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Abstract
Neuronal systems maintain stable functions despite large variability in their physiological components. Ion channel expression, in 
particular, is highly variable in neurons exhibiting similar electrophysiological phenotypes, which raises questions regarding how 
specific ion channel subsets reliably shape intrinsic properties of neurons. Here, we use detailed conductance-based modeling to 
explore how stable neuronal function is achieved despite variability in channel composition among neurons. Using dimensionality 
reduction, we uncover two principal dimensions in the channel conductance space that capture most of the variance of the observed 
variability. These two dimensions correspond to two sources of variability that originate from distinct physiologically relevant 
mechanisms underlying the regulation of neuronal activity, providing quantitative insights into how channel composition is linked to 
the electrophysiological activity of neurons. These insights allow us to understand and design a model-independent, reliable 
neuromodulation rule for variable neuronal populations.
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Significance Statement

Neuronal electrical activity is primarily regulated by a variety of transmembrane proteins known as ion channels. These channels 
exhibit substantial intraindividual variability in their number but neurons nonetheless maintain their proper function under physio
logical conditions—a concept known as degeneracy. This article is intended to deepen our understanding of how different ion chan
nels interact to regulate neuronal function. Specifically, we use dimensionality reduction techniques and computational neuron 
models to demonstrate that the distribution of ion channels arises from two distinct physiological mechanisms. Studying the inter
action between these two mechanisms sheds light on how the expression levels of different ion channels are linked to each other and 
determine neuronal activity. Such insights could significantly enhance the design of electrophysiological experiments.
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Introduction
A remarkable property of nervous systems is their ability to main
tain stable functions despite large variability and turnover of the 
underlying physiological components. This observation has led 
to the understanding that neuron electrophysiological properties 
are shaped by the coordinated expression of potentially large sub
sets of ion channels (1), which represent a substantial challenge in 
any attempt to link ion channel properties with neuron electro
physiological signature.

In recent decades, a combination of experimental and computa
tional work has provided insights into the relationship between the 
densities of ion channels and neuronal signaling. First, it has been 
clarified that different combinations of ion channels can lead to 
similar activity despite substantial variation in channel densities 
(2–6), as a result of functional overlap in channel voltage- and time- 
dependent properties (1, 7). Second, it has been shown experimen
tally that ion channel expression correlates positively in the same 

neuron type, while the correlations vary among different neuron 
types (8–13). It has been revealed that these positive correlations 
in ion channel expression emerge from physiologically plausible 
homeostatic rules (14). One could thus argue that specific correla
tions in channel expression are an important neuronal signature. 
Third, consistent neuromodulatory effects despite the large 
variability of ion channel expression (also called reliable neuromo
dulation) has been shown to often occur through a concomitant ac
tion on several channel subtypes (8, 15–18), which highlights the 
importance of understanding the mechanisms that link the density 
of ion channels and neuronal signaling.

Although this body of work has deepened our understanding of 
how ion channels shape neuronal activity, many important ques
tions remain. First, although most studies have reported positive 
correlations in channel gene mRNA expression, studies on corre
lations in actual conductance values have revealed a less clear 
picture. Correlations in conductance values are observed, but 
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the correlation coefficient can vary and it can be either positive or 
negative depending on the ion channel subtype and neuron sub
type (19–22). In addition, correlations in both channel gene 
mRNA expression and conductance values can be dependent on 
activity and neuromodulation (23, 24). Given these negative corre
lations in conductance values, the question arises of what poten
tially complex mechanism might link channel gene mRNA and 
protein expressions. Here, we attempt to answer this question 
by analyzing how positive and negative conductance correlations 
arise in highly degenerate parameter sets of two different 
conductance-based models. We show that pairwise correlations 
in channel conductance are the result of two interfering mecha
nisms. Such interference is activity-dependent, which results in 
activity-dependent correlation levels. Another unanswered ques
tion involves the fact that, at present, our understanding of how 
ion channels shape neuronal activity remains largely qualitative. 
The lack of a concrete mechanistic understanding makes it ex
tremely difficult to quantify how specific changes in ion channel 
density affect neuronal output, which in turn makes the study 
of reliable neuromodulation laborious. Here, we provide such a 
mechanistic understanding through a dimensionality reduction 
analysis of the two degenerate parameter sets. The geometry of 
the principal components (PCs) found by dimensionality reduc
tion methods is fully explained by the geometry of the sensitive di
rections in the maximal conductance space, as revealed by using 
feedback control ideas (7). This analysis permits the derivation of 
a simple, physiologically plausible rule explaining how neuromo
dulation can be achieved reliably in highly degenerate neurons.

Results
Neuronal degeneracy in conductance-based 
models is associated with variable pairwise 
correlations in channel conductances
We initially created variable sets of conductances leading to stable 
firing patterns in two different neuron conductance-based models 
(Fig. 1):  a stomatogastric (STG) neuron model (25) (left) and a dopa
minergic (DA) neuron model (adapted from (26)) (right). All simula
tions and analyses were performed on these two different models to 
avoid uncovering model-specific features, but rather to focus on 
general properties. Each parameter set was created through ran
dom sampling followed by a post-processing procedure that se
lected models sharing specific firing pattern characteristics (4). 
Each model was studied in its nominal firing pattern: burst firing 
for the STG neuron model, and slow tonic spiking for the DA neuron 
model (see Materials and methods). An example of each firing pat
tern is shown at the top, right of each panel in Fig. 1A.

Figure 1A shows a scatter plot matrix of ion channel maximal 
conductances for a subset of ion channel types in both models, 
as well as the correlation computed for each pair. As observed 
in previous experimental and computational work (1, 20), correla
tions can vary markedly between different pairs of conductances, 
from strongly positive (such as g̅Na and g̅A in STG model), to nega
tive (such as g̅A and g̅Kd in STG model), or seemingly uncorrelated. 
This highlights the strong degeneracy of both conductance-based 
models, despite the fact that they maintain their respective firing 
activity using different types of ion channels.

