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Abstract 43 

We present unprecedented datasets of current and future projected weather files for building 44 
simulations in 15 major cities distributed across 10 climate zones worldwide. The datasets 45 
include ambient air temperature, relative humidity, atmospheric pressure, direct and diffuse 46 
solar irradiance, and wind speed at hourly resolution, which are essential climate elements 47 
needed to undertake building simulations. The datasets contain typical and extreme weather 48 
years in the EnergyPlus weather file (EPW) format and multiyear projections in comma-49 
separated value (CSV) format for three periods: historical (2001-2020), future mid-term (2041-50 
2060), and future long-term (2081-2100). The datasets were generated from projections of 51 
one regional climate model, which were bias-corrected using multiyear observational data for 52 
each city. The methodology used makes the datasets among the first to incorporate complex 53 
changes in the future climate for the frequency, duration, and magnitude of extreme 54 
temperatures. These datasets, created within the IEA EBC Annex 80 “Resilient Cooling for 55 
Buildings”, are ready to be used for different types of building adaptation and resilience 56 
studies to climate change and heatwaves. 57 
  58 
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     Background & Summary 59 

Climate change is among the most significant challenges the global community faces in the 60 
21st century, with direct consequences for the building sector. An increase in the magnitude, 61 
frequency, and intensity of natural hazards presents a threat to the structural integrity of the 62 
buildings. In contrast, changes in climate characteristics, such as rising temperatures and more 63 
frequent extreme heat events, present an unprecedented challenge to building designers to 64 
design buildings that can perform efficiently over their durations of use. The performance 65 
evaluation of renovated or new buildings should consider not only the current average and 66 
extreme climates but also expected future climates and extreme events. To achieve this aim, 67 
reliable weather files capturing present, future typical, and extreme weather conditions are 68 
necessary to carry out building and resilience strategies studies. To reduce the computational 69 
costs associated with running building simulation models over long periods of time, 70 
simulations are generally performed over subsets of long-term climate data, typically over one 71 
year, referred to as reference meteorological years. Depending on the application, either a 72 
typical meteorological year (TMY) or an extreme meteorological year (XMY) is chosen. Many 73 
researchers and building practitioners are currently using only future TMYs to assess the 74 
impact of climate change on building energy performance because future TMYs are easily 75 
accessible and usually built from simplified statistical methods to account for climate change 76 
(e.g., the morphing method from Belcher et al.1). Although morphing offers a quick way to 77 
generate weather files, it does not account for complex future changes in climate variables, 78 
such as changes in the frequency and duration of extreme heat events. Therefore, the 79 
generation of future weather files containing extremes has been an ongoing challenge for the 80 
building community in the last decade. A few authors have started to use climate model 81 
outputs directly to prepare the building simulation weather files to assemble not only future 82 
TMYs but also future extreme weather files such as heatwave events (HWE) or extreme 83 
meteorological years (XMYs). For example, Nik2 prepared typical and extreme weather files 84 
for Stockholm and Geneva. The typical and extreme years were selected solely based on the 85 
temperature parameter. These weather files were prepared from raw regional climate model 86 
(RCM) data from four different climate models without bias correction. Machard et al.3  87 
prepared typical TMY and future HWE for France using data from four RCM and the 88 
Representative Concentration Pathway (RCP) 8.5 at 12.5-km spatial resolution. In Machard4, 89 
bias-adjustment of the RCM projections was added to the method. The typical years were 90 
assembled following ISO EN 15927-45, giving equivalent weight to temperature, humidity, and 91 
solar irradiance and secondary weight to wind speed. The heatwaves were selected following 92 
the French national heatwave definition, based on daily daytime and nighttime temperatures 93 
above specific thresholds validated for France using a CORDEX dataset by Ouzeau6. Doutreloup 94 
et al.7 and Ramon et al.8,9 used a convection-permitting climate model at 2.8km resolution 95 
driven by the EC-Earth RCM and coupled with the land-surface scheme TERRA_URB. Based on 96 
the bias-adjusted data9,10, they prepared TMYs for different locations in Belgium for an RCP 97 
8.5 climate change scenario. They also prepared XMYs, selecting extreme months based on 98 
two parameters: temperature and solar irradiance. Gaur et al.11,12 used the Canadian RCM 99 
bias-corrected climate projections to prepare TMYs, typical and extreme moisture reference 100 
years, typical downscaled years, and extreme warm and extreme cold years for over 500 101 
locations. Recently, Bass et al.13 published future TMYs for 18 cities in the United States based 102 
on six climate models and different socioeconomic scenarios, Shared Socioeconomic Pathways 103 
(SSP) 5 and RCP 8.5. The TMYs were assembled using data from six climate models to reduce 104 
individual model bias.  105 
 106 
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Study scope 107 

