
University of Liège
School of Engineering

Montefiore Institute

CONTRIBUT IONS TO

MULTI -AGENT RE INFORCEMENT LEARNING

a PhD dissertation

by Pascal Leroy

Advisors:
Professor Damien Ernst

Doctor Jonathan Pisane
April 2024

This dissertation has been submitted in partial fulfilment of the requirements for the
Degree of Doctor of Philosophy in Engineering Science.

iii

ABSTRACT

In the realm of machine learning, multi-agent reinforcement learning (MARL) is the
setting where several agents learn to act by receiving rewards after deciding on actions
based on their perception of their environment. It takes its foundation in game theory
and reinforcement learning (RL), both fields developed for decades. The success of deep
neural networks is leading to unprecedented progress in the variety of problems that can
be solved by such methods. Indeed, many real-world applications, such as autonomous
vehicles, swarms of drones, warehouse robots, cyber securities, traffic management, or
smart grids, can be framed as MARL ones. In this thesis, we present contributions in
this domain, particularly in training a team of agents to cooperate alone or against
an opposing team. This manuscript starts with the fundamentals, defining the general
MARL framework and how it is divided into the settings of cooperation, competition,
and general-sum. It also provides the necessary background for the unfamiliar reader
with RL.

The second part of the thesis is dedicated to the cooperative setting, where agents
share the same goal. Such a setting is commonly framed as a decentralised partially ob-
servable Markov decision process (Dec-POMDP). This part begins with a background
chapter defining the Dec-POMDP and how it is solved in the literature. The following
chapters present two contributions to the cooperative MARL field. One concerns meth-
ods extending the Deep-Quality-Value family of algorithms to the cooperative setting,
demonstrating competitive performance with the state of the art. The other presents
IMP-MARL, an open-source suite of MARL environments for large-scale infrastructure
management planning (IMP). In IMP, inspections, repairs and/or retrofits should be
decided to control the risk of potential system failures while minimising costs, such as
bridge or wind turbine failures.

The third part of the thesis addresses the problem of training a team against an
opposing one. This setting extends the competition setting, framed as agents having
opposing goals, to teams of agents having opposing goals. It is composed of two chapters.
The former presents historical stories and solutions from game theory to the competition
and general-sum settings. The latter presents the third contribution, which is a study on
how to pair cooperative and competitive methods to train a team in a two-team Markov
game with the objective to be resilient to many strategies.

Finally, the manuscript concludes with a retrospective of the scientific findings provided
by the contributions at the foundation of this thesis and a discussion on the societal
impact that MARL has the potential to provide in the upcoming years.

v

CONTENTS

1 introduction 1
1.1 Outline . 6
1.2 Publications . 7
1.3 Context . 7

I background 9
2 foundations of multi-agent reinforcement learning 11

2.1 Introduction . 11
2.2 Stochastic game . 12
2.3 Multi-agent settings . 14

2.3.1 Cooperation . 15
2.3.2 Competition . 15
2.3.3 General-sum . 16

2.4 Single-agent reinforcement learning . 16
2.4.1 Markov decision process . 17
2.4.2 Model-based or model-free . 18
2.4.3 Dynamic programming . 18
2.4.4 Value-based methods . 20
2.4.5 Policy-based methods . 22

2.5 Partial observability . 23

II learn to cooperate 25
3 cooperation 27

3.1 Introduction . 27
3.2 Decentralised partially observable Markov decision process 28
3.3 Environments . 30

3.3.1 StarCraft multi-agent challenge . 32
3.4 Value-based methods . 34

3.4.1 QMIX . 35
3.4.2 MAVEN . 36
3.4.3 QPLEX . 38
3.4.4 Other value-based methods . 39

3.5 Policy-based methods . 39
3.5.1 COMA . 40
3.5.2 FACMAC . 41
3.5.3 Other policy-based methods . 42

3.6 Other approaches . 42

vii

viii contents

4 the deep quality-value family in dec-pomdp 45
4.1 Introduction . 45
4.2 Methods . 46
4.3 Experiments . 47
4.4 Results . 48
4.5 Discussion and future work . 52

5 infrastructure management planning 53
5.1 Introduction . 53
5.2 Related work . 56
5.3 IMP-MARL: A suite of Infrastructure Management Planning environments 56

5.3.1 Environments formulation . 56
5.3.1.1 States and observations 56
5.3.1.2 Actions and rewards . 57
5.3.1.3 Real-world data . 57

5.3.2 IMP-MARL environments . 57
5.3.2.1 k-out-of-n system . 58
5.3.2.2 Correlated k-out-of-n system 59
5.3.2.3 Offshore wind farm . 59

5.4 Modelling infrastructure management in IMP-MARL 60
5.4.1 Deterioration models . 60

5.4.1.1 Correlated and uncorrelated k-out-of-n systems 60
5.4.1.2 Offshore wind farm . 61

5.4.2 Inspection models . 61
5.4.2.1 Correlated and uncorrelated k-out-of-n systems 61
5.4.2.2 Offshore wind farm . 62

5.4.3 Transition models . 62
5.4.4 Reward model . 64

5.5 Experiments . 64
5.5.1 Tested methods . 64
5.5.2 Experimental setup . 65

5.6 Results . 66
5.7 Discussion and future work . 69

III cooperate against an opposing team 71
6 competition 73

6.1 Introduction . 73
6.2 Solutions . 74
6.3 History . 75
6.4 Self-play and population-based training 78

7 two-team markov game 81
7.1 Introduction . 81

contents ix

7.2 Two-team Markov game . 82
7.3 Competitive StarCraft Multi-agent challenge 82
7.4 Learning scenarios and performances criteria 83
7.5 Experiments . 84
7.6 Results . 85
7.7 Discussion and future work . 90

IV conclusion 93
8 conclusion 95

V appendix 99
a imp-marl supplementary materials 101

a.1 Repository, license, data, and documentation 101
a.2 Implemented options . 101
a.3 Experimental details . 102

a.3.1 Description of the parameters set up in the experiments 102
a.3.2 Statistical analysis of the variance associated with the number of

test episodes . 105
a.3.3 Hardware and experiments duration 106

a.4 Additional benchmark results . 110
b two-team markov game supplementary materials 115

b.1 Training parameters . 115
b.2 Training time . 115

c references 117

1
INTRODUCTION

We make decisions every day. So, let us build some intuition about this decision-making
process through the following example. Consider yourself driving a car and arriving at a
crossroad. In front of you, there is a traffic sign. You predict it is a stop sign based on
your perception and knowledge. This prediction involves reasoning and has no impact on
your environment. As suggested by the traffic sign, you then take the action to stop the
car. This also involves reasoning but impacts your environment. Indeed, you push on the
brakes, and the car decelerates until it stops.

These decisions are based on what you learned, even if some decisions can be made
without knowledge. Indeed, you probably studied the traffic signs to know it was a stop
one. You practised your driving skills to obtain your driver’s license by trial and error,
but hopefully also with the help of a supervisor. You did acquire these skills by learning.
You learned with supervision, having examples of decisions and feedback to highlight
whether some decisions were right or wrong. However, you also learned by interacting
with and testing your environment. Many may recall a child throwing objects off a table,
discovering gravity in action, possibly motivating the quote from Sutton and Barto [2018]
“The idea that we learn by interacting with our environment is probably the first to occur
to us when we think about nature of learning”. In summary, you learned by yourself and
with the help of others. Nevertheless, this manuscript is not about how humans learn to
make decisions. It is about how computers can learn to make decisions.

When a computer makes decisions, it is called artificial intelligence (AI). However,
AI is not only about computers making decisions. Nowadays, AI has many definitions.
Choosing which one is better is beyond the scope of this manuscript. However, we will
provide some before focusing on the one of interest. In “Artificial Intelligence: A Modern
Approach”, Russell and Norvig [2010] rely on several definitions to propose a classification
of AI into four categories. They classify the definitions of AI as making computers either
think like humans or think rationally or act like humans or act rationally. Computers
thinking like humans is the field of cognitive sciences where theories of the human mind
are built, and computers thinking rationally is the field of logic, based on knowledge
representation and inspired by the syllogisms invented by Aristotle. This manuscript does
not address these two types of AI. It also does not address acting humanly, which we
justify hereafter, but focuses on AI acting rationally. Rationality means that it maximises
a measure of the performance of the decision. Therefore, these types of AI are built to
make decisions to achieve a predefined goal. We commonly define an AI making decisions
as an agent.

1

2 introduction

When considering whether AI can act like humans, a well-known proposition coming up
is the Turing test. An agent succeeds in the Turing test if, during a written conversation
with it, the human cannot tell whether its interlocutor is an AI. This test has been
extended to include video signals or physical interaction to test more complex problems.
However, many researchers did not focus on creating AI to succeed in this test. The
following self-explanatory quote from Russell and Norvig [2010] may convince many:
“Aeronautics is not defined as the field of making machines that fly so exactly like pigeons
that they can fool even other pigeons”.

This manuscript concerns agents acting rationally but also concerns learning. We still
delay the definition of learning, and hereafter, we present that acting rationally can be
achieved without learning. Indeed, creating an agent to solve Sudoku puzzles is possible
by exploiting the game rules. It will sequentially enumerate all cells’ available numbers
and assign a number to cells that end with only one possible number. Many problems can
be solved without learning, but some may be challenging. For example, an agent can play
chess by enumerating all the possibilities from a given board situation to choose the best
move. But the number of possible chess games is 10120 [Shannon, 1950], and enumerating
all of them is intractable. However, creating an agent that plays chess is possible if it
enumerates only the games of interest and does it in parallel to make it swift. This is
how DeepBlue [Campbell et al., 2002] plays chess at the level of the best human players
without learning. Even though it is possible to solve complex problems by ingeniously
exploiting game rules, the complexity of some others leads to the development of agents
learning to make decisions.

When there is learning in AI, we call it machine learning (ML): “Machine learning is
a subset of AI that learns to make decisions by fitting mathematical models to observed
data” [Prince, 2023]. ML is divided into different areas based on available data and goals.
For example, an agent can learn to predict the type of a traffic sign based on its picture.
To achieve this, a model can be built with the help of a dataset of pictures and their
corresponding labels. In this case, the model is a mathematical function that maps a
picture, a collection of pixel values, to a type of traffic sign. The model performance is
initially poor but improves during training. It learns! During the training phase, the sys-
tem predicts the types of images from the dataset. By using actual and predicted types of
traffic signs, the model is refined to improve it. Such a solution is called supervised learn-
ing (SL) because the labels supervise the learning. Another area of ML is unsupervised
learning when labels are not provided with the data. Indeed, the lack of labels induces
the absence of supervision, but the model can still learn patterns in the image structure
instead of learning to predict its label. Removing part of the image and training the
model to predict the missing pixel is an example of unsupervised learning called inpaint-
ing. Unsupervised learning serves many purposes. For example, it is common to pre-train
a model with unlabelled data, which are typically abundant, to establish a foundation
of knowledge before introducing labels, which are often more challenging to acquire, to
train the model on a specific task using supervised learning.

introduction 3

At the beginning of this introduction, we presented the decision-making process by
highlighting parts based on their impact. Learning to predict something via supervised
learning allows one to make decisions that impact the environment. Indeed, it is possible
to train a model that predicts the strength to apply to your car pedals based on a
camera in the car. We also considered chess. A collection of chess games would also allow
an agent to learn to predict the best move based on the ones in the dataset. Aside from
the complexity of acquiring such a dataset, these approaches do not allow AI to learn to
make decisions but to learn to replicate the decisions, called imitation learning. Doesn’t
this remind you of the acting humanly approach of AI defined previously? Moreover, one
crucial aspect left aside until now is the sequential aspect of this rational decision-making.
Indeed, decisions might impact the future. Most of the time, as in chess, a sequence of
decisions is required to achieve a goal. We need a systematic approach to train an agent to
make sequences of rational decisions. Such an approach exists and is called reinforcement
learning (RL). This is a third area of machine learning, and most of the time, any ML
problem is classified as one of the three approaches presented: supervised, unsupervised
or reinforcement learning.

In reinforcement learning, an agent acts and receives a reward after taking action. The
reward is the action’s outcome, a numerical feedback. The agent aims to perform actions
that provide the maximum possible accumulated reward. It learns it by trial and error,
typically updating its policy based on the received reward after each action. Back to our
example, when not stopping at a stop sign at a crossroad, you can cause an accident, an
excellent example of a situation that would provide a negative reward. But whether you
decide to break or not to do anything, your environment is evolving. Indeed, in addition
to receiving rewards, the agent’s environment can evolve due to its action. We then say
that the state of the environment evolves based on the action. The agent is part of the
environment and interacts with it, somehow defined inside and outside of it. Nevertheless,
this dynamic nature of the environment adds a new dimension to the learning process
because the agent needs to learn to make a sequence of optimal decisions. Note that it
is possible to design an RL problem without any environment evolution.

Sudoku puzzles can be solved and chess played without learning, but the agent needs
to know the game’s rules. In RL, this is not usually the case. The agent does not know
how an action will affect its state neither the reward it will receive. It just receives the
reward after taking an action and learns to maximise it. One of the challenges of RL
is that agents face the exploration-exploitation dilemma. They must balance trying out
new actions to discover potentially better policies (exploration) and sticking to actions
that have yielded high rewards in the past (exploitation). Another common challenge
lies in the environment, which can also involve delayed rewards. The consequences of an
action may not be immediate, typically because a sequence of precise actions is required
to achieve something. This delay makes it more challenging for the agent that has to
learn whether a reward is due to a previous action or the last one. This is referred to as
the credit assignment challenge.

4 introduction

Reinforcement learning has applications in various domains. The recommender system
[McInerney et al., 2018] is an excellent example of an RL application. Robotics is another
application where an agent learns to control a robot, such as training a robotic hand
to solve a Rubik’s cube [Akkaya et al., 2019]. Designing chips is a complex sequential
decision-making problem that can also be solved with the help of RL [Mirhoseini et al.,
2021]. RL can be applied in healthcare, typically to decide treatment dosage through time
[Miotto et al., 2018]. Finally, games have been a testbed for RL for a long time. Some
significant breakthroughs in RL have been achieved thanks to games, such as attaining
human performance in Atari games [Mnih et al., 2015]. They offer the best environment
for RL because they are natural simulators. Indeed, the trial-and-error nature of RL
requires that an agent extensively interacts with its environment.

We have presented above applications of RL where a single agent acts rationally to
achieve a predefined goal. However, back to our first example, when driving your car you
are not alone in that environment. Other people are also sharing the roads, and your
decisions are also based on them, on their behaviour. When there are multiple agents in
the environment, many things change. How these agents influence the environment must
be considered because a multi-agent system has several types of dynamics. Typically,
agents can take actions simultaneously or sequentially. For example, everyone makes
decisions simultaneously on the road, while chess is a turn-based game in which agents
make their decisions one after the other. Moreover, the number of agents is also different
in these two examples. In chess, there are only two agents, while on the road, there can
be many more. This illustrates the wide range of problems that a multi-agent system can
represent, from a game with two agents to a real-world environment with an unknown
number of agents.

Multi-agent reinforcement learning (MARL) extends single-agent reinforcement learn-
ing (SARL) when multiple agents learn in the environment. In such a system, each agent
receives a reward and learns to act to maximise its rewards. Learning is the crucial differ-
entiation between multi-agent systems and MARL. Suppose only one agent is learning in
an environment comprising several others. The other agents then have a stationary pol-
icy that does not change over time, and they can be considered part of the environment.
However, when several agents learn, their policies change over time. From the point of
view of each agent, the environment dynamic is constantly changing. This induces non-
stationarity in the learning process. Typically, in a rock-paper-scissor game, if one always
chooses rock, one may always choose paper. But if the first changes to scissors, the second
may finally change to rock. This cycle can last forever, and one needs to decide when
to stop. Finding an equilibrium where strategies stop evolving is indeed a challenging
solution. This highlights a first challenge in MARL.

A second challenge is determining the criterion required to assess the optimality of
policies. In SARL, it is straightforward. the agent must receive the highest sum of rewards,
achieved when it finds the optimal policy achieving the maximum sum of rewards. But
how can this be posed in a multi-agent environment when several agents want to maximise

introduction 5

their reward? The solution to finding an equilibrium is achieved when agents do not
benefit from a better reward by changing their policy. How to define this equilibrium and
whether there are several of them is a dedicated research problem in MARL. Moreover,
finding the equilibrium providing the maximum sum of rewards to all agents can be
challenging.

The third challenge is the number of agents. The environment’s dynamic is often a
function of every agent’s action, leading to a combination of actions that scales exponen-
tially with the number of agents. Designing methods to train these agents that scale is
challenging because it usually implies functions based on all these possibilities.

A fourth challenge is related to the credit assignment previously introduced. In addition
to understanding that a reward may be caused by a series of actions, a challenge in MARL
is determining the actions of which agents caused the current reward. Back to the example.
If you stop because of a stop sign but your vehicle is damaged by the one following you
which did not stop, the corresponding negative reward is not your fault, but the fault is
that of the car’s driver behind you. Other challenges exist, but these four highlight the
additional challenges when extending to MARL [Albrecht et al., 2023].

MARL has been divided into three settings. This division comes from game theory and
allows for simplifying the general case to a particular one to reduce the complexity arising
from the challenges previously mentioned. Each setting is based on the goal of agents.
The first setting, cooperation, involves agents cooperating to achieve a common goal. In
the second setting, competition, agents compete to achieve an opposing goal, typically
named the zero-sum setting. The third setting is named general-sum and encompasses
everything else. This is the general setting and maybe the most challenging because no
hypothesis can be exploited to mitigate the problem.

This introduction clearly identifies that we must consider other learning agents when
training one in MARL. The reader should be confident that training an agent with an
SARL method, ignoring other learning agents, might not yield the best solution to these
problems. This research question has existed in the MARL community for quite some
time, and we go beyond by providing insights in this manuscript into how we should
consider other learning agents in an environment. We focus on two specific settings:
training a team of agents to cooperate and training a team of agents to compete against
an opposing one. In the cooperative setting, we present two contributions that provide
methods designed to train agents to fulfil a cooperative task and how they can be applied
in a specific real-world setting. When training a team in an adversarial scenario, we
can use the same methods but, again, by considering that there are opponents. This
highlights the two main parts of the manuscript, each starting with a background section
that provides perspective on the novelties of the presented work. Before diving into the
details of these two settings, we provide the necessary background and notations of RL.
In the following sections, we provide a more detailed outline of this manuscript, followed
by a disclaimer on the publications that form its foundation and, finally, the industrial
context in which some of the work presented has been conducted.

6 introduction

1.1 outline

This manuscript is divided into four parts. The necessary background is presented in
Part I, providing an overview of RL. In Part II, we present works related to cooperation,
one of the MARL settings, while Part III extends these topics to a specific framework
where two teams compete. Finally, Part IV concludes this manuscript, retrospectively
reviewing the contributions presented in this manuscript.

part I Background:

Chapter 2 presents the general MARL framework and details its different settings
and challenges. More importantly, this chapter presents the foundations of MARL
issued from SARL. This chapter is a must-read for those unfamiliar with reinforce-
ment learning. In contrast, these concepts should be well-known for the familiar
ones, and Chapter 2 serves as a notation introduction.

part II Learn to cooperate:

Chapter 3 provides the necessary material to understand the challenges of cooper-
ation in MARL. It is a mix of background introduction and literature review, as
this chapter introduces many concepts and methods from the literature.

Chapter 4 presents four methods based on the Deep-Quality-Value family of algo-
rithms designed to train cooperating agents.

Chapter 5 introduces infrastructure management planning, a real-world application
that can be tackled in this cooperative framework. In this application, inspections,
repairs, and/or retrofits should be timely planned to control the risk of potential
system failures.

part III Cooperate against an opposing team:

Chapter 6 presents how competition is classically modelled and solved in MARL.
It serves the same purpose as Chapter 3 by being a mix between background and
literature review.

Chapter 7 presents a particular case of the general-sum settings where two teams
compete and how to train them. The goal is to study how to train the team to be
resilient against multiple strategies.

part IV Conlusion:

Chapter 8 is the final chapter and addresses the closing remarks.

1.2 publications 7

1.2 publications

This manuscript is built upon existing research, integrating insights from numerous cited
sources. Notably, three central chapters represent adaptations of specific peer-reviewed
publications.

- Chapter 4 is an adapted version of the publication QVMix and QVMix-Max: ex-
tending the deep quality-value family of algorithms to cooperative multi-agent rein-
forcement learning, P. Leroy, D. Ernst, P. Geurts, G. Louppe, J. Pisane, and M.
Sabatelli. AAAI-21 Workshop on Reinforcement Learning in Games, 2021 [Leroy
et al., 2021].

- Chapter 5 is an adapted version of the publication IMP-MARL: a suite of environ-
ments for large-scale infrastructure management planning via MARL, P. Leroy, P.
G. Morato, J. Pisane, A. Kolios, and D. Ernst. Thirty-seventh Conference on Neu-
ral Information Processing Systems Datasets and Benchmarks Track, 2023 [Leroy
et al., 2023].

- Chapter 7 is an adapted version of the publication Value-based CTDE methods in
symmetric two-team Markov game: from cooperation to team competition, P. Leroy,
J. Pisane, and D. Ernst. Deep Reinforcement Learning Workshop NeurIPS, 2022
[Leroy et al., 2022].

1.3 context

To provide a backstory, part of the work presented in this manuscript has been developed
during the IRIS project with an industrial consortium of Belgian companies financed by
the Walloon region under the convention 7977. IRIS stands for Intelligent Recognition In-
formation System, and the partners were John Cockerill Défense, ACIC, Multitel, Belgian
Royal Military Academy and the University of Liège. The IRIS project aims to enhance
surveillance capabilities by integrating machine learning. Through detection, recognition,
and behaviour analysis modules, IRIS seeks to empower operators with timely, actionable
information to make optimal decisions in both military and civilian contexts, impacting
the safety of individuals, sensitive sites, and equipment integrity. Specifically, we explored
multi-agent reinforcement learning to provide decision-aid to operators in the context of
military missions. The IRIS project served as a case in our studies on training a team
against an opposing team to learn how military assets should cooperate.

Part I

BACKGROUND

2
FOUNDATIONS OF MULTI -AGENT RE INFORCEMENT
LEARNING

Outline

This chapter provides a broader overview of reinforcement learning. We
first define reinforcement learning in Section 2.1 and define a stochastic
game, a multi-agent framework, in Section 2.2. Multi-agent reinforcement
learning is commonly divided into three settings depending on the agents’
relative goals described in Section 2.3. Section 2.4 provides essential de-
tails on single-agent reinforcement learning, the not so particular case
lying at the foundations of multi-agent reinforcement learning. Section 2.5
concludes this chapter with a discussion on partial-observability.

2.1 introduction

As introduced in Chapter 1, reinforcement learning (RL) is a machine learning setting
to solve decision-making problems, and we hereafter rephrase several RL definitions:

- Reinforcement learning is learning solutions of a sequential decision process by
repeatedly interacting with an environment [Albrecht et al., 2023].

- Reinforcement learning is a framework for sequential decision-making, one core
topic of ML [François-Lavet et al., 2018].

- Reinforcement learning is a method to solve problems where decisions are applied
to a system over time to achieve a desired goal [Buşoniu et al., 2010].

- Reinforcement learning is learning by interacting in its environment to maximise a
numerical signal called reward [Sutton and Barto, 2018].

We denote several keywords guiding most RL journeys: environment, interaction, se-
quence, goal and reward. But we intentionally rephrase the definitions by leaving one
missing: the agent. Commonly, an agent is anything capable of acting upon information
it perceives from its environment [Russell and Norvig, 2010]. In RL, an agent learns to
act by interacting with its environment. Trying to summarise all definitions, we obtain
that RL agents learn to act by interacting with their environment and sequentially taking
actions that will modify the environment and provide them with a reward.

11

12 foundations of multi-agent reinforcement learning

After defining an agent, we must also consider the number of agents in the environment.
Indeed, environments exist where several agents act. Single-agent reinforcement learning
(SARL) becomes multi-agent reinforcement learning (MARL) when more than one agent
learns. We insist on the fact that we consider the number of agents learning. This chapter
defines the general MARL framework and follows it with the three standard settings:
cooperation, competition, and general-sum. We then provide an in-depth overview of
SARL methods, intending to give enough background to the reader unfamiliar with RL
and the classical SARL algorithms. We finish with a discussion on partial observability,
an essential topic in RL, because agents often have uncertainty about their perception
of the environment, especially in MARL.

Since this chapter aims to provide a broader overview of RL and its central concepts,
we intentionally skip some details, such as mathematical developments, demonstrations,
or definitions. However, we always try to refer the reader to references that go beyond our
introductions. We acknowledge that the background chapters of this manuscript take a lot
of inspiration from the cited works, especially from two of them: “Reinforcement learning:
An introduction” [Sutton and Barto, 2018], well established in the community and “Multi-
Agent Reinforcement Learning: Foundations and Modern Approaches” [Albrecht et al.,
2023], a recent book on the foundations of multi-agent reinforcement learning.

2.2 stochastic game

The stochastic game (SG) [Shapley, 1953] is at the foundation of MARL. In an SG, a
set of agents interact with the environment by observing its state, choosing actions, and
receiving rewards over a sequence of time steps. We define a stochastic game by a tuple
[n,S,U , R, P, γ, p, T]. The interaction of agents in an SG is presented in Figure 2.1. The
set of agents is A ≡ {1, .., n} so that a specific agent is denoted by ai, or directly by i,
with i ∈ A. When not referring to a specific agent, an agent is denoted by a. At each
time step t, each agent a selects an action uat ∈ Ua based on the state of the environment
st ∈ S with a probability given by its policy πa(uat |st) : S → ∆(Ua), where S is the
state space, and Ua is the action space of agent a. The n actions selected by each agent
form the joint action ut ∈ U , where the joint action space is U ≡×i∈A U

ai . We also
denote the joint policy by π = (πa1 , ..., πan). As a consequence of agents taking ut, the
state of the environment st transits to a new state st+1 with a probability P (st+1, st,ut)

defined by the stochastic transition function P : S × U → ∆(S). At the same time
as the state transitions, each agent receives a reward denoted rait = R(st+1, st,ut, i)

defined by the reward function R : S × S × U × A → R. The goal of each agent ai
is to maximise its expected return, which is the expected sum of discounted rewards
Eπ,p,P [Gai

0] = Eπ,p,P

[∑T−1
t=0 γtrait

]
, where T is the time horizon, p is the initial state

distribution, γ ∈ [0, 1] the discount factor and Ga
t =

∑T−1
j=t γt−jraj . The time horizon T

can be infinite but in this thesis, it is considered finite, defining the length of an episode.

2.2 stochastic game 13

Environment

Agent
Agents

Figure 2.1: Interaction of three agents with the environment in a stochastic game [Shapley, 1953].
Agents i ∈ {1, .., 3} have access to the state st to select actions ui

t. As a consequence, they each
receive a reward rit and the environment transitions in a new state st+1.

Intuitively, the discount factor γ defines the importance of future reward. Finally, we
insist that an agent’s return depends on the joint action taken and not only on its own.

Before discussing the challenges of learning in an SG, we hereafter provide some com-
ments about its definition. Since the transition function is defined as stochastic, the
reward function is always based on the following state obtained. Still, we sometimes de-
note it R(st,ut, i) irrespective of this new state to enhance readability. Moreover, the
expected return is often denoted Eπ [G0] leaving the initial state distribution p and the
transition function P dependencies implicit. An essential characteristic of MARL is that
agents do not always observe the state st of the environment to select an action. This
partial observability is further developed in Section 2.5. Finally, in the literature, an SG
is sometimes called a Markov game (e.g. [Littman, 1994]).

When multiple agents learn in the environment, many challenges arise, and we describe
four. One challenge is the non-stationarity of the learning agents. Since all agents learn,
they all update their strategy over time. One typical risk is that agents may adapt to the
strategy of others in an infinite cycle, as in the rock-paper-scissor example of Chapter 1.
One example solution to this problem is to find a Nash equilibrium [Nash Jr, 1950]. Such
equilibrium is obtained when no agents are interested in changing their policy, meaning
that if one changes its policy, its sum of discounted rewards will decrease. There is always
at least one Nash equilibrium. When there are several, one may provide a better sum
of discounted rewards to all agents than another. Identifying the optimality of policies,
which is connected to finding the best equilibria, is a significant challenge in MARL.
This task is often split into two challenges: finding and evaluating equilibria. Both as-
pects remain pretty difficult. To reach such an equilibrium, agents’ objectives may change
from finding the maximum sum of discounted rewards to obtaining an equilibrium. This
manuscript details these alternative solutions and their optimality in Part III. Another
challenge is called credit assignment. As highlighted in the SG definition, despite provid-

14 foundations of multi-agent reinforcement learning

Agent 1

A B

Agent 0
A (−1,−1) (−5, 0)
B (0,−5) (−2,−2)

Table 2.1: Prisoner dilemma payoff matrix.

ing individual rewards, they provide feedback characterising all agent’s actions. It is often
challenging for an agent to credit its actions or the ones of others. Finally, the number
of agents is critical in a MARL problem and represents the fourth challenge. Indeed, the
size of the joint action space |U| scales exponentially with the number of agents. As it will
be highlighted in this manuscript, many components of the MARL problem are built as
a function of the joint action space. A typical example is to decide if a joint policy is an
equilibrium. These four challenges represent the main challenges in MARL identified by
Albrecht et al. [2023]. As mentioned in the introduction, specific settings exist in MARL,
and addressing these challenges can be mitigated when considering additional hypotheses
on the structure of the stochastic game, as detailed in the next section.

2.3 multi-agent settings

The stochastic game definition proposed in Section 2.2 provides a general framework for
multi-agent systems. A particular case is the stateless SG played by selecting a single
action called the normal-form game. These games are also called matrix games because
a payoff matrix, a matrix of reward, can represent them. This section defines the three
specific settings commonly distinguished in MARL, and normal-form game examples will
be provided to help provide intuition. A typical example is the prisoner dilemma, and its
payoff matrix is provided in Table 2.1. When agent 0 chooses the action B, it receives a
reward equal to 0 when agent 1 chooses the action A, provided in the bottom left corner.

While MARL takes foundation in RL, it also takes foundation in game theory (GT)
[Von Neumann and Morgenstern, 1944] that provided the following classification. The
difference in these settings is the relation between the rewards of agents [Albrecht et al.,
2023]. The first setting, cooperation, involves agents acting to achieve a common goal. In
this setting, agents typically share the same reward. The second setting, competition, is
the opposite, where agents pursue an opposing goal. In this case, agents typically receive
rewards that sum to a constant since the gain of one is equal to the loss of others. The
third setting is named general-sum and encompasses everything else. The stochastic game
provides a typical framework for a general-sum problem, while its definition is adapted
when it is cooperative or competitive. Not much detail will be provided here because
these settings are the concern of further chapters. Following this section, we develop
more in-depth details about the single-agent setting in the next Section 2.4.

2.3 multi-agent settings 15

Agent 1

A B

Agent 0
A (−1,−1) (1, 1)

B (1, 1) (3, 3)

Table 2.2: Payoff matrix of a cooperative normal-form game.

2.3.1 Cooperation

When agents share the same goal, they cooperate, and it is possible to model with a
reward function providing a single reward for all agents instead of a different one per
agent. This is called "common reward games" in [Albrecht et al., 2023]. Many problems
can be considered as being a cooperative multi-agent setting. Examples include robot
coordination (e.g. in [Papoudakis et al., 2021]), train scheduling (e.g., in [Mohanty et al.,
2020]), traffic control (e.g. in [Zhang et al., 2019]) but also games (e.g., Hanabi [Bard
et al., 2020]). Oroojlooy and Hajinezhad [2023] provide a review of cooperative MARL,
including a more detailed list of applications. An example of a normal-form cooperative
game with a payoff matrix is provided in Table 2.2.