To gain deeper insights into how conductances correlate to 
maintain robust firing activity, we represent the pairwise correla
tions between all conductances using correlation graphs (Fig. 1B). 
Each node represents a conductance, the thickness of the edges 
connecting each node represents the strength of the correlation, 

and the color of each edge represents the correlation sign (red 
for positive and blue for negative). These two graphs show similar 
trends for the two models: correlations between ion channels are 
mostly positive, but there are also negative correlations in a small 
subset of conductance pairs. This is intriguing for two reasons.

First, to maintain similar firing activity, one would expect con
ductances that are sources of currents of the same sign to correl
ate negatively, whereas conductances that are sources of currents 
of the opposite sign would correlate positively. This would allow 
the global transmembrane current, hence excitability, to be main
tained at a steady level. However, this is not what is observed in 
Fig. 1B. If we take the example of g̅CaS in the STG model, which 
is a source of inward current, it can correlate either negatively 
or positively with other sources of inward currents (g̅CaT and g̅Na, 
respectively). Likewise, outward current sources can correlate ei
ther negatively or positively with other outward sources (i.e. g̅Kd 

with g̅A and g̅KCa in the STG model). The same observation can 
be made for the DA neuron model.

Second, experimental studies on the correlation between ion 
channel mRNA and computational models of neuronal homeostasis 
have uncovered the existence and emergence of neuron-dependent, 
strictly positive correlations in channel densities (1, 13, 27). A similar 
trend emerges from our dataset, where the majority of correlations 
are indeed positive. However, negative correlations are also ob
served in our dataset, as well as experimental data on ion channel 
conductances (20). This suggests that correlations emerging from 
homeostatic rules are important for the maintenance of robust firing 
activity, but that some other mechanisms must be at play.

A few PCs capture neuronal degeneracy but do not 
single out channel functions
As pairwise correlations between conductances alone did not pro
vide much insight into how ion channels correlate to maintain ro
bust firing activity, we performed principal component analysis 
(PCA) of both random sampling sets in an attempt to uncover low- 
dimensional subspaces in the data. We observed that a limited 
number of PCs, namely, four for the STG model and three for the 
DA model, accounts for more than 80% of the total variances in 
the data (Fig. 2A). We chose to focus our analysis on these significant 
PCs. The first PC accounted for approximately 40% of the variance in 
both models. This observation is encouraging, as it shows that the 
mechanisms that drive conductance joint distribution in neuron 
models are low-dimensional, which is key for interpretability.

We then extracted the contribution of each conductance in each 
of the PCs, with the hope of observing a pattern that would allow us 
to make predictions on the biophysics behind these components 
(Fig. 2B). However, the results were difficult to interpret, as a variety 
of conductances contributed to the different PCs for both models. 
Moreover, conductances that made substantial contributions to 
the first PC in one model did not do so in the other (e.g. see the 
role of g̅Na or gleak in the two models), which prevented the extrac
tion of a model-independent rule from a naive analysis focusing 
on the role of single conductances. Although this last observation 
might seem unsurprising, as both models relate to different neu
rons exhibiting different firing patterns from different ion channels, 
we still aim to find some common, general mechanisms that might 
rule the degeneracy in ion channel conductances.

Dominant PC captures homogeneous scaling 
of maximal conductances
As the first principal component (PC1) accounted for a large por
tion of the variability in the data for both models (approximately 
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40%), we further analyzed its role by creating scatter plots of con
ductance values for a subset of four conductances that play dom
inant roles in PC1 (Fig. 3A). Interestingly, according to these 
scatter plots, all conductances that play significant roles in PC1 
are strongly positively correlated with each other in both models. 
This is highly reminiscent of previous observations in channel 
mRNA data or the channel correlations emerging from models 
of neuronal homeostasis (14, 27, 28). In particular, such positive 
correlations follow a direction passing roughly through the origin.

This direction is close to the homogeneous scaling direction in 
the maximal conductances. The direction of homogeneous scal
ing corresponds to the total least squares regression direction 
without intercept, i.e. to the direction connecting the origin of 
the conductance space to the center of mass of the degeneracy 
set. This center of mass represents the means of every type of con
ductance across the population. While pairwise homogeneous 
scaling is only evident in a subset of ion channels, this observation 
extends to the entire conductance space. The alignment between 
PC1 and homogeneous scaling in the full conductance space was 
robustly confirmed in both the STG and the DA models, with a 

notable 0.8 alignment in the former and a remarkable 0.9 align
ment in the latter. This alignment was computed as the dot prod
uct between the unit vectors along PC1 and homogeneous scaling 
direction. Alternatively, it can be interpreted as the cosine of the 
angle formed by these two directions in the high-dimensional 
space of conductances.

The dominant role of homogeneous scaling of conductances in 
neuronal degeneracy can be understood by its functional signifi
cance. Such homogeneous scaling can emerge from homeostatic 
models of ion channel expression, where the slope between a 
pair of conductances correlates with the type of neuronal activity 
(14). This slope is determined by the ratio of regulation time con
stants. Homogeneous scaling also permits modulation of the neu
ron response to external inputs while its intrinsic firing pattern is 
maintained unaffected. Indeed, increasing all conductances by a 
common factor permits an increase in the global membrane per
meability, which decreases the responsiveness to external input 
through a decrease in input resistance Rin (Fig. 3B). As indicated 
by the color coding in Fig. 3A, the direction of PC1, which repre
sents homogeneous scaling, aligns with the variability in neuron 