Future weather files based on bias-corrected RCM predictions are not easily available to the 108 
building scientific community; therefore, a large-scale international collaborative effort was 109 
made to curate and produce extreme weather data covering major global cities subject to 110 
extreme heat hazards by adopting a standardized procedure. This study prepares building 111 
simulation weather files ready to be used by building researchers and practitioners to carry 112 
out building energy simulations that are novel in the following respects:  113 
 114 
a) they have been prepared to employ a consistent methodology over 15 cities distributed 115 
across the globe in different continents and climate types for 10 climate zones worldwide, as 116 
defined by the American Society of Heating, Refrigerating and Air-Conditioning Engineers 117 
(ASHRAE) 169-201314 (Figure 1);  118 
b) the future weather files are prepared directly from regional climate model simulation 119 
results and hence are able to account for complex future changes such as heatwaves in the 120 
climate variables projected for each city;  121 
c) the use of a multivariate bias-correction method is employed to correct the bias associated 122 
with the regional climate model simulations;  123 
d) the reference typical years and extreme heatwave event files are provided for building 124 
energy and overheating applications; and  125 
e) bias-corrected multi-year projections are also made available for additional research and 126 
other applications. 127 
 128 
These datasets were developed for “Annex 80: Resilient Cooling of Buildings”, a research 129 
project of the International Energy Agency (IEA) - Energy in Buildings and Communities 130 
Programme (EBC)15, to evaluate the resilience of different passive and active cooling 131 
strategies.  132 
 133 
They are used within the framework defined in Attia et al.16 and applied in Rahif et al.17. These 134 
weather files are shared to conduct climate change adaptation studies such as overheating 135 
risk assessments or a rise in demand for air conditioning under future typical and extreme 136 
weather conditions. The multi-year dataset is provided in comma-separated values (CSV) 137 
format so that it can easily be used for adaptation studies in other fields of investigation. 138 

 139 
Figure 1 – 15 locations selected and ASHRAE 169-2013 climate classification 14 140 

Selected cities 141 

The weather datasets have been generated for 15 cities representative of the ten climate 142 
zones of ASHRAE classification14. Cities were selected to include at least one city per zone in 143 
climate zones 0 to 6 because climate change is expected to markedly increase cooling demand 144 
in these zones18. Preference was given to cities with high populations and high population 145 
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growth. Most are in Europe, North America, and Asia due to the limitations of gathering 146 
observational data for other locations. However, these are also the continents where the most 147 
heatwave events have been recorded in the last decade19. The cities of interest and population 148 
data are presented in Table 1. 149 
 150 

Table 1 - Cities analyzed and population data 20 151 

ASHRAE 
Climate 
Zone (CZ) City Population 2022 (M) Change % (since 2021) Country Continent 

0A Singapore 6.0 0.80% Singapore Asia 

0B Abu Dhabi 1.5 1.86% UAE Asia 

1A Guayaquil 3.1 1.62% Ecuador South America 

2A Sao Paulo 22.4 0.86% Brazil South America 

3A Buenos Aires 15.4 0.74% Argentina South America 

3A Rome 4.3 0.47% Italy Europe 

3B Los Angeles 4.0 0.05% USA North America 

4A Brussels 2.1 0.67% Belgium Europe 

4A Ghent 0.3 0.48% Belgium Europe 

4A London 9.5 1.22% UK Europe 

4C Vancouver 2.6 0.97% Canada North America 

5A Toronto 6.3 0.93% Canada North America 

5A Copenhagen 1.4 0.85% Denmark Europe 

6A Montreal 4.3 0.68% Canada North America 

6A Stockholm 1.7 1.36% Sweden Europe 

Methods 152 

The flow chart in Figure 2 illustrates the steps adopted to generate the weather files. In step 153 
1, raw climate data were extracted for the different weather variables that dominantly affect 154 
the thermal performance of buildings for historical and two future periods (20 years for each 155 
period). In step 2, these raw climate data were bias-corrected using observations of the 156 
different weather variables for the specific locations. In step 3, the weather files were 157 
assembled from the multiyear bias-adjusted datasets to generate (a) TMYs based on the EN 158 
ISO 15927-4 standard5 and (b) heatwave years (HWYs), based on the method to detect the 159 
heatwaves on a CORDEX dataset proposed by Ouzeau et al6, already tested for building 160 
performance simulations in 21. Our methods are detailed in the following sections. 161 