Part II of this manuscript is dedicated to cooperative settings with a common reward.
In Chapter 3, we provide the adaptation of the stochastic game definition to a cooperative
setting, followed by examples of environments and methods to solve them. In Chapter 4,
we present methods from a specific contribution to solve such a setting, while in Chapter 5,
we present a suite of environments which frame a real-world application as a cooperative
MARL problem.

2.3.2 Competition

When agents have opposite goals, they compete. In competition, any action that benefits
one agent incurs a loss to other ones. This setting is also called a zero-sum game [Albrecht
et al., 2023] because it is often modelled such that the rewards of all agents sum to a
constant at any time. In a two-agent zero-sum game, commonly known as a two-player
zero-sum game in the GT literature [Russell and Norvig, 2010], a classical implementation
of the stochastic game is to have the reward function providing the same reward to all
agents. One agent aims to maximise it while the other tries to minimise it. We also refer
to this setting as fully competitive. An example of a normal-form cooperative game with
a payoff matrix is provided in Table 2.3. A concrete example is chess with a single reward
at the end of the game: 1 if player 1 won, 0 if player 1 lost or 1/2 if players drew. Player
2’s goal would be to minimise this reward, while Player 1 wants to maximise it. Other
examples include card games (e.g. Poker [Brown and Sandholm, 2018]), board games
(e.g. chess, shogi, and Go [Silver et al., 2018] or Stratego [Perolat et al., 2022]) and video

16 foundations of multi-agent reinforcement learning

Agent 1

A B

Agent 0
A (0, 0) (−2, 2)
B (1,−1) (2,−2)

Table 2.3: Payoff matrix of a competitive normal-form game.

games (e.g. StarCraft II [Vinyals et al., 2019]). Part III of this manuscript is not only
dedicated to competitive settings but provides, in Chapter 6, many details on training
agents in such setting.

2.3.3 General-sum

The third setting includes everything that is not fully cooperative or fully competitive.
Apriori, it is impossible to adapt the reward function of the general definition as no
hypothesis can be made on the corresponding goals of agents. The prisoner dilemma,
whose payoff matrix is presented in Table 2.1, is an example of a not cooperative nor
competitive normal-form game. One of the best examples of the general-sum setting
is autonomous driving [Dinneweth et al., 2022], simulated, for example, in Nocturne
[Vinitsky et al., 2022].

In this manuscript, we are interested in the mixed cooperative-competitive setting
where two teams compete against each other. Examples of this particular setting include
games where two teams face each other (e.g., Dota 2 [OpenAI et al., 2019]). We model
such a setting with a reward function providing only two rewards, one per team. Part III is
dedicated to this setting, and we study how methods designed for competition can work
alongside cooperation ones. We provide background in Chapter 6, including necessary
background from the competitive literature, and then detail one specific contribution in
Chapter 7.

2.4 single-agent reinforcement learning

When a single agent learns in the environment, it is called single-agent reinforcement
learning (SARL). The most significant part of the history of RL lies in this setting. Indeed,
the foundation of MARL relies on many works proposed initially in the single-agent
framework. In this section, we introduce the Markov decision process and discuss some
fundamentals of RL, including model-based versus model-free, dynamic programming,
value-based and policy-based methods.

2.4 single-agent reinforcement learning 17

Agent

Environment

Figure 2.2: Interaction of one agent with the environment in a Markov decision process [Sutton
and Barto, 2018]. The agent selects one action ut based on the state st. As a consequence, it
receives a reward rt and the environment transitions in a new state st+1.

2.4.1 Markov decision process

The definition of a Markov decision process (MDP) can be obtained by considering a
single agent in a stochastic game (see Section 2.2). We, therefore, do not redefine the SG
by removing the agent consideration but still present how this single agent interacts in
an MDP in Figure 2.2. Despite being alone, the agent’s goal is the same as in an SG, to
maximise the expected discounted return over a finite episode Eπ [G0]. To maximise its
discounted return, the agent needs to learn an optimal policy π∗ = argmaxπ Eπ [G0]. To
evaluate a policy, we define the state value function V π(s) = Eπ [Gt|st = s] and the state-
action value function Qπ(s, u) = Eπ [Gt|st = s, ut = u]. While it may appear meaningless
for a single-agent environment, it is interesting to observe that the optimal policy is a
Nash equilibrium. Indeed, the agent can not profit from changing its policy.

An important property in MDP and SG that is not mentioned in the SG definition
is that the next state depends only on the current state and action. This is called the
Markovian property. It is important because it implies that a policy based solely on the
current state is as good as one based on the history of states and actions. Moreover, we
defined the policy as the probability of taking action in a given state. A particular case
is a deterministic policy, denoted π(s) : S → U , or standardly µ(s).

Usually, two families of methods are identified in RL to learn this optimal policy. Value-
based methods learn a value function and derive the policy from it, while policy-based
methods directly learn a policy. But before diving into these details, we first discuss
whether the model is known, leading to model-based RL, sometimes categorised as a
third family of RL methods.

18 foundations of multi-agent reinforcement learning

2.4.2 Model-based or model-free

When solving an MDP, we distinguish methods based on the knowledge of action out-
comes. Indeed, knowing the model of the MDP, one can simulate the environment to
evaluate policies [Sutton and Barto, 2018]. “A model is a form of reversible access to the
MDP dynamics (known or learned)” [Moerland et al., 2023]. This reversible access means
that the agent can execute an action in any state of the MDP and access the outcome
anytime. Learning by trial and error without a model is referred to as model-free RL,
and this manuscript focuses on methods following this approach.

Planning and RL are two different approaches to finding an MDP’s solution when the
model is known. They differ in how they represent the solution. Planning is the historical
one, where methods build a local representation of their solution, typically by evaluating
policies or resolving an optimisation problem around a given state and discarding them
after taking action. It typically does not involve learning anything. This is how DeepBlue
[Campbell et al., 2002] defeated human champions without learning by evaluating the
outcome of many actions before taking each action. Conversely, the RL approach stores a
global solution, typically a learned policy or a state-action value function, whether it can
access the model. This leads to the distinction between model-based RL and planning
of Moerland et al. [2023]. Both have access to the model, but the former learns a global
solution while the latter computes local ones. Knowing the model or learning it is not
considered in these definitions of planning and RL, and both exist: learning the model
and the solution or learning the model and planning a solution based on it.

This distinction between planning and RL does not always agree because, in some
methods, a global value function is learned to compute a local representation of the
solution, such as in AlphaZero [Silver et al., 2018], considered as model-based RL by
some and planning by others. We finally refer to the work of Moerland et al. [2023] that
provides many keys to bridge the gap between RL and planning, between model-based
and model-free. Nevertheless, the following section introduces dynamic programming,
methods requiring a model to compute the optimal policy and providing foundations for
the model-free methods.

2.4.3 Dynamic programming

Dynamic programming (DP) [Bellman, 1966] methods compute the optimal policies given
a model of an MDP [Sutton and Barto, 2018]. We present the Bellman equations to pro-
vide some intuitions to help understand later methods and discuss dynamic programming
ones. These equations are obtained by developing value functions, highlighting their re-
cursive relationships, for any policy π and ∀s, u,

V π(s) = Eπ [Gt|st = s] = Eπ [rt + γV π(st+1)|st = s]

=
∑
u

π(u|s)
∑
s′

P (s′, s, u)(R(s′, s, u) + γV π(s′)), (2.1)

2.4 single-agent reinforcement learning 19

and,

Qπ(s, u) = Eπ [Gt|st = s, ut = u] = Eπ [rt + γV π(st+1)|st = s, ut = u] . (2.2)

A policy π′ is better than another π if V π′
(s) > V π(s). The optimal policy is the one

that is better than all others. While there can be several optimal policies, all are denoted
by π∗, and their state value function V π∗

(s) is the same ∀s. Specifically, optimal policies
are the unique solution of the Bellman optimality equations, ∀s, u,

V π∗
(s) = max

π
V π(s) = max

u
Eπ∗ [rt + γV π∗

(st+1)|st = s, ut = u], (2.3)

and,

Qπ∗
(s, u) = max

π
Qπ(s, u) = Eπ∗ [rt + γmax

u′
Qπ∗

(st+1, u
′)|st = s, ut = u]. (2.4)

The optimality equations given in Equation 2.3 represent a system of |S| equations with
|S| unknown, and solving this system would allow one to compute the optimal policy.
This is also the case with the system defined in Equation 2.4. The condition is to have
reversible access to the MDP model. Solving either system is usually not considered for
computational reasons. This is why, in the following, we consider methods for computing
an approximate solution to the Belman optimality equations.

DP is an approach that computes the solutions by iteratively updating approximations
until they converge to the real ones. DP can solve Equation 2.1 by updating estimates
vk(s)∀s with vk+1(s) =

∑
u π(u|s)

∑
s′ P (s′, s, u)(R(s′, s, u) + γvk(s

′)), where v0(s) can
have arbitrary values except for terminal states that are required to equal 0. This is
called iterative policy evaluation and is proven to converge if k → ∞. Policy evaluation
allows the refinement of any given policy π by exploiting Equation 2.2 to evaluate other
actions than π(s) using Qπ(s, u) =

∑
s′ P (s′, s, u)(R(s′, s, u) + γvk(s

′)). This is called
policy improvement. Alternating policy evaluation and improvement allows the iterative
computation of the optimal policy, called policy iteration. The convergence time can
be a significant drawback in policy iteration. However, the convergence guarantee can
be kept while combining evaluation and improvement, leading to the update vk+1(s) =

maxu
∑

s′ P (s′, s, u)(R(s′, s, u) + γvk(s
′)), called the value iteration method. Sutton and

Barto [2018] provides many more details about these DP methods.
In addition to requiring the model knowledge P and R, the complexity of computing all

these values increases with the size of the state and the action spaces, often referred to as
the curse of dimensionality, which may limit their usage. Sutton and Barto [2018] claim
that this take is somehow overrated, explaining that with some assumptions, DP can have
a polynomial complexity with |S| and |U| and could scale to large spaces. Nevertheless,
computing them is impossible for continuous spaces without discretising the spaces, and
we are interested in model-free methods because accessing the model knowledge can be
challenging. The following section details methods to approximate these value functions
without knowing the transition and reward functions.

20 foundations of multi-agent reinforcement learning

2.4.4 Value-based methods

As introduced, value-based methods are designed to approximate value functions. In
a model-free setting, one possibility is to estimate the state value function of a given
policy with Monte Carlo estimations. Such evaluation relies on playing many episodes
following the policy to determine the average return of a state. This method also converges
according to the law of large numbers. Since the model is unknown, improving policies like
in DP is impossible, but Monte Carlo simulations can be adapted to estimate state-action
value functions similarly. Again, we refer the reader to [Sutton and Barto, 2018] for many
more details, such as how to update the value of a state visited several times during an
episode. One important drawback of the Monte Carlo method is that it requires waiting
for episodes to complete to update estimations. An alternative approach, also model-free,
is called temporal difference (TD) learning. It immedialy updates the estimation using
vk+1(st) = vk(st)+α[R(st+1, st, ut)+γvk(st+1)−vk(st)] where α controls the update size.
TD-Learning is the foundation of the value-based methods introduced in this section.

Maybe one of the most popular methods in model-free RL is Q-learning [Watkins and
Dayan, 1992], where the state-action value function learned is the optimal one defined
as Qπ∗

(s, u) = maxπ Q
π(s, u), allowing the agent to select actions with the greedy de-

terministic policy π∗(s) = argmaxuQ
π∗
(s, u). Q-learning is a tabular method because it

maintains Q(s, u) estimations in a table, one value for each state-action pair. It updates
these estimations based on themselves, called bootstrapping, like TD-Learning [Sutton
and Barto, 2018]. Following the update

Q(st, ut)← Q(st, ut) + α
[
rt + γmax

u
Q(st+1, u)−Q(st, ut)

]
, (2.5)

it is possible to repeatedly update the estimation Q(s, u) while observing new transitions
by adding the temporal difference weighted by a learning rate α controlling the update
size.

It is important to denote that this algorithm allows approximating Qπ∗
(s, u) indepen-

dently of the policy used to sample transitions (st, ut, rt, st+1). These transition samples
are typically generated with an ϵ-greedy policy that takes a random action instead of the
greedy one with a probability ϵ, whereas the greedy policy selects the action maximising
Q. This is a characteristic of the off-policy methods, as opposed to the on-policy methods,
which improves the current policy based on samples only from the current policy. This
manuscript considers only value-based methods that are off-policy, but on-policy meth-
ods are discussed further in Section 2.4.5. To cite one, SARSA is a well-known on-policy
value-based method [Sutton and Barto, 2018].

Despite being off-policy, this iterative process highlights the exploration-exploitation
dilemma in RL. Either the agent only plays the action that maximises its currently
learned value function, which it exploits, or it chooses a different action and explores the
possible outcomes. Balancing between exploration and exploitation is a crucial parameter
to train agents.

2.4 single-agent reinforcement learning 21

Back to Q-learning, the table size increases as the state-action space size increases.
Therefore, it can become impractical to compute an estimate of Q(s, u) for each state-
action pair, requiring function approximations. Aside from the generalisation problem,
storing a table for continuous spaces is also impossible. Various function approximators
exist, but we restrict ourselves to neural networks in this manuscript.

A neural network is a function fθ : X → Y that maps an input (∈ X) to an output
(∈ Y) based on its parameters θ: y = f(x; θ). These parameters define a composition of
differentiable functions, linear or not, allowing optimising the parameters by following
the gradient of an objective, commonly called a loss function L(θ). To minimise the loss,
parameters can be updated by gradient descent: θk+1 = θk − α∇L(θk). Optimising a
neural network is also referred to as training it. Many loss functions exist to train neural
networks, depending on the function to be approximated. Nowadays, neural networks
are very large, leading to the name of deep learning. We refer to [Zhang et al., 2023]
or [Prince, 2023] for many more details. Finally, RL with neural networks is called deep
reinforcement learning, e.g. in [François-Lavet et al., 2018]. As it became common to use
neural networks in RL, we decided to remove the word "deep" from the taxonomy, as
the title of this manuscript should be "Contributions to deep multi-agent reinforcement
learning". In the following, we introduce how to train such networks to approximate a
value function and, in Section 2.4.5, to approximate a policy.

A standard method in RL, referred to as deep Q-network (DQN) [Mnih et al., 2015],
is to approximate Q(s, u) with a neural network θ. This can be achieved by minimising
the loss

L(θ) = EB

[(
rt + γmax

u
Q(st+1, u; θ

′)−Q(st, ut; θ)
)2] (2.6)

where B is the replay buffer and θ′ is the target network. The replay buffer B stores
transitions (st, ut, rt, st+1) from which batches of transitions are sampled to update θ

[Lin, 1992]. This replay buffer allows updating the neural network with past transitions.
The target network θ′ is a copy of θ updated periodically that reduces the moving target
problem as θ is updated several times before updating θ′, e.g., in [Mnih et al., 2015].

For some environments, the max operator in Equations 2.5 and 2.6 can introduce some
positive bias, referred to as the overestimation bias. To overcome this bias, a method
called Double Q-learning [Van Hasselt, 2010], and adapted to Q-learning with neural
networks [Van Hasselt et al., 2016], consists in selecting the action that maximises the
updated Q(., θ) to compute the target state-action value. The corresponding loss is

L(θ) = EB

[(
rt + γQ(st+1, argmax

u
Q(st+1, u; θ); θ

′)−Q(st, ut; θ)
)2]

. (2.7)

Double Q-learning, also called DDQN, is one of the possible improvements of DQN, and
we refer to the Rainbow paper [Hessel et al., 2017] that addresses several others. To
cite one, the extension to distributional RL, which approximates distributions instead of
expected returns, can be of interest [Bellemare et al., 2017; Théate et al., 2023]. Chapter

22 foundations of multi-agent reinforcement learning

4 presents the Deep Quality Value algorithms, also standing on the foundation provided
by this section.

2.4.5 Policy-based methods

Policy-based methods are designed to learn the policy. In this manuscript, we restrict
to the subclass of policy gradient methods where a neural network parametrised by
θ approximates a differentiable policy πθ = π(u|s; θ). Policy gradient methods hence
update θ to find the optimal policy that maximises the expected return denoted as
J(πθ) = Eπθ,p,P [G0]. Maybe one of the first methods is REINFORCE [Williams, 1992],
which updates θ = θ+α∇θJ(πθ) by estimating the gradient with Monte Carlo given the
policy gradient theorem [Sutton et al., 1999]

∇θJ(πθ) = ∇θEπθ
[G0] = E

[
T−1∑
t=0

Qπθ(st, ut)∇θ log π(ut|st; θ)

]
. (2.8)

Estimating Q(st, ut) instead of computing it is a solution proposed by the actor-critic
methods [Sutton et al., 1999; Konda and Tsitsiklis, 1999]. This type of method expands
upon REINFORCE by incorporating a second neural network, called the critic and de-
noted by ϕ, that estimates Q(st, ut;ϕ) while the actor is the parametrised policy π(u|s; θ).
The new gradient provided by incorporating the critic is

∇θJ(πθ) = E

[
T−1∑
t=0

Q(st, ut;ϕ)∇θ log π(ut|st; θ)

]
. (2.9)

Moreover, a baseline can be injected into the gradient to reduce variance without
changing the gradient’s expectation. Usually, the baseline is V (s), independent of the
action taken, and Q(s, u;ϕ) is replaced by the advantage function A(s, u;ϕ) [Weaver and
Tao, 2001], leading to

∇θJ(πθ) = E

[
T−1∑
t=0

[Q(st, ut)− V (st)]∇θ log π(ut|st; θ)

]

= E

[
T−1∑
t=0

A(st, ut;ϕ)∇θπ(st, ut; θ)

]
.

(2.10)

To avoid approximating both Q and V , it is possible to estimate the advantage with
only one neural network either by A(st, ut;ϕ) = Q(st, ut;ϕ)−

∑
u π(u|st; θ)Q(st, u;ϕ) or

by A(st, ut;ϕ) = rt+ γV (st+1;ϕ)−V (st;ϕ). This critic is often trained with value-based
methods, such as the ones defined in Section 2.4.4. This is why actor-critic methods are
sometimes described as a mix between value-based and policy-based methods.

2.5 partial observability 23

Agent

Environment

Figure 2.3: Interaction of one agent with the environment in a partially observable Markov
decision process [Kaelbling et al., 1998]. The agent does not have access to the state st but to an
observation ot defined by the observation function O. Based on ot, it selects one action ut. As a
consequence, it receives a reward rt and the environment transitions in a new state st+1.

Nowadays, advanced policy-based methods relying on the actor-critic paradigm appear
to be the most successful. We can cite trust region policy optimisation (TRPO) [Schulman
et al., 2015] and its variant proximal policy optimisation (PPO) [Schulman et al., 2017].
Both methods rely on a controlled policy update by constraining the loss of REINFORCE
defined in Equation 2.8.

Finally, policy gradient and actor-critic algorithms also need some form of exploration,
usually implemented by adding a penalisation term in the loss function. An example
is entropy regularisation [Williams and Peng, 1991], where a low entropy of the policy
outcomes is penalised. In this context, Bolland et al. [2024] demonstrates that such
techniques change the learning objective and increase the probability of updating the
policy toward the optimal one.

2.5 partial observability

As defined in previous sections, the Markov decision process and the stochastic game
are fully observable. Agents have complete access to the state s of the environment and
perceive it without uncertainty. In real-world applications, it is not always possible to
consider this feasible. Anyone can develop ideas of a partially observable environment,
especially given our definition of agents “acting upon information it perceives”.

Starting with SARL, the Markov decision process is said to be a partially observable
MDP (POMDP) [Kaelbling et al., 1998] when the agent can only access incomplete
information about the state. The definition of a POMDP is obtained easily from the
MDP definition of Section 2.4.1 by adding an observation space Z and an observation
function O : S → ∆(Z), mapping a state and an observation to the probability of
observing the latest. The corresponding interaction diagram of a POMDP is presented
in Figure 2.3.

24 foundations of multi-agent reinforcement learning

As explained in Section 2.4.1, policies are solely based on the current state in an
MDP, thanks to the Markovian property. In a POMDP, the agent’s policy π can no
longer be a function of the state. Moreover, the observation does not necessarily hold the
Markovian property, and acting only based on the current observation could be subop-
timal. Therefore, the policy is commonly a function of the history of past observations
and past actions τt = (Z × U)t, in addition to the current observation, and is denoted
π(ut|τt, ot) : (Z × U)t × Z → ∆(U). Some authors implicitly include the current obser-
vation in τ , allowing them to write π(u|τ) and Q(τ, u). We sometimes do it to improve
readability as well.

To solve a POMDP, a solution is to compute the policy based on a belief b(s) =

P(s|τ, o), the probability of being in a given state, knowing the history of observations
and actions. As in the different methods previously defined, the belief can be implicitly
approximated with recurrent neural networks (RNN), such as GRU [Chung et al., 2014]
or LSTM [Hochreiter and Schmidhuber, 1997]. These networks typically take time series
as input and maintain a hidden state, updated at each time step of one time series,
which can be considered a memory. RNNs have many applications, and in POMDP, their
hidden state allows to maintain a memory akin to a belief without processing the whole
history at each time step. Using RNNs to compute policies is thus a common practice
in POMDP, resulting in recurrent policies. It has demonstrated convincing results, such
as in recurrent policy gradients [Wierstra et al., 2010] or in deep recurrent Q-network
(DRQN) [Hausknecht and Stone, 2015]. We suggest readers interested in details read
the pedagogical paper of Lambrechts et al. [2022]. This paper demonstrates that the
correlation between the hidden state of RNNs, used to approximate policies, and the
belief increases as the training progresses.

Adding partial observability in the definition of the stochastic game leads to the most
general framework of MARL, the partially observable stochastic game (POSG) [Hansen
et al., 2004]. Its definition is obtained by adding a set of n observation spaces Z and a set
of n observation functions O in the definition of the SG. A shortcut in this manuscript,
and sometimes in the literature, is to consider that these two sets Z and O are singleton,
such that the observation function O : S×A → ∆(Z) is the same for all agents. An agent’s
belief in a POSG should be considered differently from that in a POMDP [Oliehoek and
Amato, 2016]. This is because, with only the agent’s history, it is impossible to compute a
belief of the state that is sufficient to take optimal actions. However, it would be possible
to achieve this by having access to the histories of all agents. Even when agents can fully
observe the current state, they may not observe the actions previously taken by others.
However, this manuscript does not address multi-agent belief, and we refer to [Oliehoek
and Amato, 2016] for more details. In a POSG, we consider that an agent’s policy is a
function πa(uat |τat , oat) : (Za×Ua)t×Z → ∆(Ua), which maps its history τat ∈ (Za×Ua)t

and its current observation oat to the probability of taking action uat . As in SARL, such
a policy is commonly a recurrent policy approximated with RNN.

Part II

LEARN TO COOPERATE

3
COOPERATION

Outline

This chapter covers the required basics and related works in the coop-
erative setting. After an introduction in Section 3.1, we define in Sec-
tion 3.2 the cooperative framework called decentralised partially observ-
able Markov decision process. Section 3.3 presents examples of its ap-
plication, followed by a precise description of the StarCraft multi-agent
challenge, a popular environment suite in this manuscript. We then detail
several value-based methods in Section 3.4 and policy-based methods in
Section 3.5. We finally discuss other approaches of interest in Section 3.6.

3.1 introduction

As introduced in Part I, cooperation is the multi-agent setting of agents sharing a com-
mon goal. This second part of the thesis considers the decentralised POMDP (Dec-
POMDP) [Oliehoek and Amato, 2016], a framework where all agents receive the same
reward. Such a framework is also called common reward games, e.g. by Albrecht et al.
[2023]. Its definition is provided in Section 3.2.

Nevertheless, when it comes to cooperation in a multi-agent system, one topic to dis-
cuss is whether action selection and agent training are centralised or decentralised. This
is also referred to as the modes of execution and training in [Albrecht et al., 2023].
This manuscript considers three combinations: centralised training and execution, decen-
tralised training and execution, and centralised training with decentralised execution.

Since all agents receive the same reward, training a single agent that centrally selects
joint actions is possible and would benefit from sharing common knowledge. This is
the centralised mode, where one agent is trained with SARL methods. For example,
controlling a robotic hand composed of several actuators can be done with a single agent
controlling every actuator. However, as presented in Section 2.5, some setting induces
partial observability. All agents may not access the same information or perceive only a
part of the environment’s state. It would then be impossible to consider that one agent
can replace all agents and select actions in a centralised mode.

On the contrary, the decentralised execution mode considers that each agent selects
its action independently. This can be done irrespective of the information they can ac-
cess. The corresponding decentralised training mode is when these agents are trained
independently. In other words, these agents assume they are the single agent learning in

27

28 cooperation

the environment. We refer to the decentralised mode when training agents independently
with SARL to select an action based on their observation.

Finally, the third mode unifies the two formers and is centralised training with decen-
tralised execution (CTDE). It allows decentralised execution, with each agent selecting
actions based on their observations, but allows for the exploitation of more information
during training. Indeed, RL agents are usually trained in a simulator, having access to ev-
ery piece of information. Typically, this mode benefits from the state of the environment
or exploits the actions made by other agents during training.

From the research question highlighted in Chapter 1, these different modes showcase
several ways to consider, or not, the other learning agents when training one. This Part II
focuses on methods that exploit the CTDE mode to solve cooperative tasks. This chapter
presents Dec-POMDP environments and CTDE methods issued from the literature. The
performance of these methods is not compared in this chapter but in both next ones.
They present two specific contributions: additional CTDE methods in Chapter 4 and a
real-world application of Dec-POMDP in Chapter 5.

3.2 decentralised partially observable markov decision process

As introduced, the definition of the decentralised partially observable Markov decision
process (Dec-POMDP) [Oliehoek and Amato, 2016] can be derived from the partially
observable stochastic game definition. It is the same, except the reward function maps
to a single reward common to all agents.

We define the Dec-POMDP by a tuple [S,Z,U , n,O,R, P, γ, T, p], where n agents ai,
i ∈ A ≡ {1, .., n}, simultaneously choose an action at every time step t. The interaction
of the agents with the environment in a Dec-POMDP is presented in Figure 3.1. The
state of the environment is st ∈ S where S is the set of states. The observation function
O : S×A → ∆(Z) maps the state to the probability of agent a to perceive the observation
oat ∈ Z at time t, where Z is the observation space. Each agent selects an action uat ∈ Ua

based on its policy πa(uat |τat , oat) : (Z × Ua)t × Z → ∆(Ua), which maps its history
τat ∈ (Z ×Ua)t−1 and its observation oat to the probability of taking action uat . The joint
action space is U ≡×i∈A U

ai and the joint or team policy is denoted by π = (πa1 , ..., πan).
After the joint action ut ∈ U is executed, the transition function determines the new state
with probability P (st+1|st,ut) : S ×U → ∆(S), and rt = R(st+1, st,ut) : S ×S×U → R
is the team reward obtained by all agents. The goal of agents is to find their optimal policy
that maximises the expected return during the entire episode of T time step E[G0|π, p, P]

where G0 =
∑T−1

t=0 γtrt and p is the initial state distribution. The optimal joint policy is
denoted by π∗ = argmaxπ E[G0|π, p, P], achieved if all agents plays the optimal policy.

We introduced the main challenges in MARL and will discuss hereafter the main im-
pact of providing a common reward, which is to increase the complexity of the credit
assignment problem. Indeed, this can be considered the most complex case because all
agents receive the same feedback on their actions. The non-stationarity of learning agents

3.2 decentralised partially observable markov decision process 29

Environment

Agent
Agents

Figure 3.1: Interaction of three agents with the environment in a decentralised partially observable
Markov decision process [Oliehoek and Amato, 2016]. Agent do not have access to the state st but
to an observation oat defined by the observation function O. Based on oat , each agent selects one
action ua

t . As a consequence, they all receive the same reward rt and the environment transitions
in a new state st+1.

and their number remains a problem. However, choosing between two equilibria has be-
come a trivial problem because one agent will never be disadvantaged compared to others.
Nevertheless, the common reward is not the single assumption already discussed. Indeed,
the centralised training mode also helps alleviate the complexity of these challenges. In
contrast, the decentralised mode does not consider additional assumptions besides the
common reward. The introduction may already provide some insights about this claim,
and the following sections will demonstrate it.

Like MDP is the fully observable POMDP, there exist several particular cases of Dec-
POMDP based on the observability of the agents. This allows us to define the required
assumptions to train a single agent to decide the joint action to make the centralised
execution mode possible. When the joint observation can identify the state while the
observation of one agent can not, this is a jointly observable Dec-POMDP, also referred
to as a decentralised MDP by Oliehoek and Amato [2016]. However, to allow centralised
execution, it should be considered that agents can share their observations to make the
decision centrally by identifying the state with the joint observation. Note that such an
assumption allows centralised execution but does not make the problem of decentralised
execution simpler because each agent still does not observe the state [Bernstein et al.,
2002]. The direct extreme case is the fully observable Dec-POMDP, where all agents
observe the state directly. These assumptions can lead to the specific framework called a
multi-agent Markov decision process [Boutilier, 1996].

There are also several variations of factored Dec-POMDP described in [Oliehoek and
Amato, 2016] whether the transition, reward, or observation functions can be considered
factored, meaning they can be decomposed in agent-wise independent factors. While
other particular cases can be found in [Oliehoek and Amato, 2016], their definitions allow

30 cooperation

to solve them by benefiting from additional hypotheses. For example, in a completely
factored Dec-POMDP, the decentralised mode allows to find the optimal policy, while in
complex Dec-POMDP, without such a strong hypothesis, this is not always the case. In
the following, we consider CTDE algorithms that tackle the general case of Dec-POMDP,
but they may have some foundation in these particular cases.

Highlighted in Section 2.5, it is not possible to compute a belief of the state as a function
of the agent’s history in a Dec-POMDP because agents only access their observations
and actions. Not being able to compute a Markovian statistic induces the complexity
of solving Dec-POMDP to become challenging, even more than POMDP [Oliehoek and
Amato, 2016]. For example, this forces planning methods to consider policies that map
histories to action, unlike belief to action in POMDP and RL approaches defined later
based on RNN, like in POMDP. Thus, finding the best by enumerating and evaluating all
possible deterministic joint policies is only possible for small problems. This is because
the number of possible histories grows with the length of episodes, so the number of
policies to learn grows doubly exponentially with this length.

Finally, Oliehoek and Amato [2016] present methods that find optimal deterministic
joint policy since at least one exists in finite time horizon Dec-POMDP [Oliehoek et al.,
2008]. These methods include dynamic programming, which solves the problem iteratively
backwards, starting from the last time step of the finite horizon, pruning computed
policies along the way to reduce the large number of unnecessary ones. They also include
multi-agent A*, taking foundation in search methods [Russell and Norvig, 2010] described
in Chapter 6. In short, it is a search in the space of joint policy that uses value functions
as heuristics to explore the tree of possible joint policies. Oliehoek and Amato [2016]
also present methods that do not guarantee optimality but allow to scale to larger time
horizons for the finite horizon while presenting challenges and corresponding methods to
the infinite one. Aside from the scalability issues, these methods rely on the model of
the environment, motivating the use of model-free RL methods presented later in this
chapter.

3.3 environments

Before discussing CTDE methods in detail, we provide an overview of the existing
suites1of environments in the literature. We then describe the StarCraft multi-agent
challenge (SMAC), perhaps one of the most studied environment suites in the commu-
nity, but also used in our experiments in Chapter 4. Moreover, Chapter 5 is dedicated
to a specific suite of environments, and we leave its description there. Illustrations of the
environments described hereafter are provided in Figure 3.2.

1 In this manuscript, an environment refers to an instance of a particular framework (here, of a Dec-
POMDP). We commonly see it in the literature as either a collection of environments or an instance of
one. We use "suite" to distinguish between these two.

3.3 environments 31

(a) Robot warehouse.

speaker

listener“green”

agent 1

agent 3

landmark

landmark

landmark

 p

v

c

agent 2

predator 1

prey

predator 2

predator 3

agent 1
agent 2

agent 3

agent 1 agent 2

adversary

?

