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Abstract: DNA methylation is a form of epigenetic regulation, having pivotal parts in controlling 

cellular expansion and expression levels within genes. Although blood DNA methylation has been 

studied in humans and other species, its prominence in cattle is largely unknown. This study aimed 

to methodically probe the genomic methylation map of Xinjiang brown (XJB) cattle suffering from 

bovine respiratory disease (BRD), consequently widening cattle blood methylome ranges. Genome-

wide DNA methylation profiling of the XJB blood was investigated through whole-genome bisulfite 

sequencing (WGBS). Many differentially methylated regions (DMRs) obtained by comparing the 

cases and controls groups were found within the CG, CHG, and CHH (where H is A, T, or C) se-

quences (16,765, 7502, and 2656, respectively), encompassing 4334 differentially methylated genes 

(DMGs). Furthermore, GO/KEGG analyses showed that some DMGs were involved within immune 

response pathways. Combining WGBS-Seq data and existing RNA-Seq data, we identified 71 sig-

nificantly differentially methylated (DMGs) and expressed (DEGs) genes (p < 0.05). Next, comple-

mentary analyses identified nine DMGs (LTA, STAT3, IKBKG, IRAK1, NOD2, TLR2, TNFRSF1A, and 

IKBKB) that might be involved in the immune response of XJB cattle infected with respiratory dis-

eases. Although further investigations are needed to confirm their exact implication in the involved 

immune processes, these genes could potentially be used for a marker-assisted selection of animals 

resistant to BRD. This study also provides new knowledge regarding epigenetic control for the bo-

vine respiratory immune process. 
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1. Introduction 

Xinjiang brown cattle are local to the Xinjiang region of China, and their production 

represents an important part of Xinjiang’s agricultural sector and economy. However, bo-

vine respiratory disease (BRD) is a serious threat to cattle survival in Xinjiang and the 

primary driver of antibiotic use. Clinical signs associated with BRD typically include ele-

vated rectal temperature, increased respiratory rate, nasal and ocular discharges, cough, 

dyspnea, decreased appetite, and depression [1]. To reduce financial losses, reduce anti-

biotic use, and improve animal well-being, it is urgent to investigate some of the mecha-

nism(s) underlying BRD. BRD not only kills cattle and leads to economic losses but is 

associated with higher treatment and fattening costs [2]. In addition, the higher use of 

antibiotics to treat the cattle may result in food safety issues. 

BRD is considered a polymicrobial disease, which means that it arises from infections 

with a combination of bacteria and viruses [2]. Many efforts have been made to elucidate 

the mechanisms underlying calf susceptibility to respiratory diseases at different levels. 
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For example, Keele et al. (2015) conducted a genome-wide association study of the pres-

ence/absence of lung lesions in cattle using sample pooling to identify important gene 

regions. Fourteen SNPs on BTA 2, 3, 4, 9, 11, 14, 15, 22, 24, and 25 were significant at the 

experiment-wise error rate of 5% (p ≤ 1.49 × 10−7) [3]. To date, the mechanisms underlying 

calf susceptibility to respiratory disease have been studied at the level of signal pathways, 

transcription, and translation, including negative regulation of the cellular protein meta-

bolic process (GO:0031324) and the integral component of the plasma membrane 

(GO:0005887) [3–5]. In addition, emerging studies have demonstrated that epigenetics 

plays an important role in the modulation of natural immunity and susceptibility to dis-

eases, especially in terms of DNA methylation [6–8]. However, the related epigenetic reg-

ulatory mechanisms are still poorly understood. 