 162 
Figure 2 – Methodology used for the weather datasets generation 163 
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Boundary conditions  164 

The historical and future projected climate simulations needed to prepare the weather files 165 
were taken from the Coordinated Regional Downscaling Experiment (CORDEX)22,23 results 166 
contributed by the scientific community towards the Coupled Model Intercomparison Project 167 
5th Phase (CMIP524).  The CORDEX climate datasets for CMIP625 were not available at the time 168 
our datasets were being prepared, so they were not considered. The future projections made 169 
under the Representative Concentration Pathway (RCP) 8.5 were considered26. RCP 8.5 is the 170 
highest baseline scenario in which emissions rise throughout the twenty-first century. In this 171 
scenario, the emissions and concentrations of greenhouse gases rise significantly over time, 172 
causing a radiative forcing of 8.5 W/m² by the end of the century27. This scenario is the most 173 
conservative greenhouse gas emission scenario of the Coupled Model Intercomparison Project 174 
5th Phase (CMIP5) which is also in line with the current emission trajectories of greenhouse 175 
gases around the globe28 and therefore RCP 8.5 was chosen to evaluate the worst case possible 176 
in a resilience and adaptation context. 177 
 178 
To select an appropriate climate simulation from the CORDEX database, i.e., containing data 179 
for many different General Circulation Model (GCM) and Regional Climate Model (RCM) 180 
combinations, we referred to the findings of McSweeney et al. 29. These authors analyzed all 181 
GCMs participating in the CORDEX database, and three reliable GCMs with low, medium, and 182 
high global equilibrium climate sensitivity (ECS) were identified as NCC-NORESM (Norwegian 183 
Earth System Model, developed by the Norwegian Climate Center), MPI-ESM-LR (Max Planck 184 
Institute Earth System Model for the High-Resolution Model), and HadGEM-ES (Hadley Centre 185 
Global Environment Model with an Earth-System configuration), respectively. These three 186 
GCMs have also been used to conduct coordinated downscaling experiments in CORDEX CORE 187 
simulations30. In addition to this, we conducted a review of available CORDEX simulations at 188 
the needed temporal frequency (sub-daily) across different CORDEX domains encompassing 189 
the different cities we are analyzing. The dry-bulb temperature projections of these three 190 
climate models were compared with reference to the evaluation of the climate models report 191 
(contribution of Working Group I to the IPCC AR5). Finally, the MPI-ESM-LR (GCM) and REMO 192 
(RCM) combination was selected for this work as it was associated with medium global ECS, 193 
was found to be the closest to the median temperature of all climate model projections (Figure 194 
3) and contained simulations in the required temporal frequency (at least 3-hourly or more 195 
frequent) for all domains. This selected simulation is henceforth referred to as “MPI-REMO”. 196 
 197 
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 198 
Figure 3 – Selection of the climate model to generate future weather datasets – Position of the temperature 199 

projection from HadGEM2-ES, MPI-ESM-LR, and NorESM1-M in comparison with other model climate projections. 200 
Modified from: Flato, Gregory, et al. ‘Evaluation of climate models.’ Climate change 201331 201 

Downscaled climate simulations 202 

The selected GCM, MPI-ESM-LR32, is dynamically downscaled by means of an RCM, REMO33,34. 203 
REMO is a three-dimensional atmosphere model developed at the Max Planck Institute for 204 
Meteorology in Hamburg, Germany, and currently maintained at the Climate Service Center 205 
Germany (GERICS) in Hamburg. The model is based on the Europa Model, the former NWP 206 
model of the German Weather Service. The prognostic variables in REMO are horizontal wind 207 
components, surface pressure, air temperature, specific humidity, cloud liquid water, and ice. 208 
The physical packages originate from the global circulation model ECHAM435, although many 209 
updates have been introduced36–43. 210 
  211 
The MPI-REMO simulations, summarized in Table 2, were of 12.5 km spatial resolution for the 212 
European domain and 25 km resolution for other domains.  213 
 214 

Table 2 – Climate projections (model, scenario, spatial, and time frequency) used for each location. 215 