(b) Multi-agent particle environments.

(c) Multi-agent MuJoCo.

(d) Google research football.

(e) Flatland. (f) CityFlow. (g) MATE.

Figure 3.2: Cooperative suites of environments defined as Dec-POMDP.

(a) 3m (b) 3s5z

Figure 3.3: Two environments of the StarCraft multi-agent challenges.

32 cooperation

The multi-agent particle environments (MPE) [Lowe et al., 2017] is a popular suite in
the MARL community with cooperative scenarios. In MPE, particles move in a 2D grid
with continuous action and state spaces. This suite comes with all types of multi-agent
settings: competition, cooperation, with and without communication. A second environ-
ment with continual action space is MaMuJoCo [Peng et al., 2021]. MuJoCo [Todorov
et al., 2012] stands for multi-joint dynamics with contact. It is a famous physics-based
simulator to learn to control, for example, a humanoid to run. MaMuJoCo essentially
factorises MuJoCo’s decisions by decentralising the decision, typically having a different
agent for each leg. It is an example of a SARL environment extended to MARL. Other
cooperative environments based on game simulators include the Hanabi Challenge [Bard
et al., 2020], a "cooperative solitaire" between two and five players, and Google Research
Football [Kurach et al., 2020], a football game simulator.

Cooperative MARL methods are primarily benchmarked on these games and simu-
lators, but real-world applications also exist. CityFlow [Zhang et al., 2019] are traffic
control environments where agents control traffic lights in a city. In Flatland [Mohanty
et al., 2020], agents control trains to solve a scheduling problem, avoiding collisions by
coordinating trains not to take the same routes. The multi-robot warehouse [Papoudakis
et al., 2021; Christianos et al., 2020] simulates warehouse agents needing to deliver re-
quested goods. Multi-Agent Tracking Environment (MATE) [Pan et al., 2022] is a target
coverage control problem where cameras are controlled to detect all targets. A mixed
cooperative-competitive game can be made by controlling the targets. Many more exam-
ples of cooperative MARL applications exist. Many can be found in the books of Oliehoek
and Amato [2016] and Albrecht et al. [2023], in the review on cooperative MARL done
by Oroojlooy and Hajinezhad [2023], such as resource allocation, stock market,...

3.3.1 StarCraft multi-agent challenge

The StarCraft multi-agent challenge (SMAC) [Samvelyan et al., 2019] and its improved
version SMACv2 [Ellis et al., 2023] are probably the most studied suite of environments
with CTDE methods. SMAC is based on the StarCraft II Learning Environment [Vinyals
et al., 2017], an RL environment to play StarCraft II (SC2). StarCraft is a strategy video
game in which players compete by managing units, gathering resources, building an army,
and defeating opponents. In such games, micro-management refers to unit management,
unlike macro-management, which involves resource management. Unlike playing the real
game of StraCraft like in AlphaStar [Vinyals et al., 2019], SMAC is a suite of micro-
management challenges where an independent agent controls each game unit. Many sce-
narios exist in SMAC, also called "maps", and all involve training a team to achieve a
common goal. It is to defeat an adversarial team controlled by the game’s deterministic
and stationary policy built-in AI. Figure 3.3 shows the initial configurations of two maps
where two teams face each other. Also note that in Chapter 7, we present a contribution
where SMAC has been modified to train both competing teams.

3.3 environments 33

Hereafter, we thoroughly define the elements of the Dec-POMDP implemented in
SMAC. Agents have partial observability, characterised by a sight range, a circle in-
side which they can observe other agents. An agent observes information about itself: its
remaining hit points and shield points and four booleans representing the direction it
can move in (NSWE). It also observes information about other agents within its sight
range: the relative distance, relative x, relative y and the remaining hit points and shield
points. If the other agent is an ally, it also observes its last performed action performed.
When the other agent is an enemy, it observes if this agent is within shooting range. The
shooting range is smaller than the sight range and depends on the unit type, and some
units even attack in melee.

The state of the environment accumulates all information from agents’ observations.
As described, an agent perceives other agents with distances relative to itself and does
not know where it is on the map. In the state, the agents’ positions are encoded with
their coordinates relative to the centre of the map.

Within all scenarios, the agent has the choice of eight actions: do nothing, move in
one of four directions (NSWE) or attack one of its three opponents. Some actions are
forbidden in SMAC, such as an attack if the opponent is not within shooting range.
Therefore, agents must consider which ones are available before choosing an action.

At each time step, agents receive the same zero or positive reward. This reward is a sum
of three factors: a zero or positive reward for the damage dealt, a positive reward if an
enemy unit’s hit points reach zero, and a positive reward if all enemy units are defeated.
Maximisingg the reward forces the team toneutralisee every unit of the opposing team.
Neutralising every opponent unit is commonly called a win in SMAC experiments.

We hereafter describe both scenarios of Figure 3.3. There are other types of units in
different scenarios, and we refer the reader to [Samvelyan et al., 2019]. In the 3m scenario,
represented in Figure 3.3a, six marines compete in two teams of three. A marine has 45

hit points and shoots at range, inflicting 6 damage points to an opponent for each attack.
In the 3s5z scenario, represented in Figure 3.3b, six stalkers and ten zealots compete
in two teams of eight. Both units have shield points in addition to hit points. A shield
receives a different amount of damage and regenerates over time if the unit is not attacked
again for a given time. A stalker has 80 hit points and 80 shield points. It shoots at range,
inflicting 13 damage points to the shield, 12 damage points to a zealot’s hit points and
17 to a stalker’s hit points. A zealot has 100 hits points and 50 shield points. It attacks in
melee and inflicts 16 damage points to the shield and 14 damage points to the hit points
of a zealot or a stalker. All maps are presented in a video from the author2.

Finally, it can be intriguing to see an environment where two teams compete is con-
sidered cooperative. This is because the built-in AI is stationary. These agents are not
learning agents and can be considered part of the environment. The built-in AI strategy
is a rule-based policy. Precisely, each agent moves toward the starting point of the op-
ponent’s team until it reaches the opposite side of the map and stops. If they encounter

2 https://youtu.be/VZ7zmQ_obZ0

https://youtu.be/VZ7zmQ_obZ0

34 cooperation

opponents in their sight range, they select one as their target based on a priority score.
They will choose to attack the closest unit with the highest priority, which will remain
the target until its priority drops or until it can no longer be attacked. A unit’s priority
score is based on its type and current action. For example, if two of the same units at-
tack and the targeted unit stops attacking, its priority score will drop, and the built-in
AI agents will select the other unit to attack. One of the weaknesses of this built-in AI
strategy that the learning agents need to learn is to stop attacking to stay alive, with the
condition that an ally should be attacking. Agents must cooperate to attack and share
the possible damage inflicted by the opponents. The following sections cover the MARL
methods to achieve this coordination.

3.4 value-based methods

As detailed in Chapter 2, value-based methods aim to learn the optimal state-action
value function Qπ∗

(s, u), such that the optimal policy is π∗(s) = argmaxuQ
π∗
(s, u). In

SARL, one solution, called DQN, is to approximate Q with a neural network θ and learn
Q(s, u; θ) by minimising the loss defined in Equation 2.6. We hereafter describe how to
train agents with value-based methods.

As introduced in Section 3.1, there exist different modes of training and execution. In
the first mode, one possible centralised training and execution approach is to train a
centralised learner with DQN in a Dec-POMDP. Remind that it is only possible if the
Dec-POMDP is a multi-agent Markov decision process [Boutilier, 1996]. In this setting,
the centralised agent learns the state-joint-action value function Qπ(s,u; θ) by following
the adapted DQN loss

L(θ) = EB

[(
rt + γmax

u
Q(st+1,u; θ

′)−Q(st,ut; θ)
)2]

. (3.1)

Issues are that the joint action space scales exponentially with n. Also, in practice, agents
select their action based only on their history (o, τ) and not the state s.

For the second mode, the decentralised training and execution, each agent can learn
its own Q-value independently Qa = Q(τa, ua), agnostically of the existence of other
agents. IQL [Tan, 1993] is the extension of Q-Learning (see Chapter 2) to this mode. The
equivalent extension has been performed with DQN [Tampuu et al., 2017], also called
IQL. Typically, in a Dec-POMDP, a recurrent network approximates the independent
Q-value, as explained in Section 2.5. One problem with IQL is that agents must select
actions which maximise Q(st,ut) while ignoring, at any time, actions taken by other
agents.

This is where centralised training with decentralised execution (CTDE), the third
mode, comes in handy. The objective is to ensure that actions ut maximising the indi-
vidual Qa(τ

a
t , u

a
t)) functions also maximise Q(st,ut). With CTDE methods, this is made

possible by approximating this Q(st,ut) as a factorisation of individual Qa functions

3.4 value-based methods 35

during training. However, individual Qa functions must satisfy the individual-global-max
condition (IGM) [Son et al., 2019]

argmax
ut

Q(st,ut) = (argmax
u1
t

Q1(τ
1
t , u

1
t), ..., argmax

un
t

Qn(τ
n
t , u

n
t)). (3.2)

Satisfying the IGM property allows agents to greedily select actions that maximise
their individual Qa and the state-joint-action value function Q(st,ut). Therefore, during
training, an approximation of Q(st,ut), sometimes denoted Qtot, is built as a factori-
sation of Qa and then dropped at execution. Agents select actions based on these Qa,
satisfying IGM, and only these networks are kept for the execution. Note that these
Qa are now utility functions because they do not approximate the expected sum of dis-
counted rewards. In this manuscript, we express Qtot as a function of the state s and
consider that the state is known. However, it can be rewritten as a function of the joint
history τ if the state s is unknown during training.

Maybe one of the first CTDE methods of value-based factorisation is called value de-
composition network (VDN) [Sunehag et al., 2018]. This method factories Qtot using the
addition, an operation which satisfies IGM: QV DN

tot (st,ut) =
∑n

i=1Qai(τ
ai
t , uait). One lim-

itation of VDN, leaving the details of the training procedure for later, is that factorising
through addition does not allow the creation of a complex approximation of the joint-
action-state Q functions. Another limitation is that Qtot is needed only during training,
and in VDN, it does not benefit from additional information, such as the state. In the
following, we present three methods for improving VDN. These three have been tested
in the contributions presented in later chapters. Other methods exist, and we finish this
section with a related work discussion.

3.4.1 QMIX

QMIX [Rashid et al., 2018] is a CTDE method where the approximation of Qtot is
performed by a monotonefactorisationn of the individual Qa functions while also being
a function of the state:

Qmix
tot (st,ut) = Mixer (Qa1(τ

a1
t , ua1t), .., Qan(τ

an
t , uant), st) . (3.3)

The monotonicity is ensured by a hypernetwork [Ha et al., 2016] hp(.) : S → R|ϕ|+

which computes, from the state st, the parameters ϕ of a mixer network hm(.;ϕ) :

Rn × ϕ → R. To ensure monotonicity, the weights (and not the biases) defined by
ϕ are constrained to be positive. Together, hp and hm defines the mixer such that
Qmix

tot (st,ut) = hm (Qa1 , .., Qan ;hp(st)).
The monotonicity of Qmix

tot with respect to the individual Qa functions,

∂Qmix
tot (st,ut)

∂Qa(st, uat)
≥ 0 ∀a, (3.4)

36 cooperation

Qtot
mix(st,ut)

Mixer

Qa1

Qa1(τ
1
t , u

1
t)

Qan

Qan(τ
n
t , u

n
t)

hm hp

oa1t

. . .

oant

st
|.|

Figure 3.4: QMIX architecture.

is satisfied because a neural network comprised of monotonic functions (hm) and strictly
positive weights (hp) is monotonic with respect to its inputs (Qa). The entire QMIX
architecture is presented in Figure 3.4.

The optimisation procedure follows the same principles of the DQN algorithm, and
the loss applied to Qmix(st,ut) is

L(θ) = EB

[(
rt + γmax

u∈U
Qmix

tot (st+1,u; θ
′)−Qmix

tot (st,ut; θ)
)2]

. (3.5)

During training, actions are selected with an epsilon greedy policy from Qa. At testing,
actions are selected with a greedy policy. Individual Qa networks and the mixer are all
copied to produce target networks represented by θ′.

Since the Dec-POMDP induces partial observability, individual Qa networks are com-
monly RNNs made of GRU [Chung et al., 2014] and the replay buffer stores sequences of
contiguous transitions instead of isolated transitions (st,ut, rt, st+1). A typical architec-
ture of such a network is presented in Figure 3.5. When evaluating CTDE methods, IQL
is commonly tested by training the same architecture as the individual network, allowing
for comparison with a fully decentralised training of such a network.

3.4.2 MAVEN

Mahajan et al. [2019] defined the class of state-joint-action value functions that QMIX
cannot represent due to its exploration strategy and the monotonicity constraint. They
demonstrated the existence of payoff matrices in an n-player normal-form game with
more than three actions per agent, for which QMIX learns a suboptimal policy for any

3.4 value-based methods 37

{Qa(o
a
t , u

a
j) ∀uaj ∈ Ua}

FC layer

Recurrent
layer

FC layer

oat

ht−1 ht

Figure 3.5: Common Qa network implementation. The hidden state h embeds the history, and
the action space size defines the number of outputs of the network.

training duration, using both epsilon greedy and uniform exploration. To tackle this
problem, they modified the individual Qa architecture, which is now a function of a
latent space to influence agent behaviour. The underlying objective is to train agents to
learn an ensemble of policies to improve their exploration capabilities.

Specifically, the latent variable is the input of a second and new hypernetwork that
computes parameters of the fully connected layer linking recurrent cells to the outputs
of the individual Qa networks. This latent variable z is generated per episode by a
hierarchical policy network, taking as input the initial state of the environment and
a random variable, typically a discrete uniform. The idea is that the latent variable
corresponds to different learnt strategies. The goal of the hierarchical policy network is
to select the best strategy based on the initial state s0, which is considered known at
testing. The new architecture of the individual Qa network of MAVEN is represented in
Figure 3.6.

MAVEN’s network objective function comprises three parts. Some parameters must
be fixed when computing some parts, meaning all parameters are not updated based on
all objectives. The first part of the objective is the loss of QMIX defined in Equation 3.5,
and it optimises both hypernetworks and individual networks. This loss is computed by
fixing the hierarchical policy network and, thus, the latent variable z.

The hierarchical policy network can be optimised with any policy-based method, such
as policy gradient maximising the sum of rewards per episode, defined in Section 2.4.5.
This second objective is computed by fixing both hypernetworks and individual networks.

The third part of the objective ensures that different values of z imply different be-
haviours. It is a mutual information loss between the latent variable and the trajectories
performed by agents to favour different behaviours for different latent variable values. For

38 cooperation

{Qa(st, u
a
j)∀uaj ∈ Ua}

FC layer

Recurrent
layer

FC layer

oat , u
a
t−1

ht−1 ht

Hypernetwork

z

Hierarchical
policy network

st0 x ∼ P(x)

Figure 3.6: MAVEN modification of the individual Qa network.

further details on the MAVEN optimisation procedure and especially on constructing the
mutual information objective, we refer the reader to Mahajan et al. [2019].

3.4.3 QPLEX

QPLEX [Wang et al., 2021] extends QMIX with the dueling structure Q(st, ut) =

V (st) + A(st, ut) [Wang et al., 2016], learning a factorisation of V and A with trans-
formers [Vaswani et al., 2017]. The advantage function A has been introduced in Section
2.4.5. The duelling structure involves learning V (st) and A(st, ut), typically with a single
neural network with a common backbone and two different heads. By separating the
computation of the value of a given state and the contributions of different actions in
that given state, Wang et al. [2016] demonstrated better results than DQN.

Back to QPLEX, Wang et al. [2021] demonstrated that if the advantage function A

respects the advantage-IGM, then the state action value function Q = V + A respects
IGM while removing constraints on the state value function V . The individual Qa satisfy
the advantage-IGM if Qtot = Vtot+Atot and Vtot(s) = maxuQtot(s,u) and Qa = Va+Aa

and Va(s) = maxuQa(s, u) such that

argmax
ut

Atot(st,ut) = (argmax
u1
t

A1(τ
1
t , u

1
t), ..., argmax

un
t

An(τ
n
t , u

n
t)) (3.6)

holds. This defines the duplex dueling structure of QPLEX. The constraint on the Qa is
transferred to the advantage functions Ai, leading to an unconstrained approximation of
the state value function V .

3.5 policy-based methods 39

3.4.4 Other value-based methods

In addition to QMIX [Rashid et al., 2018], QVMix [Leroy et al., 2021] and QPLEX [Wang
et al., 2021], Qatten [Yang et al., 2020] is another example of Qtot factorisation with
transformers. Other, such as QTRAN [Son et al., 2019] and Weighted-QMIX [Rashid
et al., 2020] factorise Qtot differently from the QMIX and VDN approach to improve
the representational capacity of the factorisationn. However, they end up not always
satisfying IGM. Other methods learn to cooperate without factorising Qtot to satisfy
IGM. An example is local advantage network (LAN) [Avalos et al., 2023], which learns a
central state value function of the joint policy V π and individual advantages Aa to learn
Qa during training, keeping only Aa at execution. There are many other methods relying
on the value function decomposition. Finally, Hong et al. [2022] claims that many have
been trying to improve the Qtot factorisation to satisfy IGM, but only a few examine
IGM defects. Lossy decomposition occurs when the actions that maximise Qtot are not
the ones maximising Qa. They demonstrate the existence of lossy decomposition when
the observation of one agent is characterised as insufficient. An observation is insufficient
when it does not change when the state changes. This claim is somehow similar to the
one of Mahajan et al. [2019], who demonstrated the existence of games where QMIX
cannot correctly approximate Qtot, focusing on the reward structure. This highlights
some remaining challenges in CTDE value-based methods.

3.5 policy-based methods

Agents trained with policy-based methods learn the policy with a neural network, as
introduced in Chapter 2, and we hereafter describe actor-critic methods adapted to the
Dec-POMDP. As demonstrated with DQN in the previous section, in the centralised
mode, it is possible to train an agent with a SARL solution to select actions in the joint
action space. In the decentralised mode, the equivalent to IQL for policy-based methods
is named IAC [Foerster et al., 2018b]. The policies learned by the actor of each agent is
πa(uat |τat , oat ; θ). The policy parameters are updated by ascending the gradient

∇θJ(π
a
θ) = EB [Aa(τ

a
t , o

a
t , u

a
t ;ϕ)∇θ log π

a(uat |τat , oat ; θ)] . (3.7)

As in SARL, there are two possible ways of estimating the advantage with a critic net-
work. This leads to two IAC versions: IAC-V where a state value function is learned
Aa(τt, ut;ϕ) = r + γVa(τt+1;ϕ) − Va(τt;ϕ) and IAC-Q, where a state-action value func-
tion is learned Aa(τt, ut;ϕ) = Qa(τt, ut;ϕ)−

∑
ua πθ(τt, u

a)Qa(τt, u
a;ϕ). The parameters

of πa and Qa are denoted θ or ϕ and not θa or ϕa to improve readability, although they
might be shared or not by agents.

In IAC, each agent independently learns an actor and a critic, but this solution does
not benefit from any additional information, such as the state s. Since critics are used
only during training, one straightforward solution is to exploit the state s to compute

40 cooperation

a centralised critic. Moreover, the critic is trained to update the policy network and
plays a crucial role in each agent’s credit assignment. We hereafter detail two methods
that consider a single centralised critic exploiting the state tested in the contributions
presented in later chapters. Other methods exist, and we finish this section with a related
work discussion.

3.5.1 COMA

COMA stands for counterfactual multi-agent policy gradient and is a solution proposed
by Foerster et al. [2018b]. They motivate their approach with the constatation that a
centralised critic computing the advantage Aa(st, u

a
t) = rt + γV (st+1;ϕ) − V (st;ϕ) is

based on the common reward rt but does not consider how the action of an individual
agent influences it. Such a centralised critic does not solve the credit assignment problem.

Foerster et al. [2018b] propose to use a counterfactual baseline inspired by difference
rewards Da

t = R(st+1, st,ut) − R(st+1, st, (u
−a
t , cat)) [Wolpert and Tumer, 2001]. The

common reward R(st+1, st,ut) is compared to a reward obtained when agent a exe-
cutes a default action ca, while we preserve actions of other agents u−a

t unchanged. Any
action ua that maximises R(st+1, st,ut) also maximises Da

t . However, there are imme-
diate limitations. First, the simulator needs to be run to obtain this "default reward"
R(st+1, st, (u

−a
t , cat)). And this must be done for all agents. Second, if we consider it

possible to approximate it, this would induce additional approximation error. Third, the
choice of the default action is not trivial.

The COMA solution to these limitations is to build a centralised critic that computes
difference rewards by learning Q(s,u). For each agent a, the advantage updating actor
networks in Equation 3.7 is

Aa(st,ut;ϕ) = Q(st,ut;ϕ)−
∑
u′a

πa(u′a|τat , oat ; θ)Q(st, (u
−a
t , u′a);ϕ). (3.8)

This solves the problems of simulating the default rewards and choosing default actions.
However, |U1|+...+|Un| values must be computed to obtain the advantage of all agents. In
practice, a Q network has one output for each possible action. Here, this leads to

∑n
i=1 |U i|

outputs which would become impractical whether n or |Ua| increases. To alleviate this,
the critic can take as input u−a and only outputs |Ua| outputs. To use the same critic
for all agents implies that all action spaces are the same size.

A significant limitation is that this method is only possible for discrete action spaces,
especially considering the sum over all actions in the advantage. Foerster et al. [2018b]
argue that it would be possible to apply COMA with continuous action spaces easily
by evaluating

∑
u′a πa(u′a|τa)Q(s, (u−a, u′a)) with Monte Carlo estimations or by using

policy construction that allows to compute it anatically. A final observation is that the
critic is considered central because using the state st, but it should be called n times to
update the n actor networks.

3.5 policy-based methods 41

In COMA, policy networks θ usually follow the same architecture of IQL presented
in Figure 3.5, where the outputs are not Q values for each action but the probability of
taking each action, usually obtained by applying a softmax to the last layer. The critic is
commonly composed of fully connected layers that output the |Ua| from the state st, the
actions of others u−a

t and sometimes additional information, such as oat or the previous
taken action ut−1.

3.5.2 FACMAC

FACMAC [Peng et al., 2021] stands for factored multi-agent centralised policy gradients.
They propose to use a centralised but factored critic computing Qtot as a factorisation
of individual Qa, like in QMIX. In COMA, the critic is centralised because it has access
to the state, but all agents use it independently to update their decentralised policy.
Peng et al. [2021] calls this approach a monolithic critic, and they argue that a non-
monolithic factored critic is preferable to scale to many agents or actions. In addition,
they show that estimating gradients independently for each agent can yield sub-optimal
joint policies. This motivates the centralised and factored critic which computes a single
gradient estimate for the joint policy, improving cooperation capabilities.

Conversely to COMA, FACMAC is designed for continuous action spaces and can be
adapted to discrete ones. It is built on the same foundation of another actor-critic method
for MARL developed to solve a stochastic game called multi-agent deep deterministic
policy gradient (MADDPG) [Lowe et al., 2017]. The latter is a multi-agent version of
DDPG [Lillicrap et al., 2015], an actor-critic method using deep neural networks to
approximate a deterministic policy and a Q function in SARL. Since the action space is
continuous, obtaining the action argmaxuQ(s, u) can be difficult. Instead of computing
the arg max, the solution in DDPG is to learn a parametrised deterministic policy µθ :

S → U that solves maxθ EB[Q(s, µθ(s);ϕ)] by gradient ascent, while the critic estimates
this Q [Silver et al., 2014]. MADDPG uses DDPG to learn decentralised policies using
centralised critics with access to the state and actions of other agents. In MADDPG,
each decentralised actor µa(τa, oa; θ) is updated by ascending the gradient

∇θJ(µ
a) = EB

[
∇θµ

a(τat , o
a
t ; θ)∇uaQµ

a (st,u
−a
t , ua;ϕ)|ua = µa(τat , o

a
t)
]
, (3.9)

where actions of other agents are taken from the replay buffer while the action of agent
a is provided by its deterministic policy when computing the state-joint-action value
function. The critic is updated following the same centralised loss adapted from DQN
defined in Equation 3.1 where, in addition to a target network to compute Q, actions of
agents to compute this target value are taken from target deterministic policies. While
MADDPG addresses stochastic games with individual rewards, it can be applied easily
in Dec-POMDP, with the drawbacks mentioned earlier. Note that the critic of MADDPG
is monolithic and different for each agent, like COMA.

42 cooperation

Using a single centralised and factored critic is FACMAC’s change to MADDPG. All
agents share this critic that computes Qµ

tot where µ is the joint deterministic policy. Like
the CTDE value-based methods, Qtot is a function of individual utility functions Qa.
The factorisation can be done by a sum, such as in VDN, or by a hypernetwork, such as
in QMIX in Equation 3.3. However, the monotonicity constraint to satisfy IGM is not
required for a critic.

The factored critic does not replace how Q is computed in Equation 3.9. Indeed, in
MADDPG, actors are updated based on u−a

t stored in the replay buffer, which can lead
to sub-optimal joint policies. Instead, FACMAC computes a single gradient based on the
current joint policy µ(τ ,o) = (µa1(τa1 , oa1), .., µan(τan , oan)) given by

∇θJ(µ
a) = EB

[
∇θµ∇µQ

µ
tot(st, τt,µ(τt,ot);ϕ)

]
. (3.10)

With discrete action space, using a Straight-Through GumbelSoftmax [Jang et al., 2017]
allows for a discrete but differentiable policy.

Finally, updating the joint policy instead of independently updating the policies is
claimed to be required to optimally benefit from the centralised critic by Peng et al.
[2021]. They confront the work by Lyu et al. [2021], who showcase the suboptimality of
the independent updates of actor networks despite using a monolithic centralised critic.

3.5.3 Other policy-based methods

Multi-agent deep deterministic policy gradient (MADDPG) [Lowe et al., 2017] is a well-
established method which does not learn a single centralised critic but one per agent. It
is designed for continuous action spaces, has been exploited in stochastic games, and can
easily be adapted to Dec-POMDP. Another method, LIIR [Du et al., 2019], aims to pro-
vide credit assignment by computing individual intrinsic rewards. Following the success of
TRPO [Schulman et al., 2015] and PPO [Schulman et al., 2017] in SARL, IPPO [De Witt
et al., 2020], MAPPO [Yu et al., 2022] alongside HATPRO and HAPPO [Kuba et al.,
2021] demonstrate that the popular actor-critic methods from SARL can be extended to
cooperative MARL tasks.

3.6 other approaches

This chapter defines several methods for the three modes of training and execution
in a Dec-POMDP. While we defer the performance comparison to a later chapter, we
mentioned some of their limitations and other existing methods. Hereafter, we discuss
completely different approaches beyond the definition of a Dec-POMDP that tackle the
MARL problem differently, in the cooperative setting or not.

Mean-field game is an additional way of modelling the multi-agent framework [Laurière
et al., 2022]. By construction, mean-field games can consider an infinite number of agents
because the reward is computed by considering the mean of the distribution of agents’

3.6 other approaches 43

strategies or states rather than individual agents. This approach significantly reduces
the computational complexity compared to traditional methods, making it suitable for
analysing systems with a large population of interacting agents. It is an exciting approach
to replace the CTDE methods considered in this manuscript that have difficulty scaling
up with the number of agents, as shown later in Chapter5.

Another approach for dealing with cooperative multi-agent settings is to link the recent
success of sequence models in language and RL by using a multi-agent transformer (MAT)
that learns to transform a sequence of observations into a sequence of actions, one per
agent [Wen et al., 2022]. Such approaches have become increasingly popular with the rise
of foundation and large language models.

Finally, we do not address communication in the environment. Communication is also
an additional topic mentioned by [Oliehoek and Amato, 2016]. Allowing agents to send
messages can be modelled in different ways. Foerster et al. [2016] propose that messages
are the parallel of actions. An agent decides on a message and an action based on ob-
servations and messages sent by other agents. Messages have no impact on the state
transition or the reward. This may be one of the first works addressing communication
in MARL, specifically in the cooperative setting. In its master thesis, Fombellida-Lopez
[2020] studied how communication can affect performance in SMAC and also presented a
survey of communication methods. The challenges include adapting to various numbers
of agents, targeted communication, and limiting the number of messages.

4
THE DEEP QUAL ITY -VALUE FAMILY IN DEC -POMDP

Outline

This chapter presents four value-based methods issued from the Deep
Quality-Value (DQV) family for the Dec-POMDP framework. We intro-
duce the DQV family and detail the contribution of this chapter in Sec-
tion 4.1. We then formally define DQV and the four methods in Section 4.2.
The experimental setup to evaluate them is presented in Section 4.3, fol-
lowed by the corresponding results in Section 4.4. This chapter ends with
a conclusion in Section 4.5.
This chapter is an adapted version of the publication [Leroy et al., 2021]
QVMix and QVMix-Max: extending the deep quality-value family of al-
gorithms to cooperative multi-agent reinforcement learning, P. Leroy, D.
Ernst, P. Geurts, G. Louppe, J. Pisane, and M. Sabatelli. AAAI-21 Work-
shop on Reinforcement Learning in Games, 2021.

4.1 introduction

This chapter introduces four methods to learn to cooperate in a Dec-POMDP, defined in
Section 3.2. They are adapted from the Deep Quality-Value (DQV) family of algorithm
[Sabatelli et al., 2020]. DQV methods jointly learn an approximation of the state-value
function V alongside an approximation of the state-action value function Q. They have
proven to outperform popular algorithms in SARL, such as DQN and DDQN defined in
Section 2.4.4. The four methods follow two modes of training and execution in a Dec-
POMDP, introduced in Section 3.1. The methods designed for the decentralised mode
are called IQV and IQV-Max. The other two dedicated to the CTDE mode are called
QVMix and QVMix-Max. They are tested with the StarCraft Multi-Agent Challenge
(SMAC) suite of environments, introduced in Section 3.3. They are compared with IQL,
QMIX and MAVEN, three value-based methods defined in Section 3.4.

The contributions of [Leroy et al., 2021] presented in this chapter can be divided into
three parts. The first is the generalisation of the DQV family of algorithms to cooperative
MARL problems, their performance in the decentralised mode and their fundamental
limitations. The second is the introduction of two methods, QVMix and QVMix-Max.
Both combine the original benefits of the DQV algorithms with CTDE, resulting in a
better performance than state-of-the-art techniques of their time. The third is to link

45

46 the deep quality-value family in dec-pomdp

their better performance to the overestimation bias of the Q function that characterises
model-free RL algorithms.

4.2 methods

As introduced, the work presented in this chapter revolves around the Deep Quality-Value
(DQV) family of DRL algorithms [Sabatelli et al., 2018, 2020]. These SARL techniques
learn an approximation of the state value function V alongside an approximation of the
state-action value function Q. The DQV algorithms extend the tabular RL algorithms
called QV(λ)-Learning [Wiering, 2005; Wiering and Van Hasselt, 2009] with neural net-
works as function approximations. One motivation of Wiering [2005] is that learning the
state value function may converge faster than the state-action one. There are two possible
ways of learning a joint approximation of the V function, V (s;ϕ) ≈ V π∗

(s), and of the
Q function, Q(s, u; θ) ≈ Qπ∗

(s, u).
DQV learns an approximation of the V function by minimising

L(ϕ) = EB

[(
rt + γV (st+1;ϕ

′)− V (st;ϕ)
)2]

, (4.1)

while the Q function is learned by minimising

L(θ) = EB

[(
rt + γV (st+1;ϕ

′)−Q(st, ut; θ)
)2]

. (4.2)

DQV-Max learns the Q function with the same loss defined in Equation (4.2) but
learns the V function by minimising

L(ϕ) = EB

[(
rt + γ max

u∈U
Q(st+1, u; θ

′)− V (st;ϕ)
)2]

. (4.3)

As in DQN, the replay buffer B stores transitions (st, ut, rt, st+1) from which batches
of transitions are sampled to update the networks. The target network θ′ and ϕ′ are a
copies of θ and ϕ updated periodically. This manuscript does not compare these SARL
algorithms with DQN or DDQN, but we refer the reader to the PhD thesis of Sabatelli
[2022]. This thesis provides further analysis of the quality of the approximations, show-
casing DQN’s overestimation bias while highlighting that DQV and DQV-MAX do not
suffer from it.