DNA methylation is an epigenetic regulation mechanism that orchestrates a variety 

of physiological activities, including organism maturation and gene imprinting. Epige-

netic regulations also affect immune processes: variation in the methylation levels may be 

directly related to several cytokine expression profiles. For example, hypomethylation of 

IL-6 and IL-8 gene promoters is associated with cytokine production and rheumatoid ar-

thritis [9], and DNA methylation causes changes in the expression of TLR2, MD-2, and I-

κBα, resulting in different responses to lipopolysaccharide stimulation [10]. Such investi-

gations support the hypothesis that DNA methylation could play a pivotal role in disease 

susceptibility and immunological responses. Seutter et al. (2020), using a fibroblast model, 

demonstrated that DNA methylation was associated with IL-8 response after lipopolysac-

charide (LPS) invasion of fibroblasts isolated from the same animal aged 5 and 16 months 

[11]. Wang et al. (2010) found that the methylation level of the CD4 gene promoter segment 

in whole blood of dairy cows with mastitis was 16% higher than that in healthy dairy cows 

[12]. In addition, upregulated promoter methylation was linked to CD4 downregulation, 

possibly due to the methyl group inhibiting the binding of transcription factors in affected 

animals. In an experimental mastitis model, E. coli infection induced promoter methyla-

tion loss and higher expression of the TLR2 gene [13]. In DNA methylation studies, obvi-

ous sources of sample-wise biological variance are gender and cellular composition. In 

females, one of the X chromosome copies is inactivated [14] and there are also imprinted 

regions and other DNA gender-associated methylation differences on the autosomes [15]. 

Methylation changes at these sites were strongly associated with chronological age; how-

ever, for some sites methylation increased with age, while it decreased with age at others 

[16]. Therefore, we selected calves of identical age and gender for our research. 

However, little is known about the expression profiles and the possible importance 

of DNA methylation in the susceptibility of Xinjiang brown cattle to respiratory diseases. 

The early immune system of calves, which depends heavily on antibodies in colostrum, is 

not fully developed, but significant differences in innate immunity exist in the early stage 

of life, with the immune processes being carried out in the whole-body blood [17]. In these 

processes, in-depth knowledge is of paramount importance regarding dynamic changes 

in the DNA methylation map within bovine blood. In this respect, the use of whole-ge-

nome bisulfite sequencing (WGBS), a highly specific and sensitive technique for single-

base resolution analysis of the methylation pattern, should be of great interest [18]. Our 

research hypothesizes that DNA methylation of specific genes in calves affects gene ex-

pression, which subsequently influences the levels of innate immunity. In this study, we 

obtained the genomic methylation pattern of Xinjiang brown cattle affected by respiratory 

disease. Such results will provide new avenues to investigate the resistance mechanisms 

to this disease in that population, a potentially important step towards obtaining disease-

resistant cattle. 
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2. Results 

2.1. Genome-Wide DNA Methylation Profile Analyses 

Global DNA methylation analysis of peripheral blood was conducted using WGBS 

with 20× genome coverage and a bisulfite conversion rate > 99%. Overall, we obtained 

78.26 Gb and 75.46 Gb of raw data for controls and cases, respectively. After excluding the 

low-quality data, we obtained around 280,000,000 clean reads with a Q30 range of 88.91–

92.59% and a mapping rate of 70.42–73.19% for further analysis (Table 1). 

Table 1. Sequencing data by whole-genome bisulfite sequencing (WGBS). 

Group Samples  Clean Bases (Gb) Clean Reads GC (%) Q 30 (%) 
Mapping Rate 

(%) 

Bs Conversion 

Rate (%) 

mC Percent 

(%) 

Cases 

Case1 76.94 280,373,522 23.22 91.9 72.05 99.742 3.13 

Case2 78.94 287,142,601 22.86 92.59 72.12 99.717 3.21 

Case3 78.90 287,493,079 22.81 91.37 72.05 99.703 3.19 

Controls 

Control1 75.60 277,034,171 22.77 89.35 70.79 99.702 3.05 

Control2 74.03 272,716,162 22.73 88.91 70.42 99.673 3.07 

Control3 76.73 279,618,157 23.05 91.34 73.19 99.707 3.39 

The methylated genomic C locations ranged from 3.05% to 3.39% among samples 

(Table 1). The methylation levels of CG, CHH, and CHG (whereby H = A, C, or T) differed: 

the methylated cytosine (mC) levels were 96.73 ± 0.28% for CG, 0.89 ± 0.08% for CHG, and 

2.31 ± 0.2% for CHH in control samples, and 97.3 ±0.26% for CG, 0.8 ± 0.04% for CHG, and 

1.85 ± 0.22% for CHH in case samples (Figure 1). Clearly, methylation levels were higher 

in CG than in CHG or CHH (Figure 2). 

