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ABSTRACT 

Introduction Human African trypanosomiasis, commonly known as sleeping sickness, is a vector-

borne parasitic disease prevalent in sub-Saharan Africa and transmitted by the tsetse fly. Suramin, 

a medication with a long history of clinical use, has demonstrated varied modes of action against 

Trypanosoma brucei. This study employs a comprehensive workflow to investigate the metabolic 

effects of suramin on T. brucei, utilizing a multimodal metabolomics approach. 

Objectives The primary aim of this study is to comprehensively analyze the metabolic impact of 

suramin on T. brucei using a combined liquid chromatography-mass spectrometry (LC-MS) and 

nuclear magnetic resonance spectroscopy (NMR) approach. Statistical analyses, encompassing 

multivariate analysis and pathway enrichment analysis, are applied to elucidate significant 

variations and metabolic changes resulting from suramin treatment. 

Methods A detailed methodology involving the integration of high-resolution data from LC-MS and 

NMR techniques is presented. The study conducts a thorough analysis of metabolite profiles in both 

suramin-treated and control T. brucei brucei samples. Statistical techniques, including ANOVA-

simultaneous component analysis (ASCA), principal component analysis (PCA), ANOVA 2 analysis, 
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and bootstrap tests, are employed to discern the effects of suramin treatment on the metabolomics 

outcomes. 

Results Our investigation reveals substantial differences in metabolic profiles between the control 

and suramin-treated groups. ASCA and PCA analysis confirm distinct separation between these 

groups in both MS-negative and NMR analyses. Furthermore, ANOVA 2 analysis and bootstrap tests 

confirmed the significance of treatment, time, and interaction effects on the metabolomics 

outcomes. Functional analysis of the data from LC-MS highlighted the impact of treatment on 

amino-acid, and amino-sugar and nucleotide-sugar metabolism, while time effects were observed 

on carbon intermediary metabolism (notably glycolysis and di- and tricarboxylic acids of the 

succinate production pathway and tricarboxylic acid (TCA) cycle).  

Conclusion Through the integration of LC-MS and NMR techniques coupled with advanced 

statistical analyses, this study identifies distinctive metabolic signatures and pathways associated 

with suramin treatment in T. brucei. These findings contribute to a deeper understanding of the 

pharmacological impact of suramin and have the potential to inform the development of more 

efficacious therapeutic strategies against African trypanosomiasis. 
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Introduction 

Omics approaches are used to characterize biological systems. Metabolomics analysis is a powerful 

tool used to investigate the global metabolic changes within an organism or sample (Fall et al., 

2022). It involves the measurement of small molecules, known as metabolites, which are involved in 

various biological processes such as energy transduction, stress responses, and the synthesis of 

biomolecules. Metabolomics generates large datasets that require rigorous analysis and a set of 

statistical analyses to determine markers of interest to identify biomarkers for various diseases, 

evaluate the effectiveness of drugs, study the effects of environmental factors on metabolism and 

give information on the modes of action or targets of drugs (Fall et al., 2022; Vincent & Barrett, 2015). 

Statistical analysis is a vital component of metabolomics research, allowing researchers to extract 

meaningful insights from the vast amounts of data generated by these experiments. Different 

statistical techniques (univariate and multivariate analyses) can be used in metabolomics studies, 

depending on the specific research question being addressed and the type of data being analyzed. 

ANOVA and ANOVA-simultaneous component analysis (ASCA) are statistical methods that are used 

in the field of metabolomics to identify and analyze the variations in metabolic profiles when data 

are issued from a multifactor experimental design (Jansen et al., 2005; Thiel et al., 2017). 

Various metabolomics studies have been conducted on the parasitic protist T. brucei, which is 

responsible for sleeping sickness, to better understand its metabolism and the mode of action of 

compounds interfering with it (Creek et al., 2015; Fall et al., 2022; Nare et al., 2023). This disease is 

transmitted between humans and domestic animals through the bite of infected tsetse flies, which 

are endogenous in sub-Saharan Africa. Much research in recent decades has been devoted to the 

development of new drugs because most available drugs were not efficient and toxic (Fall et al., 

2022). One of the drugs to treat sleeping sickness is suramin, a medication that, despite important 

toxic side effects, is already commercialized for more than a century (Wiedemar et al., 2020). 

Suramin is classified as an antiparasitic agent and has been reported to have multiple modes of 

action on trypanosomes and other parasites, but it has also been reported on a variety of other 

diseases and/ or pathogenic agents (reviewed by Steverding & Troeberg, 2023; Wiedemar et al., 

2020)). It works by inhibiting the parasite's metabolism (Fall et al., 2022; Hannaert, 2011; Wiedemar 

et al., 2020; Willson et al., 1993; Zoltner et al., 2020). A previous study looked also at the 

metabolomics effects of suramin treatment in T. brucei and found that it alters mitochondrial 

metabolism, increases pyruvate levels and causes a decrease of the total cellular ATP levels in the 

parasites (Zoltner et al., 2020). 

In our work, Hydrophilic Interaction Liquid Chromatography (HILIC) coupled to an orbitrap Q-

Exactive mass spectrometer (HILIC-HRMS), and nuclear magnetic resonance (NMR) spectroscopy are 

used to study the effect of suramin on T. brucei through metabolomics assays. The complex datasets 

originated by both analytical tools were analyzed using robust statistical analyses. The results of the 

study could provide additional insights into the mechanisms of action of suramin and how it impacts 

the metabolism of T. brucei, which could potentially lead to the development of more effective 

treatments for African trypanosomiasis. 
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2. Materials and methods 

2.1. REAGENTS 

LC-MS-grade ammonium formate, formic acid (98%) and fetal bovine serum (FBS) were purchased 

from Sigma (Bornem, Belgium). HMI-9 medium and phosphate-buffered saline (PBS) were obtained 

from Thermo Fisher Scientific (Merelbeke, Belgium). Suramin was purchased from Merck Millipore 

(Germany). LC-MS-grade methanol, acetonitrile, and LC-MS-grade water were obtained from VWR 

(Louvain, Belgium). Trimethylsilyl-3-propionide acid-d4 (TMSP) and deuterium oxide (D2O, 99.96% 

D) were purchased from CortecNet (France). Phosphate buffer powder was provided by Sigma-

Aldrich (Karlsruhe, Germany). 