The extension to the decentralised MARL methods is straightforward. Like IQL is the
decentralised DQN, we define IQV and IQV-Max as the decentralised DQV and DQV-
Max, using, respectively, the DQV and DQV-Max update rules to learn Qa(τ

a, ua; θ)

and Va(τ
a;ϕ) independently. For the CTDE mode, the methods are QVMix and QVMix-

Max, and they follow the DQV and DQV-Max update rules to learn Qmix
tot (s,u). The

architecture of the Qa and the mixer network is the same as in QMIX, using the same
monotonic decomposition. In both QVMix and QVMix-Max, the V network computes a

4.3 experiments 47

V tot
mix(st)

Mixer

Va1

Va1(τ
1
t)

Van

Van(τ
n
t)

ho hp

oa1t

. . .

oant

st
|.|

Figure 4.1: Architecture of the Vmix network.

central state value function V mix
tot (s) as a function of individual Va(τ

a; θ). It has the same
architecture as the Q ones of QMIX, except they have a single output. The architecture
is presented in Figure 4.1. In QVMix, V mix

tot is updated following the loss defined in
Equation 4.1 and with the loss defined in Equation 4.3 for QVMix-Max. Individual
networks are GRU, and B stores sequences of contiguous transitions instead of single
transitions to train recurrent neural networks. The following section described how these
methods are evaluated in the SMAC suite of environments.

4.3 experiments

Our experiments evaluate seven methods in total. The four defined in this chapter,
QVMix, QVMix-Max, IQV and IQV-Max and the three forming the state of the art
at that time, QMIX, MAVEN and IQL, defined in Chapter 3. As a test-bed, we use
SMAC and evaluate the methods on eight different maps: 3m, 8m, so_many_baneling,
2m_vs_1z, MMM, 2s3z, 3s5z and 3s_vs_3z. We refer the reader to Section 3.3.1 for the
details on SMAC. It is worth noting that the maps chosen for our experiments differ in
complexity. In SMAC, the goal is to maximise the sum of discounted rewards achieved
by reducing each opponent team unit’s health to zero, which is called a win.

Each method is executed on every map ten times, and neural networks are trained
from scratch each time. Networks are trained for 5m time steps for the first four maps
mentioned above and 10m time steps for the four others, chosen because of the time
required to achieve convergence. Every 20.000 time step, the parameters of the networks
are saved to perform 24 testing episodes.

48 the deep quality-value family in dec-pomdp

Map QMIX MAVEN QVMix QVMix-Max IQL IQV IQV-Max

3m 100 98.7 100 100 93.3 93.3 96.6

8m 96.6 98.3 100 96.6 83.3 93.3 90

so_many_baneling 100 97 100 100 50 40 40

2m_vs_1z 100 100 100 96.6 100 100 100

MMM 100 97.0 93.3 96.6 61.6 83.3 50

2s3z 96.6 97.5 96.6 100 59.9 56.6 40

3s5z 40 40.8 86.6 43.3 16.6 13.3 0

3s_vs_3z 100 97.9 100 100 83.3 76.6 63.3

Table 4.1: Means of win rates achieved in eight scenarios at the end of training by QMIX,
MAVEN, QVMix, QVMix-Max, IQL, IQV, and IQVMax. In the first four scenarios, 3m, 8m,
so_many_baneling and 2m_vs_1z, it is measured after 5 millions training time steps. In the
last four, MMM, 2s3z, 3s5z and 3s_vs_3z it is measured after 10 millions training time steps.
We report the best and second-best means by bolding and underlining them. When results are
equivalent, the cells report the fastest and second-fastest method that reaches a win rate of 100%
as shown in Figure 4.3.

Each algorithm uses the same hyperparameter values to compare the tested method
fairly. Specifically, we refer to the authors of QMIX, MAVEN, and IQL to determine the
hyper-parameters set and keep the same values for QVMix, QVMix-Max, IQV, and IQV-
Max. For a more thorough presentation of all used hyper-parameters, we refer the reader
to the open-sourced code1. As is common practice within the literature, the individual
networks’ parameters are shared among agents to improve the algorithms’ learning speed.
This means a single individual Qa network is used for all agents. A one-hot encoding of
the agent id ({1, .., n}) is added to the observation space to allow individual networks to
produce different policies per agent.

4.4 results

We report the results of experiments in two different ways. We start by analysing each
tested method’s win rate before investigating the quality of the value functions learned
by all algorithms.

The means of win rate for each map and algorithm are reported in Table 4.1. Suppose
the algorithms perform equally in terms of overall performance, meaning the average
win rate is the same. In that case, we consider the one which significantly converges the
fastest to be the best-performing algorithm. Please note that reporting an episode’s win

1 https://github.com/PaLeroy/QVMix

https://github.com/PaLeroy/QVMix

4.4 results 49

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Training steps 1e6

0.00

0.25

0.50

0.75

1.00
W

in
-r

at
e

2m_vs_1z

QVMix
QVMix-Max
QMIX
MAVEN
IQV
IQV-Max
IQL

Figure 4.2: Mean of win rates achieved in the 2m_vs_1z map by QVMix, QVMix-Max, QMIX,
MAVEN, IQV, IQVMax and IQL. The error band is proportional to the variance of the measure.
We observe that all CTDE methods result in faster training than decentralised ones. All four
novel algorithms based on the DQV algorithms can be successfully used in cooperative MARL.

rate is a good indicator of the quality of an agent’s learned policy since, as introduced
in the previous section, a win directly corresponds to the best achievable sum of rewards
an agent can receive.

We start by observing the differences in performance between the decentralised mode
methods IQL, IQV, and IQV-Max and their respective CTDE extensions QMIX, QVMix,
QVMix-Max, and MAVEN. As one might expect, we can see from the results reported
in Figure 4.2 that methods for the decentralised mode converge slowly when compared
to their CTDE counterparts on the considered 2_vs_1z map. This is particularly inter-
esting since it shows that the DQV family of algorithms can be successfully adapted to
MARL, both in the decentralised mode and the CTDE one. However, these results are
challenged once the number of agents in the maps increases: examples of such maps are
so_many_baneling, MMM or 3s5z. The performance of decentralised methods starts to
drop, highlighting that CTDE methods learn faster once the complexity of the training
scenario increases, as is reported both in Table 4.1 and Figure 4.3, where the evolution of
the win rate of each algorithm on every tested map is presented. These win rate curves
provide the variance between training executions. It is essential to highlight that all
methods suffer from a significant variance. However, it is difficult to conclude which one
suffers the most.

Therefore, directing attention to CTDE methods, we observe that only QVMix and
QVMix-Max perform as well as QMIX and MAVEN in most of the eight maps. When we
consider the MMM, 3m, 2m_vs_1z and the so_many_baneling maps, we observe that there
is no significant difference between the performance that is obtained by our algorithms
and that of QMIX and MAVEN. All methods converge towards the best possible winning
rate and, in terms of convergence speed, perform closely.

50 the deep quality-value family in dec-pomdp

0 1 2 3 4 5
Training steps 1e6

0.00

0.25

0.50

0.75

1.00

W
in

-r
at

e
3m

0.0 0.2 0.4 0.6 0.8 1.0
Training steps 1e7

0.00

0.25

0.50

0.75

1.00

W
in

-r
at

e

MMM

0 1 2 3 4 5
Training steps 1e6

0.00

0.25

0.50

0.75

1.00

W
in

-r
at

e

8m

0.0 0.2 0.4 0.6 0.8 1.0
Training steps 1e7

0.00

0.25

0.50

0.75

1.00

W
in

-r
at

e

2s3z

0 1 2 3 4 5
Training steps 1e6

0.00

0.25

0.50

0.75

1.00

W
in

-r
at

e

so_many_baneling

0.0 0.2 0.4 0.6 0.8 1.0
Training steps 1e7

0.00

0.25

0.50

0.75

1.00

W
in

-r
at

e

3s5z

0 1 2 3 4 5
Training steps 1e6

0.00

0.25

0.50

0.75

1.00

W
in

-r
at

e

2m_vs_1z

0.0 0.2 0.4 0.6 0.8 1.0
Training steps 1e7

0.00

0.25

0.50

0.75

1.00

W
in

-r
at

e

3s_vs_3z

QVMix QVMix-Max QMIX MAVEN IQV IQV-Max IQL

Figure 4.3: Means of win rates achieved by QVMix, QVMix-Max, QMIX, MAVEN, IQV,
IQVMax and IQL in eight scenarios. Top to bottom, left to right, the scenarios are 3m, 8m,
so_many_baneling, 2m_vs_1z, MMM, 2s3z, 3s5z and 3s_vs_3z. The error band is proportional
to the variance of win rates.

4.4 results 51

0 1 2 3 4 5
Training steps 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

A
ve

ra
ge

 Q

2m_vs_1z

0.0 0.2 0.4 0.6 0.8 1.0
Training steps 1e7

2

4

6

8

A
ve

ra
ge

 Q

3s5z

QVMix - Estimated
QVMix - Obtained

QVMix-Max - Estimated
QVMix-Max - Obtained

MAVEN - Estimated
MAVEN - Obtained

QMIX - Estimated
QMIX - Obtained

Figure 4.4: Q values obtained and estimated when training QVMix, QVMix-Max, MAVEN and
QMIX. Dash-dotted lines represent the obtained Q values, while solid lines represent the esti-
mated ones.

However, when considering the 2s3z, 3s5z and 8m maps, we observe that the perfor-
mance of QVMix results in even faster learning. Of greater interest, when looking at
the results obtained on the 3s5z map, QVMix is the only algorithm approaching the
best possible win rate. It is also worth noting that QVMix-Max’s performance is always
competitive with that of QVMix, QMIX, and MAVEN. These results are unsurprising
since a similar performance was observed when DQV-Max was tested in a SARL setup
by Sabatelli et al. [2020].

To understand the reasons behind why QVMix is the best performing algorithm over-
all, we analyse how well each method estimates the state-joint-action value function
Qtot

mix(st,ut). Since, in most maps, decentralised methods do not perform as well as CTDE
methods, we restrict our analysis to CTDE algorithms only where their respective mixer
networks give the estimated Q(st,ut). Since the state space of the maps provided by the
SMAC environment is not finite, it is not impossible to compute the exact Qtot(st,ut) for
all states to compare them with the estimations. To overcome this problem, we compute
the discounted sum of rewards obtained with the current policy in each visited state
during an episode and compare the results with the value function inferred from the Qtot

values estimated by the mixer network for these states. The closer the estimates are to
the actual Q(st, argmaxu(Q(st,u))), the more accurate the learned value function is.

For this experiment, we selected two different maps: the 2m_vs_1z map, which corre-
sponds to the map on which the best results have been achieved by all methods at the
same time, and the 3s5z map, which on the other hand, is the map on which QVMix,
and others, performed less well. In Figure 4.4, we report the averaged estimated Q values,
represented by the solid lines, and the actual discounted sum of rewards, represented by
the dash-dotted lines. All are computed for each visited state at testing time. In both
scenarios, we can observe that the Q values estimated by QMIX and MAVEN suffer

52 the deep quality-value family in dec-pomdp

from the overestimation bias of the Q function, while this is not the case for QVMix
and QVMix-Max. Therefore, we justify the better quality of QVMix and QVMix-Max
policies by better approximating the Q functions. However, further work is required to
understand this phenomenon in more detail.

4.5 discussion and future work

In this chapter, we introduced four new value-based methods for training a team of
agents in a Dec-POMDP. Two of our methods, IQV and IQVMax, are designed for the
decentralised mode, while the two dedicated to the CTDE mode are QVMix and QVMix-
Max. We compared these algorithms with three methods from the literature, using the
StarCraft Multi-Agent Challenge as a benchmark. We have shown that QVMix and
QVMix-Max achieve the same results as popular techniques QMIX and MAVEN and
that QVMix can result in faster and better learning in some maps. We suggest that this
better performance can be related to the fact that QVMix seems to suffer less from the
overestimation bias of the Q function.

In future work, it would be interesting to analyse each agent’s behaviour and study the
impact of the value function in the optimisation procedure. Furthermore, following the
recommendations from [Gorsane et al., 2022], testing in different environment suites is
crucial. The next chapter also tests QVMix, which provides performance similar to QMIX,
as with SMAC. In this following study, QVMix is also compared to policy-based methods,
which are missing in the analysis of this chapter and are justified by the performance of
existing ones at the time of development. The number of agents is also limited in SMAC.
The next chapter covers setting up to 100 agents, which allows testing the scalability of
methods.

In Chapter 3, we defined the dueling structure, which is sometimes considered close to
the DQV family because both approximate the state value function V to obtain the Q. We
hereafter explain how different they are. In DQV methods, the V network approximates
the expected return of the optimal policy ≈ V π∗

(s) to provide a target to train a Q

network. Conversely, in the dueling structure Q = V + A, the V network does not play
the target role in the loss but allows Q to be decomposed. Nevertheless, QPLEX and
QVMix performance are compared in the next chapter. Finally, LAN proposes to learn
a single central V and independent advantage A to compute independent Qa using the
dueling structure. It would be interesting to study how to relax the constraint of the Q

mixer in QVMix and QVMix-Max to train only independent Qa, using a single central
V approximation as a target.

5
INFRASTRUCTURE MANAGEMENT PLANNING

Outline

This chapter presents IMP-MARL, an open-source suite of multi-agent re-
inforcement learning environments for large-scale infrastructure manage-
ment planning. In section 5.1, we introduce the problem of infrastructure
management planning (IMP) and the motivations of IMP-MARL. RL has
not been the first solution to such problems, and we present related works
in Section 5.2. We then define IMP as a cooperative MARL problem in
Section 5.3, describing the different components of the Dec-POMDP and
a high-level description of the environment. Following this, we provide
the formal definition of the models of environments in Section 5.4. The
experimental setup to demonstrate the interest of MARL for IMP is pre-
sented in Section 5.5, followed by the corresponding results in Section 5.6.
Conclusions and discussions end the chapter in Section 5.7.
This chapter is an adapted version of the publication [Leroy et al., 2023]
IMP-MARL: a suite of environments for large-scale infrastructure man-
agement planning via MARL, P. Leroy, P. G. Morato, J. Pisane, A. Kolios,
and D. Ernst. Thirty-seventh Conference on Neural Information Process-
ing Systems Datasets and Benchmarks Track, 2023.

5.1 introduction

Multiple suites of environments based on games and simulators have served as benchmark
testbeds to support the advancement of cooperative MARL methods and are presented
in Section 3.3. Benchmarking environments based on games and simulators helps de-
velop MARL methods in specific collaborative/competitive tasks. However, additional
challenges may still be encountered when deploying MARL methods in real-world appli-
cations [Oroojlooy and Hajinezhad, 2023]. This work follows this direction to promote
the interest of MARL to help solve real-world problems.

Infrastructure Management Planning (IMP) is a contemporary application that re-
sponds to current societal and environmental concerns. In IMP, inspections, repairs
and/or retrofits should be timely planned to control the risk of potential system fail-
ures, e.g., bridge and wind turbine failures, among many others [Morato et al., 2022].
System failure risk is defined as the system failure probability multiplied by the conse-
quences associated with a failure event, typically in monetary units. Due to model and

53

54 infrastructure management planning

Actions

System failure risk

t t+1

R += 0R += Rrep

R += Rins

R += RinsR += 0

R += Rf R += Rf

R += 0

Damage size

Probability

Component 1

Component 2

Component n

Figure 5.1: Overarching representation of an infrastructure management problem. The system
failure risk is a function of the probability distribution over the components’ damage condition. To
control the system failure risk, components can be inspected or repaired at each time step t, and,
typically, an agent controls one component. The objective of IMP’s problem is to maximise the
expected sum of discounted rewards by balancing the system failure risk Rf against inspections
Rins and repairs Rrep, all three being negative rewards. Here, we show three components with
the same damage probability at time step t. When a component is not inspected nor repaired,
its damage probability evolves according to a deterioration process. If a component is inspected,
information from the inspection is also considered when updating the damage probability. If a
component is repaired, the damage probability resets to its initial damage distribution.

measurement uncertainties, the components’ damage is not perfectly known, and deci-
sions are made based on a probability distribution over the damage condition, hereafter
denoted as damage probability. The system failure probability is a function of compo-
nents’ damage probabilities. Starting from its initial damage distribution, each compo-
nent’s damage probability transitions according to a deterioration stochastic process and
the decisions made [Morato et al., 2022]. Naturally, the damage probability transitions
based on its deterioration model when the component is neither inspected nor repaired,
i.e., do-nothing action. If a component is inspected, its damage probability is updated
based on the inspection outcome. When a component is repaired, its damage condition
is directly improved, and the damage probability resets to its initial damage distribution.
A schematic of a typical IMP problem is shown in Figure 5.1.

IMP-MARL was introduced to generate more efficient strategies for managing engi-
neering systems through cooperative MARL methods. In IMP-MARL, each agent is re-
sponsible for managing one constituent component in a system, making decisions based
on the damage probability of the component. In addition to seeking to reduce compo-
nent inspection and maintenance costs, agents should effectively cooperate to minimise
the system failure risk. To assess the capability of cooperative MARL methods for gen-

5.1 introduction 55

erating effective policies for IMP problems involving many components, state-of-the-art
cooperative MARL methods are benchmarked in terms of scalability and optimality. The
benchmarked methods are presented in Chapter I and Chapter 3. Specifically, we bench-
mark five CTDE methods: QMIX, QVMix, QPLEX, COMA, and FACMAC, along with
a decentralised method, i.e., IQL, and a centralised one, i.e., DQN. All tested MARL
methods are compared against expert-based heuristic policies, which can be categorised
as a state-of-the-art method to deal with IMP problems in the reliability engineering com-
munity [Luque and Straub, 2019; Morato et al., 2022]. In our study, three sets of IMP
environments are investigated, including one related to offshore wind structural systems,
where MARL methods are tested with up to 100 agents. These environments can be set
up with two distinct reward models, one incorporating explicit cooperative objectives.
Additionally, we ensure that the necessary code is publicly available so anyone can repro-
duce any published result1. This benefits an additional goal to facilitate the definition
and implementation of new customisable environments.

From a societal perspective, more effective IMP policies contribute to a better allo-
cation of resources. Additional societal impact is also made by controlling the risk of
system failure events. For example, the failure of a wind turbine may affect the available
electricity production. Beyond economic considerations, our proposed IMP-MARL frame-
work can also be used to include sustainability and societal metrics within the objective
function by accounting for those directly in the reward model.

Finally, the contributions of [Leroy et al., 2023] presented in this chapter can be out-
lined as follows:

- IMP-MARL is an open-source suite of environments, motivating the development
of scalable MARL methods and the creation of new IMP environments, enabling
the effective management of multi-component engineering systems and, as such,
leading to a positive societal impact.

- In an extensive benchmark campaign, cooperative MARL methods are tested in
high-dimensional IMP environments featuring up to 100 agents. The resulting man-
agement strategies are evaluated against expert-based heuristic policies. The source
code is public so that we can reproduce our reported results and easily compare
them with future developments.

- Based on the results, relevant insights for both machine learning and reliability en-
gineering communities can be drawn, highlighting important challenges that must
still be resolved. While cooperative MARL methods can learn superior strategies
compared to expert-based heuristic policies, the relative performance benefit de-
creases in environments with over 50 agents. In specific environments, cooperative
MARL policies are characterised by a high variance and sometimes underperform
expert-based heuristic policies, suggesting the need for further research efforts.

1 https://github.com/moratodpg/imp_marl/

https://github.com/moratodpg/imp_marl/

56 infrastructure management planning

5.2 related work

As introduced, RL is not the single approach when solving IMP problems, and we here-
after discuss how MARL is becoming popular in the field. Recent heuristic-based in-
spection and maintenance (I&M) planning methods generate IMP policies based on an
optimised set of predefined decision rules [Luque and Straub, 2019; Bismut and Straub,
2021]. By evaluating only a set of decision rules out of the entire policy space, the pre-
viously mentioned approaches might yield suboptimal policies [Morato et al., 2022]. In
the literature, one can also find POMDP-based methods applied to the I&M planning
of engineering components, in most cases, relying on efficient point-based solvers [Pa-
pakonstantinou and Shinozuka, 2014a,b; Morato et al., 2022]. When dealing with multi-
component engineering systems, solving point-based POMDPs becomes computationally
complex. In that case, the policy and value function can be approximated by neural
networks, enabling the treatment of high-dimensional engineering systems. Value-based
and policy-based methods have been proposed in the literature for the management of
engineering systems [Andriotis and Papakonstantinou, 2019, 2021; Morato et al., 2023],
and some of them rely on CTDE methods [Nguyen et al., 2022; Saifullah et al., 2022].
Note that no open-source methods nor publicly available environments are provided in
the abovementioned references. This emphasises the importance of our efforts to enhance
comparison and reproducibility within the reliability engineering community.

5.3 imp-marl: a suite of infrastructure management planning
environments

In IMP, the damage condition of multiple components deteriorates stochastically over
time, inducing a system failure risk that is penalised at each time step. Components can
be inspected or repaired to control the system failure risk, yet incurring additional costs.
The objective is to minimise the expected sum of discounted costs, including inspections,
repairs, and system failure risk. This can be achieved through the agents’ cooperative be-
haviour, assigning component inspections and repairs while jointly controlling the system
failure risk. The introduced IMP decision-making problem can be modelled as a decen-
tralised partially observable Markov decision process (Dec-POMDP). We hereafter define
the components of this Dec-POMDP and formally define the deterioration, inspection,
transition and reward models in Section 5.4.

5.3.1 Environments formulation

5.3.1.1 States and observations

As introduced, each agent in IMP perceives oat , an observation corresponding to its respec-
tive component damage probability and the current time step. Each component damage

5.3 imp-marl: a suite of infrastructure management planning environments 57

probability transitions based on a deterioration model, defined in Section 5.4. The dam-
age probability is also updated based on maintenance decisions. Since the components’
damage is not perfectly known, the state of the Dec-POMDP is defined as the collection of
all components’ damage probabilities along with the current time step: st = (o1t , .., o

n
t , t).

Following the discussion in Chapter 3, IMP is a jointly observable Dec-POMDP.

5.3.1.2 Actions and rewards

Each agent controls a component and collaborates with other agents to minimise the
system failure risk while minimising local costs associated with individual repair and/or
inspection actions. At each time step t, an agent decides uat between (i) do-nothing,
(ii) inspect, or (iii) repair actions. Both inspection and repair actions incur significant
costs, formally included in the Dec-POMDP framework as negative rewards, Rins and
Rrep, respectively. Moreover, the system failure risk is defined as Rf = cF · pFsys where
pFsys is the system failure probability, and cF is the associated consequences of a failure
event, encompassing economic, environmental, and societal losses. In IMP, we include
two reward models. The first is a campaign cost model where a global cost, Rcamp, is
incurred if at least one component is inspected or repaired, plus a surplus, Rins + Rrep,
per inspected/repaired component. This campaign cost explicitly incentivises agents to
cooperate. The second is a no campaign cost model, where the campaign cost Rcamp = 0,
and only component inspections and repairs costs are considered. Values of those costs
are given in Section 5.4.4. Acting on finite-horizon episodes that span over T time steps,
all agents aim at maximising the expected sum of discounted rewards

E[R0] = E

[
T−1∑
t=0

γt

[
Rt,f +

n∑
a=1

(
Ra

t,ins +Ra
t,rep

)
+Rt,camp

]]
. (5.1)

5.3.1.3 Real-world data

While IMP policies are trained based on simulated data, the policies can then be de-
ployed to applications where real-world data streams are available. In that case, the
damage condition of the components is updated based on collected real-world data, e.g.,
inspections.

5.3.2 IMP-MARL environments

IMP-MARL provides three sets of environments to benchmark cooperative MARL meth-
ods. For all three, components are exposed to fatigue deterioration during a finite-horizon
episode, inducing the growth of a crack over T time steps. The first set of environments is
k-out-of-n system and refers to systems for which a system fails if (n-k+1) components fail.
Those systems have been widely studied in the reliability engineering community [Barlow
and Heidtmann, 1984]. The second type of environment is correlated k-out-of-n system

58 infrastructure management planning

system fails repair
inspection

campaign cost
component costcomponent fails

(a) A k-out-of-n system environment. (b) An offshore wind farm environment.

no correlation correlation

(c) Uncorrelated and correlated initial damage distribu-
tion.

++ + +

(d) A campaign cost environment.

Figure 5.2: Visual representation of available IMP-MARL environment sets and options. In 5.2a,
a 4-out-of-5 system fails if two or more components fail. In 5.2b, a wind turbine fails if any
constituent component fails. In 5.2c, when the environment is under deterioration correlation,
the information collected by inspecting one component also influences uninspected components.
In 5.2d campaign cost environments, a global cost is incurred if any component is inspected
and/or repaired, plus a surplus per inspected/repaired component.

and is a variation of the first one for which the initial components’ damage distribu-
tions are correlated. The last one is offshore wind farm and allows the definition of
environments for which a group of offshore wind turbines must be maintained. They are
graphically illustrated in Figure 5.2, and we hereafter provide details about these sets of
environments. The implementation details are provided in Appendix A.1.

5.3.2.1 k-out-of-n system

In this set of environments, the components’ damage probability distribution, p(dat),
is defined as a vector of 30 bins, each representing a crack size interval. The failure
probability of one component is defined as the probability indicated in the last bin. The
specificity of a k-out-of-n system is that it fails if (n-k+1) components fail, establishing a
direct link between the system failure probability and the component failure probabilities.
The initial damage distribution among components is statistically independent for this
first system, and the time horizon is T = 30 time steps. Since it is finite, we normalise
each time step input and define st = (p(d1t), ..., p(d

n
t), t/T) and oat = (p(dat), t/T). The

5.3 imp-marl: a suite of infrastructure management planning environments 59

interest of this system is that, in many practical scenarios, the reliability of an engineering
system can be modelled as a k-out-of-n system.

5.3.2.2 Correlated k-out-of-n system

The second set of environments is the same as the previously defined one, with the differ-
ence that the initial damage distribution is correlated among all components. Therefore,
inspecting one component also provides information about other uninspected compo-
nents, depending on the specified degree of correlation. This setting is particularly chal-
lenging when approached in a decentralised mode without providing individual agents
with component correlation information. To address this issue, in addition to their 30-
bin local damage probability, the agents perceive correlation information αt common
to all, updated based on inspection outcomes collected from all components. We thus
have: st = (p(d1t), ..., p(d

n
t), αt, t/T) and oat = (p(dat), αt, t/T). This damage correlation

structure is inspired by practical engineering applications where initial defects among
components are statistically correlated because components undergo similar manufactur-
ing processes [Morato et al., 2022].

5.3.2.3 Offshore wind farm

The third set of environments differs from previous ones as it considers a system with
wind turbines. Specifically, each wind turbine contains three representative components:
(i) the top component located in the atmospheric zone, (ii) the middle component in the
underwater zone, and (iii) the mudline component submerged under the seabed. In this
case, the mudline component is considered impossible to inspect or repair, as it is installed
under the seabed in an inaccessible region. Since only the top and middle components can
be inspected or repaired, two agents are assigned for each wind turbine. Furthermore, the
damage probability, p(dat), is a vector with 60 bins and transitions differently depending
on the component location in the wind turbine, as corrosion-induced effects accelerate
deterioration in certain areas. Besides individual component damage models, inspection
techniques and their associated costs depend on the component location: inspecting or
repairing the top components is cheaper than the middle one [Giro et al., 2022]. Moreover,
while the mudline component cannot be directly maintained, its damage probability also
impacts the failure risk of a wind turbine. In offshore wind farm environments, a wind
turbine fails if one of its constituent components fails, and the overall system failure risk
is defined as the sum of all individual wind turbine failure risks. In this case, p(dat) is
modelled as a 60-bin vector, and the time horizon is T = 20. In this set of environments
st = (p(d1t), ..., p(d

n
t), t/T) and oat = (p(dat), t/T).

60 infrastructure management planning

5.4 modelling infrastructure management in imp-marl

This section formally defines the deterioration, inspection, transition and reward mod-
els implemented in IMP-MARL. These models drive the dynamics of the IMP-MARL
environments.

5.4.1 Deterioration models

The deterioration processes introduced here correspond to fatigue deterioration mecha-
nisms, yet corrosion, erosion, and many other practical infrastructure management prob-
lems can be similarly modelled.

5.4.1.1 Correlated and uncorrelated k-out-of-n systems

Throughout the following, the set of environments related to uncorrelated and corre-
lated k-out-of-n systems are abbreviated as struct when referring to both. The structural
components are exposed to fatigue deterioration in both k-out-of-n environments. Un-
less a repair is undertaken, the crack size dt (i.e., damage condition) evolves over time t

following

dt+1 =

[(
1− m

2

)
CFMSm

R πm/2nS + d
1−m/2
t

]2/(2−m)

, (5.2)

where ln(CFM) ∼ N (µ = −35.2, σ = 0.5) and m = 3.5 stand for material variables, which
directly influence the crack growth [Ditlevsen and Madsen, 1996]. Due to environmental
and operational conditions, the components are subject to a dynamic load characterised
by the stress range, SR ∼ N (µ = 70, σ = 10 N/mm2), over nS = 106 annual stress cycles,
i.e., the number of load cycles experienced by the structural component in one year. At
the initial step or after a component is repaired, the initial crack size is at its intact
condition, defined by its initial distribution d0 ∼ Exp(µ = 1 mm), and a component
level failure occurs when the crack size exceeds a critical length of dc = 20 mm. The
component failure probability pF , defined as pF = P [g ≤ 0], can be computed following
a through-thickness failure criterion Hlaing et al. [2022], where the failure limit at time
step t is formulated as gt = dc−dt. At the system level, a failure event occurs if n−k+1

components fail, and its corresponding system failure probability, pFsys , can be efficiently
computed as a function of all components failure probabilities, as proposed in [Barlow
and Heidtmann, 1984].

The continuous crack size is discretised into discrete bins to enable efficient Bayesian in-
ference when inspection indications are available. Further details can be found in [Morato
et al., 2022]. In a correlated k-out-of-n system, the initial crack size among components is
correlated. In that case, the damage condition of each component is defined conditional
on a common correlation factor, α, via a Gaussian hierarchical structure [Morato et al.,

5.4 modelling infrastructure management in imp-marl 61

Environment Interval boundaries Bins

struct [0, exp{ln(10−4) : (ln(dc)− ln(10−4))/28 : ln(dc)},∞] 30

owf [0, d0 : (dc − d0)/(60− 2) : dc,∞] 60

Table 5.1: Description of the discretisation scheme implemented to discretise dt.

2023]. In that case, the discretised damage bins should be defined conditionally based
on the correlation factor. Table 5.1 defines the specific discretisation implemented in our
environments.

5.4.1.2 Offshore wind farm

In this set of environments, abbreviated as owf in the following, a group of offshore
wind substructures is considered, in which three representative structural components
are modelled at different locations of the wind turbine: (i) at the atmospheric zone -
upper level, (ii) at the splash zone - middle level, (iii) below the seabed - mudline. The
deterioration, inspection, and cost models differ for each component. While the fatigue de-
terioration is calculated according to Equation 5.2, the expected dynamic load is defined
based on industrial standards Sr = qΓ(1 + 1/λ)Y [Lotsberg et al., 2016], corresponding
to the expected value of a Weibull distribution defined by the scale parameters listed
in Table 5.2, q ∼ N , and shape factor, λ = 0.8, weighted by a geometric parameter,
Y ∼ LN (µ = 0.1, σ = 0.1). The initial crack size distribution is specified for all wind
turbine components as d0 ∼ Exp(µ = 0.11) and the remaining specific fatigue variables
associated with each wind turbine component are listed in Table 5.2. At the wind turbine
level, a failure event occurs if one component of the wind turbine fails. The wind turbine
failure risk is thus defined as the probability of failure multiplied by the consequences
of a failure event. At the wind farm level, a wind turbine’s damage condition does not
influence the condition of the other wind turbines, and the wind farm system failure risk
is defined as the sum of all turbines’ failure risks.

