since this concept
was not well defined at that time. A positive (rational) number can be seen as a
numerical value that is a finite multiset. For example, the aggregate (1/2, 1/4)
defines the number three fourths; also (1/4, 1/4, 1/4) is equal to (1/2, 1/4) (in
the sense that they are equivalent). Weierstraß studies the properties of these
numbers and introduces the operations addition and multiplication.

To extend beyond the concept of rational numbers, it becomes necessary
to consider multisets that are not finite. Weierstraß refers to such numbers
as “numerical values containing infinitely many elements”. He observes that
these numerical values are not necessarily bounded, prompting the need for a
boundedness criterion: a numerical value is called a finite quantity if its finite

1The term has gained popularity through Dugac [12, 13], although the word “Aggregat” is
explicitly used in diverse manuscripts by Weierstraß’s students [41, 40].

2Let us point put that some authors do believe that Weierstraß’s approach is more subtle
than that [33].
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sums are bounded by a (rational) number. These numbers are examined using
set-theoretic language. Without delving into the specifics (see [39] for details),
a number is made of components, which are finite multisets. Under the equiv-
alence relation where the transformations described above are the generators,
two numbers a and b are deemed equal if each component of a is found in b and
vice versa. Furthermore, b is strictly larger than a if every component of a is
a component of b, but the reverse is not true. The sum of a and b is obtained
through the “juxtaposed union” (equivalent to the disjoint union, corresponding
to the union of multisets, see Section 4) of the aggregates defining a and b. This
set-based approach could have potentially influenced Cantor [12].

To solidify the properties of these numbers, the implicit connection between
the elements of an aggregate and the series whose terms are these elements is
taken into consideration. At this juncture, Weierstraß clarifies that the numbers
developed thus far are insufficient for subtraction. Consequently, he meticu-
lously and comprehensively constructs the negative numbers. Additionally, he
defines multiplication and derives division from it. The ultimate outcome of all
these constructions is the set of real numbers, a set on which the operations of
addition, subtraction, multiplication, and division (by non-zero numbers) are
possible and adhere to the commutative, associative, and distributive laws.

In this manner, we can conceive of real numbers as specific (potentially)
infinite sums of aliquot parts and their negations, even though Weierstraß did
not unequivocally employ the language of series [39].

3 Definition of an aggregate
As Weierstraß in his course, we will suppose that the concepts of natural and
integer numbers are known [41]. However, we will also suppose that the rational
numbers have been defined, in order to avoid the use of the notion of aliquot
part. By doing so, we directly consider negative numbers from the outset. Let
us remark that the properties of aliquot parts are not that different from those
of nonnegative rational numbers: as mentioned in [39], a rational number is a
number that is equivalent to a finite aggregate. An advantage of this approach
is that we do not need to define rational numbers starting from real numbers
[39]. Moreover, it is easier to compare this construction with those of Dedekind
and Cantor, as they both rely on the notion of rational number.

As remarked by Weierstraß in his course, every new definition of a number
relies on some property that does not hold with the previous one. For example,
the integers together with addition and multiplication define a ring and the
rational numbers give rise to a field. The real numbers allow one to work with
a complete field, that is a field where any Cauchy sequence converges.

As usual, we will denote the set of natural numbers (without 0) by N, the
set of natural numbers with 0 by N0, the set of integer numbers by Z, and the
set of rational numbers by Q.
Definition 3.1. An aggregate is given by a non empty set Λ and, for any λ ∈ Λ,
by a rational number xλ. This aggregate will be denoted by (xλ)λ∈Λ or more
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simply by x. The set of aggregates will be denoted by A.

Definition 3.2. An aggregate (xλ)λ∈Λ is nonnegative (resp. nonpositive) if
xλ ≥ 0 (resp. xλ ≤ 0) for any λ ∈ Λ.

If the set Λ related to an aggregate (xλ)λ∈Λ is finite, this aggregate repre-
sents a rational number through the sum

∑
λ∈Λ xλ. If Λ is not finite, quoting

Weierstraß (in German), an aggregate is “not necessarily associated to a finite
value”. This becomes apparent when considering Λ = N and xλ = 1/λ for any
λ ∈ Λ, as this aggregate represents the diverging harmonic series.

Definition 3.3. An aggregate (xλ)λ∈Λ has a finite value if the set

{
∑
j∈J

|xj | : J ⊂ Λ, J finite} (1)

is bounded (in Q). The set of aggregates with finite value will be denoted by A.

Of course, A is a subset of A. If (xλ)λ∈Λ ∈ A is such that Λ is finite,
then (xλ)λ∈Λ trivially belongs to A. For the infinite case, we need further
considerations.

We did not impose on the set Λ appearing in Definition 3.1 to be countable.
Indeed, this imposition is not necessary.

Proposition 3.4. If (xλ)λ∈Λ belongs to A, then the set of the elements λ of Λ
for which one has xλ ̸= 0 is necessarily countable.

Proof. Given a rational number ϵ > 0, let us show that the set

Aϵ = {λ ∈ Λ : |xλ| > ϵ}

is finite. If it is not the case, let m be a rational number that is an upper bound
of the set (1) and such that Jϵ is a finite part of Λ for which

m − ϵ

2 <
∑
j∈Jϵ

|xj |.

Since Aϵ is not finite, there exists j0 ∈ Aϵ \ Jϵ. By setting J = Jϵ ∪ {j0}, we get∑
j∈J

|xj | =
∑
j∈Jϵ

|xj | + |xj0 | > m,

which is absurd, since m is an upper bound. As the set of the elements λ of Λ
that satisfies xλ ̸= 0 can be written as⋃

k∈N
{λ ∈ Λ : |xλ| >

1
k

} =
⋃
k∈N

A1/k,

we can conclude, since any countable union of finite sets is necessarily countable.
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Let us remark that, for any (xλ)λ∈Λ ∈ A, we can always suppose that Λ is
infinite by eventually setting xλ = 0 for infinitely many indices λ. Therefore,
from what we have seen, by choosing a bijection from J to N or N0, we can
always suppose that we have Λ = N or Λ = N0.

