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LETTER

Reply to Lee and Elliott: Changes of bonding upon  
crystallization in phase change materials
Jean- Yves Ratya , Christophe Bicharab, Carl- Friedrich Schönc, Carlo Gattid,e , and Matthias Wuttigc,f,1

In their letter, Lee and Elliott question the existence of a dis-
tinct class of glass- forming materials (1) which are at variance 
with Zachariasen's conjecture, i.e., form non- Zachariasen 
Glasses (NZGs) (2). Zachariasen postulated in 1932 that oxide 
glasses such as SiO2 have the same short- range order as the 
corresponding crystal. Zachariasen suspected that this simi-
larity would be the consequence of a similarity in chemical 
bonding (2). We have confirmed this claim for SiO2 and chal-
cogenides like GeSe and GeSe2 (3). However, there are other 
chalcogenides like GeTe and related compounds, which do 
not obey his conjecture. This has been demonstrated for both 
properties and quantum chemical bonding descriptors, which 
change significantly for these NZGs upon crystallization (3). 
Further support is depicted in Fig. 1, showing data for the 
bond rupture obtained by atom probe tomography (4, 5). The 
two crucial parameters, defined in (5), hardly change upon 
crystallization for GeSe, Si, and Ge, as expected for Zachariasen 
glasses (short red arrows), while for the three NZGs (Ge2Sb2Te5, 
GeSe0.25Te0.75, and GeSe0.5Te0.5) pronounced changes in bond-
ing are found (long green—red arrows).

Lee and Elliott assert that the atomic arrangement is very 
similar in the crystalline and glassy state (1). However, at 
variance with their claims, avoiding the use of cut- off dis-
tances, figure 2 in ref. 3 evaluates differences between glass 
and crystal in PCMs. This confirms that these differences are 
much more pronounced in NZGs than in ZGs, in line with 
other studies (6–8). The close interrelation between differ-
ences in atomic arrangement and differences in bonding is 
mandatory to explain pronounced differences in, e.g., optical 
properties, a hallmark of phase change materials (6).

Finally, in ref. 1, it is argued that bonding in c- PCMs is 
hypervalent (vs covalent in the glass). This seems to create 
a contradiction. If the bonding in the two phases is identical 
(as stated in ref. 1), how can it be differentiated into two 
classes (hypervalent vs. covalent)? Hypervalent bonding char-
acterizes a scenario where four electrons hold together three 
atoms. If hypervalent bonding would prevail in crystalline 
GeTe, where the same bonding motif exists in three almost 
orthogonal directions, 12 electrons would be required to 
form these bonds (9). However, GeTe does not have 12 
valence electrons, rendering hyperbonding (3c–4e bonding) 
impossible. Instead, bonding in these chalcogenides is pri-
marily governed by 6 p- electrons (6). For an atomic arrange-
ment with six nearest neighbors, this immediately explains 
why the bonding is apparently electron- deficient (2c–1e, or 

3c–2e) bonding, as supported by detailed quantum chemical 
calculations (8, 10, 11).

The concerns expressed in ref. 1 appear to be based on a 
conceptual ambivalence, where changes of bonding and atomic 
arrangement are reported but considered irrelevant. Instead, 
our paper (3) and this comment demonstrate that most phase 
change materials indeed are at variance with Zachariasen’s 
conjecture, i.e., they significantly alter their atomic arrange-
ment, bonding, and properties upon crystallization.
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Fig.  1.   Changes of bonding upon crystallization (arrows). Crystals are 
characterized by diamonds, glasses by circles. Bonding is characterized by 
two parameters (PMI and PME), which quantify the bond rupture in atom 
probe tomography (4, 5).
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