 

Figure 1. Average ratio of DNA methylation types in case and control genomes of Xinjiang brown 

cattle. Blue, orange, and red colors represent methylated (m) CG, mCHG, and mCHH, respectively. 

To perform comparative analyses of the averaged methylation levels of the genomic 

regions in the two groups, we analyzed the methylation states of eight different segments, 

including CGI, CGI shores, promoters, 5′UTR, exons, introns, 3′UTR, and repeat segments. 

We visually observed no major variations in methylation levels between the case and con-

trol groups. DNA methylation levels in the CG environment were the highest for introns 

and the 3′UTR segments, followed by repeat segments and exons; the levels near the tran-

scription initiation site (TSS) were the lowest. Methylation levels gradually decreased 

from the promoter to the TSS, and then gradually increased from the TSS to the intron 

(Figure 3). 
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Figure 2. Violin plot of the overall status spread for the different methylation formats CG, CHG, and 

CHH. Controls (Control1, Control2, Control3) and cases (Case1, Case2, Case3). H = A, C, or T. Ab-

scissas reflect individual samples; ordinates reflect methylation levels of individual samples. Violin 

width reflects datapoint density within a specific methylation level. Boxplot shows individual violin 

containing methylation levels. Red, Case group; Blue, Control group. 

 

Figure 3. Distribution of methylation levels among different genomic elements. Abscissas represent 

different genomic elements and ordinates represent methylation levels. Each functional region of 

each gene is equally divided into 20 bins, and then the C-site level of the corresponding bin of the 

functional region of all genes is averaged. Different colors represent different sequence contexts 

(CPG, CHG, CHH). 

2.2. DMR Profiling 

We identified 16,765 DMRs for CG, 7502 DMRs for CHG, and 2656 for CHH. Hyper-

methylation (in which regions in cases are more methylated than in controls) occurred in 

6269 (CG: 79.87%, CHH: 18.33%, CHG: 1.80%) and hypomethylation (in which regions in 
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cases are less methylated than in controls) occurred in 20,654 DMRs (CG: 56.93%, CHH: 

30.76%, CHG: 12.31%). DMRs were mostly located in introns, followed by exons, promoter 

regions, and the 5′UTR and 3′UTR segments. For CG, only 314, 159, and 857 DMRs were 

located in the 5′UTR, 3′UTR, and promoter segments, respectively. Figure 4 shows more 

details on the distribution of the DMRs. The length of DMRs ranged between 51 nt and 

3332 nt (Figure 5). 

 

Figure 4. Identification of differentially methylated regions (DMRs) between case and control 

groups. Histograms show the distributions of DMRs in different genomic elements in the CG (a), 

CHG (b), and CHH (c) contexts. Hyper: hypermethylated genes, meaning that cases are more meth-

ylated than controls; Hypo: hypomethylated genes, meaning that cases are less methylated than 

controls. 

 

Figure 5. Distribution of DMR lengths. 

2.3. GO/KEGG Enrichment Analysis for DMGs 

To probe changes in gene methylation state related to immunity to respiratory dis-

ease in brown cattle, 4334 DMGs—i.e., genes overlapping at least one DMR—were anno-

tated to the GO and KEGG databases. The 13 most significant DMG-enriched pathways 
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in GO were mostly related to immunity-linked terms (Figure 6A). Significant GO terms 

included upregulated I-kappa B kinase/NF-κappaB signal transduction, adaptive immune 

response, regulation of vesicle-mediated transport, and protein serine kinase activity. The 

20 most significant DMG-enriched KEGG terms were in pathways related to immunity 

and had a corrected p < 0.05 (Figure 6B). These pathways included the T-cell receptor sig-

naling pathway, platelet activation, fructose and mannose metabolism, Fc gamma R-

driven phagocytosis, and the AMPK/NF-κappa B signaling pathways. In summary, 

DMGs might be related to immune function in calves. It is important to note that Kanehisa 

laboratories own the copyrights on these KEGG pathways [19]. 