5.4.2 Inspection models

The inspection models implemented in IMP-MARL are hereafter described. They define
the likelihood of retrieving a specific inspection outcome as a function of the damage
size.

5.4.2.1 Correlated and uncorrelated k-out-of-n systems

The inspection model is normally characterised depending on the accuracy of the mea-
surement instrument, formally specified through probability of detection (PoD) curves, in

62 infrastructure management planning

Upper component Middle component Mudline component

ln(CFM)
µ = −26.45 µ = −26.04 µ = −26.12
σ = 0.12 σ = 0.4 σ = 0.39

m 3 3 3

q
µ = 10.21 µ = 7.40 µ = 6.74

CoV = 25% CoV = 25% CoV = 25%

dc 20 60 60

nS 5,049,216 5,049,216 5,049,216

Table 5.2: Variables specified in the offshore wind farm deterioration models.

which the probability of observing a crack is defined as a function of the crack size [Morato
et al., 2022]. In this case, the inspection model is described by an exponential distribu-
tion p(idt |dt) ∼ Exp(µ = 8), defining the probability of observing a crack during an
inspection.

5.4.2.2 Offshore wind farm

In this more practical set of environments, an eddy current inspection technique is con-
sidered, whose PoD is modelled by

p(idt |dt) = 1− 1

1 + (dt/χ)b
, (5.3)

with χ = 0.4 and b = 1.43 for the upper component and χ = 1.16 and b = 0.90 for the
middle component, according to industrial standards [Lotsberg et al., 2016]. The middle
component, located below the water level, can naturally expect less accurate inspection
outcomes.

5.4.3 Transition models

An overview of the transition model is explained hereafter. We refer the reader to [Morato
et al., 2023] for a more detailed description. Since the crack size is discretised, the transi-
tion and inspection models can be stored in tables. This allows our IMP-MARL environ-
ments to be efficiently simulated. Alternatively, the crack size evolution could be directly
computed at execution time, but this would incur an additional computational expense.

The transition model can be defined based on previously described deterioration and
inspection models. If no inspection and maintenance are performed, i.e. do-nothing action,
the damage condition progresses each time step according to the fatigue deterioration
model formulated in Equation 5.2. Note that a time step represents a year in our envi-
ronments. Considering that the damage follows a non-stationary deterioration process,

5.4 modelling infrastructure management in imp-marl 63

the crack size distribution dt+1 can be efficiently encoded as a function of the annual
deterioration rate, τt+1, and the crack size at the previous time step dt as p(dt+1|dt, τt+1).
Starting from τ0 = 0, the deterioration rate increases by one unit every year unless a
component is repaired, in which case the deterioration rate returns to the initial value.
The deterioration evolution over one time step is

p(dt+1) =
∑
τt+1

∑
dt

p(dt+1|dt, τt+1)p(dt)p(τt+1). (5.4)

If an inspection action is planned, a damage indication idt+1 is collected, and the crack
size distribution can be updated via Bayes’ rule

p(dt+1|idt+1) ∝ p(idt+1 |dt+1)p(dt+1), (5.5)

where the likelihood corresponds to the specific inspection model, described by a proba-
bility of detection curve, as mentioned before. Since the damage probabilities are discrete,
the normalisation constant can be straightforwardly computed by simply summing the
unnormalised bins [Morato et al., 2022].

To enable efficient computation of the deterioration evolution under correlation, a
Gaussian hierarchical structure is adopted, in which the crack size probability p(dt|α) is
defined conditional on a common factor α[Morato et al., 2023]. This work considers that
the initial damage probabilities are equally correlated among components with a Pearson
coefficient of 0.8. The damage transition, in this case, is

p(dt+1|α) =
∑
τt+1

∑
dt

p(dt+1|dt, τt+1)p(dt|α)p(τt+1). (5.6)

Once an inspection outcome is available, the common correlation factor is updated based
on the new information, thus influencing all components. The likelihood of collecting one
inspection indication given α is

p(idt+1 |α) =
∑
dt+1

[
p(dt+1|α)p(idt+1 |dt+1)

]
, (5.7)

and the correlation factor can then be updated

p(α|idt+1) ∝ p(α)p(idt+1 |α). (5.8)

Finally, the marginal damage probabilities are computed as:

p(dt+1) =
∑
α

[
p(dt+1|α)p(α)

]
. (5.9)

64 infrastructure management planning

Component Campaign cost Rins Rrep cf Rcamp

struct
False -1 -20 -10,000 0

True -0.2 -20 -10,000 -5

owf upper level
False -1 -10 -1,000 0

True -0.2 -10 -1,000 -5

owf middle level
False -4 -30 -1,000 0

True -1 -30 -1,000 -5

Table 5.3: Rewards specified in our experiments.

5.4.4 Reward model

The goal of the agents is to maximise the expected sum of discounted rewards, E[R0] =

E
[∑T−1

t=0 γt
[
Rt,f +

∑n
a=1

(
Ra

t,ins +Ra
t,rep

)
+Rt,camp

]]
. At each time step, the reward

may include inspection Rins and repair Rrep costs for all considered components, along
with the system failure risk, which is defined as the system failure probability pfsys
multiplied by the associated consequences of a failure event cf , formulated as Rf =

pfsys · cf . A campaign cost Rcamp may also be included if that option is active. The
discount factor is defined as γ = 0.95 in our experiments, and the specific rewards are
listed in Table 5.3.

5.5 experiments

5.5.1 Tested methods

In an extensive benchmark campaign, we test seven RL methods. The centralised con-
troller, which has an action space that scales exponentially with the number of agents,
is trained with the centralised method DQN and is the only method taking st as input.
Furthermore, for the decentralised method tested is IQL, in which all agents are inde-
pendently trained. Regarding the five CTDE methods, we investigate three value-based
methods, QMIX, QVMix, and QPLEX, as well as two actor-critic methods, COMA and
FACMAC. We selected these methods for our benchmark study because they are well
established, and their implementations are open-sourced and available within the PyMarl
framework [Samvelyan et al., 2019].

All investigated RL methods are compared against a representative baseline in the
reliability engineering community [Luque and Straub, 2019; Morato et al., 2023]. This
baseline, referred to as expert-based heuristic policy, consists of a set of heuristic decision
rules defined based on expert knowledge. The heuristic policy includes both parametric

5.5 experiments 65

IMP environments Number of agents

k-out-of-n system 3 5 10 50 100

Correlated k-out-of-n system 3 5 10 50 100

Offshore wind farm 2 4 10 50 100

Table 5.4: Number of agents specified in all investigated IMP environments.

and non-parametric rules. Parametric decision rules depend on two parameters: (i) the
inspection interval and (ii) the number of inspected components. Non-parametric rules
involve taking a repair action after detecting a crack and prioritising component inspec-
tions with higher failure probability. To determine the best heuristic policy for each
environment, all parametric rule combinations are evaluated over 500 policy realisations,
thereby identifying the heuristic policy that maximises the expected sum of discounted
rewards among all policies evaluated.

5.5.2 Experimental setup

The abovementioned seven MARL methods are tested in the three previously defined
sets of IMP environments. The environments differ by the number of agents and whether
they include a campaign cost model. The numbers of agents tested in the six types of
environments are presented in Table 5.4. To objectively interpret the variance associated
with the examined MARL methods. As explained in Section 5.3, an agent makes decisions
based on its local damage probability, the current normalised time step, and sometimes
correlation information is additionally provided, while the state, used by DQN and CTDE
methods, encompasses all of the information combined. In all cases, the action space
features three possible discrete actions per agent, except for DQN, where the centralised
controller selects an action among the 3n possible combinations. For complexity reasons,
we only test DQN in k-out-of-n environments featuring 3 and 5 components and in
environments with 1 and 2 wind turbines.

Given the importance of hyperparameters on the performance of RL methods [Gor-
sane et al., 2022], we initially selected their values reported by the original authors. In an
attempt to objectively compare the examined methods, parameters that play the same
role across methods are equal. Notably, the learning rate and gamma, among others, are
identical in all experiments. The controller agent network features the same architecture
in all methods, consisting of a single GRU layer with a hidden state composed of 64
features encapsulated between fully connected layers and three outputs, one per action,
except for DQN, where the network output includes 3n actions. In our case, DQN’s ar-
chitecture includes additional fully connected layers and a larger size of hidden GRU
states. Moreover, following common practice, agent networks are shared among agents,

66 infrastructure management planning

and thus, a single agent network is trained. Specifically, we train only one network for all
agents instead of training n distinct agent networks. The training process with a single
agent network improves data efficiency because the same episode can be used to perform
n backpropagations through the same agent network, using n different observations. In
contrast, if training is performed with n different agent networks, only one backpropa-
gation per agent network would be possible with a single episode. To allow diversity in
agents’ behaviour, a one-hot encoded vector is also added to the input of this shared
network to indicate which one of the n agents is making the decision. In CTDE methods,
critics or mixers are also incorporated at the training stage with specific architectures
according to each method and environment configuration. In most cases, the neural net-
works are updated after each played episode based on 64 episodes sampled from the
replay buffer containing the latest 2,000 episodes. The only exception is COMA, which
follows an on-policy approach, updating the network parameters every four episodes. For
value-based methods, the training episodes are played following an epsilon greedy policy,
whereas test episodes are executed with a greedy policy. The epsilon value is initially
specified as 1 and linearly decreases to 0.05 after 5,000 time steps. This is different for
COMA and FACMAC. Appendix A.3.1 and the source code list more details and all
parameters.

The number of time steps allocated for one training realisation is 2 million time steps
for all methods. These 2 million training time steps are executed with training policies,
e.g. ϵ-greedy policy, saving the networks every 20,000 training time steps. To evaluate
them, we execute 10,000 test episodes and obtain the average sum of discounted rewards
per episode per saved network. These test episodes are executed with testing policies,
e.g., the greedy policy. We show in Appendix A.3.2 that 10,000 test episodes are needed
due to the variance induced in the implemented environments. We emphasise that ten
training realisations are executed with different seeds for the same parameter values.
Finally, hardware and experiment duration are provided in Appendix A.3.3.

5.6 results

The benchmark campaign results are presented in a boxplot showcasing the relative
performance of MARL methods with respect to expert-based heuristic policies in terms
of their expected sum of discounted rewards. Each boxplot represents each of the ten
seeds by its best policy, which achieved the highest average sum of discounted rewards
during evaluation. The construction of such a boxplot is presented in Figure 5.3, and all
results are presented in Figure 5.4. Our analysis relies on relative performance metrics
because the optimal policies are unavailable. Finally, the corresponding learning curves
and the best-performing policy realisations can be found in Appendix A.4.

MARL-based strategies outperform expert-based heuristic policies. While
heuristic policies provide reasonable IMP policies, most tested MARL methods yield a
substantially higher expected sum of discounted rewards. Yet, the variance over identical

5.6 results 67

0 0.5 1 1.5 2
Time steps (×10

6
)

400

375

350

325

300

275

250

225

200

R
ew

ar
d

310 300 290 280 270 260 250 240
Reward

-100% -50% 0 50%
Normalised relative reward

-100% -50% 0 50%
Normalised relative reward

QMIX Heuristic

Figure 5.3: Visual description of the iterative process followed to generate the boxplots showcased
in Figure 5.4. [Left] Learning curves corresponding to 10 QMIX training seeds in a k-out-of-n
system with 50 agents. The markers highlight the policies that result in the highest expected sum
of discounted rewards during evaluation, i.e., one policy per seed. [Right] The ten policies and
the heuristic are displayed at the top as a function of the expected sum of discounted rewards
score obtained. The middle plot presents them as a function of normalised relative rewards with
respect to the heuristic, i.e., (x - h) / h. Finally, a boxplot is constructed at the bottom based
on the previously calculated ten normalised relative rewards.

MARL experiments is still sometimes significant. In environments with no campaign
cost, the performance achieved by MARL methods with respect to the baseline differs
in configurations with a high number of agents, as shown at the top of Figure 5.4. In
contrast, MARL methods reach better relative results in environments with many agents
when the campaign cost model is adopted, as illustrated at the bottom of Figure 5.4.
In general, the superiority of MARL methods with respect to expert-based heuristic
policies is justified by the complexity of defining decision rules in high-dimensional multi-
component engineering systems, where the sequence of optimal actions is challenging to
predict based on engineering judgment [Morato et al., 2023].

IMP challenges. In correlated k-out-of-n IMP environments, the variance over iden-
tical MARL experiments is higher than in the uncorrelated ones, emphasising a specific
IMP challenge. Under correlation, inspecting one component also provides information
to uninspected components, impacting their damage probability and thus hindering co-
operation between MARL agents. Another challenge is imposed in offshore wind farm
environments, where the benefits achieved by MARL methods with respect to the base-
line are also reduced in environments with a high number of agents. This can be explained
by the fact that each wind turbine is controlled by two agents and is independent of other
turbines in terms of rewards. Each agent must then cooperate closely with only one of all
agents, hence complicating global cooperation in environments featuring an increasing
number of agents.

Campaign cost environments. Yet another challenge can be observed in campaign
cost environments under 50 agents, where MARL methods’ superior performance with
respect to heuristic policies is more limited. The aforementioned environments are chal-
lenging for MARL methods because agents should cooperate to group component in-

68 infrastructure management planning

-100% -50% 0 50%

 H | n
 -12.5| 3
 -25.2| 5
 -63.7| 10
 -268.1| 50
 -262.4| 100

uncorrelated k-out-of-n

-100% -50% 0 50%

Normalised relative reward (x-H)/H

 H | n
 -13.0| 3
 -28.1| 5
 -67.7| 10
 -240.0| 50
 -218.1| 100

correlated k-out-of-n

-100% -50% 0 50%

 H | n
 -58.3| 2
 -116.9| 4
 -292.3| 10
-1463.8| 50
-2925.0| 100

offshore wind farm

-100% -50% 0 50%

 H | n
 -15.1| 3
 -28.6| 5
 -64.5| 10
 -232.7| 50
 -231.5| 100

uncorrelated k-out-of-n; campaign cost

-100% -50% 0 50%

Normalised relative reward (x-H)/H

 H | n
 -15.2| 3
 -30.5| 5
 -68.5| 10
 -211.0| 50
 -194.0| 100

correlated k-out-of-n; campaign cost

-100% -50% 0 50%

 H | n
 -62.2| 2
 -115.2| 4
 -267.2| 10
-1248.2| 50
-2436.3| 100

offshore wind farm; campaign cost

QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristic

Figure 5.4: Performance reached by MARL methods in terms of normalised discounted rewards
with respect to expert-based heuristic policies in all IMP environments, H referring to the heuris-
tics result. Every boxplot gathers the best policies from each of 10 executed training realisations,
indicating the 25th-75th percentile range, median, minimum, and maximum obtained results.
The coloured boxplots are grouped per method, vertically arranging environments with increas-
ing n agents, as indicated in the top-left legend boxes. Note that the results are clipped at -100%.

5.7 discussion and future work 69

spection/repair actions together, saving global campaign costs. In addition, the heuristic
policies are designed to schedule group inspections, being favourable in this case auto-
matically. This is confirmed by the learning curves presented in Figures A.7 and A.8 in
Appendix A.4. On the other hand, in environments with more than 50 agents, MARL
methods substantially outperform heuristic policies. At least one component is inspected
or repaired at each time step and the results reflect that avoiding global annual campaign
costs becomes less crucial.

Centralised RL methods do not scale with the number of agents. DQN reaches
better results than heuristic policies, though it achieves lower rewards than CTDE meth-
ods in most environments despite benefiting from larger networks during execution. This
highlights the scalability limitations of such centralised methods, mainly because they
select one action from each possible combination of component actions.

IMP demands cooperation among agents. The results reveal that CTDE meth-
ods outperform IQL in all tested environments, especially those with many agents. This
confirms that realistic IMP problems demand coordination among component agents.
Providing only independent local feedback to each IQL agent during training leads to
a lack of coordination in cooperative environments, also shown by Rashid et al. [2018].
However, the performance may be improved by enhancing networks’ representation ca-
pabilities by including more neurons, yet this is true for all investigated methods.

Infrastructure management planning via CTDE methods. Overall, CTDE
methods generate more effective IMP policies than the other investigated methods, demon-
strating their capabilities for supporting decisions in real-world engineering scenarios.
While Figure 5.4 presents the variance of the best results across runs, the learning curves
further confirm this finding in Appendix A.4. In particular, QMIX and QVMIX gener-
ally learn effective policies with low variability over their runs. Slightly more unstable,
QPLEX also yields results similar to those of QMIX and QVMIX. While being able
to outperform heuristic policies in almost every environment, FACMAC exhibits a high
variance among runs. However, FACMAC effectively scales up with the number of agents
and environment complexity (as reported by their authors [Peng et al., 2021]), achiev-
ing some of the best results in IMP environments with over 50 agents as well as in
correlated IMP environments. The results also suggest that COMA is our benchmark’s
least scalable MARL method. This can be attributed to the fact that the computation
of the critic’s counterfactual becomes challenging with an increasing number of agents.
Additional results are presented in Appendix A.4, where many tables and figures can be
found.

5.7 discussion and future work

This work offers an open-source suite of environments for testing the scalability of co-
operative MARL methods for efficiently generating IMP policies. Through our publicly
available code repository, we also encourage the implementation of additional IMP en-

70 infrastructure management planning

vironments, such as bridges, transportation networks, pipelines, and other relevant engi-
neering systems. This allows specific disciplinary challenges to be identified in a common
simulation framework. Based on the reported benchmark results, we can conclude that
CTDE methods generate effective infrastructure management policies in real-world engi-
neering scenarios. While the results reveal that MARL methods outperform expert-based
heuristic policies, additional research efforts should still be devoted to developing scalable
cooperative MARL methods.

While we model the IMP decision-making problem as a Dec-POMDP, modelling IMP
problems as mean-field games [Laurière et al., 2022] is a promising direction to be con-
sidered in environments with an increasing number of agents. Moreover, specific improve-
ments are still required in environments where a global cost is triggered from the actions
taken by any local agent, e.g., global campaign cost. Besides, more stable training is still
needed in environments where local information perceived by one agent can influence the
damage condition probabilities of others, as in the correlated IMP environments. More
realistic and challenging environments for cooperative MARL methods could be investi-
gated. One example is assigning campaign costs to specific groups of components instead
of specifying only one global campaign cost. Another example is to address systems
composed of more heterogeneous components.

Part III

COOPERATE AGAINST AN OPPOS ING TEAM

6
COMPETIT ION

Outline

This chapter introduces basic concepts and literature stories of competitive
and general-sum settings of MARL. This is the third background chapter
of this manuscript. Section 6.1 introduces this third part of the manuscript,
wrapping up the two MARL settings introduced earlier. The solution of
each agent maximising its return can suffer from different problems, and
we present other types of solutions in Section 6.2. Section 6.3 presents his-
torical methods to learn in non-cooperative environments, from game the-
ory to adversarial search and MARL. We conclude this chapter in Section
6.4 by defining methods to solve competition and general-sum settings.

6.1 introduction

In Part I of this manuscript, we present the general framework for MARL and its different
settings. In Part II, we focused on the cooperative setting, where all agents receive the
same reward. In this third part of the manuscript, we focus on a different setting where
two teams of agents compete against each other. This chapter provides an overview of
MARL in the competition and general-sum setting. The next one then presents the two-
team competition setting and conducted experiments to highlight how to train teams by
combining the methods defined in Part II and the methods to train agents to compete
presented in this chapter.

One problem of MARL is that agents may never stop adapting their policies to the
new policies of other agents who are also adapting to changes since they are also learning.
This never-ending adaptation cycle led many researchers to define equilibria, achieved
when agents do not want to change their policy. Moreover, when agents receive a common
reward, like in Dec-POMDP, deciding which of two joint policies is the best is straight-
forward. However, this becomes less obvious when agents receive different rewards, like
in competitive and general-sum settings, where the change in the return of agents may
not be fair between two joint policies, equilibria or not. As introduced in previous chap-
ters, finding and selecting an equilibrium represents one of the main challenges of MARL.
Section 6.2 discusses different solutions in MARL to achieve an equilibrium and rank
policies.

Once these solutions are defined, Section 6.3 presents an overview of the history of act-
ing in multi-agent systems. As will be discussed, game theory defines solution concepts,

73

74 competition

and we cover some of its foundations, including historical RL and planning methods. Fi-
nally, Section 6.4 discusses self-play and population-based training, two learning scenarios
allowing agents to learn to act in complex games.

6.2 solutions

The solution to an MDP is the policy that maximises the agent’s expected return. While
finding the optimal policy may be challenging, deciding which of two policies is better,
given the expected return, is simple. In a POSG, the return of each agent is Gai

0 =

Eπ

[∑T−1
t=0 γtrait

]
, also shortened Gi(π) in the following. Choosing between two joint

policies is as straightforward in a Dec-POMDP as in SARL because agents all receive the
same reward, and their return changes identically. However, in other settings, when agents
receive different rewards, it can become challenging to determine which joint policy is a
better solution to the POSG. This is because the change in the return of each agent will
likely be different. Moreover, maximising each agent’s return may lead to never-ending
learning, where each agent adapts to the others. Therefore, alternative solutions to games
have been defined, and this section provides some. Albrecht et al. [2023] defines MARL
as a pair composed of an environment and a solution concept. While this section defines
some, a thorough list can be found in [Albrecht et al., 2023].

One of the solutions is the best response. It evaluates the policy of an agent ai by
considering that the policies of all other agents π−i are fixed. The best response policy
is in the set of argmaxπi Gi(πi,π−i) and may not be unique. It is indeed the solution
that provides the optimal return when other agents’ policies are fixed. It can be used to
iteratively compute a solution for all agents by computing the best response policy of
one agent after the others, as will be shown later.

Another well-known solution is the minimax solution, which we define in a two-player
zero-sum game. In such a game, the agent’s reward can be modelled as the negative of
the other’s, so rait = −ra−i

t and Gi(π) = −G−i(π). A joint policy π = (πi, π−i) is a
minimax solution if Gi(π) = maxπi minπj Gi(πi, πj). Again, several minimax solutions
can exist, but their returns are equal, called the game’s minimax value. In other words,
the minimax value can be achieved from a given state, typically the initial one, given
that both players play optimally [Russell and Norvig, 2010]. Regarding best responses
defined previously, one can interpret the minimax joint policy as the best response of one
agent to the best response policy of the other [Albrecht et al., 2023].

Extending this concept of mutual best responses to general-sum games with two or
more agents can be the definition of the Nash equilibrium [Albrecht et al., 2023]. This
equilibrium is achieved when no agent benefits from changing its current policy. A joint
policy π is a Nash equilibrium if ∀ai, any π′

i is such that Gi(π′
i,π

−i) ≤ Gi(π) [Nash Jr,
1950]. For some environments, only stochastic policies can achieve a Nash equilibrium.
For the rock-paper-scissor game, one example of stochastic policies achieving a Nash equi-
librium is to take each action with a uniform probability. Moreover, a Nash equilibrium

6.3 history 75

is not necessarily unique and has different expected return values for each agent. This
highlights the challenge of selecting the optimal equilibrium because the difference in
returns between equilibria is not always the same between agents.

These three solutions have been demonstrated in an SG, and we refer the reader to
the book of Albrecht et al. [2023]. They also discuss the complexity of computing an
equilibrium and explain that Nash equilibrium cannot be computed in polynomial time
in the general case. Variants and extensions of the Nash equilibrium also exist. The ϵ-Nash
equilibrium allows a surrounding region to improve flexibility and reduce the strict Nash
equilibrium. Until now, we have silently considered that agents take actions independently.
However, this is not always the case. Indeed, agents may have correlated policies leading
to the correlated equilibrium, also called coarse equilibrium. This equilibrium generalises
the Nash equilibrium to correlated policies. Both are fully covered by Albrecht et al.
[2023], who also conclude the definitions of equilibrium by highlighting their three main
limitations: the possible sub-optimality, the non-uniqueness, and the incompleteness of
these equilibrium solutions. The latter means that the equilibrium solution does not
provide specific actions to guide players back to the equilibrium path once they deviate
from it.

A non-equilibrium solution is a Pareto optimal joint policy. It comes from the multi-
objective optimisation literature [Ehrgott, 2012]. A joint-policy π Pareto dominates an
other one π′ if Gi(π) ≥ Gi(π′)∀i but for one agent ai, Gi(π) > Gi(π′). In other words, a
joint policy is Pareto-dominated if one agent can achieve better returns without reducing
the returns of others. A Pareto optimal joint policy is easily defined as not Pareto-
dominated by any other. The difference between Nash equilibrium is that here, no agent
can improve its return without worsening one of the others. Meanwhile, the Nash equilib-
rium considers a single agent to change without becoming worse. This Pareto optimality
combined with equilibrium allows the solution to be improved. Specifically, it reduces
the number of equilibriums considered because it seems evident that a Pareto optimal
equilibrium is better than a non-Parto one. However, there is often no unique Pareto-
optimal joint policy. More importantly, a joint policy can be Pareto-optimal without
being an equilibrium one. Finally, Pareto optimality does not consider how the return is
distributed amongst agents, leading to the notion of social welfare and fairness detailed
in [Albrecht et al., 2023].

6.3 history

Game theory (GT) [Von Neumann and Morgenstern, 1944] is as much the foundation
of MARL as is RL [Nowé et al., 2012; Albrecht et al., 2023]. The solution concepts
presented in Section 6.2 and the classification in three types of multi-agent settings are
results from game theory. GT with RL has a long history, ranging from normal-form
games to repeated normal-form games, and POSG is the complex extension of these
settings. In the following, we present the premise of binding GT and RL and cover

76 competition

methods that have led to what exists now to try to solve POSG. We finish with planning
methods dedicated to the extensive-form games that contributed to POSG’s progress.
This section presents some methods at the foundation of MARL to highlight foundations
from dynamic programming. These methods are described in [Albrecht et al., 2023] and
[Russell and Norvig, 2010], already exploited in this manuscript, in addition to the chapter
“Game theory and Multi-agent RL” [Nowé et al., 2012] presenting others.

In non-repeated normal-form games, finding the minimax solution with linear program-
ming [Albrecht et al., 2023] is possible. Game theory with RL also started in normal-form
games. For another example, we can cite the study on independent Q-Learning in coop-
erative normal-form games by Claus and Boutilier [1998]. Many methods also have been
proposed for SG. Learning the optimal value function for all states in an SG is possi-
ble using dynamic programming. Value iteration [Shapley, 1953] is an example of such
a method, the same name as its homologue in MDP [Sutton and Barto, 2018] despite
being slightly different in the concept. As in SARL, this method requires knowledge of
the environment model and has the same limitations.

A class of methods involves modelling other agents to predict their policy. This is
called agent modelling, which means that their policy is approximated from the observed
past actions. Once other agents’ policies are modelled, the best response against their
approximated policy can be computed. This is done in fictitious play [Brown, 1951] for the
normal-form game or more recently in Poker [Heinrich et al., 2015] Extensions consider
additionally learning how the opponent will update its strategy [He et al., 2016; Foerster
et al., 2018a].

There is also a different class of method called joint action learning. These methods
directly learn n state-joint-actions value functions Qi(s,u) to learn equilibrium Q value
iteratively with a temporal difference. However, these methods require assumptions on
the type of equilibrium agent aim. This leads to different algorithms, such as Minimax
Q-learning [Littman, 1994], Nash Q-learning [Hu and Wellman, 2003] and Correlated
Q-learning [Greenwald et al., 2003]. These algorithms have some limitations in the type
of equilibrium they can achieve [Albrecht et al., 2023]. The joint action learning class
of the method forces all agents to follow the same equilibrium desire, or at least learn,
considering that they follow this same desire of equilibrium.

Many more details and methods can be found in [Albrecht et al., 2023], [Nowé et al.,
2012] and [Russell and Norvig, 2010]. We presented an overview of existing methods to
provide a bit of history. In the next section, we focus on self-play and population-based
methods that motivated the work presented in Chapter 7. However, we finish this section
with planning methods in multi-agent systems.

Section 2.4.2 defines planning as computing a local solution using the environment
model. Planning has a long history in multi-agent systems, especially in fully observable
two-player zero-sum games with turn-taking actions. These games are called extensive-
form games, different from the repeated normal-form ones because agents do not act
simultaneously [Nowé et al., 2012]. Famous examples include Chess and Go. In such

6.3 history 77

board games, agents take action, modifying the state of the board that is observable by
both. Both obtain zero rewards except at the end of the game. If one wins, it obtains
a reward equal to 1; if it is a draw, both receive a reward equal to 1/2. The sum of all
rewards is thus always 1. One family of planning methods to play this game is adversarial
search [Russell and Norvig, 2010].

Adversarial search is an extension of classical tree search, where a tree representing all
possible games is built by considering all possible successive actions of the agent. In such
a tree, each node represents a state, and each edge represents an action. A path from the
root to a leaf thus represents one possible game. The best solution is, therefore, the path
toward the leaf providing the best outcomes. Growing such a tree can become intractable
when the number of possible games increases. This leads to methods that build only a
subpart rather than the entire tree using information during the search. This information
is typically given by an evaluation function approximating the best achievable outcomes
from a given node. A well-known informed tree search method is A*.

Back to adversarial search, growing the tree of all possibilities is possible. However,
one needs to consider the presence of other agents, especially the uncertainty regarding
their future actions. This motivates the need for a search algorithm to be executed for
every action. In Section 6.2, we presented the minimax solution providing the minimax
value if both players play optimally. The minimax algorithm is an adversarial search
algorithm that computes this minimax value from each tree node. Therefore, the optimal
action is to select the action with the maximum minimax value or the minimum for the
other player. However, despite being able to prune such a tree and not compute all values
with the alpha-beta minimax algorithm, problems still arise as the tree’s size increases.
A solution is thus to define a criterion to stop expanding the tree at a given node and
approximate the minimax value at this node. However, this approximation cannot always
be perfect and could lead to suboptimal choices in complex games. The reader should
now understand why a game’s complexity is linked to the number of possible games.

This leads to Monte Carlo tree search (MCTS), in which states are evaluated by play-
ing games with random actions instead of an evaluation function. This allows the agent
to estimate the win rate achievable from a state without knowledge. In MCTS, the tree
is expanded iteratively by selecting nodes to evaluate by random games. The underlying
idea is not to explore the tree arbitrarily but to focus on nodes that frequently provide
good results. Simple rules define the selection and expansion process of nodes. Random
games are played from intermediate nodes, not always the root, whose direct parent have
already been used to start a random game. For each expanded node, the win rate as-
sociated with the action taken to reach it and the number of times this node has been
selected are stored. These two quantities drive the selection process, highlighting the ex-
ploration/exploitation dilemma to play games from unexplored nodes while maintaining
certainty of good ones.

AlphaGo [Silver et al., 2016] allowed an agent to beat the best humans by modifying the
traditional MCTS to benefit from the learning capabilities of neural networks. Instead of

78 competition

playing random games to approximate win rates and probabilities of taking actions, two
neural networks approximate them. The MCTS searches are guided by neural networks,
which play games that are then used to train the neural network. These networks are
initially trained with a dataset of human games before using games generated by letting
the agent play against itself. AlphaGo Zero [Silver et al., 2017] is the extension without
pre-training the networks with human data and other minor changes. They have been
generalised to AlphaZero [Silver et al., 2018], which also plays Go and Shogi. Later, such
tree search method has been extended to MuZero, which learns the model of any game
to play it [Schrittwieser et al., 2020]. MCTS and these two extensions are part of the self-
play class of algorithms, training the same strategy for all agents in the environment. The
following section presents works that combine model-free RL and self-play. The extension
considers population-based training, where multiple agents train by playing against each
other.