A

B

Fig. 1. Neuronal degeneracy in conductance-based models is associated with variable pairwise correlations in channel conductances. A) Scatter plot 
matrices of random sampling populations in the conductance spaces for the STG model (left) and the DA model (right), along with regression lines. 
The pairs depicted here do not represent all conductances of the models and are randomly chosen to illustrate the variable correlations, expressed by the 
Pearson correlation coefficient (r). All conductances are expressed in mS/cm2. The bottom left corner of each scatter plot represents the origin of the 
conductance space. For the STG model, ̅gA ranges up to 600, ̅gKd to 350, ̅gH to 0.7, and ̅gNa to 8,000. For the DA model, ̅gCaL ranges up to 0.1, ̅gCaN to 0.12, ̅gERG 
to 0.25, and g̅Kd to 20. The dotted line on the voltage traces corresponds to 0mV. B) Correlation graphs of all conductances of the random sampling 
populations for the STG model (left) and DA model (right). A dashed (solid) line indicates a negative (positive) pairwise correlation. The thickness of the 
line represents the absolute value of the correlation. Correlations below a certain threshold, corresponding to the inverse of the number of conductances 
in the considered model (one-eighth and one-sixth in the STG and DA models respectively), are not shown.
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input resistance in both models. At the same time, it does not af
fect the ratio between channel conductances, thus maintaining 
firing activity. Therefore, homogeneous scaling plays a critical 
role in excitability modulation and homeostasis.

Normalization of the datasets by the input 
resistance reveals that the secondary PCs capture 
degenerate conductance ratios
Analysis of the remaining meaningful principal components (PC2, 
PC3, and PC4 in the STG model, and PC2 and PC3 in the DA model) 
should shed light on the physiological origin of most of the remain
ing variance in the data. However, these PCs have highly variable 
slopes in the different conductance planes, making the analysis 
less straightforward than for PC1. The effect of homogeneous scal
ing is intertwined with the other potential origins of degeneracy in 
neuron model populations, which complicates matters further.

To circumvent this problem, we removed the effect of PC1 by 
normalizing the dataset by neuron input resistance, thereby elim
inating the effect of homogeneous scaling. This was achieved 
by multiplying each conductance by Rin (i.e. dividing by the 
input conductance gin). The regression lines of the normalized 
dataset almost perfectly coincide with the secondary PCs of the 
non-normalized dataset (Fig. 4), demonstrating that normaliza
tion by input resistance effectively suppresses the effect of PC1.

Once the effect of homogeneous scaling is removed, the re
maining variability corresponds to changes in conductance ratios 
that do not impact neuron input resistance. Degeneracy in 

conductance ratios can be quantified by leveraging the concept 
of dynamic input conductances (DICs) (7), which provides a way 
of linking channel conductance ratios with firing activity. In short, 
it was shown that the dynamical effects of ion channel gating on 
neuron activity could be captured by a few voltage-dependent 
conductance curves (DIC) acting on separate timescales. For a 
bursting neuron, three timescales are sufficient: a fast timescale 
characterizing spike upstroke; a slow timescale characterizing 
spike downstroke, neuron excitability type and rest-spike bistabil
ity; and an ultraslow timescale characterizing burst parameters 
such as period and duty cycle. The value of each DIC at the thresh
old potential on each timescale determines firing activity, and 
each parameter set leading to similar DIC values leads to similar 
firing activities. We exploited this last property to understand 
the variability that remains in the normalized dataset by identify
ing directions of zero sensitivity in the maximal conductance 
space, i.e. directions along which changes in maximal conductan
ces do not affect DIC values at threshold, and hence lead to similar 
spiking behavior (7).

We then verified if variability in conductance ratio leading to 
similar DIC values was the dominant source of degeneracy in 
the normalized dataset by computing zero-sensitivity directions 
of the slow DIC in both STG and DA neuron models and comparing 
these directions with the secondary PCs of the original dataset 
(PC2, PC3, and PC4). Indeed, we found that the effect of the slow 
DIC was dominant on degeneracy, as the slow DIC is the main 
player in determining neural excitability types by governing 
spiking-to-bursting transitions and the regulation of cellular 

A

B

Fig. 2. A few PCs capture neuronal degeneracy but do not single out channel functions. A) Screen plot of PCA applied to the conductance spaces of 
random sampling populations for the STG model (left) and the DA model (right). B) Absolute values of the entries of the PCs in the conductance space for 
the STG model (left) and the DA model (right).
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rest-spike bistability (for further details, see Materials and meth
ods). In both models, the zero-sensitivity directions strongly align 
with one of the secondary PCs in the original random sampling set 
(Fig. 4), and thus with the regression line of the normalized data
set. This confirmed that the second origin of degeneracy in ion 
channel expression can be explained by the existence of degener
ate conductance ratios that create similar membrane dynamical 
properties.

Degeneracy in conductance ratios is also functionally significant 
for robust neuronal signaling. Relying on different conductance ra
tios to create similar firing activity allows the creation of heterogen
eity in response to external perturbations such as changes in 
temperature or pH (29, 30), as well as specific ion channel blockades 
or dysfunction, which increases neuronal robustness. It also cre
ates variable responses to exogenous neuroactive drugs and allows 
for compensation during long-lasting drug exposure or a genetic 
defect in the expression of a specific channel.

An alternative approach to building degenerate 
parameter sets allows the effect of homogeneous 
scaling to be separated from variability in 
conductance ratios
To better understand how homogeneous scaling and variability in 
conductance ratios interfere with each other, we constructed a new 
dataset that allowed us to separate these two effects. We created 

datasets of similar firing patterns by allowing randomness in all 
conductances but one per timescale, and adapting the remaining 
conductances to ensure that DIC values are kept constant (for fur
ther details, see Materials and methods). Importantly, to be able to 
separate the effect of homogeneous scaling from other sources of 
ion channel degeneracy, we normalized DIC values by gleak. This 
normalization allows the creation of variable conductance ratios 
that barely affects homogeneous scaling, which is itself mostly cap
tured through variability in gleak. We decided to perform normaliza
tion using gleak instead of Rin for computational efficiency, as Rin 

depends on all conductances and is voltage-dependent. Note that 
homogeneous scaling is equally well captured using Rin or gleak, 
since the leak conductance is the dominant current source below 
the threshold potential in both models.