At times, we may represent an element (xλ)λ∈Λ of the set A simply as∑
λ∈Λ

xλ, (2)

when there is no possibility of confusion. Since we have not yet defined the real
numbers, this expression should be interpreted symbolically unless it represents
a rational number.

Proposition 3.5. For any rational number r, there exists (xλ)λ∈Λ ∈ A such
that

∑
λ∈Λ xλ = r.

Proof. It suffices to choose x1 = r and xj = 0 for j ≥ 2 (j ∈ N) to get∑∞
j=1 xj = r.

4 Sum of aggregates
Let us introduce addition and subtraction on A. Let us remark that they could
be defined on A.

If Λ1 and Λ2 are two non empty sets, let us write

Λ1 ⊔ Λ2 = (Λ1 × {1}) ∪ (Λ2 × {2})

to denote the disjoint union of Λ1 and Λ2 [5]. If Λ1 and Λ2 are countable, so
is Λ1 ⊔ Λ2. This operation defines the “juxtaposed union” of Weierstraß, where
no element of Λ1 is in Λ2 and conversely. The sum of two aggregates x and y is
simply the aggregate obtained by setting side by side the elements of x and y.

Definition 4.1. If (xj)λ∈Λ1 and (yj)λ∈Λ2 are two elements of A, their sum
(zλ′)λ′∈Λ1⊔Λ2 is defined as follows: zλ′ = xλ if λ′ = (λ, 1) and zλ′ = yλ if
λ′ = (λ, 2). We will naturally write

(zλ′)λ′∈Λ1⊔Λ2 = (xλ)λ∈Λ1 + (yλ)λ∈Λ2 .

Proposition 4.2. The sum of two elements of A is again an element of A.

Proof. Let (xλ)λ∈Λ1 and (yλ)λ∈Λ2 be two elements of A and (zλ)λ∈Λ1⊔Λ2 be
their sum. If J is a finite subset of Λ1 ⊔ Λ2, then there exist a finite subset J1
of Λ1 and a finite subset J2 of Λ2 such that J = J1 ⊔ J2. We thus have∑

j∈J

|zj | =
∑
j∈J1

|xj | +
∑
j∈J2

|yj |,

which is sufficient to conclude.
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The operation addition is obviously commutative.

Definition 4.3. The additive inverse of an element (xλ)λ∈Λ of A is the element
(yλ)λ∈Λ defined by yλ = −xλ for any λ ∈ Λ. We will denote by −(xλ)λ∈Λ
the additive inverse of (xλ)λ∈Λ. The difference of two elements (xλ)λ∈Λ1 and
(yλ)λ∈Λ2 of A is defined by

(xλ)λ∈Λ1 − (yλ)λ∈Λ2 = (xλ)λ∈Λ1 + (−(yλ)λ∈Λ2).

Proposition 4.4. If (xλ)λ∈Λ1 represents the rational number r1 and (yλ)λ∈Λ2

represents the rational number r2, then (xλ)λ∈Λ1 + (yλ)λ∈Λ2 (resp. (xλ)λ∈Λ1 −
(yλ)λ∈Λ2) represents the rational number r1 + r2 (resp. r1 − r2).

Proof. This results from the elementary properties of the absolute convergence
of series on the set of rational numbers (as a metric space).

Weierstraß initially only considers positive numbers and later addresses the
subtraction of a larger aggregate from a lesser one.

Remark 4.5. In his lectures, for a larger than b, Weierstraß defines a − b as
the number such that, when added to b, results in a. He explicitly constructs a
number c such that b + c = a (see the proof of Proposition 7.4).

5 The set of real numbers
We can employ the notion of Cauchy sequence for the aggregates. Recall that a
series of rational numbers

∑
j∈N xj satisfies the Cauchy convergence criterion if

and only if, for any rational number ϵ > 0, there exists an integer j0 such that,
for any indices p and q satisfying q ≥ p ≥ j0, the sum |

∑q
j=p xj | is bounded by

ϵ. In the context of unconditionally convergent series, an analog of this result
can be stated as follow:

Proposition 5.1. If (xλ)λ∈Λ belongs to A, then, given a rational number ϵ > 0,
there exists a finite subset Jϵ of Λ such that for any finite subset J of Λ that is
disjoint from Jϵ, we have

∑
j∈J |xj | < ϵ.

Proof. If this is not the case, we can find a rational number ϵ > 0 such that, for
any finite subset Jϵ of Λ, there exists a finite subset J of Λ that is disjoint from
Jϵ and such that

∑
j∈J |xj | ≥ ϵ.

Then, let us choose a rational number m that is an upper bound of the
set (1) in Definition 3.3 such that there exists a finite subset Jϵ of Λ for which

m − ϵ

2 <
∑
j∈Jϵ

|xj |.

Now, let J be a finite subset of Λ that is disjoint from Jϵ and such that we have∑
j∈J |xj | ≥ ϵ. We then get ∑

j∈Jϵ∪J

|xj | > m,
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which is absurd, by definition of m.

To be able to introduce the set of real numbers, we need to make two elements
of A that will represent the same real number indistinguishable. For instance,
we have

1 =
∞∑

j=1

9
10j

=
∞∑

j=1

1
2j

,

in Q, implying that (9/10j)j∈N and (1/2j)j∈N must be equivalent. As we employ
epsilontics, we slightly modify Weierstraß’s approach (provided in Section 2):
two elements of A will be deemed equivalent if their finite differences are suffi-
ciently small when summing over sufficiently many indices. More rigorously, we
have the following definition.