6.4 self-play and population-based training

Its name implicitly defines self-play as methods that train an agent by making it play
against itself. In the previous section, we mentioned the model-based methods that have
been generalised to AlphaZero [Silver et al., 2018]. However, self-play can also be exploited
with model-free methods. One of the first methods combining model-free RL with neural
network and self-play is TD-Gammon, which plays backgammon, starting from random
network parameters to achieve a master level [Tesauro, 1994]. Later, the success of modern
RL methods allowed the achievement of human-level performance in other games, such
as in Stratego [Perolat et al., 2022]. Self-play has also been used with more than two
competing agents in mixed cooperative-competitive environments, like the framework
introduced in Chapter 7, such as Hide and Seek [Baker et al., 2019] or open AI five
[OpenAI et al., 2019]. In Hide and Seek, they trained agents in self-play with PPO and
a centralised critic with access to the state, a CTDE method. They demonstrated that
the auto-curriculum provided by self-play, in addition to learning successive strategies,
allows agents to understand the environment better and perform better on new tasks
than agents trained with the classical unsupervised RL method, where agents learn to
explore the environment. Self-play also shown benefits for autonomous driving [Cornelisse
and Vinitsky, 2024].

In some, the self-play agent sometimes plays against an old version of itself. This allows
it to be resilient against diverse strategies, not generalise, and not forget how to play them.
An essential requirement of self-play is the policy that the agent learns should be able to
act in place of other agents. When agents are heterogenous, typically in their uncertainty
about the state or in their action space, self-play may not be possible. A solution is to
train a population of policies for each agent [Jaderberg et al., 2017]. Moreover, in self-play,
when agents play against a past version of themselves, it is considered a particular case
of population-based training because several policies are kept to play against.

6.4 self-play and population-based training 79

There are several examples of games where human-level performance has been achieved
with population-based training. We can think of Quake III Arena in Capture the Flag
mode [Jaderberg et al., 2019], StarCraft [Vinyals et al., 2019]. In these two, self-play is still
possible because agents are the same. Still, population-based training allows for solving
complex games because, on the one hand, it updates all policies from the population
instead of just one. On the other hand, there are many different strategies in such games.
Indeed, the classical process of population-based training starts with several policies,
which are evaluated and updated as they play games against each other. The population
may be modified by increasing its size, duplicating some of its individuals, or freezing
others. Maybe the most successful method when training a population is to use policy
space response oracles (PSRO) [Lanctot et al., 2017; Muller et al., 2020]. In short, PSRO
reframes population-based training as a normal-form metagame in which actions are
policies. It computes the probabilities of selecting each policy in each population of
agents to achieve an equilibrium. From these computed distributions, it is possible to
create new best-response policies to be added to the population. The complexity of such
a method is immense because, on the one hand, the distributions of actual strategies to
achieve equilibrium should be established. On the other hand, the best responses to such
distribution should be computed by training new agents.

7
TWO-TEAM MARKOV GAME

Outline

This chapter presents how to combine cooperative and competitive meth-
ods to train two teams to compete. Section 7.1 introduces the motivations
behind this study. Following this, we define the two-team Markov game
in Section 7.2 and the adaptation of SMAC to this mixed cooperative-
competitive framework in Section 7.3. Section 7.4 describes the learning
scenarios used to train and how to evaluate teams, followed by the exper-
imental setup in Section 7.5. The corresponding results are presented in
Section 7.6, and we conclude this chapter with discussions in Section 7.7.
This chapter is an adapted version of the publication [Leroy et al., 2022]
Value-based CTDE methods in symmetric two-team Markov game: from
cooperation to team competition, P. Leroy, J. Pisane, and D. Ernst. Deep
Reinforcement Learning Workshop NeurIPS, 2022

7.1 introduction

Many applications exist where two teams of multiple agents compete, such as in games
(Pommerman [Resnick et al., 2018]), cyber security (CyberBattleSim [Kunz et al., 2022]),
or in robotics (RoboCup [Kitano et al., 1997]). In certain use cases, agents are not fully
aware of the entire environment, such as in Cyber-Physical Production Systems [Phan
et al., 2020], Hide and Seek [Baker et al., 2019] or Capture the Flag [Jaderberg et al., 2019].
In this chapter, we combine the cooperative methods from Part II with the competitive
ones defined in Chapter 6 to train teams to compete in a mixed cooperative-competitive
POSG. The setting is a symmetric two-team Markov game where two teams of the same
agents compete. The goal is identifying how to train a team to be resilient to different
adversarial strategies.

Specifically, we study the difference between three learning scenarios: learning against
a stationary team policy, against a single evolving team strategy (self-play), and against
multiple evolving team strategies within a population of learning teams. To evaluate the
performance of each learning scenario, we created a new competitive environment suite by
modifying SMAC, initially designed for cooperation and defined in Section 3.3.1. We chose
symmetrical competition to ensure fair and balanced competition and the possibility
of controlling either team with the same agents. In two different SMAC environments,
teams are trained with the three value-based CTDE methods, QMIX, MAVEN, and

81

82 two-team markov game

QVMix, each with three learning scenarios. These methods are defined in Section 3.4. We
then analyse how they perform when faced with multiple opposing strategies by forming
test populations of trained teams. Our results suggest that when competing against
several possible strategies, teams trained in a population achieve the best performance,
but a selection process is required to select the best team. We reached this conclusion
irrespective of whether or not the stationary strategy was better than all trained teams.

7.2 two-team markov game

Our framework is a particular case of a POSG defined in Chapter 2 with a reward
function that provides two rewards, one per team. Specifically, we are in a symmetric,
mixed cooperative-competitive, partially observable two-team Markov game defined by
a tuple [S,Z,U , n,O,R, P, γ, T, p]. The components of this tuple are similar to the ones
defined in the stochastic game in Section 2.2 or in the Dec-PODMP in Section 3.2, and
we hereafter define only the different ones. The main one is that 2n agents learn in this
framework, divided into two teams of n agents. Let I = {1, .., n} and J = {1,−1}, the
ith agent of the jth team is denoted by ai,j with i ∈ I and j ∈ J . Since we assume
team symmetry, agents ai,1 and ai,−1 share the same action space ∀i, leading to only
one team joint action space U =×i∈I Uai,1 =×i∈I Uai,−1 . This leads the transition
function to be defined by P : S × U2 → ∆(S). The symmetry also induces that agents
ai,1 and ai,−1 have a similar uncertainty about the state ∀i. Still, the observation function
O : S × I × J → ∆(Z) maps a state to different observations for the same i. Common
team rewards {r1t , r−1

t } = R(st+1, st,ut) : S2×U2 → R2 are assigned to agents after each
time step. The goal of each agent ai,j to maximise its expected return Eπ,p,P

[∑T−1
t=0 γtrjt

]
where the joint policy π ∈ U2. Finally, the symmetry allows the policy of agent ai,1 to
select the agent’s actions i,−1 ∀i.

If one team is constrained to have a stationary policy, the other team would be the only
one learning, and the two-team Markov game can be considered a Dec-POMDP. In our ex-
periments, teams are trained with value-based CTDE methods designed for Dec-POMDP.
We chose QMIX because of its popularity, MAVEN because of its improved exploration
capability, which outperforms QMIX in complex scenarios, and QVMix because it has
proven competitive with these two as illustrated in Chapter 4.

7.3 competitive starcraft multi-agent challenge

To perform our experiments, we created a new environment by modifying SMAC to
create a competitive environment. We adapted1 both SMAC and the associated learning
framework PyMARL [Samvelyan et al., 2019]. It is now possible to control both opposing
teams in SMAC and train them simultaneously. In competitive SMAC, the goal remains

1 github.com/PaLeroy/competSmac - github.com/PaLeroy/competPymarl

github.com/PaLeroy/competSmac
github.com/PaLeroy/competPymarl

7.4 learning scenarios and performances criteria 83

unchanged, and it is to defeat the opposing team by inflicting sufficient damage to reduce
the hit points of all opponents to zero. However, unlike in Chapter 4 experiments, the
winning team is the one that ends up with the highest sum of remaining hit points at
the end. It is a draw if both teams end up with equal hit points. We have chosen the
3m and 3s5z maps for our experiments but increased the time horizon. In the 3m map,
two teams of three marines compete for a maximum of 100 time steps. In the 3s5z map,
two teams of three stalkers and five zealots compete for a maximum of 150 time steps.
Additionally, agents observe their relative position to the centre of the map. Section 3.3.1
provides more details about these two maps and SMAC.

7.4 learning scenarios and performances criteria

We aim to train a team to be resilient to different adversarial strategies. We test three
different learning scenarios differentiated by the diversity of opponents’ strategies en-
countered during training. The trained teams can act as any of the two teams in our
environments thanks to the environment symmetry. In the first learning scenario, the
team is trained against a stationary strategy, which we refer to as a heuristic. As ex-
plained in Section 7.2, such configuration is a Dec-POMDP and is the framework for
which CTDE methods are designed. The second learning scenario is self-play, in which
the team is trained by playing against itself, thus facing a strategy that continuously
improves at the same learning speed. In the third scenario, a population of several teams
is trained using the same method. Teams either play against themselves or against other
learning teams. Self-play is the particular case of a training population composed of a
single team. In this study, the size of the training population is fixed to five to reduce
computational complexity.

After training, we evaluate teams with the Elo rating system [Elo, 1978]. The Elo
rating system aims to assign each population player a rating of R to rank them. From
these ratings, one can compute the probability that a player will win when facing another.
Let RA and RB be the ELO scores of players A and B, respectively. The probability that
player A wins over player B is EA = 10RA/400

10RA/400+10RB/400 and the probability that B wins

over A is EB = 10RB/400

10RA/400+10RB/400 . One can see that EA + EB = 1. The number 400 can
be considered as a parameter. It determines that if player A’s Elo score is 400 points
above that of B, it has a ten-times greater chance of defeating B. After a game, player
A’s rating is updated based on its score SA, equal to 1 for a win, 0 for a loss, and 0.5

for a draw. The updated score is R′
A = RA + cst ∗ (SA − EA) where cst is a constant

that defines the maximum possible update of the Elo score. Typically, cst is 32, but for
our experiments, we set it to 10 to decrease the amplitude of oscillations in the Elo score
during tests.

We form test populations to compute Elo scores in different configurations. To evaluate
only the learning scenarios, we formed one test population for each CTDE method, with
teams trained with all learning scenarios. To evaluate the heuristic’s performance, we add

84 two-team markov game

it to the previously defined test populations to form new ones. To find the best learning
scenario/training method pair, we group all trained teams in two test populations, with
and without the heuristic. To evaluate training efficiency and heuristic performances, each
trained team is tested along training against the heuristic and against teams trained with
other learning scenarios but using the same CTDE method.

7.5 experiments

For our experiments, teams were trained in two different environments using three learn-
ing scenarios and three CTDE methods. We conducted the same experimental process for
both environments. Each method’s learning scenario was executed ten times and stopped
after each team had exploited 107 samples. For each method, this resulted in ten teams
trained against the heuristic requiring 107 environment time steps, ten teams trained in
self-play requiring 5 × 106 environment time steps and ten training populations of five
teams leading to 50 teams trained within populations requiring at least 5× 107 environ-
ment time steps. Therefore, 210 teams of nine types were trained in both environments.

To train teams against the heuristic, it was ensured that they play the same number
of episodes, acting as team j = 1 and team j = −1. Concerning training within a popu-
lation, each team had an equal chance of playing as either team and an equal chance of
playing against any team in the population, including itself. Network architectures and
parameters are identical for all learning scenarios and methods to ensure fair compari-
son. The default configurations provided by their different authors [Rashid et al., 2018;
Mahajan et al., 2019; Leroy et al., 2021] determined learning parameters. However, the
epsilon anneal time is set to 2 million instead of 0.5 million, and the networks are updated
every eight episodes in 3m and every episode in 3s5z. As in the literature, individual net-
works of each team share the same parameters to improve learning speed. Appendix B.1
provides more details about the training parameters, and we present training times in
Appendix B.2.

The heuristic policy is based on two rules. It moves toward the starting point of the
opponent’s team until it reaches the opposite side of the map and stops. If enemies are
within shooting range, the agent attacks the nearest one. This heuristic slightly differs
from StarCraft’s built-in AI, which is being used to train teams to cooperate in SMAC.
The built-in AI agents also move toward the other side but select targets based on a
priority score. They will choose to attack the closest unit with the highest priority, which
will remain the target until its priority drops or it can no longer be attacked. A unit’s
priority score is based on its type and current action. For example, if two of the same
units attack and the targeted unit stops attacking, its priority score will drop, and a
built-in AI agent will select the other unit to attack. This is the main difference from our
heuristic because agents will attack the nearest unit regardless of its action and priority.
Results show that our heuristic is more complex to beat than the one provided in SMAC.
Finally, while both maps are denoted as easy in [Samvelyan et al., 2019], the task of

7.6 results 85

learning everything from scratch is not. When learning against the heuristic, teams do
not need to learn how to find their opponents because they automatically move towards
them. When they learn through self-play or within a population, they first need to learn
where to find opponents before they can face them. This increased complexity compared
to the original SMAC led us to choose these maps, motivated by a compromise between
computational complexity and learning complexity.

As described in Section 7.4, we form test populations to evaluate teams with the
Elo rating system. For both environments, there are three test populations of 70 teams
trained with the same method but the three learning scenarios and one test population
with all 210 trained teams. Adding the heuristic creates four additional test populations
from the previously defined ones. In practice, to compute the Elo scores in these 16 test
populations, each team plays 20 games against all the other teams in a randomised order.
Every team starts with an Elo score of 1000, and we set the maximum Elo score update
to 10, which is sufficiently small for our population sizes. In Section 7.6, we analyse the
distribution of Elo scores after every team had finished its testing games.

During training, team neural network parameters are recorded every 20000 time step
until the 10 millionth played time step. The test populations are composed of agents
whose network parameters correspond to those recorded at the 10 millionth time step.
The other saved networks allow one to evaluate teams’ performances during training. We
evaluate teams trained with a method and a learning scenario against the heuristic and
against all teams trained with the same method but a different learning scenario. We
analysed the win rates along training time steps of these different matchups when teams
play 24 games against each other. For example, for the same method, each of the ten
teams trained in self-play played 24 games against all the 50 teams trained within a
population and against the 10 teams trained against the heuristic.

7.6 results

We present the Elo scores of teams with box plots in Figure 7.1 when the test population
contains teams trained with the same method. We first focus on performances when the
heuristic is not in the test population (Fig. 7.1a, 7.1c). The first observation is that the
best teams are the ones trained within a population, except with MAVEN in 3s5z (Fig.
7.1c.2) for which the differences between learning scenarios are smaller. We discuss these
differences later. The second observation is that the population scenario has the highest
variance. To understand this, we also plot the box plots corresponding to the ten teams
that achieved the highest Elo score of each training population, denoted by BP. These
box plots confirm a difference between teams of the same training population, and a
selection must be made to find the best one to optimise the performance of this learning
scenario. Training against the heuristic is the worst scenario, arguably because agents
do not generalise to other strategies than the heuristic. However, the heuristic is not in
these test populations, and its impact is a concern for later analysis. The performance

86 two-team markov game

H S P BP
700

1000

1300

El
o

sc
or

e

QVMix

H S P BP

MAVEN

H S P BP

QMIX

H S P BP

QVMix

H S P BP

MAVEN

H S P BP

QMIX

(a.1) (a.2) (a.3)

(a) 3m map without heuristic.

(b.1) (b.2) (b.3)

(b) 3m map with heuristic.

H S P BP
700

1100

1500

El
o

sc
or

e

QVMix

H S P BP

MAVEN

H S P BP

QMIX

H S P BP

QVMix

H S P BP

MAVEN

H S P BP

QMIX
Elo score of the heuristic

(c.1) (c.2) (c.3)

(c) 3s5z map without heuristic.

(d.1) (d.2) (d.3)

(d) 3s5z map with heuristic.

Figure 7.1: Elo score box plots of 12 test populations. Half of the experiments were performed
in the 3m map, shown at the top (7.1a, 7.1b) and the other half in the 3s5z map, shown at the
bottom (7.1c, 7.1c). In each test population, teams are trained with the same method, which
is either QVMix (7.1a.1, 7.1b.1,7.1c.1, 7.1d.1), MAVEN (7.1a.2, 7.1b.2,7.1c.2, 7.1d.2) or QMIX
(7.1a.3, 7.1b.3,7.1c.3, 7.1d.3). In 7.1b and 7.1d, the heuristic is present in the test population and
a green line represents its Elo score. Box plots represent the distribution of the ELO scores of
the teams trained either against the heuristic (H), in self-play (S), within a population (P) or
the best of each training population (BP). For most methods, teams trained within a population
achieved the highest Elo scores. Box plots present the median, the first quantile (Q1) and the
third quantile (Q3). The reach of whiskers is defined by 1.7 ∗ (Q3−Q1).

7.6 results 87

of teams trained in self-play lies between the two other learning scenarios. While some
achieve Elo scores close to those of the best teams in each training population, the scores
of others are lower than the lowest scores of teams trained within the population.

The same experiment is performed by adding the heuristic in the three test populations,
and corresponding box plots are presented in Figures 7.1b and 7.1d. The heuristic scores
are different depending on the map. In the 3m map, most teams achieve a higher Elo
score than the heuristic, whereas in 3s5z, the heuristic dominates all teams. Adding the
heuristic in the test populations slightly decreased Elo scores in the 3s5z map for all three
learning scenarios. The conclusion is straightforward and the heuristic is better than all
teams. However, one should note that the score ordering between the teams remained
the same between Figure 7.1c and 7.1d. In 3m, one can see that the Elo score of teams
trained against the heuristic (H) is higher in Fig. 7.1b than the ones in Figure 7.1a, as a
direct consequence of the introduction into the test populations of a team against which
they win. When compared with the previous test populations (Fig. 7.1a), teams trained
with QVMix achieved higher Elo scores than without the heuristic in the test population
(Fig. 7.1b.1). In contrast, when trained with MAVEN and QMIX, they achieved lower Elo
scores (Fig. 7.1b.2, 7.1b.3). In all cases, the higher values of box plots are not significantly
different, but lower values are, meaning that some teams performed poorly against the
heuristic. The conclusion is that teams trained within a population remain the most
successful in most of our experiments, regardless of whether the heuristic is the best or
almost the worst team.

In Figure 7.2a, we present the evolution of win rates against the heuristic along training
time steps by each team in the 3m map. For all methods, teams trained against the
heuristic are the best against it on average. This explains why their Elo scores improve
when the heuristic is included in the test population. This is also the case for QVMix
teams trained in self-play and within a population that performed better and learned
faster than teams trained with MAVEN and QMIX with these two learning scenarios.
However, in the 3s5z map, it can be seen in Figure 7.2b that the win rates against the
heuristic are very low, not to say equal to zero. Only the win rates of teams trained against
the heuristic, especially with QVMix and QMIX, increase at the end of the training but
with a high variance in comparison to the 3m map (Fig. 7.2a). For QVMix, the win rates
of teams trained with a population also increase at the end of the training phase. The
time we have budgeted for training in the 3s5z map may be insufficient to achieve a high
win rate. However, we find this beneficial because it shows that, even when the heuristic
is better than all teams, training against it, with the same training time steps allowance,
is not the best learning scenario when teams have to be good against several strategies.
This also shows that our heuristic is more complex to defeat when comparing the results
of [Rashid et al., 2018; Mahajan et al., 2019; Leroy et al., 2021] where better results are
observed in these maps with the former SMAC heuristic.

In the 3m map, the standard deviation of green and blue win rates, representing pop-
ulation and self-play learning scenarios, respectively, is high. This confirms the results

88 two-team markov game

0 2 4 6 8 100

50

100
W

in
 ra

te
 (%

)

0 2 4 6 8 10
Timesteps (×10

6
)

0 2 4 6 8 10

H S P

(a.1) QVMix (a.2) MAVEN (a.3) QMIX

(a) Win rates achieved against the heuristic in the 3m map.

0 2 4 6 8 100

10

20

W
in

 ra
te

 (%
)

0 2 4 6 8 10
Timesteps (×106)

0 2 4 6 8 10

H S P

(b.1) QVMix (b.2) MAVEN (b.3) QMIX

(b) Win rates achieved against the heuristic in the 3s5z map. Note the change in scale of the y-axis.

0 2 4 6 8 100

50

100

W
in

 ra
te

 (%
)

0 2 4 6 8 10
Timesteps (×10

6
)

0 2 4 6 8 10

P vs S S vs P P vs H S vs H

(c.1) QVMix (c.2) MAVEN (c.3) QMIX

(c) Win rates achieved by teams trained in the 3m map against themselves.

0 2 4 6 8 100

50

100

W
in

 ra
te

 (%
)

0 2 4 6 8 10
Timesteps (×106)

0 2 4 6 8 10

P vs S S vs P P vs H S vs H

(d.1) QVMix (d.2) MAVEN (d.3) QMIX

(d) Win rates achieved by teams trained in the 3s5z map against themselves.

Figure 7.2: Means of win rate achieved along training time steps by confronting teams trained with
the same method against the heuristic or against other teams trained with a different learning
scenario. Teams are trained either with QVMix, MAVEN, or QMIX. Tests were performed in the
3m map, shown at the top, and in the 3s5z maps, shown at the bottom. Win rates against the
heuristic are presented in red, blue and green for teams trained against the heuristic, in self-play
and within a population, respectively. Win rates of teams trained within a population against
teams trained in self-play are presented in green and against teams trained against the heuristic
in black. Win rates of teams trained in self-play against teams trained within a population are
presented in blue and against teams trained against the heuristic in red. The error band is half
the standard deviation.

7.6 results 89

of Elo score box plots, which show performance gaps between teams trained within the
same learning scenario. Observations also suggest that if trained for longer, teams trained
in self-play would achieve the same win rates as teams trained within a population, sug-
gesting a difference in training sample efficiency. As teams first need to learn to cross the
map to meet opponents and fight them, this difference is maybe because training within a
population against several strategies increases the probability of creating episodes where
two opposing agents meet and fight at the beginning of training.

Figures 7.2c and 7.2d show win rates from the confrontations between trained teams.
The draw rates can be obtained by subtracting from 1 the sum of these two curves.
This confirms the previous results with box plots that training against the heuristic
is the worst scenario, as an average win rate above 60% is achieved against them, as
shown in the black and red curves. Green and blue curves enable one to analyse self-
play against population-learning scenarios. At the beginning of the training phase, teams
trained within a population are better than self-play in the 3m map. This high win rate
decreases with training in favour of the win rate of teams trained in self-play for QVMix
and QMIX until it becomes higher than the latter. Again, this suggests a difference in
training sample efficiency. Moreover, although the training sample efficiency is lower for
teams trained in self-play, the number of environment time steps required to train them is
five times lower in our setting. However, it is on average that the self-play teams become
better. In the 3s5z map, this overlap phenomenon does not occur, and the average win
rates fluctuate around 50% with the green curves remaining just above the blue ones at
the end. The proximity of performances between teams trained in self-play and within a
population is arguably due to the environment and the 3m map, which does not offer the
possibility of winning with very different strategies. As the 3s5z map appears to be more
complex, with the lack of performances against the heuristic as evidence, teams trained
within a population remain better on average.

On average, the results of the teams trained within a population with MAVEN in the
3s5z map differ from the other experiments. Some results are slightly worse than those
of the other experiments. The reason for this is unsure, as we executed the experiments
several times, but this does not affect the conclusions of our experiments that remain clear.
Finally, it would be necessary to repeat these experiments more times or to analyse the
agents’ behaviour in depth to find the problem, which is beyond the scope of the study.

In Figure 7.3, we present the box plots of Elo scores obtained when grouping all
trained teams in a single test population for both maps, with and without the heuristic.
The learning scenario ranking remains the same as in other experiments. In the 3m map,
QMIX achieves the highest Elo scores, while the lowest MAVEN Elo scores are worse
than the ones of QMIX and QVMix when teams are trained in self-play or within a
population. QVMix produces results with a lower variance than QMIX. In the 3s5z map,
QVMix achieves the highest Elo scores, and MAVEN achieves the lowest ones. The same
experiment without the heuristic led to the same conclusion. Despite its exploration
mechanism, MAVEN cannot outperform QMIX and QVMix. This is also the case in

90 two-team markov game

[Mahajan et al., 2019] and [Leroy et al., 2021], where they show that MAVEN outperforms
QMIX but not QVMix in more complex Dec-POMDP environments.

7.7 discussion and future work

This study evaluated learning scenarios to train teams to face multiple strategies in a
symmetric two-team Markov game. Teams are trained with three value-based CTDE
methods, QMIX, MAVEN, and QVMix, and with three learning scenarios differentiated
by the variety of strategies they will encounter during their training. Specifically, they are
trained by playing against a stationary strategy, against themselves, or within a popula-
tion of teams trained using the same method. To perform our experiments, we modified
SMAC’s cooperative environment to allow teams to compete and train simultaneously
and trained teams in two different SMAC environments. The Elo rating system evaluates
these nine types of trained teams at the end of their training. Different groups are formed
to identify the best learning scenario and the best learning scenario/training method pair.
We also analysed the win rates of several matchups during training to support the results
provided by the Elo scores. Our results showed that the best learning scenario is to train
teams within a population of learning teams when each team plays the same number
of time steps for training purposes. We reached this conclusion irrespective of whether
or not the stationary strategy was better than all trained teams. Finally, a selection
procedure is required because teams from the same training population do not perform
equally.

This work is one of the first investigations of two-team competition with CTDE meth-
ods, and we hereafter suggest several future research directions. First, we suggest per-
forming the same experiments on more complex environments and tackling the challenges
of asymmetric settings. In this paper, we selected value-based methods because of their
performances in SMAC [Samvelyan et al., 2019] at the time of our experiments. Recent
CTDE methods overcome these performances and may lead to interesting new results.
Typically, stochastic policies trained with policy-based methods might provide better re-
sults in our setting. Another research direction would be to study how diversity in the
training population impacts performance. Diversity could be increased by adding the
heuristic in the population, confronting agents against older learned policies, varying the
size of the population or training teams with different methods in the same population.
In addition, as described in Chapter 6, methods that compute the best responses, exploit
PSRO or model the opponent would be interesting to test in such an environment. We
also propose performing behavioural and policy analyses to understand why some teams
achieve a better Elo score and how strategies differ in a single training population.

7.7 discussion and future work 91

H S P BP
700

1000

1300
El

o
sc

or
e

QVMix
MAVEN
QMIX

(a) 3m map with the heuristic.

H S P BP
700

1000

1300

El
o

sc
or

e

QVMix
MAVEN
QMIX

(b) 3m map without the heuristic.

H S P BP
700

1100

1500

El
o

sc
or

e

QVMix
MAVEN
QMIX

Elo score of the heuristic

(c) 3s5z map with the heuristic.

H S P BP
700

1000

1300

El
o

sc
or

e

QVMix
MAVEN
QMIX

(d) 3s5z map without the heuristic.

Figure 7.3: Elo score box plots of four test populations, in 3m at the top and 3s5z at the bottom,
composed of teams trained using three methods and three learning scenarios, with and without
the heuristic. The training method is either QVMix (red), MAVEN (blue) or QMIX (black). Box
plots represent the distribution of the ELO scores of teams trained either against the heuristic
(H), in self-play (S), within a population (P) or the best of each population (BP). Box plots
present the median, the first quantile (Q1) and the third quantile (Q3). The reach of whiskers is
defined by 1.7 ∗ (Q3−Q1).

Part IV

CONCLUS ION

8
CONCLUS ION

This thesis showcases the usefulness of considering other learning agents when training
one with reinforcement learning in the general case of MARL through three specific con-
tributions. The first contribution extends the Deep-Quality-Value single-agent family of
algorithms to the cooperative multi-agent setting. The second contribution demonstrates
the interest of these cooperative methods in the context of a real-world application: the
infrastructure management planning problem. The third contribution analyses how to
train a team in a mixed cooperative-competitive setting where two teams compete. We
hereafter summarise the manuscript’s content, divided into three parts, and discuss the
scientific findings before finally discussing the potential societal impact of MARL.

Part I provides the required background. Specifically, Chapter 2 presents the stochastic
game, a general framework for multi-agent reinforcement learning. This framework can be
adapted to specific settings distinguished by the agent’s objectives: cooperation, compe-
tition, or general-sum. In addition, multi-agent reinforcement learning has its foundation
in single-agent reinforcement learning, and we offer a concise introduction to its basics.
Specifically, we discuss model-based and dynamic programming. We detail value-based
and policy-based methods for model-free RL. We conclude by addressing the partial
observability of agents and the consequences in MARL.

Part II tackles the cooperative setting. When agents cooperate, it can be framed as a
decentralised partially observable Markov decision process where agents share the same
reward. This part comprises three chapters. One is a background chapter, and the others
address two contributions.

Chapter 3 defines the cooperative framework and details certain applications. Several
cooperative MARL methods to solve Dec-POMDP are defined following its definition,
emphasising how algorithms have been designed to allow centralised training with decen-
tralised execution. While the performance of these methods is compared in later chapters,
this third chapter concludes with a literature discussion, highlighting approaches not con-
sidered in this manuscript but still of interest.

Chapter 4 presents QVMix and other value-based methods for Dec-POMDP. It high-
lights that learning the state value function to update the state-action value function
as done in SARL by the DQV algorithms can be extended to cooperative CTDE meth-
ods in MARL. Some of the introduced methods outperform the ones compared against,
previously defined in Chapter 3. Moreover, they allow one to not overestimate the state-
action value function, unlike these compared value-based methods relying on the classical
Q-Learning update.

95

96 conclusion

Chapter 5 presents infrastructure management planning, a real-world application that
can be framed as a Dec-POMDP. Managing infrastructure by timely inspecting or re-
pairing system components to minimise failure risk and maintenance cost becomes chal-
lenging as the system grows. Decentralising the decision, making each component an
independent agent, and training them with CTDE methods allows for scaling to large
systems. Framing it as a multi-agent problem allows it to scale but also to outperform
rule-based approaches, considered the state-of-the-art for solving these problems. How-
ever, this work also highlights potential limitations when the number of agents increases,
especially regarding the variance each method provides.

Part III tackles a setting where two teams compete. This mixed cooperative-competitive
setting benefits from the cooperative methods and the training scenarios required to train
an agent in a competitive environment. This part is divided into two chapters. The for-
mer provides background on the competition setting, while the latter presents a specific
contribution in this two-team framework.

Chapter 6 addresses challenges when agents do not purely cooperate. This is the case
not only in the competitive setting but also in the general-sum one. This chapter presents
different types of solutions provided by game theory and discusses historical methods for
computing some of these solutions, from dynamic programming to planning methods. The
chapter concludes with the presentation of self-play and population training, two popular
training scenarios for training agents in competitive or general-sum environments.

Chapter 7 presents an empirical study of learning scenarios to train one team of agents
to compete against another. The setting is a symmetric two-team Markov game where
two teams of the same agents compete. We compared three learning scenarios in this
setting. We trained teams against a stationary policy, in self-play or within a population
of learning teams. The performance of these learning scenarios is evaluated with the Elo
score computed within different subsets of trained teams. This allows one to evaluate the
resilience level against various policies. This leads to the conclusion that the population-
based scenario is the best in this setting.

MARL is still a novel field, although it resides on strong and long-established foun-
dations based on game theory and reinforcement learning. The precise moment when
advances in neural networks significantly influenced MARL’s progress is debatable, given
that groundbreaking work in this area has only emerged recently. For the cooperative
setting, it is difficult to provide one, but VDN [Sunehag et al., 2018], MADDPG Lowe
et al. [2017] and COMA [Foerster et al., 2018b] can be considered as such works, along
with SMAC [Samvelyan et al., 2019] which is the starting point of many experiments.
We can also cite AlphaGo Zero [Silver et al., 2017], one of the popular breakthroughs in
the competitive setting, despite being considered as planning more than RL by some.