The dataset constructed using this approach created neurons 
exhibiting similar firing activities (see Fig. S2) and showed close 
qualitative similarities to the dataset produced through random 
sampling in both models: pairwise correlations in channel expres
sion are highly variable between channel pairs, with a positive 
correlations dominating but negative correlations also being 
found, while the first PC aligns with homogeneous scaling and 
the second PC has highly variable slopes in the different conduct
ance planes (Fig. 5A).

This dataset is easily seen to be generated by two subspaces in 
the maximal conductance space (Fig. 5B): one characterized by 
variability solely in gleak (triangles in Fig. 5B) and the other 

A

B

Fig. 3. Dominant PC captures homogeneous scaling of maximal conductances. A) Scatter plot matrices of random sampling populations in the 
conductance spaces for the STG model (left) and the DA model (right) along with the direction of PC1, color coded based on the input resistance. The 
scatter plots shown are associated with the conductances having the largest entries (in absolute value) in the first PC. All conductances are expressed in 
mS/cm^2. The bottom left corner of each 2D subspace represents the origin of the conductance space. For the STG model, ̅gNa ranges up to 8,000, ̅gH to 0.7, 
g̅KCa to 250 and g̅CaS to 50. For the DA model, gleak ranges up to 0.02, g̅Kd to 20, g̅CaN to 0.12 and g̅ERG to 0.25. B) Simulations illustrating the effect of 
homogeneous scaling for the STG model (left) and the DA model (right). A random model from the scatter plot in (A) receives an inhibitory input. The 
same experiment is then conducted with all conductances multiplied by 2 and 10.
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exhibiting variability exclusively in voltage-gated conductance ra
tios along DIC zero-sensitivity directions (crosses in Fig. 5B). 
Variability in gleak only creates a degenerate dataset with strong, 
strictly positive correlations between conductance pairs, which 
isolates the effect of homogeneous scaling in channel conductan
ces. Regression slopes of these subsets strongly align with the PC1 
of the randomly sampled dataset. Variability limited to voltage- 
gated conductances (and fixed gleak) creates a degenerate dataset 
that also shows strong pairwise correlations. However, these cor
relations can be either positive or negative, and their regression 
slopes do not intersect the origin. Within this subset, the correl
ation between pairs of conductances arises from their distinct 
roles in shaping DIC values at threshold, and the slow DIC in par
ticular. Channels that have an opposite effect on the slow DIC 
show a positive correlation (g̅CaS and ̅gA in the STG), whereas chan
nels that have similar effects show a negative correlation (g̅CaL and 
g̅CaN in the DA model). The regression slopes within this subset 
strongly align with the PC2 of the complete dataset (compare 
PC2 in Fig. 5A with crosses in Fig. 5B).

This alternative approach to building degenerate parameter 
datasets shows that variable pairwise correlations in channel con
ductances could result from the interaction of two distinct fac
tors: homogeneous scaling, which maintains the ratio between 
ion channel conductances; and degenerate conductance ratio, 
which leads to similar DIC values and hence similar membrane 
dynamical properties.

Variability from both homogeneous scaling and 
degenerate conductance ratios blurs the connection 
between conductance correlation and function
Our analysis so far shows that variability from homoge
neous scaling creates strong positive correlations in channel 

conductances. Meanwhile, variability in voltage-gated conduct
ance ratios also leads to strong correlations in channel conduc
tances, but these can be either positive or negative depending 
on the channel pair (Fig. 6A). When both types of variability are 
present within a neuron population, these two correlation mech
anisms interfere with each other to create highly variable levels 
of correlations between channel pairs (Fig. 6B). If both types of 
variability create positive correlations, the interference is min
imal, and the global correlation in channel conductance remains 
strong (Fig. 6, left). However, if the variability in conductance 
ratios creates a negative correlation, the interference is conse
quential, and the global correlation in channel conductance 
becomes weak (Fig. 6, right). This observation is of interest, 
as it shows that the variable pairwise correlation observed in 
channel conductance values originate from potentially compet
ing effects rather than from an actual uncorrelated role in our 
datasets.

From an experimental perspective, this analysis helps us to 
understand how recorded ion channel conductances are corre
lated. Homogeneous scaling always results in a strong positive 
correlation. Therefore, an overall positive correlation would indi
cate that the channels are functionally antagonistic, as their vari
able conductance ratios align with the direction of homogeneous 
scaling. Conversely, if the overall correlation is nonsignificant or 
slightly negative, this suggests that the channels are either func
tionally uncorrelated or agonistic. In these cases, the positive cor
relation from homogeneous scaling is counteracted by variability 
in conductance ratios, leading to a null or negative correlation, 
respectively. Experimentally, the normalization of channel con
ductances by input resistance can reveal correlations arising 
solely from variable conductance ratios, thus dissociating the 
two sources of degeneracy (see additional material for other 2D 
subspaces).

Fig. 4. Normalization of the dataset by the input resistance reveals that the secondary PCs capture degenerate conductance ratios that maintain 
neuronal activity. Scatter plots (top) of random sampling populations in the (g̅A, g̅CaL) 2D subspace for the STG model (left) and the (g̅CaL, g̅CaN) 2D 
subspace for the DA model (right), normalized by the input resistance, along with the regression lines of the normalized dataset (solid line), secondary PCs 
of the non-normalized dataset (dashed line), and the zero-sensitivity direction (dash-dotted line). The bottom left corners of the scatter plots represent 
the origin of the conductance space, and the ranges are irrelevant. Polar plots of secondary PCs and the zero sensitivity direction in randomly chosen 2D 
subspaces of the conductance space (bottom).
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Variability in pairwise correlations in conductance 
values is neuromodulation-dependent
The variability in channel pairwise correlation level is therefore 
linked to the relative slope of the correlations created by both vari
ability types, homogeneous scaling and degenerate conductance 
ratios. This has an interesting consequence when one studies 
the effect of neuromodulation on the correlation in channel con
ductance. To illustrate this consequence, we performed a simple 
computational experiment where we neuromodulated the excit
ability state of both models from spiking to light bursting to strong 
bursting (Fig. 7). In both cases, the neuromodulator affects the 
maximal conductance of two channel types: g̅A and g̅CaS in the 
STG model, and ̅gCaL and ̅gCaN in the DA model (Fig. 7A). Those con
ductances are known to affect the burstiness of the respective 
neuron models. To create robust neuromodulation in degenerate 

neurons, we modulated the datasets of Fig. 5A by modifying the 
target threshold value for the slow DIC and used the algorithm 
of (7) to compute the neuromodulated conductance values for 
each neuron of the dataset (see Materials and methods). The re
sulting data points are shown in the scatter plots at the top of 
Fig. 7B. The dot color quantifies neuron burstiness, showing that 
the three firing patterns are robustly attained and well separated.