 

Figure 6. Enrichment analysis of CG-type differentially methylated genes (DMGs). (A) DMG enrich-

ment scores for 13 peak-ranking immune response GO terms. Abscissas reflect genomic ratios (en-

richment gene count/total gene count), while ordinates reflect GO pathway terms. (B) Scatterplot for 

20 immune response KEGG pathways. Counts: enrichment gene count. p-value: corrected p-value, 

when testing the null hypothesis of no enrichment. 

2.4. Screening of Possibly Valuable DMGs Linked to Immune Function 

In an attempt to determine the pivotal genes linked to the immune control of BRD, 

we first identified 121 candidate genes linked to immunity based on GO and KEGG anal-

yses. Among these candidate genes, 71 were present in the intersection of the DMGs and 

DEGs described above. Using STRING (v11.5) [20], we discovered 48 candidate genes with 

internal interactions. Using MCODE plug-in results within Cytoscape [21], we report the 

known interactions of these genes in Figure 7A, while the interactions of LTA, STAT3, 

IKBKG, IRAK1, NOD2, TLR2, TNFRSF1A, and IKBKB, eight genes classified by MCODE 

as hub genes within the interactions network linked to immune response pathways, are 

shown in Figure 7B. 
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Figure 7. (A) Constructed DMG network linked with immune response. Evaluations of interplays 

among DMGs linked with immune response employing STRING®, in line with interplay index (con-

fidence > 0.7). (B) Using the MCODE plug-in, the cluster with the highest score was selected to con-

struct the relevant protein network diagram. 

2.5. Differential Gene Methylation Regulating Influence upon the Immunology of Cattle 

FPKM values of RNA-seq data were used to compare trends of genomic expression 

and methylation profiles between the case and control groups for these eight hub genes. 

DMRs for the LTA gene in exons, 5′UTR, TSS, and promoters and for the IRAK1 gene in 

exons, introns, 5′UTR, TSS, and promoters were hypermethylated in cases with respect to 

controls while the corresponding transcribed regions were underexpressed. Conversely, 

hypomethylation was observed in cases compared to controls for the STAT3 gene in in-

trons, the IKBKG gene in TSS, exons, 5′UTR, introns, and promoters, the NOD2 and TLR2 

genes in exons, and the TNFRSF1A gene in the promoter, introns, exons, and 3′UTR, while 

these genes were overexpressed in case groups. IKBKB introns were hypomethylated in 

cases with respect to controls, while this gene was underexpressed. RT-qPCR results con-

firmed the RNA-seq analyses. The DNA methylation patterns in the LTA, IRAK1, IKBKG, 

and TNFRSF1A promoter regions seem to have influenced the gene expression profiles, 

while the influence of the DNA methylation profile of alternative regions on the expres-

sion of the corresponding genes STAT3, NOD2, TLR2, and IKBKB is uncertain (p > 0.01; see 

Table 2 and Figure 8). 

Table 2. DMGs putatively linked to immune difference. 

RNA-Seq WGBS-Seq 

Gene Regulation Meth Chr Annotation Stat 

LTA Underexpressed 23 exon, utr5, TSS, promoter, hyper 

IRAK1 Underexpressed X exon, intron, utr5, TSS promoter hyper 

CSK Underexpressed 21 intron, exon, utr5 hyper 

STAT3 Overexpressed 19 intron hypo 

IKBKG Overexpressed X TSS, exon, utr5, intron, promoter hypo 

NOD2 Overexpressed 18 exon hypo 

TLR2 Overexpressed 17 exon hypo 

TNFRSF1A Overexpressed 5 promoter, intron, exon, utr3 hypo 

IKBKB Underexpressed 27 intron hypo 
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Figure 8. RT-qPCR was conducted to determine relative quantified transcriptomic expression for 

blood-borne candidate genes. GAPDH served as a normalization/reference gene. Values reflect 

mean ± SEM for three replicates. * p < 0.05, ** p < 0.01. 