2.1.1. PARASITE CULTURE AND SAMPLE PREPARATION 

Parasites used were bloodstream forms (BSF) of the subspecies T. brucei brucei strain Lister 427 as 

previously described (Hirumi & Hirumi, 1994). These trypanosomes were cultured in vitro at 37 °C 

with 5% CO2 in HMI-9 medium containing 10% (v/v) heat-inactivated fetal bovine serum (FCS), 

NaHCO3 (36 mM), hypoxanthine (1 mM), sodium pyruvate (1 mM), thymidine (0.16 mM), 

bathocuprone (0.04 mM), β-mercaptoethanol (20 mM) and L-cysteine (150 mM). Parasites were 

maintained at densities between 1 X 106/mL and 1.5 X 106/mL and 100- or 1000-fold dilution was done 

every 2 or 3 days. The number of live trypanosomes, judged by their motility, were counted by using 

a Bürker chamber. Cultures were done in triplicate i.e. 24 flasks in total: 12 treated and 12 control 

(not treated) and 4 time-points. Control parasites and parasites treated with suramin at its EC50
1 of 

17.2 nM, as determined with the Alamar blue assay, were incubated and collected at 12, 24, 29 and 

48 h after addition of the drug for metabolomics analysis. Parasites were transferred to a 

microcentrifuge tube and quenched by rapid cooling in a dry ice/ethanol mixture for 20 s. Samples 

were centrifuged at 1250 rcf for 10 min. A liquid-liquid extraction was performed with 1.5 mL of an 

acetonitrile/methanol/ water (4:4:2 v/v/v) mixture. Samples were vortexed and incubated for 20 min 

at 20 °C, then dried under vacuum before reconstitution in 150 μL of ultrapure water. Samples were 

centrifuged at 4000 rcf for 2 min and the supernatant then transferred into an LC-HRMS vial. In 

addition to samples, quality controls (QC) were prepared by pooling 10 μL of each sample and 

injected multiple times. Alternatively, dried samples were dissolved in 400 µL of buffered D2O at pH 

7.4 with TMSP as internal reference and transferred to 3 mm NMR tubes (Bruker) for analysis. 

2.1.2. INSTRUMENTATION, DATA ACQUISITION AND DATA PRETREATMENT 

2.1.2.1. LC-MS LC-MS was carried out at the MASSMET Platform and Structural Molecular Analysis 

(ASM) using an ACCELA Autosampler ACCELA 1250 Pump (Thermo Fisher Scientific) and gradient 

elution with two mobile phase systems consisting of acetonitrile mixed with either solvent A (10 mM 

 

1 EC50 should be read as the half maximal effective concentration that describes the inhibitory effects on the 

growth of cultured cells, unlike the IC50 mentioned later that describes the half maximal inhibitory 

concentration to describe effects on (purified) proteins.(Borchardt, 2012; Kazakova & Masson, n.d.) 
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ammonium formate, pH 3.8) for positive ionization or solvent B (20 mM ammonium carbonate, pH 

9.2) for negative ionization. A ZIC-pHILIC column (4.6 mm X 150 mm, 5 μm) was used for HILIC 

chromatography. The gradient for positive ionization started at 5% solvent A for 3 min, increased to 

95% at 25 min, and stayed at 95% for an additional 5 min before returning to 5% and being 

equilibrated for 10 min. The gradient for negative ionization started at 8% solvent B for 3 min, 

increased to 92% at 25 min, and remained at 92% for an additional 5 min before returning to 8% and 

being equilibrated for 10 min. The flow rate was 0.3 mL/min, the curve gradient parameter was set 

at 5, the oven temperature was 40 °C, and the total run time was 40 min. An orbitrap Q-Exactive mass 

spectrometer (Thermo Fisher Scientific) with an electrospray source ionization (ESI) was used for 

mass spectrometry in positive (ESI +) or negative (ESI-) ionization modes. The auxiliary gas heater 

temperature was set at 100 °C and the resolution was set at 70,000. Xcalibur software (Thermo Fisher 

Scientific) was used to control the data acquisition. 

The data were preprocessed with Workflow4Metabolomics under Galaxy (Giacomoni et al., 2015). 

The raw files were first converted to mzXML format using ProteoWizard software (Adusumilli & 

Mallick, 2017). Centwave was utilized for peak picking detection. Optional data processing steps 

were implemented to improve the quality of metabolomics analysis, including elimination of 

background noise, retention of robust features and filtering based on the coefficient of variation 

between samples and QCs. Samples were normalized to the QCs. Features in the spectra of the 

biological samples with intensities greater than two-fold compared to the blank samples were 

retained, while the remaining features were discarded in what represented a second filtering of the 

features. A Log10 transformation was applied to the samples, followed by Pareto normalization to 

achieve a Gaussian distribution of the data. Subsequently, the data were subjected to a set of 

univariate and multivariate statistical analyses using the R programming language. 

2.1.2.2. NMR NMR spectra were acquired using TopSpin software on a Bruker AVANCE -NEO 500 MHz 

spectrometer equipped with a cryoprobe. 1HNMR experiments were performed with a NOESY 

sequence with 128 scans collected over a spectral width of 20 ppm. All spectra were phased and 

baseline-corrected manually using TopSpin v4. Spectra were stacked and aligned between 80.59.5 

ppm using MestReNova v14. Spectra were divided into buckets of 0.04 ppm, integrated to the sum 

of intensities and normalized to the number of parasites per sample. Statistical analysis was 

performed with R software under R-Studio. Lastly, the spectra were annotated using Chenomx NMR 

Suite 9.0 database and the Human Metabolome Database (HMDB) (Wishart et al., 2007). 

2.2. STATISTICAL ANALYSIS 

The statistical analyses, reporting and result visualization were performed under R-studio and the 

functional analysis was done with MetaboAnalyst (Pang et al., 2021). 

The main statistical analysis used in this work, “twoway analysis of variance (ANOVA 2)” modeling, 

was applied to each feature to identify the list of significant features involved in the differentiation 

of parasite groups with respect to treatment, time and treatment*time interaction. 
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To reduce type 1 error (false positives) and increase the reliability of statistical inference, the FDR 

correction method proposed by Benjamini-Hochberg (BH) was used (Benjamini & Hochberg, 1995). 

The Benjamini-Hochberg procedure is a widely used FDR correction method that adjusts the p-value 

threshold based on the number of tests conducted and the expected proportion of false positives. 

The mathematical expression used to compute the adjusted p-value is as follows: 

𝑝 − 𝑣𝑎𝑙𝐼
𝐵𝐻 = 𝑚𝑖𝑛 (

𝑝 − 𝑣𝑎𝑙𝑖 ×𝑚

𝑖
, 1) 

where m is the total number of features and i the index of the ordered p-values before correction. 

The number of significant tests for each factor in the ANOVA model was compared both before and 

after False Discovery Rate (FDR) correction. 

Different techniques were used to study globally metabolomics data matrices issued from LC-MS 

and NMR analysis. These methods include first PCA as dimension reduction to visualize the data and 

identify potential outliers. Multivariate analysis techniques ASCA + and APCA + were also applied to 

highlight the effects of various factors in the experimental design on each response matrix (Thiel et 

al., 2017). These methods use the general linear model to calculate matrices effect Mf and bootstrap 

to test their global significance. For the current design, the response matrix is decomposed as 

follows: 

𝑌 = M̂0 + M̂𝑇𝑟𝑒𝑎𝑡 + M̂𝑇𝑖𝑚𝑒 + M̂𝑇𝑟𝑒𝑎𝑡∗𝑇𝑖𝑚𝑒 + 𝐸 

and PCA applied to visualize each matrix effect and provide rich complementary information to 

ANOVA 2 results. ASCA + and APCA + address the issue of bias encountered in parameter estimation 

when applying ASCA and APCA to a dataset derived from an unbalanced experimental design. The R 

package limpca (for Linear Models with principal component effect analysis) was used for all these 

multivariate analyses (Thiel et al., 2023). 

