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Abstract
Introduction
Chronic lymphocytic leukemia (CLL) is one of the most common types of leukemia, and the early diagnosis
of patients coincides with their proper treatment and survival. If patients are diagnosed late or proper
treatment is not applied, it may lead to harmful results. Several methods could be used for the diagnosis of
leukemia; some of these include complete blood count (CBC), immunophenotyping, lymph node biopsy,
chest X-ray, computerized tomography (CT) scan, and ultrasound. Most of these methods are time-
consuming and an application of more than one method will result as intended. This acknowledgment
stresses the necessity of rapid and proper diagnosis for leukemia based on clinical and medical findings,
inasmuch as it was decided to apply the artificial neural network (ANN) in order to identify a molecular
biomarker for rapid leukemia diagnosis from blood samples and evaluate its potential for the detection of
cancer.

Materials & methods
The independent sample t-test was applied with the Statistical Package for the Social Sciences (SPSS; IBM
Corp, Armonk, NY, US) software on the microarray gene expression data of Gene Expression Omnibus (GEO)
datasets (GSE22529); 12 genes that had shown the highest differences (among parameters whose p-value
was less than 0.01) were selected for further ANN analysis. The selected genes of 53 patients were applied to
the training network algorithm, with a learning rate of 0.1.

Results
The results showed a high accuracy of the relationship between the output of the trained network and the
test data. The area under the receiver operating characteristic (ROC) curve was 0.991, which provides proof
of the precision and the relationship with identifying Gelsolin as a potential biomarker for this research.

Conclusions
With these results, it was concluded that the training process of the ANN could be applied to rapid CLL
diagnosis and finding a potential biomarker. Besides, it is suggested that this method could be performed to
diagnose other forms of cancer in order to get a rapid and reliable outcome.
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Introduction
Chronic lymphocytic leukemia (CLL) is a type of blood and bone marrow cancer in which uncontrolled and
abnormal growth of lymphocytic cells occur. CLL is also characterized by clonal proliferation and
progressive accumulation of B-cell lymphocytes that typically express cluster of differentiation 19+
(CD19+), CD5+, and CD23+. CLL progresses slowly and each year, there are more cases added to its list. CLL
happens quite frequently in adults in contrast to acute leukemia, which is more frequent in children [1-3].
The survival rate in CLL cancer is significantly higher than in any other types of cancer, as around 83% of the
patients show a five-year survival rate, which means 83% of patients with CLL are living at least five years
after the diagnosis is made. The etiology of CLL is still elusive, however, it is most likely that genetics and
environmental factors have an important effect on its occurrence [4-5]. In the karyotype experiments,
del13q14, trisomy 12, del11q22-q23, and del17p13 were associated with CLL [6]. Several other molecular
pathologies were found in CLL, such as the overexpression of the unmutated immunoglobulin heavy chain
variable region (IGHV) genes, zeta-chain-associated protein kinase 70 (ZAP-70), CD38 proteins, and
mutations in the NOTCH1, splicing factor 3b subunit 1 (SF3B1), and baculoviral IAP repeat-containing 3
(BIRC3) genes. In addition, mutations in tumor suppressor genes, including tumor protein P53 (TP53) and
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ataxia-telangiectasia mutated (ATM), have been associated with degrees of resistance to common
chemotherapeutic agents. Micro-ribonucleic acid (RNA) expression alterations and aberrant methylation
patterns in genes, which are specifically deregulated in the CLL, including the B-cell lymphoma 2 (BCL-2), T-
cell leukemia/lymphoma 1 (TCL1), and ZAP-70 genes, have also been encountered and linked to the distinct
clinical parameters. The clinical manifestations of the diagnosis are extremely diverse [7-10]. Approximately
60% of the patients are asymptomatic, and the patient may be suspected of the disease after a routine blood
test. When symptomatic, patients show unclear symptoms of fatigue or weakness. CLL is usually diagnosed
with blood tests because the cancerous cells are found in the blood. A bone marrow biopsy is usually not
needed to diagnose the CLL, but it may be done before the beginning of the treatment. Recently, molecular
and cellular markers have helped with the prediction and diagnosis of CLL in patients. Therefore, the
identification of key molecules in CLL could be important and vital in order to find a more effective
diagnosis of CLL [2,11-12].

