
Supplemental methods: Dimensionality reduction of

neuronal degeneracy reveals two interfering physiological

mechanisms

Code and data can be found in the first author GitHub (https://github.com/arthur-fyon/CORR_2024).

Simulation details for the two conductance based models

Throughout the entire paper, two high-dimensional conductance-based models have been employed.

First, the voltage equation for the Stomatogastric Ganglion (STG) neuron model, as proposed by Liu

et al. [S1], is expressed as follows:

𝐶 ̇𝑉 = − ̄𝑔Na𝑚3
NaℎNa(𝑉 − 𝐸Na) − ̄𝑔CaT𝑚3

CaTℎCaT(𝑉 − 𝐸Ca) − ̄𝑔CaS𝑚3
CaSℎCaS(𝑉 − 𝐸Ca)

− ̄𝑔A𝑚3
AℎA(𝑉 − 𝐸K) − ̄𝑔KCa𝑚4

KCa(𝑉 − 𝐸K) − ̄𝑔Kd𝑚4
Kd(𝑉 − 𝐸K)

− ̄𝑔H𝑚H(𝑉 − 𝐸H) − 𝑔leak(𝑉 − 𝐸leak) + 𝐼app, (1)

where the dot notation represents the time derivative, 𝐶 is the membrane capacitance, Na stands

for the sodium current, CaT for the T-type calcium current, CaS for the slow calcium current, A for

the A-type potassium current, KCa for the calcium-controlled potassium current, Kd for the delayed

rectified potassium current, H for the H current, and leak for the leakage current. All 𝐸 values de-

note the channel reversal Nernst potentials, and 𝐼app represents the externally applied current. The

parameters of interest are the maximum ion channel conductances ̄𝑔, expressed in mS/cm2, cor-
responding to the ion channel conductance when fully opened. Additionally, all 𝑚 and ℎ variables

represent activation and inactivation gate variables, respectively, following first-order lag equations

that are voltage-dependent. Notably, the KCa gating variable also depends on intracellular calcium

concentration, and its ordinary differential equation (ODE) can be found in Liu et al. [S1]. For all STG

voltage traces in this article, equation (1) and subsequent gate variable equations are numerically

integrated using the Julia language [S2].

Second, the voltage equation for the Dopaminergic (DA) neuron model, adapted from Qian et al.

[S3] (with the SK channels blocked), is given by:

𝐶 ̇𝑉 = − ̄𝑔Na𝑚3
NaℎNa(𝑉 − 𝐸Na) − ̄𝑔Kd𝑚3

Kd(𝑉 − 𝐸K) − ̄𝑔CaL𝑚2
CaL(𝑉 − 𝐸Ca)

− ̄𝑔CaN𝑚CaN(𝑉 − 𝐸Ca) − ̄𝑔ERG𝑚ERG(𝑉 − 𝐸K) − 𝑔leak(𝑉 − 𝐸leak)

− ̄𝑔NMDA

(𝑉 − 𝐸NMDA)
1 + 𝑀𝑔 ⋅ exp(−0.08𝑉 )/10 + 𝐼app, (2)

where CaL represents the L-type calcium current, CaN the N-type calcium current, ERG the ERG

current, and NMDA the NMDA current. Additionally, 𝑀𝑔 denotes the extracellular magnesium con-

centration, assumed to be a constant of 1.4µM. For all dopaminergic (DA) voltage traces in this article,

equation (2) and subsequent gate variable equations are numerically integrated using the Julia lan-

guage [S2]. It is important to note that the NMDA ion channel is not discussed in the article and is

treated with a constant maximum conductance scaled by the leakage current.

Computation details for the Dynamic Input Conductances (DICs)

This article employs the concept of Dynamic Input Conductances (DICs) introduced in Drion et al. [S4].

DICs consist of three voltage-dependent conductances that separate according to timescales: one
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fast, one slow, and one ultraslow. These DICs have been demonstrated to shape neuronal spiking.

Specifically, based on specific values of the DICs, it becomes possible to predict the firing pattern of

the neuron. The computation of the DICs in this article has been improved compared to Drion et al.

[S4], and this enhancement will be detailed in the following sections.