Definition 5.2. If (xλ)λ∈Λ1 and (yλ)λ∈Λ2 are two elements of A, we will write
(xλ)λ∈Λ1 ∼ (yλ)λ∈Λ2 to signify that, for any rational number ϵ > 0, there exist
a finite subset Jϵ

1 of Λ1 and a finite subset Jϵ
2 of Λ2 such that, for any finite sets

J1 and J2 containing Jϵ
1 and Jϵ

2 respectively, we have

|
∑
j∈J1

xj −
∑
j∈J2

yj | < ϵ.

Proposition 5.3. The relation ∼ introduced in the Definition 5.2 is an equiv-
alence relation.

Proof. Let x = (xλ)λ∈Λ1 be an element of A. Given a rational number ϵ > 0,
let Jϵ be a finite subset of Λ1 such that for any finite subset J of Λ1 that is
disjoint from Jϵ, we have

∑
j∈J |xj | < ϵ/2. If J1 and J2 are finite subsets of Λ

containing Jϵ, we have

|
∑
j∈J1

xj −
∑
j∈J2

xj | ≤
∑

j∈J1∆J2

|xj | < ϵ,

where the symbol ∆ denotes the symmetric difference.
If y = (yλ)λ∈Λ2 is an element of A such that x ∼ y, then we trivially have

y ∼ x, by definition of the absolute value on Q.
Finally, let (zλ)λ∈Λ3 be a third element of A and suppose that we have x ∼ y

and y ∼ z. Given a rational number ϵ > 0, there exist finite subsets Jϵ
1, Jϵ

2 and
Jϵ

3 of Λ1, Λ2 and Λ3 respectively such that

|
∑
j∈J1

xj −
∑
j∈J2

yj | <
ϵ

2 and |
∑
j∈J2

yj −
∑
j∈J3

zj | <
ϵ

2 ,

for any finite sets J1, J2 and J3 containing Jϵ
1, Jϵ

2 and Jϵ
3 respectively. We thus

get
|

∑
j∈J1

xj −
∑
j∈J3

zj | ≤ |
∑
j∈J1

xj −
∑
j∈J2

yj | + |
∑
j∈J2

yj −
∑
j∈J3

zj | < ϵ,

which implies x ∼ z.
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Definition 5.4. The set of real numbers R is the quotient set of A by the
equivalence relation ∼.

As customary, we will often identify an element [x] = {x′ ∈ A : x ∼ x′} of R
with an element of the equivalence class x′ ∈ [x], that is, we will not make the
distinction between [x] and a representative of [x].
Remark 5.5. In his lectures, Weierstraß employs comparison via component
parts to define equality. As the set of real numbers, viewed as a complete ordered
field, is unique (up to an isomorphism) [28], both approaches are fundamentally
equivalent. This equivalence can also be demonstrated by noting that the dif-
ference between two real numbers is essentially the same in both approaches
(see proof of Proposition 7.4).

Let us consider the case of the rational numbers in R.
Proposition 5.6. If (xλ)λ∈Λ1 and (yλ)λ∈Λ2 are two elements of A such that∑

λ∈Λ1
xλ and

∑
λ∈Λ2

yλ both represent a rational number r, then we have
(xλ)λ∈Λ1 ∼ (yλ)λ∈Λ2 .

Conversely, if we have (xλ)λ∈Λ1 ∼ (yλ)λ∈Λ2 and if
∑

λ∈Λ1
xλ represents a

rational number r, then
∑

λ∈Λ2
yλ also represents r.

Proof. If these two elements of A represent the rational number r, then, given
a rational number ϵ > 0, there exist finite subsets Jϵ

1 and Jϵ
2 of Λ1 and Λ2

respectively such that

|
∑
j∈J1

xj − r| <
ϵ

2 and |
∑
j∈J2

yj − r| <
ϵ

2 ,

for any finite sets J1 and J2 containing Jϵ
1 and Jϵ

2 respectively. We thus can
write

|
∑
j∈J1

xj −
∑
j∈J2

yj | ≤ |
∑
j∈J1

xj − r| + |r −
∑
j∈J2

yj | < ϵ,

for such sets.
Now, if we have (xλ)λ∈Λ1 ∼ (yλ)λ∈Λ2 , given a rational number ϵ > 0, let Jϵ

1
and Jϵ

2 be finite subsets of Λ1 and Λ2 respectively such that

|
∑
j∈J1

xj −
∑
j∈J2

yj | <
ϵ

2 ,

for any finite sets J1 and J2 containing Jϵ
1 and Jϵ

2 respectively. There also exists
a finite subset Jr

1 of Λ1 such that

|
∑
j∈J1

xj − r| <
ϵ

2 ,

for any finite set J1 containing Jr
1 . Therefore, we have

|
∑
j∈J2

yj − r| < |
∑
j∈J2

yj −
∑

j∈Jϵ
1∪Jr

1

xj | + |
∑

j∈Jϵ
1∪Jr

1

xj − r| < ϵ,

for any finite set J2 containing Jϵ
2.
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Given a rational number r, by choosing xr = (x(r)
j )j∈N in A such that x

(r)
1 = r

and x
(r)
j = 0 for j ≥ 2, one can symbolically write Q ⊂ R thanks to the canonical

injection3

ι : Q → R r 7→ xr.

Let us show that the cardinality of R is strictly greater than that of Q.

Lemma 5.7. For a given natural number b where b > 1, the set

Eb = {(xjb−j)j∈N : xj ∈ {0, . . . , b − 1} ∀j ∈ N}

of A is not countable. Additionally, R is not countable.