Continent Domain Driving model Downscaling 
method 

Socio-
economic 
scenario 

Time 
frequency 

Africa AFR-22 

MPI-ESM-LR 
 

REMO 2015 
 

RCP 8.5 
 

3 HOURS 
Asia SEA-22 3 HOURS 
Europe EU-11 1 HOUR 
South America SAM-22 3 HOURS 
North America NAM-22 3 HOURS  

 216 
RCM files were stored for each weather variable and for one year on the entire domain grid (a 217 
domain usually corresponds to an entire continent or parts of a continent) in NETCDF4 format. 218 
A Python code provided with this dataset was used to download the different NETCDF4 files, 219 
extract the nearest point to each city coordinates, and assemble the different weather 220 
variables and years in a single dataset. For each city, the weather variables downloaded are 221 
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described in Table 3. They include dry-bulb temperature, specific or relative humidity, 222 
atmospheric pressure, surface downwelling shortwave irradiance, wind speed, and cloud 223 
cover (only for Europe). Additional variables, such as rainfall, wind direction, or longwave 224 
irradiance, are also important, but they were not available for all the cities; therefore, they 225 
were not used. Data were downloaded for the three time periods referenced in Table 4. 226 
 227 

Table 3 – Weather variables downloaded from the CORDEX platform. 228 

EUR 11 Domain AFR 22, NAM 22, SAM 22, and SEA 22 Domains 

tas (near-surface air temperature) tas (near-surface air temperature) 
hurs (near-surface relative humidity)* n/a 
 huss (near-surface specific humidity)* 
ps (surface air pressure) ps (surface air pressure) 
rsds (surface downwelling shortwave irradiance) rsds (surface downwelling shortwave irradiance) 
clt (total cloud fraction) n/a 
sfcWind (near-surface wind speed) 
clt (cloud cover) 

sfcWind (near-surface wind speed) 

*hurs is required in weather files for building performance simulations but was available only for the EU and SAM 229 
domains. For the other domains, the huss and tas variables are used to recalculate the hurs.  230 
 231 

Table 4 - 20-year periods downloaded for each variable from the CORDEX platform. 232 

Period Name Years 

Historical – 2010s 2001 - 2020  
Mid-term future – 2050s 2041 - 2060 
Long-term future – 2090s 2081 - 2100 