3. Discussion 

DNA methylation is an important mechanism in epigenomic control which plays a 

pivotal role in genomic expression/tissue development [22]. Although DNA methylation 

in the muscle tissue of cattle [23], pigs [24], humans [25], mice [22], and sheep [26] has 

already been analyzed, whole-genome DNA methylation analysis of bovine blood is rel-

atively scarce. To the best of our knowledge, this study has pioneered a systematic com-

parative analysis method for genomic DNA methylation patterns in Xinjiang brown cattle 

affected or not affected by a respiratory disease. In previous studies, transcriptome anal-

ysis confirmed that many immune-related genes and KEGG pathways were differentially 

expressed between affected and non-affected groups [27]. Therefore, we employed WGBS 

technology to study DNA methylation in the bovine blood genome to clarify the relation-

ship between respiratory immune differences and DNA methylation. 

In the tested genes’ functional regions, genome-wide methylation profiles were ra-

ther similar between the case and control groups (Figure 3). However, variations existed 

between the three mC contexts (i.e., CG, CHG, and CHH), with differences between the 

various genomic regions [28]. Out of the 280,000,000 clean reads obtained using WGBS-

seq, we could map 70.42–73.19% of the reads to unique positions, which was less than 

bovine skeletal muscle satellite cells through MeDIP [23]. About 3.17% of all cytosine sites 

showed methylation, with a vast majority in CG groups (Figures 1 and 2), in line with 

reports on other organisms [29]. In the gene functional regions, the methylation level of 

TSS was lowest, consistent with Zhang et al. (2017) [30]. We identified 26,923 DMRs and 

4334 DMR-correlated genes. DMRs were mainly located in the promoter, 3′UTR, and 

5′UTR regions of genes, where they only accounted for a small part of these regions. 

GO analyses for DMGs pointed to several important pathways related to immunity, 

as summarized above, and KEGG analyses further validated the results. The activation of 

Toll-like receptors (TLRs) induces the NF-kappaB signaling pathway, thus activating an 

inflammatory response [31]. The NF-kappa B signaling pathway is very important for the 

immune recognition of LPS and the release of inflammatory factors [32]. When the AMPK 

signaling pathway is activated, it can improve cell lipid metabolism that alleviates inflam-

mation by regulating cellular lipid metabolism enzymes and autophagy. AMPK helps 

host cells resist pathogen invasion by inducing the expression of autophagy-related genes 

and promoting phagosome maturation. In addition, in immune cells, activated AMPK 
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plays an anti-inflammatory role by directly promoting inflammatory signals and inhibit-

ing the synthesis of some lipid intermediates related to inflammation [33]. In our study, 

DMGs linked to such activities showed major differences between case and control 

groups, indicating possibly pivotal roles in immune recognition. Since little is known 

about the mechanisms underlying DNA methylation and how this may influence genomic 

expression, we performed a transcriptomic analysis of the DMG to evaluate the effect on 

the expression of these genes. This allowed us to identify genes with an altered expression 

between cases and controls (DEGs). 

We established a DMG interactivity network to find out whether DMGs were playing 

pivotal parts within bovine immune roles. Networking analyses showed LTA, STAT3, 

IKBKG, CSK, IRAK1, NOD2, TLR2, TNFRSF1A, and IKBKB were the key nodes. The LTA 

gene encodes tumor necrosis factor beta cytokine, which is vital for regular immune mat-

uration. Within LTA knockout mice, all Peyer’s patches/lymph nodes did not mature, sug-

gesting the importance of LTA for such immune activities [34]. STAT3 is an acute-phase 

responsive factor that triggers IL-6 [35]. Its overexpression reduces the severity of inflam-

mation in mice [36] and orchestrates Th17 cellular maturation/cytokine discharge through 

Th2/Th17, contributing to asthma [37]. IKBKG binds to the Ripk3 promoter, inhibiting its 

transcription. Ripk3 promotes NF-κB signal transduction, an important pathway of the 

inflammatory response [38]. CSK downregulates T-cell antigen receptor (TCR)-driven sig-

nal transduction [39], resulting in thwarting of Lck-driven ζ chain phosphorylation, thus 

preventing proximal T-cell triggering [40]. IRAK1 is a downstream effector for TLR sig-

naling pathways, with inflammatory, autoimmune, and cancer-linked activities [41]. Re-

storing IRAK1 expression reverses the effects of miR-146b-5p on EGFR TKI sensitivity and 

recuperates NF-κB-controlled IL-6 and IL-8 discharge [42]. NF-κB signal transduction can 

be avoided by degrading IRAK1 [43]. 

