

UNIVERSIDAD DE LA FRONTERA

Efficient thermo-mechanical modelling of cyclic loading with Chaboche type constitutive law coupled with damage

ARIUM MENTIS

<u>Laurent Duchêne</u>, Hélène Morch, Carlos Rojas-Ulloa, Víctor Tuninetti, Anne Marie Habraken

Context: Solar power plant

Solar receivers: extreme thermo-mechanical conditions

Khi Solar One power plant (South Africa)

Context: Solar receiver

Solar receiver (source : W.B.Stine, R.W.Harrigan, Solar Energy Systems Design) Panel of tubes manufactured from nickel alloy sheet (Haynes 230) (source : CMI Solar)

> UEE 3 Urban & Environmental Engineering

Context: The tubes

Temperature distribution in a tube (Lagamine FE code)

- Fatigue + creep + corrosion
- Extreme Thermo-mechanical loading (Haynes 230)
- Advanced constitutive model + Damage

550

Advanced Chaboche model

+ Lemaitre Damage (creep + fatigue + corrosion)

(~200 000 FE, 10⁶ DOFs)

UEE

Urban & Environmental Engineering

Cycle jump approach

 Target: ► 10 000 cycles (~25 years)
► 18m long tube (~200 000 FE, 10⁶ DOFs)
This study: ► 5 000 cycles
► 1 slice of the tube (300 FE, ~3000 DOFs)

Cycle jump: near-steady-state

→ Full FE computation for the first 100 cycles

Cycle jump: effects of N_j

3 solutions implemented:

- Constant: user-defined value
- Constant by blocks: idem with predefined evolution (16...26...36)
- Automatic: adjusted by the code to limit ΔD over the jumped cycles for all elements ($\Delta D^{max} = 5.10^{-4}$)

Cycle jump: effects of N_i

UEE 10 Urban & Environmental Engineering

Cycle jump: effects of N_i

	FE cycles	Jumped cycles	Total	Number of jumps	Mean N _j
N _j by blocks	580	4420	5000	145	30
N _j automatic	220	4780	5000	55	87

Cycle jump: effects of N_i

Cycle jump: extrapolation strategy

Extrapolation scheme

Variables to extrapolate
All FE variables, only D...

No significant effect

Cycle jump: optimum parameters

- First 100 cycles
 → full FE computation
- $N_i = 4$
- N_i automatic ($\Delta D^{\text{max}} = 5.10^{-4}$)
- Extrapolation scheme: linear on 2 cycles
- All FE variables extrapolated

Cycle jump: optimum parameters