The gene-expression profiling using cDNA microarrays gives us the ability to simultaneously analyze
multiple markers, which helps us categorize cancers into subgroups. Although, many statistical techniques
to analyze the gene-expression data exist, none of them have been precisely tested for their ability to
accurately distinguish different types of cancers and to further categorize them based on their diagnostic
methods [13-14].

The artificial neural networks (ANNs) method is a computer-based algorithm that is modeled on the
structure and behavior of neurons in the human brain and could be trained to recognize and categorize
complex patterns. The pattern recognition is achieved by adjusting the parameters of the ANN by a process
of error minimization through learning from experiences. The parameters could be calibrated using any type
of input data, such as gene-expression levels generated by cDNA microarrays, and the output could be
grouped into any given number of categories [15-16]. The ANN has been recently applied to the clinical
cases, such as the diagnosis of myocardial infarction and arrhythmias from their respective
electrocardiograms, and the interpretations of their radiographs and magnetic resonance imaging (MRI).
The ANN correctly classifies all the samples and identifies the genes that are most related to the
classifications [17-18].

In summary, the purpose of this study was to develop a method for classifying cancers to specific diagnostic
categories based on their gene expression signatures using ANNs [19-20]. This study demonstrated the
potential applications of these methods for CLL diagnosis and the identification of candidate targets (or
genes) for diagnosis and therapy.

Materials And Methods
Microarray gene expression profile
The gene expression profile of CLL patients was extracted from the Gene Expression Omnibus (GEO)
database under the accession number of GEO series 22529 (GSE22529), which was based on GEO platform 96
(GPL96) ((HG-U133A) Affymetrix Human Genome U133A array) and deposited by Jelinek D, Kay N. This data
was submitted on June 23, 2010, and updated on August 10, 2018. The gene expression profile was generated
from peripheral blood samples (n=104). This data contained the gene expression profile of 104 serum
samples, including 81 patients and 23 healthy controls. In this study, the gene expression of 53 samples,
including 11 healthy controls and 42 patients with CLL were selected for further analysis and validation of
the ANN model.

Selection of genes by highest score
Initially, the expression levels of 22285 genes were ranked. Then, after a primary statistical analysis, the
two-tailed student t-test was used to determine the statistical significance for the difference between the
two groups of CLL patients and healthy individuals. The genes were selected based on the significance of
their differences and were used as the inputs for the ANN analysis. Statistical analysis was carried out by the
Statistical Package for the Social Sciences (SPSS; IBM Corp, Armonk, NY, US) 18 software.

Artificial neural network (ANN)
A multilayer perceptron ANN model with three layers was performed by RapidMiner software (RapidMiner,
Inc., MA, US). The three layers consisted of an input layer, a hidden layer, and an output layer. The input
layer contained 12 neurons corresponding to 12 input features; the hidden layer applied learning algorithm
to the input features. Finally, the output layer had only one neuron, representing two possible diagnosis
states of cancerous or noncancerous. The values of the output layer were 0 and 1, which were categorized as
the cancerous and healthy control, respectively. Initially, the ANN was trained using the 12 genes with the
highest scores as the input. Finally, to evaluate the ANN model, the area under the receiver operating
characteristic (AUROC), the classification accuracy, and an index about reliability were calculated. The ROC
curve is the plot of sensitivity (true positive rate) against 1-specificity (false positive rate), which was created
by the GenEx version 6 software (MultiD Analyses, Göteborg,
Sweden) for all of the 12 inputs to recognize their differences separately and to select the best gene as a
diagnostic biomarker. In this study, The Decision Tree and the Support Vector Machine (SVM) algorithms
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were also used to examine the ANN algorithm.

Results
The first step of the process was selecting the significant genes. According to the t-test, the top 12 genes
were identified as significant (p-value<0.001); they had the most differences between the two groups of
healthy individuals and patients. These genes were selected from our dataset for further analyses (Table 1).