NOD2 is key for immediate innate immune clearing-up for Acinetobacter baumannii 

within lungs [44]. It also enhances clearing-up for Chlamydophila pneumonia within 

lungs [45] and orchestrates M. tuberculosis immunity [46,47]. TLR2 stimulation inducible 

protein (IP)-10 leads to discharging of the IL-12-thwarting p40 homodimer, creating a fa-

vorable environment for Th2 progression. TLR2 triggering additionally leads to skewed 

triggering for IL-8 and IL-23 [48]. TLR2-driven innate immune priming enhances pulmo-

nary anti-viral immune resilience [49]. In addition, TLR4 jointly regulates the NF-κB sig-

naling pathway and affects immune factors. TNFRSF1A encodes TNFR1 and suppresses 

the expression of inflammatory cytokines [50]. It is an essential orchestrator of TNFα-

driven NF-κB function [51]. Multiple signaling transduction pathways triggering NF-kB 

meet up at the IKKB level [52]. 

Although the role of the detected genes in immunity has been demonstrated, 

knowledge is scarce regarding the role of methylation in LTA, STAT3, IKBKG, and IRAK1 

and how it may regulate mammalian immunity. Some investigations have demonstrated 

versatile shifts in DNA methylation profiles across cellular differentiation procedures 

[53,54], suggesting that such genes have pivotal roles in immunity maturation. This could 

explain immune variations between cases and control groups. 

In summary, DNA methylation can influence immune function in cattle. There is an 

intricate interplay between DNA methylation and genomic expression profiles [55]. Even 

though DNA methylation in a promoter region can thwart genomic expression [56], 

knowledge on the mechanisms by which DNA methylation influences the latter expres-

sion is still lacking [57]. In our study, we found that hypermethylation in the promoter 

region thwarted IKBKG and TNFRSF1A expression, while hypomethylation in the pro-

moter region upregulated LTA and IRAK1 expression. 

In the present study, the cattle were infected by bacteria. The immune system of new-

born calves is imperfect; innate immunity is crucial in combating early infections. Bacterial 

infection quickly activates the innate immune response and triggers inflammation in order 

to enable host defense. We conducted an analysis to assess the relationship between alter-

ations in DNA methylation patterns and corresponding changes in gene expression levels. 
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It was observed that variations in gene expression were linked to modifications in meth-

ylation patterns. Variations in DNA methylation levels of immune-related genes contrib-

ute to differential expression patterns, ultimately influencing the strength and rate of de-

velopment of the calf’s innate immune system. These variations impact the calf’s ability 

to recognize bacteria, thereby affecting the speed and intensity of immune response and 

subsequently influencing immunity to pneumonia. Networking analyses revealed nine 

key genes, suggesting that these nine key genes had close interaction and together deter-

mined the key pathway during the innate immune response. Functional and pathway en-

richment analysis of genes mainly involved the NF-kappa B signaling pathway. Studies 

have demonstrated that the NF-kappa B signaling pathway plays an important role in 

innate immune response [32]. Thus, our study suggests that this pathway in immunity 

might represent a promising candidate for developing innate immunity in calves. IKBKG, 

TNFRSF1A, LTA, and IRAK1 are key regulatory genes in the immune process. Their meth-

ylation can partly lead to major variations in immunity, especially innate immunity. How-

ever, the epigenomic mechanisms underlying this process require additional research. 

This study had several limitations. First, the study sample size is very small. Future 

studies with larger sample sizes are needed to replicate and corroborate our findings. Sec-

ond, the use of blood and not tissues of the upper and lower respiratory tract limits the 

scope of the current work. These limitations will be further investigated in future research. 

4. Materials and Methods 

4.1. Animal Experiments 

All experiments were performed in accordance with the guidelines established by 

the Animal Care Committee of Xinjiang Agricultural University (No. 2018017). Three dis-

eased calves and three healthy calves were purchased from Altay, Xinjiang (Xinjiang, 

China). The calves, three-week-old females of similar weight, were raised in identical en-

vironments with unlimited access to food and water, the same nutritional levels, and com-

munal housing. Blood samples were extracted from the jugular vein, flash-frozen in liquid 

nitrogen, and kept at −80 °C. 

