

Recycling brick fines for new alcaliactivated binders

A. Grellier, D. Bulteel, L. Courard University of Liège (Belgium), IMT Nord Europe (France)

Context

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Context

Flow of brick waste: 1-2% of C&DW in BE/North of France

Valorization

Reuse of bricks Aggregates: landfilling/recycling for backfilling Brick fine particles

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Objectives

Brick fine particles treatment

Increase specific surface

Activate amorphous characteristics

Two ways of valorisation

Supplementary cementitious material

Alcali-activated material

Investigations on paste

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Objectives

Brick fine particles treatment grinding crushing Jaw crusher Impact crusher Bloc 238x138x138 mm

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Brick fine particles/GGBFS granulometry

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Brick fine particles

3 types of granulometry

B1: $d_{50} = 3.3 \mu m$ (with supplementary cyclogrinding)

B2: $d_{50} = 20 \ \mu m$ Specific surface, BET (m²/kg)B3: $d_{50} = 190 \ \mu m$ Specific surface, BET (m²/kg)Ground Granulated Blast Furnace SlagWater absorption (%)Granulometry (µm)d10

	Brick fines	GGBFS
	B2	
Specific surface, BET (m ² /kg)	833	1
Water absorption (%)	1.1	-
Granulometry (µm)		
d10	1.95	1
d50	19.1	8.5
d90	56.6	30
Ca(OH) ₂ quantity fixed (mg/g brick fines)	394	-

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Brick fine particles/GGBFS mineralogy

Oxides (%)	CaO	SiO ₂	Al ₂ O ₃	Fe ₂ O ₃	K ₂ O	Na ₂ O	MgO	TiO ₂	Total
Brick fine	1.7	62.8	10.4	16.3	2.1	0.6	2.2	2.4	99.3
GGBFS	42.9	38	10.8	0.5	0.3	-	6.5	0.7	99.5

Mineral (%)	Brick fine		
Quartz SiO ₂	58.6		
Hematite Fe ₂ O ₃	12.8		
Albite NaAlSi ₃ O ₈	3.9		
Microline KAlSi ₃ O ₈	6.0		
Cristobalite SiO ₂	2.8		
Amorphicity	15.9		

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Two hypothesis

- BL : brick fines = mineral addition
 - Concentration of the alcali-activating solution calculated versus GGBFS mass

• BLM : brick fines = precursor like GGBFS

• Concentration of the alcali-activating solution calculated versus GGBFS+brick fines mass

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Two hypothesis

Control 100% GGBFS

GGBFS

BL	BLM
Concentration 🖌	Constant Concentration
BL 10%	BML 10%
BL 20%	BML 20%
BL 30%	BML 30%
BL 50%	BML 50%

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Evolution of spread with time

Short time of maniability with AAM

Slowing down of "stiffening" with continuous mixing on BL 30% mix

Results

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Evolution of setting time

Setting time usually lower with AAM

BL: hardening time *¬* from 30 % substitution

BLM: hardening time *¬* from 50 % substitution

Results

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Development of hydrates (TGA) – loss of mass

Impact on phase precipitation from 50% substitution

BL more impacted than BLM

Samples	C-A-S-H (%)		Hydrotalcite (%)		Total mass loss (%)	
	7 days	90 days	7 days	90 days	7 days	90 days
GGBFS	4,9	6,4	3,9	4,2	8,7	10,6
BL 10%	4,4	5,7	3,7	3,5	8,1	9,1
BLM 10%	4,7	6,1	3,4	4,6	8	10,6
BL 50%	2,8	3,5	4,5	2,8	7,3	6,3
BLM 50%	4,1	4,4	3,5	3,1	7,6	7,6

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Development of hydrates (TGA) – loss of mass

BLM: brick fines react with AA solution \rightarrow compensation of GGBFS

Samples	С-А-Ѕ-Н (%)		Hydrotalcite (%)		Total mass loss (%)	
	7 days	90 days	7 days	90 days	7 days	90 days
GGBFS	4,9	6,4	3,9	4,2	8,7	10,6
BL 10%	4,4	5,7	3,7	3,5	8,1	9,1
BLM 10%	4,7	6,1	3,4	4,6	8	10,6
BL 50%	2,8	3,5	4,5	2,8	7,3	6,3
BLM 50%	4,1	4,4	3,5	3,1	7,6	7,6

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Poral distribution

Finer porosity with time for all the mixes

Finer porosity with BLM 50% than BL 50

Results

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

Mechanical strength BL: slower kinetics – Rc ↓ when [brick fines] ↑ BLM: quicklier kinetics -Rc ≥ GGBFS from 90 days

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023

BL : brick fines = mineral addition

- ↗ Substitution 30 % ↗ Workability if continous mixing ↘ stiffening time
- ↗ [Brick fines] ↗ time for casting
- ↘ compressive strength but not proportional to substitution rate

→ Economy on activator

BLM : brick fines = precursor = GGBFS

- \nearrow [Brick fines] \rightarrow Workability and consistency constant
- ↗ alcali-activation kinetics and hydrates production
- compressive strength at 90 days ≥ GGBFS

→ Economy on precursor

Acknowledgements

EUROPESE UNIE

France-Wallonie-Vlaanderen

17th International Congress on Polymers in Concrete ICPIC 2023 Warsaw, Poland, September 17-20th, 2023