The DICs are three voltage-dependent conductances, denoted as 𝑔f(𝑉 ), 𝑔s(𝑉 ), and 𝑔u(𝑉 ), which
can be computed as linear functions of the maximal conductance vector ̄𝑔ion ∈ ℝ𝑁 of an 𝑁-channel

conductance-based model at each voltage level 𝑉

[
𝑔f(𝑉 )
𝑔s(𝑉 )
𝑔u(𝑉 )

] = 𝑓DIC(𝑉 ) = 𝑆(𝑉 ) ⋅ ̄𝑔ion , (3)

where 𝑆(𝑉 ) ∈ ℝ3×𝑁 is a sensitivity matrix that can be built by (line per line)

𝑆f 𝑗(𝑉 ) = − (𝑤fs,𝑋𝑗
⋅ 𝜕 ̇𝑉

𝜕𝑋𝑗

𝜕𝑋𝑗,∞
𝜕𝑉 ) /𝑔leak, (4)

𝑆s 𝑗(𝑉 ) = − ((𝑤su,𝑋𝑗
− 𝑤fs,𝑋𝑗

) ⋅ 𝜕 ̇𝑉
𝜕𝑋𝑗

𝜕𝑋𝑗,∞
𝜕𝑉 ) /𝑔leak, (5)

𝑆u 𝑗(𝑉 ) = − ((1 − 𝑤su,𝑋𝑗
) ⋅ 𝜕 ̇𝑉

𝜕𝑋𝑗

𝜕𝑋𝑗,∞
𝜕𝑉 ) /𝑔leak, with 𝑗 = 1 ∶ 𝑁, (6)

where equations (4), (5), and (6) represent the computation of rows 1, 2, and 3, respectively, of

the matrix 𝑆(𝑉 ) — that is, the computation of the fast, slow, and ultraslow DICs. The weighing

factors 𝑤fs,𝑋𝑗
and 𝑤su,𝑋𝑗

are computed following the method outlined in Drion et al. [S4], where

𝑋𝑗 corresponds to the gating variable(s) (activation and/or inactivation) of the current with index 𝑗,
and 𝑋𝑗,∞ denotes the steady-state function(s) of the considered gating variable lag equation(s). It

is important to note that if the current 𝑗 has both activation and inactivation variables, the column 𝑆𝑗
corresponds to the sum of equations (4) through (6) over the two gating variables of the current 𝑗.

While the complete curve of the DICs may be of interest, only its value at the threshold voltage 𝑉th

is used, as the values and signs of the DICs at 𝑉th reliably determine the neuronal firing pattern [S4].

In the following sections, the voltage dependency of all variables will be disregarded, as functions are

only evaluated at 𝑉th. The threshold voltage is computed as 𝑔in(𝑉th) = 𝑔f(𝑉th)+𝑔s(𝑉th)+𝑔u(𝑉th) < 0,
while ensuring that 𝑔in(𝑉th − 𝛿𝑉 ) ≥ 0 with any arbitrarily small 𝛿𝑉 > 0. It is important to note that

this algorithm might fail for the DA neuron model, where the default 𝑉th = −55.5 mV.

Computation details for the random sampling sets (Figures 1, 2,

3 and 4)

For both models, random sampling sets consist of randomly drawing maximum ion channel conduc-

tances, i.e., generating a point in the conductance space, numerically integrating the model equations,

and retaining the point in the set if its phenotype is correct until the set reaches 200 neurons, according

to different criteria. For the STG model, a bursting behavior is desired, so post-processing is carried

out on:

• Peak voltage (between 49.9 mV and 49.95 mV);

• Low voltage (between -76 mV and -69 mV);

• Number of spike per burst (5);

• Burstiness (between 3000 Hz
2
and 7000 Hz

2
);

• Interburst frequency (between 8.8 Hz and 9.9 Hz);

• Intraburst frequency (between 70 Hz and 140 Hz);
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with the burstiness computed as in Franci et al. [S5].

For the DA model, a pacemaking tonic spiking behavior is desired, so post-processing is carried

out on:

• Peak voltage (between 54 mV and 58.5 mV);

• Low voltage (between -80.5 mV and -77.5 mV);

• Spiking frequency (between 1.75 Hz and 1.95 Hz).