Proof. Consider the subset E∗
b of Eb that excludes the sequences (xjb−j)∈N of

Eb where there exists j0 ∈ N such that xj = b − 1 for j ≥ j0. The set E∗
b

comprises what is commonly referred to as the proper representations in base b
of numbers from the interval [0, 1). Notably, this set is uncountable in A. Given
A ⊂ N, let (x(A)

j )j∈N denote the aggregate defined such that x
(A)
j = 1 if j ∈ A

and x
(A)
j = 0 otherwise. If we define the set

EN = {(xj)j∈N : xj ∈ {0, 1}},

the application
ϕ : ℘(N) → EN A 7→ (x(A)

j )j∈N,

where ℘(N) represents the power set of N, is evidently bijective. This means
that the sets ℘(N) and EN are equinumerous. Furthermore, the set of aggregates
(xj)j∈N of EN for which there exists j0 ∈ N such that j ≥ j0 implies xj =
1 is countable. Therefore, the sets E2, E∗

2 , EN and ℘(N) are equinumerous.
Consequently, Eb is not countable for any b > 1. Alternatively, this observation
can be established by adapting Cantor’s original proof for E10.

The uncountability holds true in the quotient R of A as well: if x = (xjb−j)j∈N
and x = (yjb−j)j∈N are two distinct elements of E∗

b , these aggregates do not
satisfy x ∼ y. This arises from the fact that

n′∑
j=n

b − 1
bj

< b1−n,

for any n, n′ ∈ N, with n ≤ n′ (see [28], for example). Hence, if for j ∈
{1, · · · n − 1}, it holds that xj = yj and xn < yn, then the inequality∑

j∈J2

yj

bj
−

∑
j∈J1

xj

bj
> ϵ

is satisfied4 for some rational number ϵ > 0, whenever J1 and J2 are finite sets
that encompass the integers from 1 to n.

3obviously, we should write r 7→ [xr].
4It is crucial to emphasize that this implication holds true only when working with the

proper representations. Otherwise, it would be impossible to satisfy ϵ > 0 in the scenario
where yn − xn = 1, xj = b − 1 and yj = 0 for j > n.
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Remark 5.8. The previous proof establishes that, within the framework of
base-b representations, two distinct proper representations correspond to two
distinct real numbers.

As a consequence, ι is not a surjection; that is, we cannot have the equiv-
alence Q = R. In essence, the capacity to represent numbers with aggregates
extends beyond rational numbers. In the following, we will treat the rational
number r as an element of R, considering r, xr and [xr] as synonymous in R.

Remark 5.9. Weierstraß, in his course, merely notes the existence of elements
in A that do not represent any rational number. As an illustration, he considers
xj = 1/j! for j ∈ N0, which represents e.

6 Illustrative examples
In this section, our aim is to clarify the nature of R, which we have not yet
established as isomorphic to the conventional real numbers. While the set R has
been introduced in Definition 5.4, let R denote the ordered field of conventional
real numbers, as defined by Dedekind or Cantor, for instance [28].

The Riemann series theorem imparts that absolutely convergent series on
R are unconditionally convergent. In simpler terms, for (xλ)λ∈Λ in A and any
bijection σ from N to Λ, the series

∞∑
j=0

xσ(j) (3)

is absolutely convergent (and therefore convergent) in R and the limit does not
depend on the bijection σ. Consequently, if Λ is not finite, an element (xλ)λ∈Λ
of A defines the general term of an absolutely convergent series and can thus
be associated to the real number (3). In this context, i.e. with the conventional
real numbers and the Riemann series theorem, the notation (2) is meaningful.
For instance, by defining

xj = (−1)j

4j
( 2
4j + 1 + 2

4j + 2 + 2
4j + 3)

and considering J = N0, the sequence (xj)j∈J serves as a representation of the
number π ∈ R in the sense that

π =
∞∑

j=0
xj ,

in R [1].
Any aggregate within A serves as a representation of a real number of R

as above. On the other hand, we will demonstrate that every real number
in R is represented by an aggregate within A, as every real number has a
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decimal representation (see Remark 7.6). Moreover, any real number can be
represented in multiple ways. For instance, consider b, b′ ∈ N, with b, b′ > 1; for
any number x ∈ [0, 1) ⊂ R, there exist sequences (xj)j∈N and (yj)j∈N such that
xj ∈ {0, . . . , b − 1}, yj ∈ {0, . . . , b′ − 1}, and

x =
∞∑

j=1

xj

bj
=

∞∑
j=1

yj

b′j ,

in R. Consequently, we have (xjb−j)j∈N ∼ (yjb′−j)j∈N, so that in R, (xjb−j)j∈N
and (yjb′−j)j∈N represent the number x ∈ R.

However, since our goal is to present a standalone construction of real num-
bers, akin to that of Weierstraß, we cannot assume the prior definition of R.
This limitation prevents us from directly employing the arguments of this sec-
tion. Such considerations gain significance in the realm of isomorphisms, as
elucidated in Section 11. Cantor credits Weierstraß with being the first to avoid
the logical error of defining a real number by relying on a limit [7].

7 Ordering the set of real numbers
Let us equip our set of real numbers R with a total order. Once more, given our
avoidance of Weierstraß’s notions of equivalence and inequality of aggregates5,
we will utilize partial sums of rationals and epsilontics to craft our definition.

Definition 7.1. If (xλ)λ∈Λ1 and (yλ)λ∈Λ2 are two elements of A, (xλ)λ∈Λ1 is
strictly larger than (yλ)λ∈Λ2 , which will be denoted by (xλ)λ∈Λ1 > (yλ)λ∈Λ2 , if
there exist a rational number ϵ > 0, a finite subset Jϵ

1 of Λ1 and a finite subset
Jϵ

2 of Λ2 such that for any finite sets J1 and J2 containing Jϵ
1 and Jϵ

2 respectively,
we have ∑

j∈J1

xj −
∑
j∈J2

yj > ϵ.

From there, (xλ)λ∈Λ1 is larger or equal to (yλ)λ∈Λ2 , which will be denoted by
(xλ)λ∈Λ1 ≥ (yλ)λ∈Λ2 , if either (xλ)λ∈Λ1 > (yλ)λ∈Λ2 , or (xλ)λ∈Λ1 ∼ (yλ)λ∈Λ2 .

Of course, x ≤ y (resp. x < y) means y ≥ x (resp. y > x). The order relation
≤ given above defines a total order on the set of real numbers. Let us first show
that it is well defined on this set.