Probe ID Gene symbol Species Gene name

200666_s_at DNAJB1 Homo sapiens DnaJ heat shock protein family (Hsp40) member B1

200627_at PTGES3 Homo sapiens Prostaglandin E Synthase 3

200664_s_at DNAJB1 Homo sapiens DnaJ heat shock protein family (Hsp40) member B1

200701_at NPC2 Homo sapiens NPC intracellular cholesterol transporter 2

200675_at CD81 Homo sapiens CD81 molecule

200028_s_at STARD7 Homo sapiens StAR related lipid transfer domain 7

200634_at PFN1 Homo sapiens Profilin 1

200709_at FKBP1A Homo sapiens FK506 binding protein 1A

200022_at RPL18 Homo sapiens Ribosomal Protein L18

200696_s_at GSN Homo sapiens Gelsolin

200657_at SLC25A5 Homo sapiens Solute Carrier Family 25 Member 5

200650_s_at LDHA Homo sapiens Lactate Dehydrogenase A

TABLE 1: A list of the twelve selected genes based on the t-test result.
These twelve genes were selected based on their lowest p-value. The probe ID of the genes in the microarray and their names and gene symbols
were identified.

Then, to compare the cancerous patients with healthy groups, 12 features or genes were considered. Three
algorithms were initially used to compare these two groups: the ANN, The Support Vector Machine, and The
Decision Tree. Then, the algorithm with a better outcome was selected for the purpose of diagnosis. The
results of this test are presented in Table 2. According to this analysis, it could be understood that the
algorithm of the ANN could better distinguish the differences between the two groups with an accuracy of
99% (AUC=0.991, CA=0.969, F1=0.969); therefore, for the main analysis, this algorithm had been selected
[21].

Method AUC CA F1 Precision Recall

SVM 0.985 0.952 0.953 0.955 0.952

Random Forest 0.969 0.936 0.936 0.936 0.936

Neural network 0.991 0.969 0.969 0.970 0.969

TABLE 2: The results of three algorithms for the twelve genes in two groups of patients and
healthy.
AUC = Area under curve in the ROC analysis, CA = Classification accuracy, F1 = An index of reliability

In the next step, the training process of the created neural network was performed for the purpose of
diagnosis. According to Table 3, it is clear that the algorithm of the neural network has been able to correctly
distinguish the two groups of patients from healthy with 98% accuracy based on the expression of those 12
genes. The area under the ROC curve was measured to estimate the diagnostic performance of the ANN.
Table 3 shows the results of cross-validation using the ANN algorithm.
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Method AUC CA F1 Precision Recall

Neural network 0.991 0.981 0.980 0.981 0.981

TABLE 3: The results of the neural network algorithm for the twelve genes between the two
groups.
The results of the neural network algorithm for the 12 genes between the two groups. This algorithm was applied for the 12 selected genes, to
understand the ANN value in classification.

ANN = Artificial neural network, AUC = Area under curve in the ROC analysis, CA = Classification accuracy, F1 = An index of reliability

Then, in order to identify the best gene in the 12 selected genes as a diagnostic biomarker, the ROC curve
analysis and plots for all of the 12 genes were calculated and determined (Table 4, Figure 1). According to
Table 4, the Gelsolin (GSN) with AUC = 0.971, specificity = 0.902, and sensitivity = 1, could be a better
diagnostic biomarker for the diagnosis of the CLL (Figure 2).

Probe ID Gene symbol Specificity Sensitivity AUC

200022_at RPL18 0.756097561 1 0.911308204

200028_s_at STARD7 0.818181818 0.926829268 0.88691796

200627_at PTGES3 0.727272727 0.951219512 0.840354767

200650_s_at LDHA 0.731707317 1 0.922394678

200657_at SLC25A5 0.804878049 1 0.953436807

200664_s_at DNAJB1 0.902439024 0.909090909 0.931263858

200666_s_at DNAJB1 0.853658537 1 0.922394678

200675_at CD81 0.951219512 0.909090909 0.911308204

200701_at NPC2 0.902439024 0.909090909 0.940133038

200709_at FKBP1A 0.829268293 1 0.968957871

200696_s_at GSN 0.902439024 1 0.971175166

200634_at PFN1 0.926829268 0.818181818 0.89578714

TABLE 4: Results of receiver operating characteristic curve analysis of the twelve genes.
Results of the ROC curve analysis of the 12 genes were indicated and according to this result, GSN has higher AUC; therefore, it can diagnose CLL
samples as compared to healthy samples.