To generate a random point in the parameter space for each𝑁-channel conductance-basedmodel,

each conductance was drawn from a uniform random distribution ̄𝑔ion ∼ 𝒰𝑁 (0, ̄𝑔ionmax) and 𝑔leak ∼
𝒰 (0, 𝑔leakmax), with ̄𝑔ionmax and 𝑔leakmax are equal to the corresponding values in Tables 1 and 2 for the

STG and DA models, respectively. It is noteworthy that, for the DA model, the NMDA conductance

is computed as ̄𝑔NMDA = 𝑔leak ⋅ 0.12/0.013, i.e., a baseline value of 0.12 scaled by the leakage

conductance to achieve homogeneous scaling.

Current name Na CaT CaS A KCa Kd H leak

̄𝑔ionmax or 𝑔leakmax 8000 12 50 600 250 350 0.7 0.02

Table 1: Right boundary of the uniform distribution for all maximum ion channel conductances of the

STG model.

Current name Na Kd CaL CaN ERG leak

̄𝑔ionmax or 𝑔leakmax 60 20 0.1 0.12 0.25 0.02

Table 2: Right boundary of the uniform distribution for all maximum ion channel conductances of the

DA model.

Additional 2D subspaces of the random sampling datasets nor-

malized by the input resistance (Figure 4)

Fig. S1 depicts a scatter matrix of the random sampling datasets normalized by the input resistance for

the 2D subspaces of Fig. 5 from the main manuscript. This visualization highlights that normalizing by

the input resistance effectively removes the effect of homogeneous scaling, leaving only mechanistic

correlations that might arise from the ion channels.

On one hand, antagonist channels reveal positive correlations once normalized (e.g., see ̄𝑔A and

̄𝑔CaS for the STG model and ̄𝑔Kd and ̄𝑔CaL for the DA model). Such correlations within the variability

of conductance ratios align with homogeneous scaling, leading to overall positive correlations in the

random sampling datasets (see Fig. 1 of the main manuscript).

On the other hand, agonist channels reveal negative correlations once normalized (e.g., ̄𝑔CaL and
̄𝑔CaN for the DA model). Such correlations within the variability of conductance ratios oppose homoge-

neous scaling, leading to overall negative or nonexistent correlations in the random sampling datasets,

depending on the strength of homogeneous scaling (see Fig. 1 of the main manuscript).

A last case is when the channels are not correlated mechanistically, such as the pair including

ultraslow channels like ̄𝑔H for the STG model or ̄𝑔ERG for the DA model. As the dynamics of such

channels lie in another timescale than other channels, the correlation within the normalized dataset

is nonexistent. When combined with homogeneous scaling, this may lead to either a nonexistent

correlation or a slight positive correlation, depending on the strength of homogeneous scaling (see

Fig. 1 of the main manuscript).

Note that input resistance have been computed as the sum of the ion channel conductances at

−60mV for the STG model and −55.5mV for the DA model.
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Fig. S1: Scatter matrices of random sampling populations in the conductance spaces normalized by

the input resistance for the STG model (left) and the DA model (right) along with the directions of the

regression lines. The 2D subspaces shown here do not represent all conductances of the models

and are chosen to be the same as in Fig. 5 of the main manuscript. All normalized conductances are

dimensionless. The bottom left corner of each 2D subspace represents the origin of the conductance

space, and ranges are irrelevant. The dotted line on the voltage traces corresponds to the 0mV line.

Computation details for the efficient method to build degeneracy

sets that allows to remove the effect of homogeneous scaling (Fig-

ures 5, 6, 7 and 8)

Throughout this study, a novel method for generating degenerate datasets of conductance-based

models has been developed, proving to be significantly faster than the random sampling approach (all

figures were created using a dataset of 500 neurons). Themethodology for an𝑁-channel conductance-

based model can be summarized as follows:

1. The leakage conductance 𝑔leak is drawn from a physiological uniform distribution:

𝑔leak ∼ 𝒰 (𝑔leakmin, 𝑔leakmax);

2. 𝑁 - 3 maximum ion channel conductances are drawn from a physiological uniform distribution

that is proportional to 𝑔leak: 𝑔leak: ̄𝑔ion ∼ 𝑔leak

(𝑔leakmin+𝑔leakmax)/2 ⋅ 𝒰𝑁−3 ( ̄𝑔unmodmin, ̄𝑔unmodmax)

3. The 3 remaining maximum ion channel conductances are computed using the compensation

algorithm described in Drion et al. [S4], and detailed just below.