However, despite these advancements, many challenges remain, particularly regarding
the application of MARL in real-world scenarios. The community is bridging the gap with
environments closer to reality. One notable example of bridging this gap is IMP-MARL.
However, convincing applications of MARL that entirely replace classical planning ap-

conclusion 97

proaches have yet to emerge. While the classical problems of deploying RL in real life,
such as safety, robustness, or explainability of the trained agents, explain this, some effort
is still required to bring MARL into real life by demonstrating their potential.

The number of agents studied in the literature is often very limited, and increasing
this number should be considered in the future, in addition to getting closer to real-world
applications. Mean-field games, which aim to study systems with an infinite number
of agents, may be such candidates. Moreover, it is worth noting that the general-sum
setting is underrepresented in this manuscript while being the most challenging. Despite
existing work in this area, presented in Chapter 6, real-life general-sum settings, such
as autonomous driving, remain particularly challenging due to the complex interactions
between agents. We believe the reader can now understand why.

Finally, MARL has the potential to significantly impact society in various ways. Decision-
making is a fundamental aspect of human cognition, and throughout history, scientific
advancements have played a crucial role in aiding humans in making decisions. In this
manuscript, we discuss numerous impactful applications of MARL. Consider, for instance,
the profound impact of improving infrastructure management planning strategies. In
anticipation of environmental changes stemming from climate change, it is not merely
about saving costs in monetary terms but also minimising environmental damage, thereby
highlighting the broader implications of decision-making. Moreover, the challenges of au-
tonomous driving also highlight the complexities that MARL can address. From navi-
gating crowded streets to ensuring passenger safety, MARL may offer solutions in this
domain. Note that traffic management, controlling traffic lights, is also a well-studied
problem framed as a MARL one. Additionally, some contributions leading to the devel-
opment of this manuscript originated from a project involving defence use cases. While
remaining neutral on value judgments, it’s evident that the future of defence systems will
likely incorporate autonomous decision-making processes facilitated by MARL techniques.
However, a disclaimer regarding potential ethical concerns or unintended consequences
of these advancements is essential.

We denoted three applications where machine learning, whether as MARL or not,
will profoundly impact humanity’s future. And there are many more. As machine learn-
ing agents are increasingly deployed, studying how they interact is of greater interest.
Whether we like it or not, AI is changing the landscape of our lives. Nowadays, the
world’s concerns are divided between ecological sustainability and international armed
conflicts. In such times, efforts should be made to measure the direction of AI improve-
ments and, maybe, to revolutionise the world in the right direction. We leave it to the
reader to imagine their preferred direction.

Part V

APPENDIX

A
IMP -MARL SUPPLEMENTARY MATERIALS

a.1 repository, license, data, and documentation

All defined IMP environments are integrated with well-known MARL ecosystems, i.e.,
Gym [Brockman et al., 2016], Gymnasium [Towers et al., 2023], PettingZoo [Terry et al.,
2021] and PyMarl [Samvelyan et al., 2019], through wrappers. The tested MARL meth-
ods are adopted from PyMarl’s library, but other libraries are also compatible with
our wrappers, e.g., RLlib [Liang et al., 2018], CleanRL [Huang et al., 2022], MARL-
lib [Hu et al., 2022], or TorchRL [Bou et al., 2024]. All developments are available on
a public GitHub repository, https://github.com/moratodpg/imp_marl, featuring an
open-source Apache v2 license.

To reproduce the work reported in this paper, the following process can be executed: (i)
cloning the repository, (ii) installing a virtual environment with the package requirements,
and (iii) executing the script instructions of the corresponding method and IMP-MARL
environments. We provide instructions for reproducing our results and tutorials for adding
new environments or wrappers. Our code encodes models in Numpy files, stored in the
repository folder pomdp_models.

We also provide the data files resulting from our experiments, enabling the reproduc-
tion of any reported result without re-running the experiments and the corresponding
implementation code, hence facilitating future cross-comparisons. The readily available
results include Figures 5.4, A.7, and A.8, along with Tables A.5, A.6, A.7. Configu-
ration, execution, and results files are permanently stored at Zenodo, accessible via
https://zenodo.org/record/8032339. Additionally, the controller networks’ weights of
the best policies presented in Figure 5.4 are also stored there, thus fostering further inter-
pretability studies of MARL-based strategies. The dataset is open-access and registered
with the Digital Object Identifier (DOI) 10.5281/zenodo.8032339. More information and
dedicated tutorials can be found on the repository.

a.2 implemented options

In IMP-MARL, the environments can be easily set up with specific options, from the
definition of the number of agents to the observation information perceived by the agents
and the state information received by mixers/critics. This can be straightforwardly spec-
ified through the configuration files provided on IMP-MARL’s GitHub repository. These
options are parameters included in IMP-MARL’s classes. We refer the reader to the
Appendix of the original paper from Leroy et al. [2023] to know more.

101

https://github.com/moratodpg/imp_marl
https://zenodo.org/record/8032339

102 imp-marl supplementary materials

Parameter name Parameters value Parameter name Parameters value

γ 0.95 Time max 2,050,000

Target update 200 RMS epsilon 10−5

RMS alpha 0.99 Grad norm clip 10

Learning rate 0.0005 Obs last action True

Agent network [] - 64 GRU - [] Save model interval 20,000

Table A.1: Parameters set in our experiments.

a.3 experimental details

a.3.1 Description of the parameters set up in the experiments

This section provides the information required to reproduce the results reported in this
paper. Since the neural networks are trained via MARL using PyMarl’s [Samvelyan et al.,
2019] library, the parameters follow PyMarl’s convention. However, their purpose can be
easily deduced from the names themselves. The experimental parameters set up equal
across all experiments are presented in Table A.1, while the parameters specific to each
method are hereafter detailed. Note that in Table A.1, some parameters are not used
by all methods, e.g., RMS parameters. Besides, target update intervals, buffer size, and
batch size are specified based on the number of episodes. When the number of agents
increases, we only augment the number of trainable parameters of the mixer/critic net-
works, while the actor networks and other parameters are not modified. The configuration
files, available on the GitHub repository, contain all the parameters and can be used to
launch any of the experiments conducted in this paper.

The agent network representation for CTDE methods and IQL consists of one GRU
layer with a hidden state with 64 features. This means that the input is fully connected
to the 64 hidden states, which are then fully connected to the outputs, one per action. We
represent it as "[] - 64 GRU - []". Since the number of actions is 3n, and hence the number
of outputs of DQN network, a network with more representation capacity is needed. In
that case, linear layers, whose number of output features are specified between brackets,
are also included in the agent network surrounding the GRU layer. With n = 2 or n = 3

agents, the network is set as "[128] - 128 GRU - [128,64]" while for n = 4 or n = 5 agents,
it is set as "[256] - 256 GRU - [256,256]". Note that the linear layers before the GRUs
include a Relu activation function, and the last action taken is also added to the agents’
observation as an additional input.

As mentioned previously, some parameters are the same for almost all methods. For
instance, the optimiser selected is RMSProp for all methods except for FACMAC, which
is trained with ADAM. In nearly all methods, the buffer stores the latest 2, 000 episodes,

A.3 experimental details 103

Epsilon start Epsilon finish Epsilon anneal time

Value-base methods 0.5 .01 5000

FACMAC 0.3 0.005 50000

Table A.2: Exploration parameters.

and 64 episodes are sampled at each episode to update the network. However, since
COMA is an on-policy method, the networks are updated with the episodes just played.
Therefore, in our experiments, COMA’s networks are updated every four episodes based
on these last experienced ones. This update is performed four times to ensure a fair
number of network updates compared to the other methods, which are updated every
episode.

During training, the value-based methods rely on an epsilon-greedy policy, whose pa-
rameters are specified in Table A.2, while they act following a greedy policy at testing.
Note, however, that COMA and FACMAC utilise different training policies. FACMAC
samples discrete actions through a Gumbel softmax for its actor, whereas exploration is
performed via an epsilon, whose values are specified in Table A.2. On the other hand,
COMA follows a classic stochastic policy during training. At the testing stage, FACMAC
and COMA select actions adhering to a greedy approach, selecting the action associated
with the maximum probability.

In the conducted experiments, the parameters set up in the environments differ with
the number of agents, and we distinguish three cases: (i) n <= 10, (ii) n = 50, and
(iii) n = 100. Starting with QMIX, the parameters are all the same when increasing n,
except for the architecture of the mixing network, whose embedding size in the middle
of the mixer is (i) 32, (ii) 64, and (iii) 128. QMIX relies on a double-Q feature, i.e., the
loss computed to update θ differs from the original. While in the original loss function,
the target Q value used for the update is selected with the action that maximises the
target Q value parameterised by θ′, in double-Q, the action is the one that maximises the
Q value parameterised by θ. Therefore, we have: L(θ) = E⟨.⟩∼B

[(
rt + γQ(st+1, u∗; θ′) −

Q(st, ut; θ)
)2] where u∗ = argmaxuQ(st+1, u; θ). This target network is updated every

200 episode. QVMix is a variant of QMIX, and the parameter values are similarly specified.
In particular, QVMix contains two networks: (i) a Q network with the same architecture
as QMIX and (ii) a V network with a copy of the Q network but with only one output.
As for QPLEX, we try to be close to the parameters selected for the SMAC experiments
they conduct in their paper. When n increases, we change only the size of the attention
layer, which is composed of a layers and b heads. In particular, we set up (i) 1L4H, (ii)
2L4H, and (iii) 2L10H. The mixer embedding is 64 for all experiments.

Concerning COMA, an actor-critic method, a few specific parameters should be ad-
ditionally set up. The agent network, denoted as the actor, is the same as the other
previously described. However, the critic varies with n because the input of the critic

104 imp-marl supplementary materials

Method Network n = 3 n = 5 n = 10 n = 50 n = 100

QMIX
Agent 27,587 27,715 28,035 30,595 33,795

Mixer 18,657 41,249 133,569 5,430,657 42,202,113

QVMix
Agent 27,587 27,715 28,035 30,595 33,795

Mixer 64,771 110,083 295,043 10,891,779 84,437,891

QPLEX
Agent 27,587 27,715 28,035 30,595 33,795

Mixer 58,249 83,289 155,269 1,830,933 4,901,797

COMA
Agent 27,587 27,715 28,035 30,595 33,795

Critic 35,971 45,955 70,915 1,195,907 10,840,323

FACMAC
Agent 27,587 27,715 28,035 30,595 33,795

Critic 48,002 72,706 134,466 1,042,370 3,313,218

IQL
Agent 27,587 27,715 28,035 30,595 33,795

/ 0 0 0 0 0

DQN
Agent 157,979 758,003 / / /

/ 0 0 / / /

Table A.3: Number of trainable parameters in uncorrelated k-out-of-n systems.

becomes relatively large, and its architecture is entirely linear: (i) [128, 128], (ii) [512,
256, 128, 128], and (iii) [2048, 1024, 512, 256, 128]. A TD-λ used to update the critic is set
to 0.8, and the learning rate to train the critic is the same as that of the actor, specified
in Table A.1. Regarding FACMAC, the parameters of interest are those at the critic, as
its size increases with the number of agents n. FACMAC features a 2-layer-mixing net-
work and, therefore, we specify the size for both: (i) 64-64, (ii) 128-64, and (iii) 128-128.
As in COMA, the TD-λ parameter is set to 0.8. The critic has a target network, simi-
lar to value-based methods, updated every 200 episodes with a soft target update with
τ = 0.001. Moreover, we followed the optimiser selection made in FACMAC’s original
paper and used ADAM, with an epsilon equal to 10−8.

Regarding IQL, a decentralised method, the parameters are identical in all tested
environments. IQL also has the double-Q feature activated and learns individual Q values
independently via DQN’s algorithm. For DQN, we only run experiments with less than
five agents, i.e., n <= 5. The main difference between tested environments is the size
of their networks. Since DQN features 3n outputs, only 64 GRU cells are insufficient in
network capacity. In our experiments, we increase the network size and confirm that DQN
achieves similar results as the other MARL methods. In DQN, the network architecture
is the only parameter adjusted with the number of agents n.

A.3 experimental details 105

0 0.5 1 1.5 2

25

50

75

100

125

S
ta

nd
ar

d
de

vi
at

io
n

of
 R

_0

100 episodes

0 0.5 1 1.5 2
Timesteps (×10

6
)

25

50

75

100

125

1,000 episodes

0 0.5 1 1.5 2

25

50

75

100

125

10,000 episodes

Figure A.1: Variance analysis of a given set of neural networks. We report the standard deviation
of the sum of discounted rewards obtained during the test phase. Each curve represents an entire
test experiment when executing 100, 1,000, or 10,000 test episodes.

Finally, we list in Table A.3 the number of trainable parameters of the networks. The
input is slightly different between the tested sets of IMP-MARL environments, so we
show only the parameters for one of them in the table. Note that there is an agent
network taking action for all agents, and we purposely duplicate the agent network row
to emphasise that all agent networks are identical across experiments.

a.3.2 Statistical analysis of the variance associated with the number of test episodes

As previously explained, we conduct 10,000 test episodes to reduce the variance related
to the expected sum of discounted rewards within a given environment. The choice is
motivated by the direct relationship between the variance associated with E[R0] and the
number of test episodes. In our experiments, we average over 10,000 policy realisations.
Still, here, we show that the standard deviation associated with E[R0] for each training
time step can vary significantly if an insufficient number of test episodes is simulated.
Figure A.1 illustrates the standard deviations observed when executing with 100, 1,000,
and 10,000 test episodes. We produce this figure with the neural networks obtained with
one FACMAC training run. These networks are trained over time in the offshore wind
farm environment with 100 components. We execute ten times the 100, 1,000, and 10,000
test episodes from this single set of networks to observe how the variance evolves with this
number of test episodes. We observe that the standard deviations of E[R0] obtained with
100 test episodes significantly vary over the investigated test runs. Naturally, the standard
deviation variation is reduced with an increasing number of test episodes, obtaining very
similar standard deviations when testing with 10,000 episodes.

Moreover, one can also compute the largest difference that is observed between these
10 test runs at a specific time step, i.e., the absolute difference of the estimated E[R0]

at a given time step. When testing 100 episodes, the absolute difference is 231.89 at a
time step where the maximum of the ten provided E[R0] is −2786.1. If 1000 episodes
are tested, the absolute difference is 99.8, where the maximum is −2757.2 at this time
step, whereas by testing 10,000 episodes, the difference equals 24.8 with a maximum of
−2622.8. These numbers represent only a trained set of networks over 1920 training runs,

106 imp-marl supplementary materials

Parameters
Train only Train Test only Test

on CPUs on GPUs on CPUs on GPUs

Number of CPU 4 2 8 5

RAM 5 Gb 6 Gb 5Gb 10 Gb

Table A.4: Hardware configurations for training and testing experiments.

and thus, a final conclusion cannot be claimed. Yet, it motivates the need to simulate
10,000 test episodes, as with only 100 test episodes, the absolute difference can reach 10
%.

a.3.3 Hardware and experiments duration

Our experiments run on different clusters managed by SLURM [Yoo et al., 2003]. They are
executed with specific hardware requirements based on the number of agents: experiments
with up to 10 agents are run on only CPUs, and we perform experiments on GPUs with 50

and 100 agents. The efficiency does not substantially improve when running experiments
with less than 10 agents on GPUs because training a GRU layer requires forwarding the
whole episode sequentially. In contrast, the computational time can be reduced when
running experiments with 50 and 100 agents on GPUs because we train all agents as
a single network, and the batch size increases with n. We categorise the computational
time required for the reported experiments according to whether (i) the experiment is (or
is not) run only on CPUs and (ii) the value reported corresponds to the training or the
testing stage. In Table A.4, we additionally provide the hardware requirements demanded
during the training and testing phases. Note that we benefit from more resources during
testing because ten parallel environments run. Moreover, we intentionally demand more
RAM to avoid problems. These reported RAM configurations are indicative and can be
seen as requirements, yet not as exact memory usage numbers.

We represent the computational time required for the experiments during training in
Figures A.2 and A.3 as well as during testing in Figures A.4 and A.5. To avoid overloading
the figures, the markers do not explicitly indicate which experiment they correspond to,
yet the experiments are all vertically grouped based on the method and the environment.
For each abscissa, 20 experiments are represented with and without campaign cost. The
first three sets of experiments represent QMIX in the uncorrelated k-out-of-n setting,
followed by QMIX in the correlated k-out-of-n environment and QMIX in the offshore
wind farm one. The methods are ordered as QMIX, QVMIX, QPLEX, COMA, FACMAC,
IQL, and DQN, while the environments are ordered as k-out-of-n setting, correlated k-
out-of-n, and offshore wind farm. It can be seen in Figures A.2 and A.4 that the two plots
with n < 10 additionally represent the three additional experiments related to DQN.

A.3 experimental details 107

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

2

4

6

8

10

12

14

Ti
m

e
(in

 h
ou

rs
)

2 or 3 agents

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

5

10

15

20

25

30

Ti
m

e
(in

 h
ou

rs
)

4 or 5 agents

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

5

10

15

20

25

30

Ti
m

e
(in

 h
ou

rs
)

10 agents
Experiments executed on CPUs only

Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz
Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz

Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
AMD EPYC 7763 64-Core Processor

Figure A.2: Training duration for experiments with n <= 10 performed on only CPUs.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

4

6

8

10

12

Ti
m

e
(in

 h
ou

rs
)

50 agents

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ti
m

e
(in

 h
ou

rs
)

100 agents
Experiments executed on CPUs/GPUs

Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz / NVIDIA GeForce RTX 2080 Ti
Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz / Quadro RTX 6000
Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz / NVIDIA GeForce RTX 2080 Ti
AMD EPYC 7763 64-Core Processor / NVIDIA RTX A5000

Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz / NVIDIA GeForce GTX 1080 Ti
Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz / Tesla V100-SXM2-32GB
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz / NVIDIA RTX A5000

Figure A.3: Training duration for experiments with n >= 50 performed on CPUs and GPUs.

108 imp-marl supplementary materials

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

5

10

15

20

25

30

Ti
m

e
(in

 h
ou

rs
)

2 or 3 agents

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

5

10

15

20

Ti
m

e
(in

 h
ou

rs
)

4 or 5 agents

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

Ti
m

e
(in

 h
ou

rs
)

10 agents
Experiments executed on CPUs only

AMD EPYC 7763 64-Core Processor
Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz

Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz

Figure A.4: Testing duration for experiments with n <= 10 performed on only CPUs.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

10

20

30

40

Ti
m

e
(in

 h
ou

rs
)

50 agents

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

0

10

20

30

40

50

60

70

Ti
m

e
(in

 h
ou

rs
)

100 agents
Experiments executed on CPUs/GPUs

Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz / Quadro RTX 6000
Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz / NVIDIA GeForce RTX 2080 Ti
AMD EPYC 7763 64-Core Processor / NVIDIA RTX A5000
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz / NVIDIA GeForce GTX 1080 Ti

Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz / NVIDIA GeForce RTX 2080 Ti
Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz / Tesla V100-SXM2-32GB
Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz / NVIDIA RTX A5000

Figure A.5: Testing duration for experiments with n >= 50 performed on CPUs and GPUs.

A.3 experimental details 109

2 3 4 5 10 50 100
Number of components

0

10

20

30

40

Ti
m

e
(in

 h
ou

rs
)

k-out-of-n
correlated k-out-of-n
offshore wind farm

Figure A.6: Computational time required for executing expert-based heuristic policies as a func-
tion of the number of components. The experiments are run on 2 AMD EPYC Rome 7542 CPUs
@ 2.9GHz.

The first observation that may be addressed is the resulting high variance. The varia-
tion across runs is logical because of the specific performance of the CPU/GPU models
employed and the additional activity of clusters at the time of our experiments. Concern-
ing the computational time required for training, testing episodes are not executed. We
can see that, by running the experiments on only CPUs, we manage to train the agents in
less than 10 hours, except for occasional outliers. For experiments with 50 agents relying
on GPUs, the computational time is overall very similar to those previously mentioned,
requiring less than 10 hours. Yet, a longer time is needed for those with 100 agents. The
fastest training results correspond to COMA because we run four environments in parallel
instead of one during training. IQL and QMIX follow closely, but due to their complex
architectures, QVMix, QPLEX, and FACMAC require additional computational time.
Naturally, the testing stage requires more time than training for all experiments because
it executes 10, 000 test episodes per stored network. The correlated k-out-of-n environ-
ment requires slightly more time than the others because the correlation information is
updated at every inspection step.

Furthermore, we represent in Figure A.6 the time required to compute expert-based
heuristic policies. The experiments are plotted as a function of the number of components
and coloured based on their corresponding environment. In this case, all experiments
are run on CPUs. We can see that heuristic policies can be efficiently computed for
environments with less than 50 components, yet the computational time significantly
increases for experiments with 50 or 100 components. This result is logical since the
combination of evaluated parameters includes the number of components to be inspected
at each inspection interval. Besides, the overall computation time is directly influenced
by the time needed to run an episode, with the k-out-of-n environments taking longer
compared to the offshore wind farm ones because the episode’s finite horizon spans over
10 additional time steps.

110 imp-marl supplementary materials

a.4 additional benchmark results

This section presents additional results and remarks beyond those reported in the main
text. First, we provide the values of the expected sum of discounted rewards achieved by
the best runs over all experiments. We list the best policy for each conducted experiment
in Tables A.5, A.6, and A.7. Note that the maximum values represented with markers
at the right of each box in Figure 5.4 can be retrieved from these values by applying the
normalisation (x-H)/H, with H being the value achieved by the heuristic policies.

Additionally, we represent the learning curves corresponding to all our experiments in
Figures A.7 and A.8. The learning curves showcase the evolution of the expected sum
of discounted rewards every 20,000 training time steps, computed at the testing stage
with 10,000 test episodes. Since the training is conducted with 10 different seeds for
each environment and method, we plot the corresponding 25th-75th percentiles around
the median. These results confirm the variance observed between the best results and
presented in Figure 5.4.

Based on Tables A.5 and A.6, one may additionally infer that correlated environments
result in lower costs with respect to those uncorrelated. This is especially true for environ-
ments with n>=10 agents, specified without campaign costs, and in all environments with
campaign costs. While MARL methods profit from the additionally provided correlation
information, this is not always the case for the heuristic policies.

One final remark is that the discrepancy between the expert-based heuristic policy and
MARL methods is more pronounced in offshore wind farm environments. This could be
attributed to the shorter decision horizon or, the higher inspection cost in this case (see
Table A.7).

A.4 additional benchmark results 111

n QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristics

3 -9.7 -9.8 -9.7 -10.6 -10.4 -35.3 -9.9 -12.5

5 -20.4 -20.7 -20.4 -21.8 -22.1 -108.7 -24.0 -25.2

10 -51.0 -51.5 -51.0 -54.3 -61.3 -404.5 / -63.7

50 -229.7 -236.0 -212.8 -1190.6 -249.0 -1991.1 / -268.1

100 -222.6 -230.7 -220.6 -1770.1 -225.7 -1770.1 / -262.4

*3 -14.6 -14.7 -14.7 -15.0 -17.0 -35.3 -13.5 -15.1

*5 -27.4 -27.7 -27.4 -28.9 -33.0 -27.8 -26.6 -28.6

*10 -58.9 -63.0 -60.7 -70.0 -61.9 -404.5 / -64.5

*50 -169.5 -173.9 -168.4 -241.4 -160.7 -623.3 / -232.7

*100 -167.2 -175.8 -160.2 -1770.1 -144.8 -1770.1 / -231.5

Table A.5: k-out-of-n system best policies (* = campaign cost).

n QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristics

3 -9.7 -9.7 -9.6 -11.0 -10.6 -10.0 -10.0 -13.0

5 -20.4 -20.6 -18.4 -21.2 -21.6 -20.2 -23.4 -28.1

10 -47.6 -51.0 -45.2 -49.7 -46.1 -374.5 / -67.7

50 -214.3 -233.0 -212.3 -419.3 -143.4 -1339.9 / -240.0

100 -250.3 -289.0 -276.8 -486.9 -118.3 -1744.0 / -218.1

*3 -13.1 -12.9 -12.9 -14.8 -18.0 -34.7 -12.6 -15.2

*5 -23.5 -24.7 -23.5 -28.2 -29.2 -23.9 -26.8 -30.5

*10 -56.2 -53.4 -50.1 -52.8 -49.2 -56.0 / -68.5

*50 -132.6 -157.1 -121.2 -159.3 -106.6 -814.9 / -211.0

*100 -147.7 -147.5 -121.0 -339.1 -71.3 -723.8 / -194.0

Table A.6: Correlated k-out-of-n system best policies (* = campaign cost).

112 imp-marl supplementary materials

n QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristics

2 -23.3 -23.3 -23.2 -23.7 -40.5 -23.7 -23.2 -58.3

4 -47.1 -47.4 -47.1 -47.9 -122.4 -47.4 -47.7 -116.9

10 -118.4 -119.4 -118.5 -122.2 -235.2 -120.8 / -292.3

50 -604.4 -613.9 -604.6 -2805.8 -627.3 -2892.5 / -1463.8

100 -1224.1 -1238.8 -1213.2 -5785.1 -1625.2 -5785.1 / -2925.0

*2 -51.8 -52.0 -51.9 -60.1 -60.3 -52.0 -48.9 -62.2

*4 -80.5 -80.7 -80.7 -122.2 -118.6 -85.6 -76.0 -115.2

*10 -129.3 -133.3 -130.0 -314.5 -196.4 -132.0 / -267.2

*50 -432.9 -436.9 -434.5 -2892.5 -502.8 -1709.7 / -1248.2

*100 -808.1 -829.0 -852.3 -5785.1 -1280.5 -5785.1 / -2436.3

Table A.7: Offshore wind farm best policies (* = campaign cost).

A.4 additional benchmark results 113

0 0.5 1 1.5 250

40

30

20

10

0

R
ew

ar
d

uncorrelated k-out-of-n; n = 3

0 0.5 1 1.5 2
Timesteps (×10

6
)

50

40

30

20

10

0 correlated k-out-of-n; n = 3

0 0.5 1 1.5 2150

125

100

75

50

25

0 offshore win farm; n = 2
QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristic

0 0.5 1 1.5 2200

150

100

50

0

R
ew

ar
d

uncorrelated k-out-of-n; n = 5

0 0.5 1 1.5 2
Timesteps (×10

6
)

200

150

100

50

0 correlated k-out-of-n; n = 5

0 0.5 1 1.5 2400

300

200

100

0 offshore win farm; n = 4

0 0.5 1 1.5 2600

500

400

300

200

100

R
ew

ar
d

uncorrelated k-out-of-n; n = 10

0 0.5 1 1.5 2
Timesteps (×10

6
)

600

500

400

300

200

100

correlated k-out-of-n; n = 10

0 0.5 1 1.5 2600

500

400

300

200

100

offshore win farm; n = 10

0 0.5 1 1.5 2

2000

1500

1000

500

R
ew

ar
d

uncorrelated k-out-of-n; n = 50

0 0.5 1 1.5 2
Timesteps (×10

6
)

2000

1500

1000

500

correlated k-out-of-n; n = 50

0 0.5 1 1.5 2

4000

3000

2000

1000

offshore win farm; n = 50

0 0.5 1 1.5 22500

2000

1500

1000

500

R
ew

ar
d

uncorrelated k-out-of-n; n = 100

0 0.5 1 1.5 2
Timesteps (×10

6
)

2500

2000

1500

1000

500

correlated k-out-of-n; n = 100

0 0.5 1 1.5 2

8000

6000

4000

2000

offshore win farm; n = 100

Figure A.7: Learning curves in all environments with no campaign cost. Curves represent the
sum of discounted rewards obtained during test time. The bold line is the median, while the 25th
and 75th percentiles delimit the error bands. Colours represent the different methods, and each
environment’s parameters can be inferred from the title above its corresponding graph.

114 imp-marl supplementary materials

0 0.5 1 1.5 250

40

30

20

10

0

R
ew

ar
d

uncorrelated k-out-of-n; n = 3

0 0.5 1 1.5 2
Timesteps (×10

6
)

50

40

30

20

10

0 correlated k-out-of-n; n = 3

0 0.5 1 1.5 2150

125

100

75

50

25

0 offshore win farm; n = 2
QMIX QVMix QPLEX COMA FACMAC IQL DQN Heuristic

0 0.5 1 1.5 2200

150

100

50

0

R
ew

ar
d

uncorrelated k-out-of-n; n = 5

0 0.5 1 1.5 2
Timesteps (×10

6
)

200

150

100

50

0 correlated k-out-of-n; n = 5

0 0.5 1 1.5 2400

300

200

100

0 offshore win farm; n = 4

0 0.5 1 1.5 2600

500

400

300

200

100

R
ew

ar
d

uncorrelated k-out-of-n; n = 10

0 0.5 1 1.5 2
Timesteps (×10

6
)

600

500

400

300

200

100

correlated k-out-of-n; n = 10

0 0.5 1 1.5 2600

500

400

300

200

100

offshore win farm; n = 10

0 0.5 1 1.5 2

2000

1500

1000

500

R
ew

ar
d

uncorrelated k-out-of-n; n = 50

0 0.5 1 1.5 2
Timesteps (×10

6
)

2000

1500

1000

500

correlated k-out-of-n; n = 50

0 0.5 1 1.5 2

4000

3000

2000

1000

offshore win farm; n = 50

0 0.5 1 1.5 22500

2000

1500

1000

500

R
ew

ar
d

uncorrelated k-out-of-n; n = 100

0 0.5 1 1.5 2
Timesteps (×10

6
)

2500

2000

1500

1000

500

correlated k-out-of-n; n = 100

0 0.5 1 1.5 2

8000

6000

4000

2000

offshore win farm; n = 100

Figure A.8: Learning curves in all environments with campaign cost. Curves represent the sum
of discounted rewards obtained during test time. The bold line is the median, while the 25th
and 75th percentiles delimit the error bands. Colours represent the different methods, and each
environment’s parameters can be inferred from the title above its corresponding graph.

B
TWO-TEAM MARKOV GAME SUPPLEMENTARY MATERIALS

b.1 training parameters

The learning parameters of the three methods were determined by default configurations
provided by their different authors. They are the same as the ones used for experiments in
Chapter 4. Individual networks are 64 cells GRU enclosed with fully connected layers (see
Chapter 3). The mixer network is the same as in [Rashid et al., 2018] with an embedded
size of 32. The individual and mixer networks are the same for the three methods. We
used the default parameters of MAVEN policy networks provided by [Mahajan et al.,
2019]. For QVMix, the V network is a copy of the QMIX network with only one output
for each V network.