AUC = Area under the curve in the ROC analysis, ROC = receiver operating characteristic, GSN = Gelsolin, CLL = Chronic lymphocytic leukemia
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FIGURE 1: The receiver operating characteristic curve of the twelve
genes
The plot of each gene is indicated with a special color. The horizontal axis is defined as specificity and the
vertical axis is defined as sensitivity.

FIGURE 2: The receiver operating characteristic curve of Gelsolin.
The ROC curve of GSN with the highest AUC; the AUROC curve is 0.991, which is higher than the AUROC of
the other genes.

ROC = receiver operating characteristic, GSN = Gelsolin, AUC = Area under curve; AUROC: Area under the
receiver operating characteristic

Discussion
The diagnosis of the CLL in the early stages may lead to an increase in the survival rate and might
demonstrate better therapeutic results. While taking a biopsy from the bone marrow still remains the golden
standard for screening CLL, the approach has several shortcomings including its invasiveness and the
patient’s discomfort. Contrarily, the non-invasive tests, such as the blood test, has low sensitivity and
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specificity [22-23]. The previous studies were used to indicate that the genes were potential candidates for
the diagnosis of cancer in its early stages. We used the ANN analysis to provide more improvements and
advancements in order to pinpoint cancer more accurately, in its early stages, and to further evaluate this
computer technique potential in the assay of detecting cancer since the examination of the expression levels
of a panel of genes could be used to classify patients into cancerous and healthy individuals.

Recently, the application of the ANN has found its way into medical fields. Although the ANN training
algorithms vary, they share one basic function: all networks accept a set of inputs and, based on their hidden
layer algorithm, generate corresponding outputs. The ANN is particularly practical for medical cases without
a linear solution. In the presented study, an ANN model provided good predictive accuracy as a diagnostic
biomarker for a precise classification. It was hypothesized that not only could this technique increase the
accuracy of the CLL diagnostic tests, but it could also be applied to several other types of cancer
diagnoses. In this paper, we made the effort to obtain sample data from the GEO database in order to classify
them as cancerous and healthy individuals. Twelve genes, as listed in Table 1, were shown to be appropriate
for the accurate diagnosis of CLL using the ANN algorithm. The accuracy of the detection of cancer by the
assembled ANN was analyzed by the ROC analysis. The outputs of the trained ANN for testing data were
used to plot the ROC curve, and the area under the ROC curve was 0.991. These results demonstrated the
high performance of the ANN training in the diagnosis of CLL according to its gene expression and the good
learning process of the ANN, therefore, a panel of genes could be used for the ANN algorithm to detect CLL.

Based on the ANN results and ROC curve, it could be stated that GSN has a potential diagnostic biomarker
value. GSN plays many roles in various types of cancer. Gelsolin is a ubiquitous actin filament-severing
protein, one of the most important members of the actin-severing superfamily, and plays a crucial role in
the regulation of actin filament assembly and disassembly. Additionally, it has an important responsibility
in many other cellular properties, such as carcinogenesis phenotypes, epithelial-mesenchymal transition
(EMT), motility, apoptosis, proliferation, and differentiation [24-26]. GSN overexpression has been seen in
many cancers, including breast cancer, oral carcinoma cells, colorectal cancer, ovarian cancer, and leukemia
[27-28].

Conclusions
In conclusion, by collaborating the t-test and the ANN, it is possible to identify a minimum and an optimum
number of gene biomarkers for the classification of healthy and CLL individuals. Based on the gene
expression values, a trained ANN model accurately classified the sample data into the cancerous and non-
cancerous categories. As a result, it was shown that the learning technique of the ANN could accurately
differentiate cancerous samples from the non-cancerous. It could also choose the potential biomarker gene
in a more time-efficient manner, which could result in better diagnosis and better treatment.
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