2.2.1. FUNCTIONAL ANALYSIS 

For LC-MS data, the functional analysis was performed using the second version of the mummichog 

algorithm proposed by Li et al. and implemented in MetaboAnalyst v. 5.0 (Li et al., 2013; Pang et al., 

2021). This algorithm combines the steps of metabolite identification and pathway enrichment 

analysis based on the assumption that false matches are distributed randomly while true matches 

should show local enrichment. The inputs for the algorithm were the complete list of features and a 

sub-list containing the significant features. The functional analysis was performed separately for 

each ANOVA 2 model effect and features with an adjusted p-value < 0.05 were considered significant. 

The first step of the algorithm is the identification of potential metabolites by comparing the m/z of 

the features to the mass of the compounds belonging to the metabolism of T. brucei found in the 

KEGG pathway library. These metabolites are then mapped to their respective pathway and a 

Fisher’s exact test (FET) is performed for each pathway. In addition to the FET p-value, the 

mummichog algorithm computes a permutation p-value and an EASE score. The latter is obtained 

by removing a significant compound from the pathway and then performing a FET on the resulting 

table. 



Published in : Metabolomics (2024), vol. 20, n°25 

DOI: 10.1007/s11306-024-02094-2 

Status : Postprint (Author’s version)  

 

 

 

The second version of the mummichog algorithm uses the retention time of the features to compute 

empirical compounds. These empirical compounds are intermediates between the m/z features and 

the compounds. The algorithm separates one compound into two empirical compounds if the 

difference of retention time between the corresponding features is larger than expected. Isomers 

are also regrouped in one empirical compound. The algorithm then performed the pathway 

enrichment analysis based on these empirical compounds (Pang et al., 2020). 

MetaboAnalyst produces two output tables. The first contains the potential matches, the 

corresponding features and empirical compounds. The second contains the results of the pathway 

enrichment analysis: the pathways, the number of hits, the p-values and the list of significant 

empirical compounds from the data included in the pathways. 

For biological interpretation, the compounds in the significant pathways are needed. Indeed, based 

on the assumption of the algorithm, these compounds are more likely to be correctly matched to 

the features. In our work, the pathways with an EASE score < 0.05 are considered as significant. 

However, a list of the potential compounds in these pathways is not directly available in the 

MetaboAnalyst outputs. It is retrieved by comparing the list of potential matches from 

MetaboAnalyst and the list of compounds belonging to each pathway from the KEGG pathway 

library. This comparison is performed in R and the KEGG pathway library is accessed using the 

package KEGGREST. 

In addition to retrieving the compounds in significant pathways, the corresponding features are also 

retrieved. This allows to visualize the evolution of their intensities over time by treatment. 

3. Results and discussion 

3.1. DESCRIPTIVE UNTARGETED METABOLOMICS ANALYSIS 

BSF T. brucei 427 cells were cultured in vitro in the absence of suramin, or in the presence of 17.2 nM 

of this trypanocidal drug. This concentration corresponds with the EC50 value as determined in a 72 

h Alamar Blue assay. As shown in Supplementary Fig. 1, no effect on cell density is yet observed 

during the first 12 h, but upon further culturing until 48 h, growth of the trypanosomes is inhibited 

by about 30.3% compared to the control. Samples were taken after 12, 24, 29 and 48 h of incubation 

and processed for metabolomics analysis as described in Materials and Methods. The samples were 

analyzed by liquid chromatography (HILIC) coupled with both positive and negative ionization MS 

and NMR techniques. Following mass spectrometry analysis, 5357 and 2607 metabolites were 

detected respectively in positive and negative ionization modes. After applying filtering steps to 

improve sample quality, a set of features were removed. 1546 and 1654 features were kept and 

subjected to multivariate and univariate statistical tests. 

NMR proton spectra were obtained and transformed as described in the Materials and Methods 

section and binned in equal intervals which amounted to 180 bins per sample. This bin table was 

used directly for multivariate and univariate statistical analyses. In parallel, the spectra were 
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annotated through the Chenomx NMR Suite 9.0 database and the HMDB which identified up to 42 

metabolites. 

3.2. STATISTICAL ANALYSIS OF THE METABOLOMICS RESULTS 

3.2.1. PRINCIPAL COMPONENT ANALYSIS (PCA): SCORE PLOTS 

Principal component analysis (PCA) allows for a first exploratory data analysis. The score plots in Fig. 

1 A and C show that, for the MS-negative and NMR data, a separation is observed between the groups 

treated with suramin and the control groups. The cumulative contribution of the first two principal 

components (PC1 + PC2) accounts for a significant proportion of the total variance observed in these 

two analytical conditions (52.3%, 38.05% and 67.4%, respectively). The treatment effect is less 

visible in the PCA graph of the MS-positive as shown in Fig. 1 B, and the % of variance explained by 

the two first of principal components is only 35.0%. In all three graphs, the effect of kinetics is also 

clearly visible on the first component. These findings suggest that both treatment and time affect 

the resulting data. Finally, note that one strong outlier has been removed from the NMR data after a 

preliminary PCA analysis, which then originated the score plot of Fig. 1C. 

3.2.2. ASCA MODELING RESULTS 

Table 1 displays the global percentage of variance explained by each model effect factor calculated 

by the ASCA ANOVA decomposition, as well as the corresponding bootstrap p-values. The table 

includes four sources of variation: treatment, time, the interaction between treatment and time, and 

residuals. The residual score plot represents the noise in the data when all model effects have been 

removed. 

These results confirm the PCA observations: treatment and time have a significant effect on the 

metabolomics spectral profiles for MS-positive, MS-negative and NMR results and the interaction is 

significant for MS-negative and NMR spectra only. For MS-positive results, the three effects are less 

significant because the percentage of variance attributed to noise (residuals) is higher (51.4%). For 

MS-negative and NMR results, most of the variance is explained by the two main effects (treatment 

and time) as observed in PCA (49.4% and 55%, respectively). Interaction effects, although of lesser 

importance in comparison to other results, are of particular interest in this study since they indicate 

that the evolution over time of certain metabolites differs between treated and control samples. 

Figure 2 complements Table 1 with the APCA score plots resulting from the PCA decomposition of 

matrices effect. In APCA, each matrix effect is initially enhanced by the residuals, enabling a visual 

comparison between the factor effects and the data's noise. Each score plot must then be seen as a 

representation of the data with respect to one model effect after having removed the effects of 

others. 

The treatment score plots allow to observe a clear separation of treated and control samples for MS-

positive and NMR data on the first PC axis and the time score plots show, from left to right a quite 

clear evolution of the samples over time. The corresponding PCA loading (provided by Fig. 1) allowed 

to identify features linked to each effect. Finally, PCA on residuals are mostly useful to highlight new 
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outliers after the ANOVA decomposition and can be found in Supplementary Fig. 2. No important 

outliers appear in these graphs. 