So, the maximal conductance vector ̄𝑔ion ∈ ℝ𝑁 of a 𝑁-channel conductance-based model can

be split in two parts: ̄𝑔ion random ∈ ℝ𝑁−3 that corresponds to the 𝑁 - 3 randomly initialized maximum

conductances in step 2 (proportional to 𝑔leak), and ̄𝑔ion compensated ∈ ℝ3 which corresponds to the 3

maximum conductances computed in step 3. The same split can be applied to 𝑆: 𝑆random ∈ ℝ3×𝑁−3
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and 𝑆compensated ∈ ℝ3×3. By doing so, the DIC equation (3) can be written as:

𝑓DIC = 𝑆random ⋅ ̄𝑔ion random + 𝑆compensated ⋅ ̄𝑔ion compensated

⟺ 𝑆compensated ⋅ ̄𝑔ion compensated = 𝑓DIC − 𝑆random ⋅ ̄𝑔ion random. (7)

If values of the DIC at threshold voltage are specified, equation (7) consists of a system of 3

equations with 3 unknowns, i.e., ̄𝑔ion compensated. For this system to be solved, 𝑆compensated must be of

full rank. This means that the compensated ion channels must have a significant impact on the three

timescales defined by the DICs. For the STG model, the compensated ones are the sodium (fast),

A-type potassium (slow), and H (ultraslow) currents. For the DA model, the compensated ones are

the sodium (fast), N-type calcium (slow), and ERG (ultraslow) currents.

So, the inputs of this algorithm consist of an a priori threshold voltage (which can be computed

after using the algorithm described above), the values of the 3 DICs at the threshold voltage (these

will specify the desired firing pattern), and all the boundaries of the uniform distributions. Note that,

very often, a linear relation can be found between the value of the slow DIC at the threshold voltage

and the corresponding value of the fast DIC. Tables 3, 4, and 5 contain all the parameters for the

generated sets in the article. Also, note that the NMDA conductances follow the same formula as in

random sampling sets.

𝑉th 𝑔f(𝑉th) 𝑔s(𝑉th) 𝑔u(𝑉th)
STG model -50 mV -𝑔s(𝑉th) - 2.2 -8 4

DA model -55.5 mV -3.9⋅𝑔s(𝑉th) - 11 0.5 5

Table 3: Inputs for the DIC set generation algorithm for both models.

Current name CaT CaS KCa Kd leak

̄𝑔ionmin or 𝑔leakmin 2 6 140 70 0.007

̄𝑔ionmax or 𝑔leakmax 7 22 180 140 0.014

Table 4: Boundaries of the uniform distribution for all maximum ion channel conductances of the STG

model.

Current name Kd CaL leak

̄𝑔ionmin or 𝑔leakmin 0.015 6 0.008667

̄𝑔ionmax or 𝑔leakmax 0.075 10 0.017334

Table 5: Boundaries of the uniform distribution for all maximum ion channel conductances of the DA

model.

Fig. S2 depicts the firing pattern characteristics, including inter- and intra-burst frequencies, duty

cycle for the STG model, and spiking frequency for the DA model, at the population level for the sets

generated by DICs. This visualization demonstrates the similarity of these neurons to those from the

random sampling sets in terms of phenotype variability.

For the homogeneous scaling sets only, the boundaries ̄𝑔ion random of the uniform distributions coin-

cide to only keep the scaling with respect to 𝑔leak, i.e., ̄𝑔ionmin = ̄𝑔ionmax. Tables 6 and 7 contain these

these boundaries for the homogeneous scaling-only generated sets in the article.

Current name CaT CaS KCa Kd

̄𝑔ionmin or ̄𝑔ionmax 3.5 11 160 110

Table 6: Boundaries of the uniform distribution for all maximum ion channel conductances of the STG

model, for the homogeneous scaling only set.