In both models, neuromodulation of neuron excitability strong
ly affects the level of pairwise correlations (Fig. 7B). In the STG 
model, the correlation between g̅A and g̅CaS is strongly positive 
in spiking (r = 0.93), peaks in light bursting (r = 0.97), and decreases 
in strong bursting (r = 0.88). Meanwhile, in the DA model, the cor
relation between ̅gCaL and ̅gCaN is negative in spiking (r = −0.45), be
comes less negative in light bursting (r = -0.11), and the two 
conductances appear uncorrelated in strong bursting (r = 0.03). 

A

B

Fig. 5. An alternative approach to building degenerate parameter sets allows the effect of homogeneous scaling to be separated from variability in 
conductance ratios. A) Scatter matrices of custom generated populations in the conductance spaces for the STG model (left) and the DA model (right) 
along with the directions of PC1 and PC2. The 2D subspaces shown here do not represent all conductances of the models and are randomly chosen. All 
conductances are expressed in mS/cm^2. The bottom left corner of each 2D subspace represents the origin of the conductance space. For the STG model, 
g̅A ranges up to 600, ̅gCaS to 50, ̅gH to 0.7 and g̅Na to 8,000. For the DA model, ̅gCaN ranges up to 0.12, ̅gKd to 20, ̅gERG to 0.25 and ̅gCaL to 0.1. The dotted line on 
the voltage traces corresponds to the 0mV line. B) Scatter matrices of custom generated populations in the conductance spaces for the STG model (left) 
and the DA model (right), isolating the effects of homogeneous scaling only (resp. variability in conductance ratios) shown as triangles (resp. crosses). The 
2D subspaces are the same as in a). All conductances are expressed in mS/cm^2. The bottom left corner of each 2D subspace represents the origin of the 
conductance space. For the STG model, ̅gA ranges up to 600, ̅gCaS to 50, ̅gH to 0.7 and ̅gNa to 8,000. For the DA model, ̅gCaN ranges up to 0.12, ̅gKd to 20, ̅gERG to 
0.25 and g̅CaL to 0.1.
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Pairwise correlations in ion channel conductances therefore ap
pear neuromodulation-dependent.

The origin of these neuromodulation-dependent changes in 
pairwise correlations can be explained by plotting the first two 
principal components (PC1 and PC2) on the scatter plots and ob
serving the effect of neuromodulation on them. On the one 
hand, neuromodulation creates a rotation of PC1 around the ori
gin, which affects its slope. In the projections of Fig. 7B, the slope 
of PC1 increases when neurons switch from spiking to bursting in 
both models. This effect is consistent with the results obtained 
from homeostatic models of ion channel expression (14). On the 
other hand, neuromodulation creates a translation of PC2, and 
the slope is barely affected. As a result, the relative slopes between 
PC1 and PC2 depend on neuron neuromodulatory state, which af
fects the global correlation level.

In the STG model, both PC components have a positive slope. In 
spiking, PC1 has a flatter slope than PC2, which slightly widens the 
data cloud. As the model switches to bursting mode, the slope of 
PC1 increases and the two slopes become almost identical in light 
bursting. In this state, the two PCs align, which creates a strong 
correlation between the channel pair. As the model further in
creases its burstiness, the steepness of the slope of PC1 increases 
further and it becomes steeper than that of PC2. The two PCs dis
align again and the correlation between the channel pair de
creases. A similar observation can be made in the DA model, 
except that here PC2 has a negative slope. As a result, PC1 and 
PC2 become more and more orthogonal as burstiness increases, 
which reduces the correlation level, and even destroys the chan
nel pairwise correlation in a strong bursting state.

As identified above, PC1 relates to the homogeneous scaling of 
conductances, whereas PC2 relates to the variability in the ratio 
between voltage-dependent conductances. To further demon
strate this link, we reproduced the three neuromodulatory states 
in two subsets where we isolated variability derived from homoge
neous scaling (triangles in the bottom panels of Fig. 7B) from vari
ability in conductance ratios (crosses in the bottom panels of 
Fig. 7B). We used the same algorithm as for the full dataset to cre
ate robustly neuromodulated states. The results from both mod
els clearly show that robust neuromodulation is achieved 
through a rotation of the data points in the conductance space if 
variability derives from homogeneous scaling, whereas it is 
achieved through a translation of the data points if variability in
volves the ratio between voltage-dependent conductances.