3.2.3. UNIVARIATE ANOVA 2 STATISTICAL MODELING: NUMBER OF SIGNIFICANT FEATURES 

ASCA global spectral analysis was then complemented by an individual ANOVA 2 modeling of each 

feature (bins in NMR and m/z—peaks in MS) in order to identify, in fine, which metabolites are 

significantly affected by treatment, time or their interaction. Table 2 presents the number and 

percentage of significant features as a function of the effect involved in the ANOVA 2 model before 

and after multiplicity correction. The reduction in the number of features observed after each BH-

FDR correction for each effect allows to remove potentially false positives and control the global 

error rates. For example, for the factor treatment, there is a reduction from 44 to 37% for MS-positive, 

from 28 to 14% for MS-negative, and from 53 to 45% for NMR. These lists of significant features have 

been further compared to ASCA important ones and used for metabolites and pathways 

identification. 

3.2.4. VISUAL IDENTIFICATION OF FEATURES OF INTEREST ON THE BASIS OF ASCA AND 

ANOVA 2 RESULTS 

When the number of features is high in a multivariate analysis, it is quite difficult to evaluate 

graphically their importance. In this paper, the p-values of the ANOVA 2 modeling were mainly used 

to identify important metabolites and linked pathways. Nevertheless, features (MS-peaks or bins) of 

importance based on ANOVA 2 p-values and ASCA loadings can be represented graphically among 

each other by scatter plots to check the relation between both and detect the most important ones 

located at the top-right of the graphic. Such graphics are provided for information in Supplementary 

Fig. 3 for the NMR analysis. They can be interpreted similarly to volcano plots in transcriptomics. 

3.2.5. IDENTIFICATION AND FUNCTIONAL ANALYSIS OF METABOLITES 

Supplementary Fig. 4A and B show the evolution of the number of m/z features at the steps of the 

ANOVA, identification of potential matches and in significant pathways for the MS data in negative 

mode and positive mode, respectively. For the MS data in positive mode, there are not enough 

significant peaks to perform the functional analysis for the interaction effect. For the treatment and 

time effect, no significant pathways have been identified by the mummichog algorithm. Potential 

compounds for the significant features from MS data in positive mode have been computed based 

on the mass-to-charge ratio and are included in Table 3. 

Table 4 shows metabolic processes significantly impacted by each effect and the potentially 

significant matches included in these processes for the MS data in negative mode. Five processes 

are significantly impacted by the effects. One or more processes involving amino acids, most likely 

protein synthesis as will be discussed later in this paper (Results and Discussion Sect. 4), and 

nucleotide-sugar metabolism, are significantly impacted by the treatment. Metabolites that have 

been significantly impacted by the time are those of the metabolism of di- and tricarboxylates (the 

former involved in succinate production and both in the TCA cycle) and possibly processes of amino-
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acid metabolism linked to the latter. Finally, two pathways involved in sugar metabolism have been 

impacted by the interaction of the two factors: glycolysis and galactose metabolism. 

ANOVA of the NMR data indicated 81 bins out of 180 bins as significative between suramin and 

control, of which 3 were significative for the interaction as well. Out of these, 75 bins were annotated 

mainly with the Chenomx NMR Suite 9.0 database, which represents a significant majority of the 

spectral peaks (92.6%). However, it is worth mentioning that bins (Wishart, 2010) are a matrix 

representation where each characterizes a set width interval of the original spectrum, in ppm in this 

case. Because of the physico-chemical properties of metabolites, they will appear in one or multiple 

clusters in which the peaks can have variating multiplicities in a wide range of ppm (NMR-Based 

Metabolomics, 2018). As such, similar molecular groups or positions will elicit peaks in the same 

spectral area, leading to overlapping signals within one bin. This disadvantage of the small chemical 

shift window of 1HNMR makes annotation and interpretation of significant bins a bit more 

challenging, but still relevant and interesting in the context of cross-analysis and biological 

interpretation. 

A panel of metabolites has been identified to delineate distinct effects using NMR and LC-MS 

analyses. Some metabolites have been detected utilizing both analytical methods, while others are 

selectively discernible through either of them. A comprehensive summary of the detected 

metabolites, accompanied by their respective degrees of statistical significance, is presented in 

Table 5. 

4. Biological interpretation 

Functional analysis of suramin-treated versus control BSF T. brucei using LC-MS data and NMR 

annotation revealed that the main metabolites modulated by treatment, time, or interaction effects 

participate in various processes of the cells. Metabolites that are significantly changed are listed in 

Table 4 and, in a time-dependent manner of their changes shown in the heatmaps in Fig. 3 and Fig. 

4. The observation of multiple changes is in agreement with the notion that this drug may have 

several targets in trypanosomes (Hannaert, 2011; Wiedemar et al., 2020; Willson et al., 1993; Zoltner 

et al., 2020). Some of the metabolic changes observed may be primary effects, directly attributable 

to the inhibition of a specific target, whereas others may be secondary, resulting from effects such 

as a cellular energy collapse, changes in protein expression and/or accumulation of metabolites in 

ways that are affecting other processes. Here we will discuss several metabolic changes observed in 

our study. 

Most strikingly, in both the LC-MS and NMR analysis, intensities of many amino acids were found to 

be higher in parasites treated with suramin when compared to the control (Fig. 3, 4 and 5). However, 

the time dependency differed between the two studies. 

For LC-MS, an increase in some metabolite intensities was observed at 12 h in the samples treated 

with suramin compared to the control samples at 12 h as seen in Fig. 3. In the case of NMR, this 

increase is only statistically significant at 29 h compared to the control samples at 29 h. This may be 
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explained by the different sensitivities of the two methods, as well as the differences in data 

normalization and statistical analyses. When focusing on the treated samples and the time effect, a 

gradual decrease in metabolite intensities is observed over time. The pathway analysis by 

MetaboAnalyst highlighted amino-acyl tRNA synthetase, the enzyme that recognizes an amino acid 

and its cognate tRNA, as a likely suramin target responsible for the higher intensities. However, 

trypanosomatids, like cells in general, possess distinct synthetase enzymes for different amino acids 

(Nasim & Qureshi, 2023). Indeed, 26 aminoacyl tRNA synthetases have been recognized and, at least 

forral of them, decreased activity associated with inhibition of parasite growth. These highly diverse 

enzymes have been the focus of studies to develop inhibitors that would target these trypanosomal 

enzymes (reviewed recently by Kushwaha & Capalash, 2022; Nasim & Qureshi, 2023)) Based on this 

information, we consider it more likely that the accumulation of many amino acids as observed upon 

suramin treatment in our study is caused by inhibition of a common downstream step in protein 

synthesis. 

The HMI-9 medium in which the trypanosomes were cultured is rich in amino acids, rendering it likely 

that they are taken up by active transporters rather than being synthesized de novo (Marchese et al., 

2018). The later decline in intensities as observed by LC-MS may be due to a different, more delayed 

aspect of the suramin treatment, such as an ATP depletion (discussed below) inhibiting the active 

transport processes and/or the formation of peptide bonds. In this respect, it is noteworthy to 

mention that recently published data showed that protein synthesis accounts by far for most of the 

ATP consumption in bloodstream-form T. brucei (Nascimento et al., 2023). 