Proposition 7.2. Let x and y be two elements of A such that x > y; if x′ and
y′ are two elements of A such that x ∼ x′ and y ∼ y′, then we have x′ > y′.

Proof. Let us write x = (xλ)λ∈Λ1 , y = (yλ)λ∈Λ2 , x′ = (x′
λ)λ∈Λ3 and y′ =

(y′
λ)λ∈Λ4 . Let ϵ > 0 be a rational number, Jϵ

1 be a finite subset of Λ1 and Jϵ
2 be

a finite subset of Λ2 such that∑
j∈J1

xj −
∑
j∈J2

yj > 2ϵ,

5These are based on what we earlier called components.
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for any finite sets J1 and J2 containing Jϵ
1 and Jϵ

2 respectively. Let us also
consider Kϵ

1, Kϵ
2, Kϵ

3 and Kϵ
4, which are finite subsets of Λ1, Λ2, Λ3 and Λ4

respectively such that

|
∑
j∈J1

xj −
∑
j∈J3

x′
j | <

ϵ

2 and |
∑
j∈J2

yj −
∑
j∈J4

y′
j | <

ϵ

2 ,

for any finite sets J1, J2, J3 and J4 containing Kϵ
1, Kϵ

2, Kϵ
3 and Kϵ

4 respectively.
By setting Eϵ

1 = Jϵ
1 ∪ Kϵ

1, Eϵ
2 = Jϵ

2 ∪ Kϵ
2, Eϵ

3 = Jϵ
3 ∪ Kϵ

3 and Eϵ
4 = Jϵ

4 ∪ Kϵ
4,

we get∑
j∈J3

x′
j −

∑
j∈J4

y′
j =

∑
j∈Eϵ

1

xj −
∑

j∈Eϵ
2

yj +
∑
j∈J3

x′
j −

∑
j∈Eϵ

1

xj +
∑

j∈Eϵ
2

yj −
∑
j∈J4

y′
j

> ϵ,

for any finite sets J3 and J4 containing Eϵ
3 and Eϵ

4 respectively.

Proposition 7.3. The relation ≤ defines a total order on R.

Proof. Let (xλ)λ∈Λ1 and (yλ)λ∈Λ2 be two elements of A. We cannot have both
(xλ)λ∈Λ1 > (yλ)λ∈Λ2 and (yλ)λ∈Λ2 > (xλ)λ∈Λ1 , by definition.

Moreover, if we have neither (xλ)λ∈Λ1 > (yλ)λ∈Λ2 , nor (yλ)λ∈Λ2 > (xλ)λ∈Λ1 ,
then we necessarily have x ∼ y.

The following result is of significant importance. We essentially give here
the original proof from [41].

Proposition 7.4. If x ∈ R is such that x > 0, then there exists an element
(yj)j∈N of A that is a representative of x (in the sense that (yj)j∈N ∼ x) such
that yj > 0 for any j ∈ N.

Proof. If x = (xλ)λ∈Λ is such that x > 0, as we have x < n for n ∈ N sufficiently
large, let n0 ∈ N0 be the largest integer such that x ≥ n0 and set y1 = n0. If
x = y1, we are done. Otherwise, since we have 0 < x − y1 < 1, let n1 be the
smallest natural number such that x − y1 ≥ 1/n1 and set y2 = 1/n1. Such a
number n1 exists by definition of the inequality x > y1 (given a rational number
ϵ > 0, we have 1/n1 < ϵ for n1 sufficiently large). If x = y1+y2, the construction
is complete; otherwise, we proceed to construct n2 and y3 in a similar manner.
Specifically, assume that nl and yl+1 = 1/nl have been defined such that

1
nl

≤ x −
l∑

k=1
yk <

1
nl − 1 , (4)

for all l < j. If x =
∑j

k=1 yk, the task is accomplished. Otherwise, let nj be the
smallest natural number such that x −

∑j
k=1 yk ≥ 1/nj and set yj+1 = 1/nj . If

x =
∑j

k=1 yk for some j, we are finished. If this equality is not satisfied for any
j, we can construct a strictly decreasing sequence (yj)j∈N such that (4) holds
for all l, so that (yj)j∈N ∼ x.

13



As a direct consequence of Proposition 7.4, the nonnegative real numbers,
following Definition 3.2, are the numbers x that satisfy x ≥ 0.

Corollary 7.5. A real number x is nonnegative (resp. nonpositive) if and only
if x ≥ 0 (resp. x ≤ 0).

Remark 7.6. A slight modification to the previous proof demonstrates that
any number belonging to R contains within its equivalence class a representation
in base b ∈ N (b > 1). We simply need to replace the sequence (yj)j∈N in the
construction with

yj = aj−1

bj−1 (j ≥ 2),

where aj ∈ {0, . . . , b − 1} is obtained in the same manner (using the greedy
algorithm):

al

bl
≤ x −

l∑
k=1

yk <
al + 1

bl
.

8 The group of real numbers
Let us show that the operations related to the sum of two elements of A are
compatible with the equivalence relation defining the real numbers.

Proposition 8.1. If x, x′, y and y′ are elements of A such that x ∼ x′ and
y ∼ y′, then we have x + y ∼ x′ + y′.

Proof. Let us write x = (xλ)λ∈Λ1 , y = (yλ)λ∈Λ2 , x′ = (x′
λ)λ∈λ3 and y′ =

(y′
λ)λ∈Λ4 . Given an irrational number ϵ > 0, there exist finite subsets Jϵ

1, Jϵ
2,

Jϵ
3 and Jϵ

4 of Λ1, Λ2, Λ3 and Λ4 respectively such that

|
∑
j∈J1

xj −
∑
j∈J3

x′
j | <

ϵ

2 and |
∑
j∈J2

yj −
∑
j∈J4

y′
j | <

ϵ

2 ,

for any finite sets J1, J2, J3 and J4 containing Jϵ
1, Jϵ

2, Jϵ
3 and Jϵ

4 respectively.
We thus have

|
∑

j∈J1⊔J2

(x + y)j −
∑

j∈J3⊔J4

(x′ + y′)j | = |
∑
j∈J1

xj +
∑
j∈J2

yj −
∑
j∈J3

x′
j −

∑
j∈J4

y′
j |

< ϵ,

for these sets.