This observation can be interpreted physiologically and provides 
significant insights into the requirements for robust neuromodula
tion in variable neurons. If robust neuromodulation is achieved 
through a rotation in the conductance space, it means that the 
robust neuromodulation rule is multiplicative: g̅i,MOD = αi · g̅i,init 

where αi is set by the concentration of neuromodulator. The rule 
is multiplicative in the case of variability through homogeneous 
scaling, because neurons having twice the maximal conductance 
values require twice the change in conductance to achieve a similar 
firing pattern, owing to the change in input resistance. If robust 
neuromodulation is achieved through a translation in the conduct
ance space, it means that the robust neuromodulation rule is addi
tive: g̅i,MOD = g̅i,init + βi where βi is also set by the neuromodulator 
concentration. The rule is additive in the case of variability in con
ductance ratios only because a similar firing pattern is achieved 

A

B

Fig. 6. Variability from both homogeneous scaling and degenerate conductance ratios blurs the connection between conductance correlation and 
function. A) Scatter plots of custom generated populations separated into triangles (homogeneous scaling only) and crosses (variability in conductance 
ratios only) in the (g̅A, g̅CaL) 2D subspace for the STG model (left) and the (g̅CaL, g̅CaN) 2D subspace for the DA model (right). B) Scatter plots of the full 
variability custom generated populations in the same 2D subspace as in a) for both the STG model (left) and the DA model (right), along with regression 
lines and Pearson correlation coefficients.
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through a similar change in the normalized DIC values, which is 
created by the same change in maximal conductances. As a result, 
robust neuromodulation can be achieved through a simple, direct 
rule if only one type of variability is present in the neuronal popu
lation. However, derivation of a direct rule is impossible if both vari
ability types are present in the population, which is likely 
considering the physiological significance of both types. Such a 
rule would indeed need to be both additive and multiplicative 
with a neuron-dependent ratio between both effects. Robust neuro
modulation therefore requires an indirect rule involving a second 
messenger in highly degenerate neurons, which is precisely the 
mechanism observed in G protein-coupled receptor signaling.

A simple indirect rule for robust neuromodulation 
in highly degenerate neurons
We showed that robust neuromodulation in highly degenerate 
cells cannot rely on a simple rule directly targeting ion channels 
but rather requires a more complex rule involving a second 
messenger. This raises the questions of how complex a rule for 
reliable neuromodulation should be, and whether a general, 
model-independent rule could be derived. In an attempt to an
swer these questions, we used the algorithm developed above to 
construct reliable neuromodulatory paths in degenerate neurons 
for both STG and DA models, moving from tonic spiking to burst
ing of increasing burstiness (Fig. 8). Similar to the case presented 

B

A

Fig. 7. Variability in pairwise correlations in conductance values is neuromodulation-dependent. A) Bar plot of conductance values for custom generated 
populations in the three phenotypes considered for the STG model (right) and the DA model (left). The dotted line on the voltage traces corresponds to 
0mV. B) Scatter plots of full variability custom generated populations in the neuromodulated 2D space for both the STG model (left) and the DA model 
(right) across three neuromodulated states, along with PC1, PC2, and Pearson correlation coefficients (top). Scatter plots of separated custom generated 
populations in the neuromodulated 2D space for both the STG model (left) and the DA model (right) across three neuromodulated states (bottom).
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above, the neuromodulatory algorithm targeted g̅A and g̅CaS in the 
STG model, and ̅gCaL and ̅gCaN in the DA model. Many reliable neu
romodulatory paths could be achieved in both models using a 
simple rule whose objective is to increase the target threshold val
ue for the slow DIC while moving from tonic spiking to bursting, 
while keeping the ultraslow DIC value constant to maintain spik
ing and bursting periods (7) (see Materials and methods). Figure 8
plots the neuromodulatory pathways in the (g̅CaS, g̅A) plane (resp. 
(g̅CaL, g̅CaN) plane) for the STG model (resp. DA model) and exam
ples of neuromodulated neuronal traces.

Interestingly, although a simple direct rule cannot be used, the 
indirect rule resulted in linear neuromodulatory paths for both 
models, where the direction of neuromodulation is constant and 
only varies between neurons of different types. The nonlinearity 
occurs in the distance the neuron has to move in the direction to 
switch activity, which is affected by parameter variability (see the 
variability in the color transitions of Fig. 8 top). These results high
light that, even in the case of maximal degeneracy in neuron 
parameters, the relative change in maximal conductances of ion 
channels targeted by the same neuromodulatory receptor can be 
hard wired in a neuron type, creating a robust neuromodulatory 
path. The second messenger then has the role of controlling the 
movement along that neuromodulatory path that would lead to 
the target activity, strongly reducing the complexity of the reliable 
neuromodulation process. Such control could for example be im
plemented by sensing neuronal activity through intracellular 
calcium oscillations, as already suggested in homeostatic models 

(14, 25), or by sensing membrane voltage (23), creating activity- 
dependent changes in targeted maximal conductances. Substantial 
evidence of such activity-dependent neuromodulatory mecha
nisms involving intracellular calcium can be found in the litera
ture on experimental studies (31–34).

Discussion
Two physiologically relevant sources of neuronal 
variability govern ion channel degeneracy
To uncover how so many different neuron types emerge, as well as 
the mechanisms underlying neuromodulation and variable neur
onal response to neuroactive drugs, it is critical to understand 
how ion channels shape neuronal excitability (8, 13, 15, 17, 18). 
However, the connection between ion channels and neuronal sig
naling is complex due to channel degeneracy, and despite consid
erable advances made on the subject through experimental, 
computational, and mathematical work, a mechanistic under
standing of ion channel variability and degeneracy in neurons re
mains elusive (2–6). Here, we showed that neuronal variability can 
be separated into two quantifiable, physiological components: 
homogeneous scaling of conductances and variability in conduct
ance ratios.

Homogeneous scaling refers to the fact that neurons can ex
hibit similar activity if the relative difference in their channel 
maximal conductances is similar for all channels expressed at 
the membrane, whereby conductance ratios are maintained. 

Fig. 8. A simple indirect rule for robust neuromodulation in highly degenerate neurons. Neuromodulatory paths of custom generated populations for a 
gradually continuous neuromodulation application in the neuromodulated 2D subspace (top). Each line corresponds to one neuron continuously 
undergoing neuromodulation. Three randomly chosen neuron voltage traces along their neuromodulation paths (bottom). The dotted line on the voltage 
traces corresponds to 0mV.