The last sets generated in this article consist of those where full variability is retained, except for

homogeneous scaling. This implies that only the variability in conductance ratios is preserved. To

achieve this, the boundaries of the uniform distribution for the leakage conductance coincide, i.e.,

𝑔leakmin = 𝑔leakmax. Consequently, 𝑔leak is a constant. For the STG model, 𝑔leak = 0.01, while for the

DA model, 𝑔leak = 0.013.
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Fig. S2: Firing pattern characteristics for the full variability DICs generated sets for both model.

On the left, the interburst frequencies, intraburst frequencies, and duty cycles of the DICs generated

STG neurons are depicted. On the right, the spiking frequencies of the DICs generated DA neurons

are depicted.

Current name Kd CaL

̄𝑔ionmin or ̄𝑔ionmax 0.03 6

Table 7: Boundaries of the uniform distribution for all maximum ion channel conductances of the DA

model, for the homogeneous scaling only set.

Computation details for the neuromodulation algorithm (Figures

7 and 8)

A neuromodulation algorithm can be used to neuromodulate a degenerate set that has been initialized

without the method previously described. This neuromodulation algorithm is greatly inspired by the

set generation method described above.

Two conductances can be chosen to be neuromodulated in each model: ̄𝑔CaS and ̄𝑔A for the STG

model, and ̄𝑔CaL and ̄𝑔CaN for the DA model. Moreover, neuromodulation is only applied to the slow

and ultraslow DICs in this paper, as the transition from tonic spiking to bursting is studied. This means

that the first row of 𝑆 is dropped, resulting in a new matrix 𝑆su ∈ ℝ2×𝑁 corresponding to the second

and third rows of 𝑆.
So a similar split can be made for the maximal conductance vector ̄𝑔ion ∈ ℝ𝑁 of an 𝑁-channel

conductance-based model and its reduced sensitivity matrix 𝑆su: ̄𝑔ion unmod ∈ ℝ𝑁−2 corresponds to

the 𝑁 − 2 unmodulated (unchanged) maximum conductances and ̄𝑔ionmod ∈ ℝ2 corresponds to the

2 maximum conductances that are neuromodulated, along with their corresponding columns in 𝑆su.

Additionally, 𝑆su unmod ∈ ℝ2×𝑁−2 and 𝑆sumod ∈ ℝ2×2. By doing so, the DIC equation (3) can be

written as

[𝑔s
𝑔u

] = 𝑓suDIC = 𝑆su unmod ⋅ ̄𝑔ion unmod + 𝑆sumod ⋅ ̄𝑔ionmod

⟺ 𝑆sumod ⋅ ̄𝑔ionmod = 𝑓suDIC − 𝑆su unmod ⋅ ̄𝑔ion unmod. (8)

If values of the slow and ultraslow DICs at the threshold voltage are specified, equation (8) consists

of a system of 2 equations with 2 unknowns, i.e., ̄𝑔ionmod. For this system to be solved, 𝑆sumod must

be of full rank, meaning that the neuromodulated ion channels must have a significant impact on the

two timescales defined by the DICs.
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If the values of the slow and ultraslow DICs are the same as in the set generation mechanism,

the computed neuromodulated conductances match the original ones. However, as soon as the DIC

values are modified, the modulated conductances will be tuned to match the desired DIC values,

i.e., the desired firing pattern. In this article, we showed that neuromodulation (for the tonic spiking

to bursting transition) is robust when the ultraslow DIC value is kept constant (the same as in the

generation mechanism) and when the slow DIC value is tuned to achieve different firing patterns.

Concerning the STG model, 𝑔s = 5 for the tonic spiking set and 𝑔s = −2 for the light bursting set.

Regarding the DA model, 𝑔s = −1.5 for the light bursting set and 𝑔s = −4 for the strong bursting set.

For Figure 8, the same neuromodulation was used, but with continuous variation from one extreme

value of 𝑔s to another. Steps of 0.02 in 𝑔s were used for the STG model, while steps of 0.005 in 𝑔s
were used for the DA model.
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