Changes in protein levels have been observed in the proteomic analysis of suramin-treated BSF 

trypanosomes in the study by Zoltner et al. (Zoltner et al., 2020). However, these changes observed 

after 48-h of treatment—also with the drug present at EC50 (in that study, 35 nM)—were not attributed 

to a direct effect of the drug on translation, but to a reprogramming of the proteome resembling the 

changes that occur when BSF trypanosomes differentiate to insect-stage specific procyclic forms. 

This suramin-induced proteome change was possibly due to an alteration of the cell’s energy state. 

Major suramin-induced changes were observed for various glycolytic intermediates. BSF T. brucei 

depends for its ATP production entirely on glucose catabolism (Fig. 6) of which the end-products are 

excreted. The predominant product is pyruvate, formed via the glycolytic pathway. Minor glucose-

derived end-products are: (i) alanine converted from pyruvate by the addition of an amino group 

transferred from a different amino acid, (ii) succinate, produced from the glycolytic intermediate 

phosphoenolpyruvate (PEP) via the dicarboxylic acids oxaloacetate, malate and fumarate as 

intermediates, and (iii) acetate, formed from pyruvate in the mitochondrion, where acetate can also 

be produced by oxidation of threonine (Mazet et al., 2013). Unique for trypanosomes and related 

protists is the compartmentalization of the first 7 of the 10 enzymes of the glycolytic pathway in 

peroxisome-related organelles called glycosomes, whereas the last three, including pyruvate kinase 

responsible for the net ATP synthesis, are present in the cytosol (Fig. 6) (Michels et al., 2021; 

Opperdoes & Borst, 1977). The enzymes of the succinate-producing pathway are also sequestered 

within the glycosomes. In our LC-MS study, intracellular intensities of glucose and several glycolytic 

intermediates were found to be higher in suramin-treated trypanosomes within 12 h, followed by a 
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gradual decline (Fig. 5). The intermediates that changed in this manner are the products of the first 

three enzymes of the pathway present in glycosomes: glucose 6-phosphate (G6P), fructose 6-

phosphate (F6P) and fructose 1,6-bisphosphate (FBP) as well as those of the last three cytosolic 

enzymes: 2-phosphoglycerate (2PG), PEP and pyruvate. Zoltner et al. (2020) also reported higher 

intensities of F6P and FBP, although only after 21 h (Zoltner et al., 2020). The most significant 

difference they observed concerned pyruvate; only slightly higher after 12 h, but a nearly fivefold 

higher intensity after 21 h. In contrast to our study, they reported a 50% drop of PEP at 21 h. 

Intracellular intensities related to succinate and acetate, also in part end-products of glucose 

catabolism, were higher too within 12 h. 

Intriguingly, Willson et al. (Willson et al., 1993) reported previously that suramin inhibits all T. brucei 

glycolytic enzymes purified from glycosomes with IC50 values varying from 3 to 100 μM. However, 

these values are over 100-fold the concentration required to kill trypanosomes, EC50 = 17.2 nM in our 

study. Previous studies demonstrated that suramin enters trypanosomes predominantly by 

endocytosis after binding to the surface protein ISG75 and is then, via the lysosome, delivered to the 

cytosol (Alsford et al., 2012; Zoltner et al., 2015). This process leads to accumulation of the drug: 

ninefold, up to an intracellular concentration of 1.8 pM under the experimental conditions used by 

Zoltner et al., 2020. However, it is possible that the highly negatively-charged suramin concentrates 

specifically within glycosomes, by tightly binding to the glycosomal glycolytic enzymes with their 

high pK values (8.8-10.2) (Misset et al., 1986). Given that the ~ 60 glycosomes in BSF trypanosomes 

comprise together about 5% of the cellular volume, an additional ~ 20-fold concentration of the drug 

may then be possible. Assuming also a ninefold accumulation within the trypanosomes in our 

experiments performed at an extracellular suramin concentration of 17.2 nM, an intraglycosomal 

concentration of 3 pM would be achievable, corresponding to, or not far below the IC50 values of 

some glycosomal enzymes (Willson et al., 1993). Suramin (1297 Da) would be too large for entering 

glycosomes by free diffusion through the pores in their membrane (allowing passage of molecules 

up to 400-500 Da (Michels & Gualdrón-López, 2022)), but it is conceivable that it could enter while 

bound to the newly synthesized proteins that are post-translationally imported. With a doubling 

time of approximately 6 h of BSF T. brucei in HMI-9 medium, implying ~ 75% new glycosomal protein 

content being formed after 12 h, and > 90% after 24 h, such a scenario would have provided sufficient 

time to accumulate suramin at low micromolar concentration within the organelles during the 

experimental conditions used. This is consistent with the metabolic changes that occur after 12 h of 

incubation between treated and control samples in our study, which evidences, along with the loss 

of relative viability as shown in Supplementary Fig. 1, that these are correlated to suramin’s mode 

of action and not to a mode of death. 

Besides inhibiting some individual glycosomal enzymes, it is also conceivable that the tight binding 

of suramin to glycosomal proteins may prevent and/or disrupt the interaction between the 

glycosomal enzymes, known to exists as a multienzyme complex (Misset et al., 1986), as also 

proposed by Zoltner et al. (Zoltner et al., 2020). Such disassembly of the complex will likely affect 

the glycolytic flux, the concentrations of glycolytic intermediates and the production of ATP. It may 

also be responsible for the minor changes in glycosomal morphology reported by these authors, 

although these may also be due to the drop in cellular ATP, since glycosomal biogenesis involves the 
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activity of cytosolic AAA-ATPases (PEX1 and PEX6 (Michels & Gualdrón-López, 2022)). It should be 

noted that ATP could not be detected in the datasets of our metabolomics studies. 

The pyruvate accumulation detected both by Zoltner et al. and by us is surprising, because previous 

studies did not show any control of pyruvate efflux on the glycolytic flux (Bakker et al., 1999) and 

pyruvate is expected to exit the cell electroneutrally in symport with a proton by a facilitated 

diffusion carrier, following the transmembrane gradient (Wiemer et al., 1995). The exit would thus 

not be limited when the external pyruvate concentration is below the intracellular one. To assess if 

suramin inhibits the transport, Zoltner et al. overexpressed the transporter, but this did not protect 

trypanosomes from suramin toxicity. Thus, one may wonder if the overexpressed transporter 

molecules were functional. The alternative explanation is an increased pyruvate production from 

PEP, either via the cytosolic pyruvate kinase or the glycosomal pyruvate, phosphate dikinase (PPDK) 

(Fig. 6). Zoltner et al. favored PPDK, because a threefold higher expression of this enzyme (after 2 

days), typical for the procyclic form, was observed. However, increased activity of pyruvate kinase is 

equally feasible, because of the significantly higher level of its allosteric activator FBP (Ka = 0.26 mM 

(Morgan et al., 2014)). Nonetheless, the observation that the intensities of PEP and 2PG, the 

metabolites directly upstream of pyruvate, are higher suggests that pyruvate accumulation is due 

to a downstream process such as partial inhibition of its efflux rather than resulting from an 

increased activity of pyruvate kinase or PPDK. Moreover, pyruvate kinase is highly expressed in BSF 

T. brucei, in substantial overcapacity, whereas PPDK is almost undetectable (Bakker et al., 1999; 

Bringaud et al., 1998). It is thus questionable that a mere threefold increase in PPDK expression 

would lead to a significant change in pyruvate. 