For each learning scenario, networks are updated regardless of how episodes have been
generated. Networks are updated from a replay buffer that collects the 5000 latest played
episodes, and 32 of them are sampled to update the network. The network update is
performed every eight episodes in the 3m map and every episode in the 3s5z map. The
difference is justified by the desire to increase the number of network updates for 3s5 to
improve performances, especially against the heuristic. The epsilon greedy exploration
starts with an epsilon equal to 1, decreasing linearly to 0.05 during 2 million timesteps.
This is perhaps the main difference between the provided parameters, which decrease the
epsilon only during 0.5 million timesteps. The discount factor is γ = 0.99, and the learning
rate is 0.0005. Target networks are updated every 200 episode. We refer the reader to
[Mahajan et al., 2019] for further parameter definitions for MAVEN optimisation.

b.2 training time

Experiments were performed with CPUs only because small recurrent neural networks
do not arguably benefit from GPU. We had access to several types of computers, with
different numbers of CPUs accessible at the same time. Training times for each experiment
performed are presented in Figure B.1. With all these different hardware configurations,
it is not possible to rigorously compare the times of the experiments. However, it is
possible to present the time complexity. As explained in Section 7.5, training in self-play
requires five times fewer environment timesteps than training within a population but
also five times fewer network updates. Furthermore, networks are updated sequentially
when training a population, increasing the time. Finally, SC2 processes are prone to
errors and sometimes need to be restarted. As the actions of all agents in the different

115

116 two-team markov game supplementary materials

P
MAVEN P

QMIX

P
QVMIX S

MAVEN

S
QMIX S

QVMIX

H
MAVEN H

QMIX

H
QVMIX

0

5

10

15
Ti

m
e

(d
ay

s)
3s5z

P
MAVEN P

QMIX

P
QVMIX S

MAVEN

S
QMIX S

QVMIX

H
MAVEN H

QMIX

H
QVMIX

3m

Intel(R) Core(TM) i9-10900X CPU @ 3.70GHz
Intel(R) Xeon(R) Gold 6248 CPU @ 2.50GHz
Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz

Intel(R) Xeon(R) CPU E5-2620 v4 @ 2.10GHz
Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz
AMD EPYC 7542 32-Core Processor

Intel(R) Xeon(R) Silver 4216 CPU @ 2.10GHz
Intel(R) Core(TM) i7-6850K CPU @ 3.60GHz
Intel(R) Core(TM) i7-7820X CPU @ 3.60GHz

Figure B.1: Training duration, in days, for the different learning scenarios tested in this paper.
The different colours represent the different CPUs used to perform the experiments.

running environments are performed simultaneously, these restarts are time-consuming
operations as the processes have to wait for the faulty one.

C
REFERENCES

I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron, A. Paino,
M. Plappert, G. Powell, R. Ribas, et al. Solving rubik’s cube with a robot hand.
arXiv:1910.07113, 2019.

S. V. Albrecht, F. Christianos, and L. Schäfer. Multi-Agent Reinforcement Learning:
Foundations and Modern Approaches. MIT Press, 2023.

C. P. Andriotis and K. G. Papakonstantinou. Managing engineering systems with large
state and action spaces through deep reinforcement learning. Reliability Engineering
& System Safety, 2019.

C. P. Andriotis and K. G. Papakonstantinou. Deep reinforcement learning driven inspec-
tion and maintenance planning under incomplete information and constraints. Relia-
bility Engineering & System Safety, 2021.

R. Avalos, M. Reymond, A. Nowé, and D. M. Roijers. Local advantage networks for multi-
agent reinforcement learning in Dec-POMDPs. Transactions on Machine Learning
Research, 2023.

B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and I. Mordatch.
Emergent tool use from multi-agent autocurricula. In International Conference on
Learning Representations, 2019.

N. Bard, J. N. Foerster, S. Chandar, N. Burch, M. Lanctot, H. F. Song, E. Parisotto,
V. Dumoulin, S. Moitra, E. Hughes, I. Dunning, S. Mourad, H. Larochelle, M. G.
Bellemare, and M. Bowling. The Hanabi challenge: A new frontier for AI research.
Artificial Intelligence, 2020.

R. E. Barlow and K. D. Heidtmann. Computing k-out-of-n system reliability. IEEE
Transactions on Reliability, 1984.

M. G. Bellemare, W. Dabney, and R. Munos. A distributional perspective on reinforce-
ment learning. In International conference on machine learning. PMLR, 2017.

R. Bellman. Dynamic programming. Science, 1966.

D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of de-
centralized control of markov decision processes. Mathematics of operations research,
2002.

117

118

E. Bismut and D. Straub. Optimal adaptive inspection and maintenance planning for
deteriorating structural systems. Reliability Engineering & System Safety, 2021.

A. Bolland, G. Lambrechts, and D. Ernst. Behind the myth of exploration in policy
gradients. arXiv:2402.00162, 2024.

A. Bou, M. Bettini, S. Dittert, V. Kumar, S. Sodhani, X. Yang, G. D. Fabritiis, and
V. Moens. TorchRL: A data-driven decision-making library for pytorch. In The Twelfth
International Conference on Learning Representations, 2024.

C. Boutilier. Planning, learning and coordination in multiagent decision processes. In
Proceedings of the 6th conference on Theoretical aspects of rationality and knowledge,
1996.

G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. OpenAI Gym. arXiv:1606.01540, 2016.

G. W. Brown. Iterative solution of games by fictitious play. Act. Anal. Prod Allocation,
1951.

N. Brown and T. Sandholm. Superhuman ai for heads-up no-limit poker: Libratus beats
top professionals. Science, 2018.

L. Buşoniu, R. Babuška, B. De Schutter, and D. Ernst. Reinforcement learning and
dynamic programming using function approximators. CRC Press, 2010.

M. Campbell, A. J. Hoane Jr, and F.-h. Hsu. Deep blue. Artificial intelligence, 2002.

F. Christianos, L. Schäfer, and S. Albrecht. Shared experience actor-critic for multi-agent
reinforcement learning. In Advances in Neural Information Processing Systems, 2020.

J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent
neural networks on sequence modeling. In NIPS Workshop on Deep Learning, 2014.

C. Claus and C. Boutilier. The dynamics of reinforcement learning in cooperative multi-
agent systems. AAAI, 1998.

D. Cornelisse and E. Vinitsky. Human-compatible driving partners through data-
regularized self-play reinforcement learning. arXiv:2403.19648, 2024.

C. S. De Witt, T. Gupta, D. Makoviichuk, V. Makoviychuk, P. H. Torr, M. Sun, and
S. Whiteson. Is independent learning all you need in the starcraft multi-agent chal-
lenge? arXiv:2011.09533, 2020.

J. Dinneweth, A. Boubezoul, R. Mandiau, and S. Espié. Multi-agent reinforcement learn-
ing for autonomous vehicles: A survey. Autonomous Intelligent Systems, 2022.

119

O. Ditlevsen and H. O. Madsen. Structural reliability methods. Wiley New York, 1996.

Y. Du, L. Han, M. Fang, J. Liu, T. Dai, and D. Tao. LIIR: Learning individual in-
trinsic reward in multi-agent reinforcement learning. Advances in Neural Information
Processing Systems, 2019.

M. Ehrgott. Vilfredo pareto and multi-objective optimization. Doc. math, 2012.

B. Ellis, J. Cook, S. Moalla, M. Samvelyan, M. Sun, A. Mahajan, J. N. Foerster, and
S. Whiteson. SMACv2: An improved benchmark for cooperative multi-agent rein-
forcement learning. In Thirty-seventh Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2023.

A. E. Elo. The rating of chessplayers, past and present. Ishi press international, 1978.

J. Foerster, I. A. Assael, N. De Freitas, and S. Whiteson. Learning to communicate with
deep multi-agent reinforcement learning. Advances in neural information processing
systems, 2016.

J. Foerster, R. Y. Chen, M. Al-Shedivat, S. Whiteson, P. Abbeel, and I. Mordatch. Learn-
ing with opponent-learning awareness. In Proceedings of the 17th International Con-
ference on Autonomous Agents and MultiAgent Systems, 2018a.

J. N. Foerster, G. Farquhar, T. Afouras, N. Nardelli, and S. Whiteson. Counterfactual
multi-agent policy gradients. Proceedings of the AAAI Conference on Artificial Intel-
ligence, 2018b.

A. Fombellida-Lopez. Master’s thesis: Coordination on the battlefield by multi-agent
reinforcement learning., 2020.

V. François-Lavet, P. Henderson, R. Islam, M. G. Bellemare, and J. Pineau. An introduc-
tion to deep reinforcement learning. Foundations and Trends® in Machine Learning,
2018.

F. Giro, J. Mishael, P. G. Morato, and P. Rigo. Inspection and maintenance planning for
offshore wind support structures: Modelling reliability and inspection costs at the sys-
tem level. In International Conference on Offshore Mechanics and Arctic Engineering,
2022.

R. Gorsane, O. Mahjoub, R. J. de Kock, R. Dubb, S. Singh, and A. Pretorius. Towards
a standardised performance evaluation protocol for cooperative marl. Advances in
Neural Information Processing Systems, 2022.

A. Greenwald, K. Hall, R. Serrano, et al. Correlated Q-learning. In ICML, 2003.

D. Ha, A. Dai, and Q. V. Le. HyperNetworks. 5th International Conference on Learning
Representations, 2016.

120

E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for partially
observable stochastic games. In AAAI, 2004.

M. Hausknecht and P. Stone. Deep recurrent Q-learning for partially observable MDPs.
AAAI Fall Symposium Series, 2015.

H. He, J. Boyd-Graber, K. Kwok, and H. Daumé III. Opponent modeling in deep rein-
forcement learning. In International conference on machine learning. PMLR, 2016.

J. Heinrich, M. Lanctot, and D. Silver. Fictitious self-play in extensive-form games. In
Proceedings of the 32nd International Conference on Machine Learning, 2015.

M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,
B. Piot, M. Azar, and D. Silver. Rainbow: Combining improvements in deep reinforce-
ment learning. In Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, 2017.

N. Hlaing, P. G. Morato, J. S. Nielsen, P. Amirafshari, A. Kolios, and P. Rigo. Inspection
and maintenance planning for offshore wind structural components: integrating fatigue
failure criteria with Bayesian networks and Markov decision processes. Structure and
Infrastructure Engineering, 2022.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural computation, 1997.

Y. Hong, Y. Jin, and Y. Tang. Rethinking individual global max in cooperative multi-
agent reinforcement learning. In Advances in Neural Information Processing Systems,
2022.

J. Hu and M. P. Wellman. Nash Q-learning for general-sum stochastic games. Journal
of machine learning research, 2003.

S. Hu, Y. Zhong, M. Gao, W. Wang, H. Dong, Z. Li, X. Liang, X. Chang, and Y. Yang.
MARLlib: A scalable multi-agent reinforcement learning library. arXiv:2210.13708,
2022.

S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta, and J. G. Araújo.
CleanRL: High-quality single-file implementations of deep reinforcement learning algo-
rithms. Journal of Machine Learning Research, 2022.

M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi,
O. Vinyals, T. Green, I. Dunning, K. Simonyan, et al. Population based training
of neural networks. arXiv:1711.09846, 2017.

M. Jaderberg, W. M. Czarnecki, I. Dunning, L. Marris, G. Lever, A. G. Castaneda,
C. Beattie, N. C. Rabinowitz, A. S. Morcos, A. Ruderman, et al. Human-level perfor-
mance in 3d multiplayer games with population-based reinforcement learning. Science,
2019.

121

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with gumbel-softmax. In
International Conference on Learning Representations, 2017.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 1998.

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, E. Osawa, and H. Matsubara. Robocup: A
challenge problem for AI. AI magazine, 1997.

V. Konda and J. Tsitsiklis. Actor-critic algorithms. Advances in neural information
processing systems, 1999.

J. G. Kuba, R. Chen, M. Wen, Y. Wen, F. Sun, J. Wang, and Y. Yang. Trust region
policy optimisation in multi-agent reinforcement learning. International Conference
on Learning Representations, 2021.

T. Kunz, C. Fisher, J. La Novara-Gsell, C. Nguyen, and L. Li. A multiagent cyberbat-
tlesim for rl cyber operation agents. In 2022 International Conference on Computa-
tional Science and Computational Intelligence (CSCI). IEEE, 2022.

K. Kurach, A. Raichuk, P. Stańczyk, M. Zając, O. Bachem, L. Espeholt, C. Riquelme,
D. Vincent, M. Michalski, O. Bousquet, et al. Google research football: A novel rein-
forcement learning environment. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2020.

G. Lambrechts, A. Bolland, and D. Ernst. Recurrent networks, hidden states and beliefs
in partially observable environments. Transactions on Machine Learning Research,
2022.

M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Perolat, D. Silver, and
T. Graepel. A unified game-theoretic approach to multiagent reinforcement learning.
In Advances in Neural Information Processing Systems, 2017.

M. Laurière, S. Perrin, M. Geist, and O. Pietquin. Learning mean field games: A survey.
arXiv:2205.12944, 2022.

P. Leroy, D. Ernst, P. Geurts, G. Louppe, J. Pisane, and M. Sabatelli. QVMix and
QVMix-Max: extending the deep quality-value family of algorithms to cooperative
multi-agent reinforcement learning. AAAI-21 Workshop on Reinforcement Learning in
Games, 2021.

P. Leroy, J. Pisane, and D. Ernst. Value-based CTDE methods in symmetric two-team
markov game: from cooperation to team competition. In Deep Reinforcement Learning
Workshop NeurIPS 2022, 2022.

122

P. Leroy, P. G. Morato, J. Pisane, A. Kolios, and D. Ernst. IMP-MARL: a suite of en-
vironments for large-scale infrastructure management planning via MARL. In Thirty-
seventh Conference on Neural Information Processing Systems Datasets and Bench-
marks Track, 2023.

E. Liang, R. Liaw, R. Nishihara, P. Moritz, R. Fox, K. Goldberg, J. Gonzalez, M. Jordan,
and I. Stoica. RLlib: Abstractions for distributed reinforcement learning. Proceedings
of the 35th International Conference on Machine Learning, 2018.

T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wier-
stra. Continuous control with deep reinforcement learning. In International conference
on learning representations (ICLR), 2015.

L.-J. Lin. Self-improving reactive agents based on reinforcement learning, planning and
teaching. Machine learning, 1992.

M. L. Littman. Markov games as a framework for multi-agent reinforcement learning. In
Machine learning proceedings. Elsevier, 1994.

I. Lotsberg, G. Sigurdsson, A. Fjeldstad, and T. Moan. Probabilistic methods for planning
of inspection for fatigue cracks in offshore structures. Marine Structures, 2016.

R. Lowe, Y. WU, A. Tamar, J. Harb, O. Pieter Abbeel, and I. Mordatch. Multi-agent
actor-critic for mixed cooperative-competitive environments. Advances in Neural In-
formation Processing Systems (NIPS), 2017.

J. Luque and D. Straub. Risk-based optimal inspection strategies for structural systems
using dynamic Bayesian networks. Structural Safety, 2019.

X. Lyu, Y. Xiao, B. Daley, and C. Amato. Contrasting centralized and decentralized
critics in multi-agent reinforcement learning. In Proceedings of the 20th International
Conference on Autonomous Agents and MultiAgent Systems, 2021.

A. Mahajan, T. Rashid, M. Samvelyan, and S. Whiteson. MAVEN: Multi-agent varia-
tional exploration. Advances in Neural Information Processing Systems, 2019.

J. McInerney, B. Lacker, S. Hansen, K. Higley, H. Bouchard, A. Gruson, and R. Mehrotra.
Explore, exploit, and explain: personalizing explainable recommendations with bandits.
In Proceedings of the 12th ACM conference on recommender systems, 2018.

R. Miotto, F. Wang, S. Wang, X. Jiang, and J. T. Dudley. Deep learning for healthcare:
review, opportunities and challenges. Briefings in bioinformatics, 2018.

A. Mirhoseini, A. Goldie, M. Yazgan, J. W. Jiang, E. Songhori, S. Wang, Y.-J. Lee,
E. Johnson, O. Pathak, A. Nazi, et al. A graph placement methodology for fast chip
design. Nature, 2021.

123

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis. Human-
level control through deep reinforcement learning. Nature, 2015.

T. M. Moerland, J. Broekens, A. Plaat, C. M. Jonker, et al. Model-based reinforcement
learning: A survey. Foundations and Trends® in Machine Learning, 2023.

S. Mohanty, E. Nygren, F. Laurent, M. Schneider, C. Scheller, N. Bhattacharya, J. Wat-
son, A. Egli, C. Eichenberger, C. Baumberger, et al. Flatland-RL : Multi-agent rein-
forcement learning on trains. arXiv:2012.05893, 2020.

P. G. Morato, K. G. Papakonstantinou, C. P. Andriotis, J. S. Nielsen, and P. Rigo.
Optimal inspection and maintenance planning for deteriorating structural components
through dynamic Bayesian networks and Markov decision processes. Structural Safety,
2022.

P. G. Morato, C. P. Andriotis, K. G. Papakonstantinou, and P. Rigo. Inference and
dynamic decision-making for deteriorating systems with probabilistic dependencies
through bayesian networks and deep reinforcement learning. Reliability Engineering &
System Safety, 2023.

P. Muller, S. Omidshafiei, M. Rowland, K. Tuyls, J. Perolat, S. Liu, D. Hennes, L. Marris,
M. Lanctot, E. Hughes, Z. Wang, G. Lever, N. Heess, T. Graepel, and R. Munos. A
generalized training approach for multiagent learning. In International Conference on
Learning Representations, 2020.

J. F. Nash Jr. Equilibrium points in n-person games. Proceedings of the national academy
of sciences, 1950.

V.-T. Nguyen, P. Do, A. Voisin, and B. Iung. Weighted-QMIX-based optimization for
maintenance decision-making of multi-component systems. PHM Society European
Conference, 2022.

A. Nowé, P. Vrancx, and Y.-M. De Hauwere. Game theory and multi-agent reinforcement
learning. In M. Wiering and M. van Otterlo, editors, Reinforcement Learning: State-
of-the-Art. Springer Berlin Heidelberg, 2012.

F. A. Oliehoek and C. Amato. A concise introduction to decentralized POMDPs. Springer,
2016.

F. A. Oliehoek, M. T. Spaan, and N. Vlassis. Optimal and approximate q-value functions
for decentralized pomdps. Journal of Artificial Intelligence Research, 2008.

124

OpenAI, C. Berner, G. Brockman, B. Chan, V. Cheung, P. P. Dębiak, C. Dennison,
D. Farhi, Q. Fischer, S. Hashme, C. Hesse, R. Józefowicz, S. Gray, C. Olsson, J. Pa-
chocki, M. Petrov, H. P. de Oliveira Pinto, J. Raiman, T. Salimans, J. Schlatter,
J. Schneider, S. Sidor, I. Sutskever, J. Tang, F. Wolski, and S. Zhang. Dota 2 with
large scale deep reinforcement learning. arXiv:1912.06680, 2019.

A. Oroojlooy and D. Hajinezhad. A review of cooperative multi-agent deep reinforcement
learning. Applied Intelligence, 2023.

X. Pan, M. Liu, F. Zhong, Y. Yang, S.-C. Zhu, and Y. Wang. MATE: Benchmarking
multi-agent reinforcement learning in distributed target coverage control. In Advances
in Neural Information Processing Systems, 2022.

K. G. Papakonstantinou and M. Shinozuka. Planning structural inspection and mainte-
nance policies via dynamic programming and Markov processes. Part I: Theory. Reli-
ability Engineering & System Safety, 2014a.

K. G. Papakonstantinou and M. Shinozuka. Planning structural inspection and main-
tenance policies via dynamic programming and Markov processes. Part II: POMDP
implementation. Reliability Engineering & System Safety, 2014b.

G. Papoudakis, F. Christianos, L. Schäfer, and S. V. Albrecht. Benchmarking multi-
agent deep reinforcement learning algorithms in cooperative tasks. In Proceedings of the
Neural Information Processing Systems Track on Datasets and Benchmarks (NeurIPS),
2021.

B. Peng, T. Rashid, C. Schroeder de Witt, P.-A. Kamienny, P. Torr, W. Boehmer, and
S. Whiteson. FACMAC: Factored multi-agent centralised policy gradients. Advances
in Neural Information Processing Systems (NeurIPS), 2021.

J. Perolat, B. D. Vylder, D. Hennes, E. Tarassov, F. Strub, V. de Boer, P. Muller, J. T.
Connor, N. Burch, T. Anthony, S. McAleer, R. Elie, S. H. Cen, Z. Wang, A. Gruslys,
A. Malysheva, M. Khan, S. Ozair, F. Timbers, T. Pohlen, T. Eccles, M. Rowland,
M. Lanctot, J.-B. Lespiau, B. Piot, S. Omidshafiei, E. Lockhart, L. Sifre, N. Beauguer-
lange, R. Munos, D. Silver, S. Singh, D. Hassabis, and K. Tuyls. Mastering the game
of stratego with model-free multiagent reinforcement learning. Science, 2022.

T. Phan, T. Gabor, A. Sedlmeier, F. Ritz, B. Kempter, C. Klein, H. Sauer, R. Schmid,
J. Wieghardt, M. Zeller, et al. Learning and testing resilience in cooperative multi-
agent systems. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems, 2020.

S. J. Prince. Understanding Deep Learning. MIT Press, 2023.

125

T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster, and S. Whiteson.
QMIX: Monotonic value function factorisation for deep multi-agent reinforcement
learning. Proceedings of the 35th International Conference on Machine Learning, 2018.

T. Rashid, G. Farquhar, B. Peng, and S. Whiteson. Weighted QMIX: Expanding mono-
tonic value function factorisation for deep multi-agent reinforcement learning. Advances
in Neural Information Processing Systems, 2020.

C. Resnick, W. Eldridge, D. Ha, D. Britz, J. Foerster, J. Togelius, K. Cho, and J. Bruna.
Pommerman: A multi-agent playground. In CEUR Workshop Proceedings, 2018.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall, 2010.

M. Sabatelli. Contributions to Deep Transfer Learning: from Supervised to Reinforcement
Learning. PhD thesis, Université de Liège, Liège, Belgique, 2022.

M. Sabatelli, G. Louppe, P. Geurts, and M. A. Wiering. Deep quality-value (DQV)
learning. Advances in Neural Information Processing Systems, Deep Reinforcement
Learning Workshop, 2018.

M. Sabatelli, G. Louppe, P. Geurts, and M. A. Wiering. The deep quality-value family of
deep reinforcement learning algorithms. In International Joint Conference on Neural
Networks (IJCNN), 2020.

M. Saifullah, C. Andriotis, K. Papakonstantinou, and S. Stoffels. Deep reinforcement
learning-based life-cycle management of deteriorating transportation systems. In
Bridge Safety, Maintenance, Management, Life-Cycle, Resilience and Sustainability,
2022.

M. Samvelyan, T. Rashid, C. Schroeder de Witt, G. Farquhar, N. Nardelli, T. G. J.
Rudner, C.-M. Hung, P. H. S. Torr, J. Foerster, and S. Whiteson. The starcraft multi-
agent challenge. In Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, 2019.

J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel, et al. Mastering atari, go, chess and shogi by
planning with a learned model. Nature, 2020.

J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy opti-
mization. In International conference on machine learning. PMLR, 2015.

J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv:1707.06347, 2017.

C. E. Shannon. Programming a computer for playing chess. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 1950.

126

L. S. Shapley. Stochastic games. Proceedings of the National Academy of Sciences, 1953.

D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Deterministic
policy gradient algorithms. In International conference on machine learning. Pmlr,
2014.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel, and D. Hassabis. Mastering the game of go with deep neural networks and
tree search. Nature, 2016.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge.
nature, 2017.

D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al. A general reinforcement learning algorithm
that masters chess, shogi, and go through self-play. Science, 2018.

K. Son, D. Kim, W. J. Kang, D. E. Hostallero, and Y. Yi. QTRAN: Learning to factorize
with transformation for cooperative multi-agent reinforcement learning. Proceedings
of the 36th International Conference on Machine Learning, 2019.

P. Sunehag, G. Lever, A. Gruslys, W. M. Czarnecki, V. Zambaldi, M. Jaderberg, M. Lanc-
tot, N. Sonnerat, J. Z. Leibo, K. Tuyls, et al. Value-decomposition networks for
cooperative multi-agent learning based on team reward. In Proceedings of the 17th
International Conference on Autonomous Agents and MultiAgent Systems, 2018.

R. S. Sutton and A. G. Barto. Reinforcement learning, second edition: An introduction.
MIT press, 2018.

R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information
processing systems, 1999.

A. Tampuu, T. Matiisen, D. Kodelja, I. Kuzovkin, K. Korjus, J. Aru, J. Aru, and
R. Vicente. Multiagent cooperation and competition with deep reinforcement learning.
PLOS ONE, 2017.

M. Tan. Multi-agent reinforcement learning: Independent vs. cooperative agents. In
Proceedings of the Tenth International Conference on machine learning, 1993.

J. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan, L. S. Santos,
C. Dieffendahl, C. Horsch, R. Perez-Vicente, et al. Pettingzoo: Gym for multi-agent
reinforcement learning. Advances in Neural Information Processing Systems, 2021.

127

G. Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-level
play. Neural computation, 1994.

T. Théate, A. Wehenkel, A. Bolland, G. Louppe, and D. Ernst. Distributional rein-
forcement learning with unconstrained monotonic neural networks. Neurocomputing,
2023.

E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control.
In IEEE/RSJ international conference on intelligent robots and systems, 2012.

M. Towers, J. K. Terry, A. Kwiatkowski, J. U. Balis, G. d. Cola, T. Deleu, M. Goulão,
A. Kallinteris, A. KG, M. Krimmel, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai,
A. T. J. Shen, and O. G. Younis. Gymnasium, 2023.

H. Van Hasselt. Double Q-learning. Advances in neural information processing systems,
2010.

H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double Q-
learning. In Proceedings of the AAAI conference on artificial intelligence, 2016.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. Advances in neural information processing
systems, 2017.

E. Vinitsky, N. Lichtlé, X. Yang, B. Amos, and J. Foerster. Nocturne: a scalable driv-
ing benchmark for bringing multi-agent learning one step closer to the real world.
arXiv:2206.09889, 2022.

O. Vinyals, T. Ewalds, S. Bartunov, P. Georgiev, A. S. Vezhnevets, M. Yeo, A. Makhzani,
H. KÃŒttler, J. Agapiou, J. Schrittwieser, J. Quan, S. Gaffney, S. Petersen, K. Si-
monyan, T. Schaul, H. V. Hasselt, D. Silver, T. Lillicrap, K. Calderone, P. Keet,
A. Brunasso, D. Lawrence, A. Ekermo, J. Repp, and R. Tsing. StarCraft II: A new
challenge for reinforcement learning. arXiv:1708.04782, 2017.

O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H.
Choi, R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in StarCraft II using
multi-agent reinforcement learning. Nature, 2019.

J. Von Neumann and O. Morgenstern. Theory of games and economic behavior. Princeton
University Press, 1944.

J. Wang, Z. Ren, T. Liu, Y. Yu, and C. Zhang. QPLEX: Duplex dueling multi-agent
Q-learning. In International Conference on Learning Representations, 2021.

Z. Wang, T. Schaul, M. Hessel, H. Van Hasselt, M. Lanctot, and N. Freitas. Dueling
network architectures for deep reinforcement learning. In International conference on
machine learning. PMLR, 2016.

128

C. J. Watkins and P. Dayan. Q-learning. Machine learning, 1992.

L. Weaver and N. Tao. The optimal reward baseline for gradient-based reinforcement
learning. In Proceedings of the Seventeenth Conference on Uncertainty in Artificial
Intelligence, 2001.

M. Wen, J. G. Kuba, R. Lin, W. Zhang, Y. Wen, J. Wang, and Y. Yang. Multi-agent rein-
forcement learning is a sequence modeling problem. In Advances in Neural Information
Processing Systems, 2022.

M. A. Wiering. QV(λ)-learning: A new on-policy reinforcement learning algrithm. In
Proceedings of the 7th European Workshop on Reinforcement Learning, 2005.

M. A. Wiering and H. Van Hasselt. The QV family compared to other reinforcement
learning algorithms. In 2009 IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning. IEEE, 2009.

D. Wierstra, A. Förster, J. Peters, and J. Schmidhuber. Recurrent policy gradients. Logic
Journal of IGPL, 2010.

R. J. Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Reinforcement learning, 1992.

R. J. Williams and J. Peng. Function optimization using connectionist reinforcement
learning algorithms. Connection Science, 1991.

D. H. Wolpert and K. Tumer. Optimal payoff functions for members of collectives.
Advances in Complex Systems, 2001.

Y. Yang, J. Hao, B. Liao, K. Shao, G. Chen, W. Liu, and H. Tang. Qatten: A general
framework for cooperative multiagent reinforcement learning. arXiv:2002.03939, 2020.

A. B. Yoo, M. A. Jette, and M. Grondona. Slurm: Simple linux utility for resource
management. In Job Scheduling Strategies for Parallel Processing: 9th International
Workshopmorato2022syst. Springer, 2003.

C. Yu, A. Velu, E. Vinitsky, J. Gao, Y. Wang, A. Bayen, and Y. Wu. The surprising
effectiveness of ppo in cooperative multi-agent games. Advances in Neural Information
Processing Systems, 2022.

A. Zhang, Z. C. Lipton, M. Li, and A. J. Smola. Dive into Deep Learning. Cambridge
University Press, 2023.

H. Zhang, S. Feng, C. Liu, Y. Ding, Y. Zhu, Z. Zhou, W. Zhang, Y. Yu, H. Jin, and Z. Li.
CityFlow: A multi-agent reinforcement learning environment for large scale city traffic
scenario. In The world wide web conference, 2019.

	Abstract
	Contents
	1 Introduction
	1.1 Outline
	1.2 Publications
	1.3 Context

	Background
	2 Foundations of multi-agent reinforcement learning
	2.1 Introduction
	2.2 Stochastic game
	2.3 Multi-agent settings
	2.3.1 Cooperation
	2.3.2 Competition
	2.3.3 General-sum

	2.4 Single-agent reinforcement learning
	2.4.1 Markov decision process
	2.4.2 Model-based or model-free
	2.4.3 Dynamic programming
	2.4.4 Value-based methods
	2.4.5 Policy-based methods

	2.5 Partial observability

	Learn to cooperate
	3 Cooperation
	3.1 Introduction
	3.2 Decentralised partially observable Markov decision process
	3.3 Environments
	3.3.1 StarCraft multi-agent challenge

	3.4 Value-based methods
	3.4.1 QMIX
	3.4.2 MAVEN
	3.4.3 QPLEX
	3.4.4 Other value-based methods

	3.5 Policy-based methods
	3.5.1 COMA
	3.5.2 FACMAC
	3.5.3 Other policy-based methods

	3.6 Other approaches

	4 The Deep Quality-Value family in Dec-POMDP
	4.1 Introduction
	4.2 Methods
	4.3 Experiments
	4.4 Results
	4.5 Discussion and future work

	5 Infrastructure Management Planning
	5.1 Introduction
	5.2 Related work
	5.3 IMP-MARL: A suite of Infrastructure Management Planning environments
	5.3.1 Environments formulation
	5.3.1.1 States and observations
	5.3.1.2 Actions and rewards
	5.3.1.3 Real-world data

	5.3.2 IMP-MARL environments
	5.3.2.1 k-out-of-n system
	5.3.2.2 Correlated k-out-of-n system
	5.3.2.3 Offshore wind farm

	5.4 Modelling infrastructure management in IMP-MARL
	5.4.1 Deterioration models
	5.4.1.1 Correlated and uncorrelated k-out-of-n systems
	5.4.1.2 Offshore wind farm

	5.4.2 Inspection models
	5.4.2.1 Correlated and uncorrelated k-out-of-n systems
	5.4.2.2 Offshore wind farm

	5.4.3 Transition models
	5.4.4 Reward model

	5.5 Experiments
	5.5.1 Tested methods
	5.5.2 Experimental setup

	5.6 Results
	5.7 Discussion and future work

	Cooperate against an opposing team
	6 Competition
	6.1 Introduction
	6.2 Solutions
	6.3 History
	6.4 Self-play and population-based training

	7 Two-team Markov game
	7.1 Introduction
	7.2 Two-team Markov game
	7.3 Competitive StarCraft Multi-agent challenge
	7.4 Learning scenarios and performances criteria
	7.5 Experiments
	7.6 Results
	7.7 Discussion and future work

	Conclusion
	8 Conclusion

	Appendix
	A IMP-MARL supplementary materials
	A.1 Repository, license, data, and documentation
	A.2 Implemented options
	A.3 Experimental details
	A.3.1 Description of the parameters set up in the experiments
	A.3.2 Statistical analysis of the variance associated with the number of test episodes
	A.3.3 Hardware and experiments duration

	A.4 Additional benchmark results

	B Two-team Markov game supplementary materials
	B.1 Training parameters
	B.2 Training time

	C References