Diseased animals were confirmed as BRD-positive cases based on clinical examina-

tion and serum haptoglobin concentration, i.e., animals with at least one visual BRD sign, 

a rectal temperature ≥ 40 °C, abnormal lung sounds detected at auscultation, and a serum 

haptoglobin concentration ≥ 0.25 g/L. Healthy animals, showing no visual signs of BRD, 

with a rectal temperature < 40 °C, with no abnormal lung sounds detected at auscultation, 

and with a serum haptoglobin concentration < 0.25 g/L, were considered as control ani-

mals in the following analyses. Symptoms of clinical diagnosis include bilateral mucopu-

rulent nasal discharge, heavy eye discharge, head tilt or droop, repeated coughing, high 

temperature, and watery diarrhea. At the same time, nasal swabs from cases and controls 

were collected for isolation and identification of pathogenic bacteria. We found that the 

selected positive individuals were infected by Pasteurella multicida type-A using PCR and 

sequencing, while we isolated no bacteria from the healthy animals. 

4.2. Library Construction 

Genomic DNA of the blood from the six calves was extracted using a TIANamp Ge-

nomic DNA Kit (Tiangen, Beijing, China). The DNA quantity and quality were deter-

mined using a NanoDrop2000 spectrophotometer (ThermoFisher, Waltham, MA, USA) 

and Agilent 2100 Bioanalyzer (Agilent, Santa Clara, CA, USA), respectively.  

First, 5 μg of lambda DNA was added into the genomic DNA of each sample as the 

negative control. Then, the genomic DNA was randomly broken into 200–300 bp frag-

ments using an S220 focused-ultrasonicator (Covaris, Santa Clara, MA, USA); these frag-

ments were end-repaired, added to the sequencing adapter, and treated with bisulfite. The 

methylated cytosines were thereby unchanged and the unmethylated cytosines became 
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uracils, which were changed to thymines after PCR amplification. A library quality control 

was performed using an Agilent 2100 Bioanalyzer [58]. 

4.3. Whole-Genome Bisulfite Sequencing (WGBS) and Differentially Methylated Region (DMR) 

Determination 

With the completion of the library, paired-end sequencing was performed on the Il-

lumina HiSeqTM2500 sequencing platform (Illumina, San Diego, CA, USA). Preliminary 

quality control of raw reads was carried out with FastQC (v0.11.9, https://www.bioinfor-

matics.babraham.ac.uk/projects/fastqc/, accessed on 6 May 2023), and these reads were 

then filtered with fastp software (v0.20) to remove adapters and low-quality sequences 

(i.e., sequences with phred scores below 30 in the paired-end 150 bp raw sequencing files 

[59]). 

Clean reads were aligned to a cattle reference genome (ARS-UCD1.2, https://asia.en-

sembl.org/index.html), and bisulfite mapping of methylation sites was conducted using 

Bismark (v0.22.1) [60]. Duplicates consisted of reads aligning with identical genomic re-

gions. The average number of duplicates over the whole genome is the sequencing 

depth/coverage. The bisulfite conversion rate was the percentage of reads with at least one 

methylated cytosine among the clean reads spanning that cytosine, averaged over the 

whole genome. We used a binomial test for individual C sites to confirm C-site methyla-

tion by screening positions with a coverage ≥ 4× and using a false discovery rate (FDR) < 

0.05. 

To identify regions that were statistically differentially methylated between control 

and case samples (i.e., DMRs), we first defined genomic regions: promoter regions (2 kb 

upstream of the transcription start position of each gene), 5′UTR regions, exons, introns, 

3′UTR regions, CGI regions, CGI shore regions, TSS regions, TES regions, repeat regions, 

and other (than the previous) regions. The methylation levels in these regions were eval-

uated using the model of Lister et al. (2011) [29]. Roughly, this model computes the meth-

ylation level of a tested region as the ratio mCG/(mCG + nmCG) in that region, where 

mCG stands for the number of methylated CpG groups and nmCG for the number of non-

methylated CpG groups. We employed DSS analysis software for DMR (differentially 

methylated region) analyses [61]. 