Proposition 8.2. If x and x′ are two elements of A such that x ∼ x′, then we
have −x ∼ −x′. As a consequence, if y and y′ are also two elements of A such
that y ∼ y′, then we have x − y ∼ x′ − y′.

Proof. This is a direct consequence of the properties of the absolute value on
Q.
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The set of real numbers equipped with the operation of addition and the
order relation defined above is a linearly ordered group.

Proposition 8.3. If x and y are two elements of A such that y > x, then we
have y + z > x + z, for any z ∈ A.

Proof. Let (xλ)λ∈Λ1 , (yλ)λ∈Λ2 and (zλ)λ∈Λ3 be three elements of A such that
(yλ)λ∈Λ2 > (xλ)λ∈Λ1 . There exist a rational number ϵ > 0 and two finite subsets
Jϵ

1 and Jϵ
2 of Λ1 and Λ2 respectively such that∑

j∈J2

yj −
∑
j∈J1

xj > 2ϵ,

for any finite sets J1 and J2 containing Jϵ
1 and Jϵ

2 respectively. That being said,
there exists a finite subset Jϵ

3 of Λ3 such that∑
j∈J3

|zj | < ϵ,

for any finite subset J3 of Λ3 that is disjoint from Jϵ
3. As a consequence, we can

write ∑
j∈J2⊔J3

(y + z)j −
∑

j∈J1⊔J′
3

(x + z)j =
∑
j∈J2

yj +
∑
j∈J3

zj −
∑
j∈J1

xj −
∑
j∈J′

3

zj

≥
∑
j∈J2

yj −
∑
j∈J1

xj −
∑

j∈J3∆J′
3

|zj | > ϵ,

for any finite set J ′
3 containing Jϵ

3.

9 Completeness of the real numbers
Let us introduce a notation specific to this section to distinguish between a
sequence of aggregates and a single aggregate, i.e. an element (xλ)λ∈Λ of A. A
sequence of aggregates, considered as a sequence on A or R, will be consistently
underlined: for such a sequence (xk)k∈N, each xk represents an aggregate. In
other words, for each k ∈ N, one has xk = (x(k)

λ )λ∈Λ for some (x(k)
λ )λ∈Λ ∈ A.

In this section, given a real number x such that x > 0 (resp. x < 0), we will
implicitly assume, by virtue of Proposition 7.4, that the selected representative
(xλ)λ∈Λ of the equivalence class satisfies xλ > 0 (resp. xλ < 0) for any λ ∈ Λ.
Similarly, we will designate (xj)j∈N with xj = 0 for j ∈ N as the representative
of 0 ∈ R. It is easy to show that one must choose the adequate representative
when dealing with limits.

Remark 9.1. Let us consider the sequence (xk)k∈N on A, where xk is the
element (x(k)

j )j∈Jk
of A defined by Jk = {1, . . . , 2k} and x

(k)
j = (−1)j . Since xk

represents 0 on A for k ∈ N, a suitable notion of limit should ensure that the
sequence (xk)k∈N converges to 0. However, since

∑
j∈Jk

|x(k)
k | = 2k, defining

such a limit in A from (xk)k∈N is not straightforward.
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We first need a notion of absolute value on R to define a distance. Thanks to
our assumption on the representatives (they are considered as either nonnegative
or nonpositive), we can introduce the following definition.

Definition 9.2. Given an element (xλ)λ∈Λ of R, the absolute value of (xλ)λ∈Λ
is the element |(xλ)λ∈Λ| of R defined by

|(xλ)λ∈Λ| =
{

(xλ)λ∈Λ if (xλ)λ∈Λ is nonnegative
−(xλ)λ∈Λ otherwise .

It is easy to check that the triangle inequality is satisfied.

Lemma 9.3. For any elements x and y of R, we have |x + y| ≤ |x| + |y|.

Proof. Let us write x = (xλ)λ∈Λ1 and y = (yλ)λ∈Λ2 . We have

−|
∑
j∈J1

xj | − |
∑
j∈J2

yj | ≤
∑
j∈J1

xj +
∑
j∈J2

yj ≤ |
∑
j∈J1

xj | + |
∑
j∈J2

yj |,

for any finite subset J1 of Λ1 and any finite subset J2 of Λ2, thus

|
∑
j∈J1

xj | + |
∑
j∈J2

yj | − |
∑
j∈J1

xj +
∑
j∈J2

yj | ≥ 0,

which is sufficient to conclude if J1 and J2 are supposed large enough.

We will also need the following lemmata to prove the completeness of R.

Lemma 9.4. If (xk)k∈N is a Cauchy sequence on R that does not converge to
0, then one (and only one) of the following statements holds:

• There exists k∗ ∈ N such that xk > 0 for any k ≥ k∗.

• There exists k∗ ∈ N such that xk < 0 for any k ≥ k∗.

Proof. Suppose we have a Cauchy sequence (xk)k∈N, where xk ≥ 0 and xk′ ≤ 0
for infinitely many indices k and k′ in N. Given a rational number ϵ > 0, there
exists k0 ∈ N such that |xp −xq| < ϵ for any p, q ≥ k0. Choosing xp and xq such
that xp ≥ 0 and xq ≤ 0, we have

|xp| ≤ |xp − xq| < ϵ.

Thus, we can construct a subsequence of (xk)k∈N that converges to 0, implying
that the sequence (xk)k∈N itself converges to 0.