10 | PNAS Nexus, 2024, Vol. 3, No. 10

D
ow

nloaded from
 https://academ

ic.oup.com
/pnasnexus/advance-article/doi/10.1093/pnasnexus/pgae415/7762142 by guest on 01 O

ctober 2024



This property has been observed experimentally in channel ex
pression and shown to emerge from homeostatic rules (14, 27, 
28). In this case, intrinsic characteristics are maintained, but re
sponsiveness to synaptic input is altered due to differences in neu
ron input resistance. Variability in conductance ratios refers to 
the fact that neurons having a similar input resistance can exhibit 
similar activity with different ratios in their voltage-gated conduc
tances. In this case, intrinsic characteristics are maintained, but 
the response to perturbations such as in temperature as well as 
channel blockade is altered due to differences in the relative 
role of each channel subtype on excitability.

Both sources of channel variability are physiologically relevant. 
Homogeneous scaling is central for network homeostasis, as it 
permits the tuning of neuron input/output response while keep
ing the intrinsic properties of neurons stable (35). Homogeneous 
scaling also permits compensation for changes in membrane cap
acitance. On the other hand, variability in conductance ratios 
permits improvement of the robustness against external pertur
bations by creating an heterogeneous response to perturbations 
affecting specific channel functions at the network level (36). 
It could also lead to variable inter-individual responses to neuro
active drugs.

The contributions of variability from homogeneous scaling and 
conductance ratios are intertwined in any neuron degenerate da
taset, making any attempt at quantification difficult. Combining 
dimensionality reduction analysis and recent insights into the re
duced dynamics of conductance-based models, we were able to 
separate the contributions of the two sources of variability, allow
ing the establishment of a mechanistic understanding of how 
variable ion channels can lead to specific neuronal activity. This 
enabled an understanding of the origin of ion channel variable 
pairwise correlations and the derivation of a robust indirect rule 
for reliable neuromodulation in degenerate neurons.

Variable channel correlations arise from the 
interference between homogeneous scaling and 
variability in conductance ratios
Separating the effects of homogeneous scaling and variability in 
conductance ratios allowed analysis of the roles of the two sources 
of variability on channel pairwise correlations. Homogeneous scal
ing creates strictly positive correlations between all ion channels, 
and different firing patterns/neuron subtypes lead to different re
gression slopes, as observed in the channel expression data and 
homeostatic models of neuronal excitability (14). These positive 
correlations come from the passive role of ion channels on mem
brane properties through Ohm’s law: an increase of any channel 
conductance decreases the membrane input resistance. Other 
channels thus have to increase their conductance to maintain their 
effect on membrane potential variations.

On the other hand, variability in conductance ratios creates 
both positive and negative correlations between ion channel sub
sets, but not all ion channels. Ion channels correlate to maintain 
neuronal dynamics if their gating, representing either activation 
or inactivation, occurs on a similar timescale. The sign of the 
correlation is determined by the relative feedback provided by 
each channel gating on membrane potential variations, which is 
a key determinant of neuron dynamical properties as quantified 
by dynamic input conductances, for example (7). Specifically, 
activation of inward current and inactivation of outward current 
produce positive feedback, whereas activation of outward cur
rent and inactivation of inward current produce negative feed
back. Two channels producing opposite feedbacks on a similar 

timescale will correlate positively (such as e.g. g̅A and g̅CaS in the 
STG model), whereas two channels producing similar feedbacks 
will correlate negatively (such as e.g. g̅CaL and g̅CaN in the DA 
model).

When both sources of variability are present in a neuron degen
erate set, the two types of correlations interfere with each other. 
When the correlation emerging from variability in conductance 
ratio is positive, both regression lines have a positive slope, creat
ing an overall positive correlation whose intensity depends on the 
alignment of the regression lines. However, when the correlation 
emerging from variability in conductance ratio is negative, both 
regression lines have opposite signs, which can lead to an uncor
relation between two conductances even though there is a strong 
correlation between their role in neuron dynamics and passive 
properties. This situation could be indistinguishable from two 
channels that actually do not correlate due to a lack of action 
on a similar timescale. Therefore, variable correlations in channel 
conductances in a degenerate dataset do not always relate to cor
related or uncorrelated functions but could also arise from highly 
correlated functions of opposite signs.

The importance of indirect neuromodulatory 
pathways for reliable neuromodulation 
in variable neurons
One prominent issue arising from channel degeneracy involves 
how neuromodulation could be reliable across neurons when it 
acts on degenerate conductances (15–18, 32, 37). We showed 
that a simple direct rule for reliable neuromodulation could be de
rived if either homogeneous scaling or variability in conductance 
ratios, but not both, was present in a dataset. Indeed, homoge
neous scaling requires a simple multiplicative rule due to its effect 
on input resistance, whereas variability in conductance ratios re
quires an additive rule. There is no direct rule if both variability 
types exist, as it would need to be both additive and multiplicative 
with a neuron-dependent ratio between the two effects.

We showed that a simple indirect rule could produce reliable 
neuromodulation when both sources of variability are present 
in the dataset. This rule is indirect in the sense that it uses an 
intermediate signaling pathway to connect neuromodulation con
centration with changes in channel conductances. In our computa
tional study, this intermediate pathway encodes the values of the 
slow and ultraslow dynamic input conductances around the 
threshold potential: neuromodulator concentration tunes the tar
get values for both dynamic conductances, and a subset of ion chan
nels are in turn modulated to reach these new targets. The presence 
of an intermediate messaging pathway is a core property of GPCR 
signaling, making such an indirect rule physiologically plausible. 
Our work provides a quantitative framework that provides a new 
angle of attack to study how intermediate signaling pathways could 
lead to reliable neuromodulation in degenerate neurons.

Materials and methods
Programming language
The Julia programming language was used in this work (38). 
Numerical integration was realized using DifferentialEquations.jl. 
Regression lines and correlations were computed using Statistics.jl. 
PCA was conducted using LinearAlgebra.jl.