4.4. Functional Enrichment Analysis 

Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes 

(KEGG) analyses were conducted using the ClusterProfiler (version 4.3.0, 

https://github.com/GuangchuangYu/clusterProfiler, accessed on 15 May 2023) package 

[62], and enrichments with adjusted p-values < 0.05 were deemed statistically significant. 

The STRING online repository was employed to predict protein–protein interactions 

(PPIs) (STRING; http://string-db.org, accessed on 17 May 2023) (version 10.0) [63]. Cyto-

scape (version 3.9) [64] and its plug-in Molecular Complex Detection (MCODE) (version 

2.0.0) were employed to explore important differentially methylated genes (DMGs) [31]. 

4.5. Quantitative Reverse Transcription-PCR 

Samples for RT-qPCR analysis were the same as those for WGBS. We tested DMGs 

for potential differential expression through RT-qPCR. Total RNA was extracted from 

blood with Trizol® reagent (Invitrogen™, Waltham, MA, USA). cDNA was reverse tran-

scribed from total RNA using the PrimeScript RT kit® (Takara™, Beijing, China). RT-PCR 

was conducted using the StepOnePlus Real-Time PCR System® (Life Technologies™, Wal-

tham, MA, USA) with SYBR Green Master Mix (Roche Applied Science, Mannheim, Ger-

many). Relative expression of individual genes was normalized to GAPDH using the 2−ΔΔCt 

methodology [65]. Although the GAPDH gene has been widely used as a housekeeping 

gene in qPCR for a long time as a key gene in glycolysis, many factors can nevertheless 

affect its expression in different metabolic processes. In this study, almost all detected 
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candidate genes were related to immunity (see below), which retrospectively makes 

GAPDH suitable as an internal reference. 

4.6. RNA-Seq Data Analysis 

We next performed a whole-genome transcriptome analysis. Samples for transcrip-

tome analysis were the same as those for WGBS. Six cDNA libraries were sequenced by 

the Illumina NovaSeq 6000 (Novogene™, Beijing, China) sequencing platform. The raw 

data obtained by sequencing were subjected to quality evaluation using FastQC (v0.11.9, 

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 17 March 2023), 

and the original sequence was washed and filtered using Seqtk (v1.2, https://github. 

com/lh3/seqtk, accessed on 17 March 2023) software, and the linker sequence, low-quality, 

and “N”-containing reads were filtered out. The filtered clean reads were compared to the 

Bos taurus reference genome using Hisat 2.0 (v2.0.1, https://daehwankim-

lab.github.io/hisat2/, accessed on 17 March 2023) software (ARS-UCD1.2). The expression 

level of each gene was normalized using edgeR (version 3.16.5, https://bioconduc-

tor.org/packages/release/bioc/html/edgeR.html, accessed on 17 March 2023) software to 

calculate the FPKM value. In this study, both p < 0.05 and |Log2FC| > 2 were taken as the 

thresholds for significant differential expression (i.e., DEGs: differentially expressed 

genes). 

4.7. Correlation Analysis 

For correlation analysis, a set of differentially expressed genes with differential meth-

ylation was obtained from the intersection between the set of differentially methylated 

genes (DMGs)—i.e., genes for which the promoter or the region from the TSS to the TES 

overlaps with a DMR—and the set of differentially expressed genes (DEGs). We next per-

formed correlation analysis between the methylation level of DMRs and the expression 

level of the corresponding DEGs [55] and checked using GO or KEGG whether the most 

correlated genes were related. 

5. Conclusions 

We probed, in a pioneering, systematic manner, genome-wide DNA methylation pro-

files from blood samples of calves with anti-respiratory diseases and susceptible respira-

tory diseases, and investigated several novel and valuable DMRs/DMGs together with 

pathways related to bovine innate immune response. These dataset outcomes contributed 

essential information regarding possible in-depth knowledge gains on genomic/epige-

nomic mechanisms for bovine immune traits, for deployment as a biomarker-facilitated 

screening program for promoting bovine immunity. 
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