Lemma 9.5. Given k ∈ N, let xk = (x(k)
λ )λ∈Λk

∈ R be such that the sequence
(xk)k∈N is Cauchy; the set

E =
⋃
k∈N

{
∑
j∈J

|x(k)
j | : J ⊂ Λk, J finite}

is bounded.
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Proof. Since (xk)k∈N is Cauchy, from Lemma 9.4, there exists k∗ ∈ N such that
either xk ≥ 0 for any k ≥ k∗ or xk ≤ 0 for any k ≥ k∗; without loss of generality,
we can suppose that xk ≥ 0 for any k. Let k0 ∈ N be such that |xp − xq| < 1
for any p, q ∈ N satisfying p, q ≥ k0. Therefore, we have |xk| < |xk0

| + 1 for any
k ≥ k0. There thus exists a rational constant C0 > 0 such that∑

j∈J

|x(k)
j | = |

∑
j∈J

x
(k)
j | ≤ C0,

for any finite subset J of Λk and any k ≥ k0, where we have used the fact that
(x(k)

λ )λ∈Λk
is nonnegative. Now, if, given k ∈ N, Ck is a rational upper bound

for
{
∑
j∈J

|x(k)
j | : J ⊂ Λk, J finite},

max0≤k≤k0 Ck is a rational upper bound for the set E.

Proposition 9.6. Any Cauchy sequence (xk)k∈N on R converges to an element
of R.

Proof. From the Cauchy sequence (xk)k∈N, we can extract a subsequence (xl(k))k∈N
for which we have

|xl(k) − xl(k+1)| < 2−k.

Let us set Λ′
0 = Λl(1), Λ′

k = Λl(k+1) ⊔ Λl(k) for k ∈ N and δk = (δ(k)
j )j∈Λ′

k
, with

(δ(k)
j )j∈Λ′

k
= xl(k+1) − xl(k),

so that we have xl(k+1) = xl(1) +
∑k

j=1 δj . Let us remark that (δk)k∈N is a
Cauchy sequence that converges to 0. Define

Λ =
⊔

k∈N0

Λ′
k =

⋃
k∈N0

Λ′
k × {k}

and let (ℓλ)λ∈Λ be the element of A given by

(ℓλ)Λ′
k

×{k} =
{

xl(1) if k = 0
δk if k > 0 .

The previous lemma ensures that (ℓλ)λ∈Λ belongs to R.
The relation |(ℓλ)λ∈Λ −xl(k)| ≤

∑∞
j=k+1 |δj | < 21−k shows that the sequence

(xl(k))k∈N converges to (ℓλ)λ∈Λ. We have thus built a convergent subsequence
of the Cauchy sequence, which is sufficient to conclude.

Weierstraß did present the key results for establishing Proposition 9.6.

Remark 9.7. At the end of Chapter 1 of his course [41], Weierstraß demon-
strates that a series of positive numerical values converges if and only if it is
bounded. By reducing the study of the convergence of a Cauchy subsequence
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to that of a geometric series, this result, generalized to non-positive numerical
values, can be instrumental in establishing completeness. Another technique
involves invoking the Bolzano-Weierstraß theorem, demonstrated in Chapter 9
of [41].

One can show that Q is dense in R and thus recover the approach of Méray
and Cantor for defining the real numbers, see Section 11.

Proposition 9.8. Given a real number x, there exists a sequence on Q that
converges to x. For x > 0 (resp. x < 0), this sequence can be supposed increasing
(resp. decreasing).

Proof. This is a direct consequence of the proof of Proposition 7.4

10 The field of real numbers
To define the multiplication of two real numbers in a practical manner, we
can use the Cauchy product and Mertens’ theorem. This perspective closely
aligns with Weierstraß’s construction, and is consistent with the interpretation
of absolutely convergent series [39].

Definition 10.1. The product of two elements (xj)j∈N0 and (yj)j∈N0 of A is
given by the element (zj)j∈N0 defined by

zj =
j∑

k=0
xkyj−k. (5)

This product will be denoted by (xj)j∈N0 × (yj)j∈N0 .

In this section, we will assume that the indexing set defining the real numbers
is N0, although this is not necessary.

Remark 10.2. The product has been defined for real numbers of the form
(xj)j∈N0 and (yj)j∈N0 , i.e. where the indexing set is necessarily N0. Given two
elements (xj)j∈Λ1 and (yj)j∈Λ2 of A, we can define their product as the element
(zj)j∈Λ1 of A defined by

zσ−1
1 (j) =

j∑
k=0

xσ1(k)yσ2(j−k),

where σ1 is a bijection from N0 to Λ1 and σ2 is a bijection from N0 to Λ2.

We will implicitly use the properties of the Cauchy product [18, 22]; as
explained in the following remark, we can use a more natural approach by
leveraging the fact that Q is dense in R.
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Remark 10.3. One can avoid any appeal to the theory of Cauchy products by
defining the product of two real numbers x and y from R as the limit (in R) of
the sequence (rjsj)j∈N, where (rj)j∈N and (sj)j∈N are two sequences on Q that
converge (in R) to x and y respectively. More technically, let Fj be the subset of
R made from the elements (xλ)λ∈Λ of A for which the cardinality of Λ is equal
to j ∈ N at most. As Fj is a subset of Q, we naturally have a product on Fj

and we can define the product on R by identifying R with the inverse limit of
the sets Fj [2].

Proposition 10.4. If (xj)j∈N0 represents the rational number r1 and (yj)j∈N0

represents the rational number r2, then (xj)j∈N0 × (yj)j∈N0 represents the ra-
tional number r1r2.

Proof. This is a direct consequence of the properties of the Cauchy product.

Proposition 10.5. If x, x′, y and y′ are elements of A such that x ∼ x′ and
y ∼ y′, then we have x × y ∼ x′ × y′.

