

Introduction

Neuron degenerative diseases (NDDs) are a miscellaneous group of disorders, which have characterized by the progressive been breakdown in many aspects of the coordination in the CNS and PNS. The NDDs worldwide such as Alzheimer's disease and Parkinson's disease resulted from a variety of progressive degeneration or death of neurons are presumed as long-term disorders, have mental and physical issues, and are incurable nowadays.

The current circumstance shows the desperation and possibility of prevent or curing therapeutics for NDDs. Here, we undergo a series of experiments-to test the function of a specific drug NDDs. the several and discover pharmacological mechanisms crossand interaction might be different in distinct NDDs. With the promising future, we aims to confront the growing challenge posed by NDDs, cooperating researchers and gathering existing research evidence to investigate the key research questions and barriers to progress in this area.

Outline

Animal

Choose the mouse

model

Genomic DNA

Genotype

Identification

Treatment

Behavior

Analysis

And

Pathological

Characterization

extraction

PCR

Promoter region

PCR

Full length region

Drug gavage

Rota-rod & Weight

measurement

Perfusion

Cryo-section

H&E staining &

IF staining

Collect protein

extract of striatum

Concentration

Quantification

Western Blotting

Α.

(b)

NDDs mice (DIII) is no improvement in the dosage of 120 mg/kg comparing to non-treated. Moreover, 360 mg/kg dosage of drug apparently performed even worse than 120 mg/kg dosage of drug. B. Body weight measurement. These mice were weight daily from the age of 8 weeks to 12 weeks. The mice were separated into 4 groups, non-treated control, placebo control, 120 mg/kg and 360 mg/kg dosage of drug, respectively. The result indicates that the body weight of DIII mice were treated by drug which were lighter than the wildtype. n>3 for each test.

The Drug Test for Neuron Degenerative Disease

Claire Lin¹; Shih-Ling Huang²; Tzu-Chi Jeremy Hsu²; Che-Kun James Shen² ¹Tunghai University, ²Institute of Molecular Biology, Academia Sinica, Taiwan, ROC

Results

comple title	Conc.(ug/ul)	sample volume(ul)	lysis buffer(ul)	5x SB(ul)	total	final loading	
sample une					volume(ul)	Conc.(ug/ul)	
VT-mock	7.74	19.4	20.6	10	50	3	
VT-drug	6.38	23.5	16.5	10	50	3	
Disease I -mock	5.55	27	13	10	50	3	
Disease I -drug	4.94	30.3	9.7	10	50	3	
Disease-IImock	4.94	30.4	9.6	10	50	3	
Disease II -drug	4.69	32.1	7.9	10	50	3	

(0)00017100	-		
Stackin	ng gel		
Solution	Component		
component	volume of 3mL		
5%			
H2O	2.100		
30% acrylamide	0.500		
1.0M Tris pH6.8	0.380		
10% SDS	0.030		
10% APS	0.030		
TEMED	0.003		
Sepera	tive gel		
Solution	Component		
component	volume of 20mI		
10%			
H2O	7.900		
30% acrylamide	6.700		
1.5M Tris pH8.8	5.000		
10% SDS	0.200		
10% APS	0.200		
TEMED	300.0		

HRP activates RapidStep* substrate,emitting light Secondary antibody-HRP conjugate

2 H₂O₂ + Luminol HRP 3'-aminophthalate + N₂ + Light

1°Ab	2°Ab
Mouse- α Actin	HRP-anti-mouse
Mouse- α Ubiqutin	HRP-anti-mouse
Rabbit- α Nrf 1	HRP-anti-rabbit

Disease I and DII : Disease II. The western blotting data was shown as the left figure. The molecular weight were labeled by marker. The statistic data was presented on the right upper panel. Relative fold change of relative fold change was calculated by Alphalmager 2200 and normalized by actin.

antibodies as shown in the lower chart. The interaction between antibodies and ECL are shown in the figure. D. Western Blotting result of Nrf1. n=1. M : marker, WT : wild-type, D I : Disease I and DII : Disease II. The western blotting data was shown as the left panel. The molecular weight were labeled by marker. Actin is internal control. The statistic data was presented on the right upper panel. The Nrf1 relative fold change was calculated by Alphalmager 2200. E. Western Blotting result of Ubiquitin. n=1. M : marker, WT : wild-type, D I :

One day, neuron degenerative diseases will be cured and bring the perspective of neuron research to the next level.

Results