Conductance-based models
For all experiments, single-compartment conductance-based mod
els were employed. These models articulate an ordinary differential 
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equation for the membrane voltage V, where N ion channels 
are characterized as nonlinear dynamic conductances, and the 
phospholipid bilayer is represented as a passive resistor-capacitance 
circuit. Mathematically, the voltage–current relationship of any 
conductance-based neuron model is expressed as follows:

IC = C
dV
dt

+ gleak(V − Eleak) = −Iint + Iext

= −
􏽘

ion∈I
gion(V, t)(V − Eion) + Iext.

Here, C represents the membrane capacitance, gion denotes the con
sidered ion channel conductance and is non-negative, gated be
tween 0 (all channels closed) and g̅ion (all channels open), Eion and 
Eleak are the channel reversal potentials, I is the index set of intrinsic 
ionic currents considered in the model, and Iext is the current exter
nally applied in vitro, or the combination of synaptic currents. Each 
ion channel conductance is nonlinear and dynamic, represented by 

gion(V, t) = g̅ionma
ion(V, t)hb

ion(V, t), where mion and hion are variables 

gated between 0 and 1, modeling the opening and closing gates of 
ion channels, respectively. Throughout this study, both the isolated 
crab STG neuron model (25) and the adapted DA neuron model (26) 
(where SK channels had been blocked to enable bursting) were 
employed.

The STG model consists of seven ion channels that operate on 
various time scales: fast sodium channels (g̅Na); delayed-rectifier 
potassium channels (g̅Kd); T-type calcium channels (g̅CaT); 
A-type potassium channels (g̅A); slow calcium channels (g̅CaS); cal
cium controlled potassium channels (g̅KCa); and H channels (g̅H).

The DA model consists of six ion channels that operate on vari
ous time scales: fast sodium channels (g̅Na); delayed-rectifier po
tassium channels (g̅Kd); L-type calcium channels (g̅CaL); N-type 
calcium channels (g̅CaN); ERG channels (g̅ERG); and NMDA channels 
(g̅NMDA). Note that, owing to the multicellular nature of NMDA 
channels, they were excluded from this study but were still used 
for simulations with baseline values.

Random sampling sets
Random sampling sets consist of 200 neuron models with varying 
maximum ion channel conductances. These sets were created by 
generating numerous random points in the space of maximum ion 
channel conductances (within specified ranges). Subsequently, the 
models underwent post-processing based on their firing patterns, 
with only those fitting the desired phenotype being retained. For 
the STG models, post-processing involved considerations of peak 
and hyperpolarized voltages, intra- and interburst frequencies, the 
number of spikes per burst, and burstiness (computed as in 
Ref. (39)). Meanwhile, the DA models were post-processed based 
on their peak and hyperpolarized voltages and spike frequency.

Dynamic input conductances
DICs consist of three voltage-dependent conductances that separ
ate according to timescales: one fast, one slow, and one ultraslow, 
denoted as gf (V), gs(V), and gu(V), which can be computed as linear 
functions of the maximal conductance vector g̅ion ∈ RN of an 
N-channel conductance-based model at each voltage level V:

[gf (V); gs(V); gu(V)] = fDIC(V) = S(V) · g̅ion , 

where S(V) ∈ R3×N is a sensitivity matrix that can be built by: 

Si j(V) = −(wi j ·
∂V̇
∂Xj

∂Xj,∞
∂V )/gleak, where i denotes the timescale, Xj are 

gating variables of the jth channel of the considered model and 
wi j is a timescale-dependent weight which is computed as the 

logarithmic distance of the time constant of Xj and the timescale 

i (7). While the complete curve of the DICs may be of interest, only 
its value at the threshold voltage Vth is used, as the values and 
signs of the DICs at Vth reliably determine the firing pattern (7). 
Thus, the following linear system fDIC(Vth) = S(Vth) · g̅ion makes 
the link between ion channel conductances and neuronal activity.

An efficient method to build sets that allow the separation 
of the two sources of degeneracy
Throughout this study, a novel method for generating degenerate 
datasets of conductance-based models has been developed, 
which was proven to be significantly faster than the random sam
pling approach (all figures were created using a dataset of 500 neu
rons). The methodology for a N-channel conductance-based 
model can be summarized as follows: 

1. The leakage conductance gleak is drawn from a physiological 
uniform distribution: gleak ∼ U(gleak min, gleak max);

2. N − 3 maximum ion channel conductances are drawn from a 
physiological uniform distribution that is proportional to 

gleak: g̅ion ∼ gleak
(gleak min+gleak max)/2 · U

N−3(g̅unmod min, g̅unmod max);

3. The three remaining maximum ion channel conductances 
are computed using the linear system fDIC(Vth) = S(Vth) · g̅ion, 

in which fDIC(Vth) are fixed by the user to choose the firing pat
tern of the population.

The normalization by gleak in (2) allows the combination of the ef
fects of homogeneous scaling and variability in conductance ra
tios. The subsequent sets, each targeting either homogeneous 
scaling or conductance ratio, were generated by using shared de
terministic values for gleak or for the N − 3 maximum ion channel 
conductances, respectively. The zero-sensitivity directions of 
slow dynamical membrane properties were computed using the 
equations for the slow dynamic input conductance, where the 
two ion channel conductances of interest were treated as varia
bles along this direction.

Neuromodulation algorithm
As a result of this newly developed method for generating degen
erate neuronal sets, neuromodulation of these sets is achieved by 
manipulating the linear system fDIC(Vth) = S(Vth) · g̅ion. Once a 
population is created, the values of fDIC(Vth) can be adjusted, 
and the linear system can be solved for certain ion channel con
ductances (the modulated ones) to achieve a new firing pattern. 
Specifically, two maximum conductances are recalculated by tun
ing the value of the slow dynamic input conductance while the ul
traslow dynamic input conductance is kept unchanged. The latest 
results were obtained by continuously adjusting this slow dynam
ic input conductance value.
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Supplementary material is available at PNAS Nexus online.
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