Proof. Let (rj)j∈N0 be a sequence on Q that converges to x in R and (sj)j∈N0 be
a sequence on Q that converges to y in R. By Mertens’ theorem, rjsj = rj × sj

in R and, since the Cauchy product is continuous, (rjsj)j∈N0 converges to x×y.
One can conclude, since (rj)j∈N0 and (sj)j∈N0 also converge in R to x′ and y′

respectively.

In practice, in order to easily compute the product of two real numbers, the
choice of the representative of the equivalence class is crucial. For example, one
can systematically choose the decimal representation. This approach can be
directly formalized [38].

Let us consider the multiplicative inverse of an element (xj)j∈N0 of R. Let
us suppose that (xj)j∈N0 > 0, so that we can assume to have xj > 0 for any
j ∈ N0. Let zj = 9/10j+1 for j ∈ N0, so that (zj)j∈N0 = 1 in R. Since the
system defining every zj made of equations of type (5) is lower triangular, there
always exists an element (yj)j∈N0 of R such that (xj)j∈N0 × (yj)j∈N0 = 1 in R.

As an example, let us consider the simple case where (xj)j∈N0 = 1/3. Using
the decimal representation, we have xj = 3/10j+1. The equation defining z0 is
thus

9
10 = 3

10y0,

which gives y0 = 3. For the second equation, we get

9
100 = 3

10y1 + 3
1003,

and thus y1 = 0. From there, a simple recurrence shows that the solution of the
system is (yj)j∈N0 = 3, with y0 = 3 and yj = 0 for j > 0. For (xj)j∈N0 = 1/4,
this method is less natural. Let us take x0 = 2/10, x1 = 5/100 and xj = 0 for
j > 1. The first equation is

9
10 = 2

10y0,
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which gives y0 = 9/2. For the subsequent equations, we get

9
10j+1 = 2

10yj + 5
100yj−1,

which gives the recurrence relation

yj = 1
10j

9
2 − 1

4yj−1,

for j > 1. It is easy to check that
∑

j∈N0
yj = 4: in Q, we have

∞∑
j=0

yj = 9
2 +

∞∑
j=1

yj = 9
2 + 1

2 − 1
4

∞∑
j=0

yj ,

which gives
5
4

∞∑
j=0

yj = 5.

Obviously, in practice, it is far easier to consider 1/4 as a rational number for
computing its multiplicative inverse, but the method proposed here shows that
every strictly positive number has a multiplicative inverse. Of course, this also
shows that any strictly negative real number has a multiplicative inverse.

Proposition 10.6. The set R equipped with the operations of addition, mul-
tiplication and the order defined above is an ordered field.

Proof. Let (xj)j∈N0 and (yj)j∈N0 be two nonnegative real numbers of R. Since
we can assume to have xj ≥ 0 and yj ≥ 0 for any j ∈ N0, the product x × y is
also nonnegative. The distributivity follows from the properties of the Cauchy
product.

Let us end this section by presenting how Weierstraß defines the division in
[41]. He cleverly relies on aliquot parts.

Remark 10.7. To demonstrate that, given two numbers a and b, there always
exists a number c such that c×b = a, Weierstraß first observes that it suffices to
prove that every positive number b has a multiplicative inverse. To achieve this,
he initially selects an integer m such that m − 1 < b ≤ m and sets b1 = m − b.
He then demonstrates that

∞∑
j=0

bj
1

1
mj+1 ≤ 1

1 − b1
(6)

converges and induces the inverse of b. For example, for 1/n (n ∈ N), we get
m = 1, b1 = n−1

n and (6) gives
∞∑

j=0
(n − 1

n
)j = 1

1 − n−1
n

= n.
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11 Comparison with alternative constructions
The definition of the real numbers R is equivalent to the classical constructions
of Cantor and Weierstraß.

Let R be the set of real numbers as defined by Cantor. As R is inherently
Archimedean, it is isomorphic to R [28]. We can explicitly construct such an
isomorphism.

Remark 11.1. In this remark, we exclusively examine absolutely converging
series, with Q regarded as a subset of R rather than as a subset of R. The
isomorphism theorem (see [28] for example) allows extending the function

φ : Q → R x =
∞∑

j=0
xj 7→ (xj)j∈N0 ,

to an isomorphism between R and R, utilizing the density of Q in R.
It can also be verified that we have

φ−1 : R → R (xλ)λ∈Λ 7→
∞∑

j=0
xσ(j),

where σ is any one-to-one mapping from N0 to Λ.

Now, let RW be the set of real numbers as defined by Weierstraß in [41],
where the aliquot part 1/n corresponds to a rational number. Again, R is
isomorphic to RW for the same reason as before. Indeed, Weierstraß’s construc-
tion is equivalent to the approach proposed here, in the sense that [(xj)j∈N0 ]R =
[(xj)j∈N0 ]RW

, where [x]R (resp. [x]RW
) denotes the equivalence class of x in R

(resp. in RW ). To be more precise, if x ∈ R is represented as

x =
∑
j∈N0

xj

10j
,

with xj ∈ {0, . . . , 9}, then both [(xj10−j)j∈N0 ]R and [(xj10−j)j∈N0 ]RW
represent

the number x [26].

Remark 11.2. It is shown in [26, 39] that each real number of RW contains in
its equivalence class a decimal representation. Therefore, if

x =
∞∑

j=0

xj

10j

is a decimal representation of x ∈ R, then (xj10−j)j∈N0 defines a numerical
value (eventually containing infinitely many elements) and conversely, every
numerical value is equivalent to a numerical value (xj10−j)j∈N0 which is the
decimal representation of a number x ∈ R. In other words, to every number
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(xj10−j)j∈N0 of RW , we can associate a number x ∈ R and vice versa. As
before, and for the same reasons,

φW : R → RW

∞∑
j=0

xj

10j
7→ (xj10−j)j∈N0

is an isomorphism. As a consequence, the canonical application

ι : R → RW (xj10−j)j∈N0 7→ (xj10−j)j∈N0

is an isomorphism as well.
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