Other metabolites of which the intensities were impacted are dicarboxylic acids (oxaloacetate, 

malate, succinate) which are intermediates of both the TCA cycle and the glycosomal succinate 

production pathway. In addition, several amino acids with higher intensities are directly connected 

to intermediates of the TCA cycle (e.g., proline, glutamate; Fig. 6). Since both in our analysis and that 

by Zoltner et al. (2020) these changes were observed after 12 h, they may be considered as primary 

effects of the suramin treatment, although the increased expression of enzymes of the 

mitochondrial TCA cycle and glycosomal succinate-producing shunt were only apparent at later 

stages. 

Intermediates of nucleotide-sugar biosynthesis, aminosugar biosynthesis and galactose 

metabolism were also affected by suramin treatment. Nucleotide-sugars and amino-sugars are 

important for the synthesis of glycoproteins and glycosylphosphatidylinositol by which surface 

(glyco-)proteins can be anchored to the lipid bilayer of the plasma membrane. The primary building 

blocks for these biosynthetic processes are the sugar-phosphate intermediates (G6P, F6P) of the 

glycolytic pathway. It is therefore not surprising that the synthesis of nucleotide- and aminosugars 

is affected when the availability of the building blocks change, although a primary effect by suramin 

on these biosynthetic processes can currently not be excluded. Similarly, for galactose metabolism 

that is also intricately linked with the sugar-phosphate intermediates of glycolysis. Although G6P 

serves also as the substrate for the pentose-phosphate pathway, our analysis did not reveal 

significant changes in the intensity of any of its intermediate metabolites. 
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5. Conclusion 

In metabolomics, having a comprehensive analysis workflow is crucial to obtain robust and reliable 

biological results. The combination of univariate and multivariate statistical analyses, along with 

development of statistical tools and packages, allows for continuous improvement in metabolomics 

analyses. In this workflow, corrections were applied, leading to the elimination of a significant 

number of false positives and resulting in better identification of statistically significant metabolites. 

The use of ASCA tools in this study allowed us to identify significant effects and their percentage 

contributions to the observed separations in the PCA plots, for example. 

In LC-MS, functional analysis tools facilitated improved identification of the metabolic pathways 

modulated by the different tested effects. However, our work also highlights the limitations in the 

identification of molecules and metabolic pathways involved in various biological processes. 

Despite the significant progress brought by functional analysis tools, there is still much work to be 

done to enhance metabolomics identification analyses. 

NMR is a frequently-used tool in the field of metabolomics and emerges in this work as an important, 

simple and quick tool to valorize and confirm the data obtained by LC-MS analysis. Although both 

NMR and LC-MS involve expensive hardware to acquire and maintain, the complimentary of the 

techniques as demonstrated in this work displays the interest in this association and the fruitful 

outcome of collaborations between LC-MS and NMR-based research facilities. Our study 

demonstrated that suramin affects multiple processes in T. brucei, most notably pathways involved 

in the parasite’s energy metabolism and processes involving many amino acids, possible protein 

synthesis. Further studies incorporating fluxomics would provide a better understanding of the 

catabolic and anabolic mechanisms by which the identified metabolites are changed by the drug. 
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Figure 1.  

 

Exploring treatment and time effects on suramin-treated versus control T. brucei samples: a comparative principal 

component analysis study at 12, 24, 29, and 48 h. A MS-negative ionization, B MS-positive ionization and C NMR analysis. 

 

Figure 2.  

 

APCA score plots resulting of the PCA on the augmented effect matrices for the three analytical methods. A MS-negative 

ionization, B MSpositive ionization and C: NMR analysis. 
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Figure 3.  

 

LC-MS-heatmap of significantly altered metabolites reveals diverse effects (treatment, time, and interaction) between 

control and suramin-treated T. brucei groups at different time points in metabolomics analysis" (red color = higher 

abundance; blue color = lower abundance). Analysis conducted using euclidean distance method with Ward clustering 

algorithm after normalization to samples median and Pareto scaling. 
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Figure 4.  

 

NMR-heatmap of significantly altered metabolites reveals diverse effects (treatment, time, and interaction) between 

control and suramin-treated T. brucei groups at different time points in metabolomics analysis" (red color = higher 

abundance; blue color = lower abundance). Analysis conducted using euclidean distance method with Ward clustering 

algorithm after normalization to samples median and Pareto scaling. 
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Figure 5.  

 

The plot of evolution in time of the mean normalized intensities in MS-negative mode for significant features 

corresponding to potential compounds in significant pathways. 
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Figure 6.  

 

Simplified representation of the intermediary metabolism of BSF T. brucei. The trypanosomes use glucose as major free 

energy source. Glucose, taken up from the environment, is catabolized via glycolysis to pyruvate of which the major part 

is excreted. A minor fraction of the pyruvate is further metabolized, resulting in the additional end-products alanine, 

acetate, and succinate. The end-products are shown in white font in boxes against a red background with the size of the 

boxes reflecting the importance of the flux. Threonine, also taken up by the trypanosomes, may contribute to the acetate 

production. The major metabolic fluxes of BSF T. brucei are also represented by thick black arrows, minor fluxes by thin 

black arrows. Mitochondrial functions such as the TCA cycle and major parts of the amino-acid metabolism are severely 

repressed in the BSF trypanosomes (Zíková et al., 2017); they are represented in the scheme in simplified form, in grey and 

by dashed arrows, because, as reported by Zoltner et al. (2020), upregulated expression of several of the enzymes involved 

is observed in BSF T. brucei two days after addition of suramin to the culture. The highlighted metabolites are those found 

to be statistically significant in our analyses. Enzymes: 1, hexokinase; 2, glucose-6-phosphate isomerase; 3, 

phosphofructokinase; 4, aldolase; 5, triose-phosphate isomerase; 6, glycerol-3-phosphate dehydrogenase; 7, 

glyceraldehyde-3-phosphate dehydrogenase; 8, phosphoglycerate kinase C; 9, phosphoglycerate mutase; 10, enolase; 11, 

pyruvate kinase; 12, alanine aminotransferase; 13, pyruvate phosphate dikinase; 14, phosphoenolpyruvate carboxykinase; 

15, glycosomal malate dehydrogenase; 16, cytosolic fumarase; 17, glyco-somal NADH-dependent fumarate reductase; 18, 

pyruvate dehydrogenase complex; 19, acetyl-CoA thioesterase; 20, acetate:succinate CoA-transferase; 21, succinyl-CoA 

synthetase; 22, L-threonine dehydrogenase; 23, 2-amino-3-ketobutyrate CoA-transferase; 24, mitochondrial FAD-

dependent glycerol-3-phosphate dehydrogenase; 25, 21, NADH dehydrogenase (complex I of the respiratory chain); 26, 

alternative oxidase; 27, FoF1-ATP synthase; 28, ADP/ATP exchange carrier; 29, citrate synthase; 30, aconitase; 31, isocitrate 

dehydrogenase; 32, a-ketoglutarate dehydrogenase; 33, succinyl-CoA synthetase; 34, mitochondrial NADH-dependent 

fumarate reductase; 35, mitochondrial fumarase; 36, mitochondrial malate dehydrogenase; 37, L-proline dehydrogenase; 

38, pyrroline-5-carboxylate dehydrogenase; 39, alanine aminotransferase; 40, glutamate dehydrogenase. Abbreviations: 

G6P, glucose 6-phosphate; F6P, fructose 6-phosphate; FBP, fructose 1,6-bisphosphate; DHAP, dihydroxyacetone 

phosphate; Gly3P, glycerol 3-phosphate; G3P, glyceraldehyde 3-phosphate; 1,3BPGA, 1,3-bisphosphoglycerate; 3PGA, 3-

phosphoglycerate; 2PGA, 2-phosphoglycerate; PEP, phosphoenolpyruvate; OxAc, oxaloacetate; PPi, inorganic 

pyrophosphate; CoASH, coenzyme A; IsoCit, isocitrate; a-Keto, a-ketoglutarate; SucCoA, succinyl-CoA; γ-GS, glutamate γ-

semialdehyde; UQ, ubiquinone. The light blue coloured area of the mitochondrion represents the intermembrane space 

between the mitochondrial outer membrane (not drawn) and the inner membrane (darker blue) containing the respiratory 

chain complexes, the FoFt-ATP synthase and the ADP/ATP exchanger. Figure modified from Michels et al., 2021, where also 

more details can be found. 
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Table 1. ASCA data modeling: exploring variance contribution and significance of model effects 

Model effect Percentage % of 

variance (Type III) 

Bootstrap p-values 

MS—negative ionisation   

Treatment 15.7 < 0.002 
Time 33.7 < 0.002 

Treatment*Time 12.2 0.028 

Residual 38.4 — 

MS—positive ionisation   

Treatment 8.1 0.010 
Time 28.3 < 0.002 

Treatment*Time 12.3 0.114 

Residual 51.4 — 

NMR   

Treatment 32.6 < 0.002 

Time 22.4 < 0.002 

Treatment*Time 18.2 < 0.002 

Residual 24.5 — 

 

Table 2. Number and percentage of significant metabolites in group differentiation for each ANOVA 2 model effect 

before and after BH-FDR multiplicity correction. 

Model effect Number of 

significant tests 

Percentage % Number of significant tests 

after FDR correction 

Percentage after 

FDR correction % 

MS—negative ionization    

Treatment 717 44 610 37 
Time 1061 64 958 58 

Interaction 439 27 132 8 

MS—negative ionization    

Treatment 429 28 216 14 
Time 675 44 513 33 

Interaction 188 12 5 0 

NMR     

Treatment 96 53 81 45 

Time 69 38 48 27 

Interaction 16 9 3 2 
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Table 3. Significant features from LC-MS data in positive mode, potential matches and adjusted p -value per 

effect. 

m/z Retention 

Time 

(seconds) 

Potential match name (Form) Adjusted 

treatment p-

value 

Adjusted time p-value Adjusted 

interaction p-

value 

445.3 234 Menaquinone 0.1547 0.01108 0.2057 

303.2 241 (15S)-15-Hydroxy-5,8,11-cis-13-trans-eicosatetraenoate; 

5(S)HETE 

0.7355 0.0225 0.4323 

173 940 D-Ribose; (R)-3-Hydroxybutanoate; (S)-3-Hydroxyisobutyrate 0.0009767 0.004576 0.3272 

347 1002 UMP 0.000458 0.002669 0.3271 

203.1 1009 D-Glucose D-Fructose; myo-Inositol; D-Mannose; beta-D-

Glucose; alpha-D-Glucose; beta-D-Fructose 

0.0008335 0.00602 0.3933 

400 1026 ADP; GDP; dGDP 0.01738 0.008786 0.7711 

125 1027 Phosphoenolpyruvate; Glycerone phosphate; D-

Glyceraldehyde 3-phosphate 

0.1009 0.0141 0.7012 

184.1 1027 Choline phosphate 0.05436 0.01853 0.7012 

203.1 1057 D-Glucose; D-Fructose; myo-Inositol; D-Mannose; beta-D-

Glucose; alpha-D-Glucose; beta-D-Fructose 

0.0002223 0.001128 0.04513 

253 1069 D-Ribose 5-phosphate; D-Ribulose 5-phosphate; D-Xylulose 5-

phosphate; L-Selenocystathionine 

0.01925 0.2649 0.653 

437 1069 dTTP 0.0001734 0.0159 0.68 

140.9 1077 Fe2 + ; Fe3 + 0.2487 0.04678 0.4145 

141 1091 D-Glucono-1,5-lactone 6-phosphate 0.9871 0.04323 0.8419 

204.1 1096 Spermidine 0.05189 0.0002378 0.1967 

146.1 1097 4-Trimethylammoniobutanoate 0.6752 0.01752 0.7002 

135 1099 3-(4-Hydroxyphenyl)pyruvate 0.5663 0.04422 0.7318 

161.1 1100 L-Tryptophan 0.4173 0.003613 0.6911 

101.1 1102 L-Glutamine 0.6608 0.04313 0.9342 

98.98 1105 Acetate 0.4955 0.03928 0.739 

506 1178 dCTP 0.008012 0.08416 0.6114 

370.1 1217 AMP; dGMP 0.0002223 0.0146 0.4642 

368 1292 Orotidine 5’-phosphate 0.002076 0.04823 0.3933 

798.8 1599 1-Diphosinositol pentakisphosphate; 5-PP-InsP5 0.4645 0.0259 0.6911 

88.04 1843 L-Aspartate; L-Serine; 2-Oxosuccinamate 0.2513 0.02338 0.6872 

102.1 1857 L-Threonine; L-Homoserine 2-Oxoglutaramate 0.05353 0.00602 0.1967 

176.1 1874 L-Citrulline 0.9323 0.01269 0.08558 

122 1889 L-Cysteine 0.06753 0.002509 0.1422 

102.1 1909 L-Threonine; L-Homoserine; 2-Oxoglutaramate 0.02719 0.1293 0.3885 

262.1 2068 Dihydrobiopterin 0.9939 0.04607 0.4992 

421 2093 dTDP 0.2513 0.03036 0.4173 

264.1 2095 dAMP 0.8736 0.005705 0.5096 

481 2096 dIDP (M + HCOONa 0.199 0.01813 0.3268 

298.3 238.2 Sphinganine 1-phosphate 0.02719 0.01249 0.6911 

284.3 240.3 Sphinganine 0.02737 0.00889 0.6971 

210.2 298.4 5-Dehydroepisterol 0.7891 0.007869 0.8144 

195.1 361.3 beta-Alanyl-N(pi)-methyl-L-histidine 0.1561 0.01259 0.7353 

140 399.4 Acetyl phosphate 0.9759 0.03624 0.6971 

181 400.6 Nicotinamide 0.5899 0.00338 0.5785 

223 400.7 D-Erythrose 4-phosphate 0.7444 0.01539 0.5799 

117.1 404.1 Dolichyl phosphate D-mannose 0.5737 0.01394 0.3268 

89.06 415.9 3-Methyl-2-oxobutanoic acid; Glutarate; 5-Oxopentanoate 0.2741 0.005983 0.8523 

202.1 530.3 D-Glucosamine 0.03671 0.2058 0.5997 

305.1 580.6 N-((R)-Pantothenoyl)-L-cysteine 0.002208 0.04554 0.8144 
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127 606.1 Imidazole-4-acetate 0.3998 0.006331 0.1422 

184.1 819.8 Choline phosphate 0.9877 0.003172 0.6971 

113 822.5 Orotate; (S)-Dihydroorotate 0.00403 0.001086 0.9835 

153 927.4 (S)-Malate 0.0238 0.03928 0.6976 

154 927.9 L-Proline 0.1113 0.01081 0.4971 

175 928.1 Citrate; D-Glycerate; Isocitrate; cis-Aconitate 0.01014 0.04348 0.6064 

267.1 959.9 Uridine 0.01307 0.01399 0.5932 

514.7 963.9 Palmitoyl-CoA 0.1558 0.03877 0.3788 

347 987.6 UMP 0.0002419 0.005142 0.4992 
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Table 4. Significant pathways from the functional analysis of the MS data in negative mode. 

Pathway EASE score Significant potential compounds 

Treatment  

 Protein biosynthesis 0.0001278 L-Alanine; L-Glutamate; L-Aspartate; Glycine; L-Threonine; 

L-Serine; L-Lysine; L-Methionine; L-Proline; L-Histidine; 

L-Phenylalanine; L-Asparagine; 

L-Leucine; L-Isoleucine; L-Arginine; L-Tyrosine; 

L-Tryptophan 

 Amino-sugar and nucleotide-

sugar metabolism 

0.024498 D-Mannose; D-Glucose; alpha-D-Glucose; beta-D-Fructose; 

D-Glucosamine; alpha-D-Glucose 6-phosphate; beta-D-

Fructose 6-phosphate; D-Mannose 1-phosphate; D-

Mannose 6-phosphate; D-Glucose 1-phosphate; D-

Glucosamine 6-phosphate; N-Acetyl-alpha-D-

glucosamine 1-phosphate; N-Acetyl-D-glucosamine 6-

phosphate; UDP-alpha-D-galactose; UDP-glucose; UDP-

N-acetyl-alpha-D-glucosamine 

Time  
 Dicarboxylic acid metabolism / 

TCA cycle / Amino acid 

metabolism linked to the TCA 

cycle (glutamine/glutamate) 

and linked to glycolysis/ via 3-

phosphoglycerate (serine and 

glycine) 

0.018122 Acetate; Pyruvate; L-Glutamate; Succinate; (S)-Malate; 

Glycine; L-Serine; 2-Oxoglutarate; L-Glutamine; 

D-Glycerate; 2-Phospho-D-glycerate; Oxaloacetate; 3-

Phospho-D-glycerate; cis-Aconitate; Citrate; Isocitrate 

Interaction  

 Glycolysis 0.013944 beta-D-Glucose; D-Glucose; alpha-D-Glucose; 

Phosphoenolpyruvate; 2-Phospho-D-glycerate; 

Oxaloacetate; 3-Phospho-D-glycerate; alpha-D-Glucose 

6-phosphate; beta-D-Fructose 6-phosphate; beta-D-

Glucose 6-phosphate; D-Glucose 1-phosphate; 3-

Phospho-D-glyceroyl phosphate; beta-D-Fructose 1,6-

bisphosphate 

 Galactose metabolism 0.03113 Glycerol; D-Mannose; D-Fructose; D-Glucose; alpha-D-

Glucose; myo-Inositol; alpha-D-Glucose 6-phosphate; D-

Fructose 6-phosphate; D-Tagatose 6-phosphate; 

D-Glucose 1-phosphate; D-Tagatose 1,6-bisphosphate; 

UDP-alpha-D-galactose; UDP-glucose 
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Table 5. Significant metabolite responses to treatment, time, and interaction effects: A comprehensive analysis 

using LC-MS and NMR. 

Treatment   Time   Interaction   

Metabolite LC-

MS 

NMR Metabolite LC-MS NMR Metabolite LC-MS NMR 

Alanine *** *** Acetate *** ** D-Glucose ** * 

Threonine *** *** Pyruvate ** ** Phosphoenolpyruvate/ 

oxaloacetate/phospho-D-

glycerate 

* NS 

Glutamate *** *** L-Glutamate *** ** Glucose-6-

phosphate/glucose-1-

phosphate/fructose-6-

phosphate 

* NS 

Methionine *** ** Succinate ** NS 3-Phospho-D-

glycerolphosphate 

* NS 

Aspartate ** NS Malate ** NS Beta-D-fructose 1,6 biphos-

phate 

* NS 

Serine *** *** Glycine *** NS Glycerol * NS 

Lysine *** *** Serine ** NS Glutamine/glutamate/ 

methionine 

NS ** 

Proline * ** Oxoglutarate *** NS    

Histidine ** NS L-Glutamine *** *    

Phenylalanine *** *** D-Glycerate *** NS    

Asparagine *** NS Phospho-D-glycerate *** NS    

Leucine *** *** Cis-aconitate ** NS    

Arginine *** *** Citrate * NS    

Isoleucine *** *** Isocitrate * NS    

Tyrosine *** *** Valine NS ***    

Tryptophan *** NS Leucine *** ***    

Glucose ** *** Isoleucine *** ***    
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D-glucosamine *** NS Lysine * *    

N-

acetylglucosamine 

NS *** Alanine *** ***    

Alpha-Glucose-6-

phosphate 

*** NS Proline NS **    

Glucosamine-6-

phosphate 

*** NS Arginine *** ***    

UDP-glucose ou 

UDP-N-

acetylglucosamine 

*** NS Glucose/N-

Acetylglucosamine 

*** *    

AMP NS ** Threonine/GTP *** *    

Choline NS *** Tyrosine *** ***    

sn-Glycero-3-

phosphocholine 

NS * Phenylalanine ** **    

GTP NS *       

Histamine NS ***       

Adenine NS *       

'*'—indicates significant metabolite presence according to the analytical method (*p < 0,05; **p < 0,01; ***p < 0,001). 'NS' 

denotes non-significance or absence of metabolite detection (NMR or LC-MS). A metabolite may be present but non-

significant, in which case it is denoted as 'NS' 
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