Bias correction of climate model simulations 233 

Climate model simulations are known to have bias associated with them because of the coarse 234 
spatial resolution at which the global or regional climate simulations are conducted44. The 235 
biases in the climate simulations, if left uncorrected, have been known to lead to incorrect 236 
descriptions of climate-driven hazards, such as floods45 and wildfires46. Many bias-correction 237 
methods have been discussed in literature 44. The complexity of the methods can range from 238 
methods correcting simply the mean bias47 to methods able to perform univariate and 239 
multivariate distribution-based corrections48. The multivariate bias-correction methods have 240 
been found most efficient in correcting bias in the marginal distribution of the climate 241 
variables, as well as the inter-relationships between the variables, and have been 242 
recommended for accurately describing hazards dependent on multiple climate variables48. 243 
Therefore, the bias correction of raw climate variables was performed using quantile delta 244 
mapping (QDM)49 and Multivariate Bias Correction with N-dimensional probability density 245 
function transform (MBCn)48 methods. The QDM is a univariate bias-correction method that 246 
preserves climate model projected future changes in the quantiles of climate variables while 247 
at the same time correcting systematic biases in the quantiles. Climate model data are de-248 
trended and then mapped onto the observations using quantile mapping. After that, future 249 
projected bias-corrected datasets are obtained by multiplying/adding to them the climate 250 
model projected future relative/additive changes in quantiles. The MBCn method extends the 251 
application of the QDM method in a multivariate context. First, individual climate variables are 252 
corrected following the QDM method. Thereafter, the dependence structure of climate 253 
variables is corrected using an iterative reshuffling process where, in each iteration, climate 254 
data are rotated by multiplying them with random orthogonal matrices, QDM is corrected and 255 
then re-correlated using inverse random matrices. 256 
 257 
While all climate variables were bias corrected using the MBCn method, the QDM method was 258 
used to correct global solar irradiance because our analysis shows that the reshuffling of 259 
marginally corrected global solar irradiance values, as performed in the MBCn method, breaks 260 
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the diurnal structure of global solar irradiance. This can subsequently lead to unrealistic values 261 
for not only global solar irradiance but also direct and diffused solar irradiance components 262 
derived from it. The calibration of MBCn/QDM methods and subsequent prediction of bias-263 
corrected values were performed individually for each month of the year to preserve month-264 
to-month variability in bias-corrected climate data. The methods assume that the bias is the 265 
same in the future as in the present. All years with observational data available in different 266 
cities were considered for the calibration of bias-correction methods. The length of the 267 
observational period and the variables available for each city are reported in Table 5. The 268 
observational datasets included hourly values of air temperature (tas), relative humidity 269 
(hurs), global horizontal irradiation (rsds), wind speed (sfcWind), atmospheric pressure (ps), 270 
and cloud cover (clt). Just for Sao Paulo, for which hourly values could not be found for all 271 
weather variables, the hourly values of global horizontal irradiation and wind speed were 272 
derived from daily values. Hourly values for irradiation were calculated using the Zhang-Huang 273 
solar model 50. The regression coefficients in the model were calibrated based on the daily 274 
values using a least-squares approximation. Hourly values for wind speed were obtained by 275 
adjusting the monthly cumulative frequency distributions of historical RCM data to the 276 
observational data. Hence, each day of the RCM had its wind speed hourly values multiplied 277 
by a factor to match the cumulative frequency of the observational data daily mean values. 278 
For Abu Dhabi, data on atmospheric pressure could not be found; a static standard 279 
atmospheric pressure was used since the city is located at sea level. Note that observations of 280 
solar radiation were not available for Singapore, so its solar irradiance was not bias-corrected 281 
when the datasets were prepared. 282 
 283 
The coordinates given in Table 5 correspond to the location of the weather station where the 284 
observations were used for bias correction for each city. The chosen weather stations are 285 
located outside of the cities, usually at airport sites; therefore, the observations and the 286 
resulting bias-corrected datasets do not account for urban heat island effects (UHI). We 287 
decided not to include urban effects in these datasets for various reasons. First, urban 288 
observations are not available for some of the cities analyzed. Secondly, the UHI is not 289 
homogeneous across a city, varying significantly depending on the different local climate zones 290 
(LCZ). Therefore, it would be necessary to create more than one urban weather file for each 291 
city, namely one for each LCZ. Furthermore, it would not be correct to use current urban 292 
observations as a reference for future UHI intensities because building density, vegetation, 293 
materials, and anthropogenic heat generation in future cities will probably change, leading to 294 
a change in UHI intensity. For all these reasons, even if the datasets refer to cities, they do not 295 
include urban effects, like most of the currently available weather datasets for building 296 
performance simulations. They can be modeled and added to the datasets in post-processing 297 
by using tools and methodologies that are discussed and referenced in the “Usage notes” 298 
section. 299 
 300 

Table 5 - Observational data used in the bias-correction step for each city. 301 

CZ City 

   Data used for bias correction 

Latitude 

(°) 
Longitude 
(°) 

Observational 
data  
Period 

tas hurs rsds sfcWind ps clt 

0A Singapore 1.37 103.98 1996-2015 x x  x x  

0B Abu Dhabi 24.42 54.61 2008-2012 x x x x x  

1A Guayaquil 
-2.15 -79.92 07-2016 –    

08-2020 
x x x x   

2A Sao Paulo -23.63 -46.65 1986 - 2005 x x x* x* x  

3A 
Buenos 
Aires 

-34.56 -58.42 1986-2005 x x x x x  
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3A Rome 41.81 12.25 2008-2017 x x x x x  

3B Los Angeles 33.93 -118.40 2000-2019 x x x x x  

4A Brussels 50.80 4.36 2009 - 2018 x x x x   

4A Ghent 51.05 3.73 2009-2020 x x x x x  

4A London 51.48 -0.45 1996-2015 x x x x x x 

4C Vancouver 49.19 -123.18 1998-2017 x x x x x  

5A Toronto 43.67 -79.40 1998-2017 x x x x x  

5A Copenhagen 55.88 12.41 2001-2019 x x x x x  

6A Montreal 45.63 -73.55 1998-2017 x x x x x  

6A Stockholm 59.9 18.03 1986-2005 x x x x x x 

  

  

 

x* = hourly values estimated from daily 
values.    

Calculating direct and diffuse solar irradiance 302 

The Boland–Ridley model51 was used to calculate the direct and diffuse components of global 303 
solar irradiance. This method is a robust and straightforward predictor model that requires 304 
few inputs. The Italian National organization for standardization (UNI) has adopted this 305 
reliable method to split the global solar irradiance for creating national climatic data (UNI 306 
10349-1:2016)52. The model was also validated in a later study53. The Boland–Ridley model 307 
uses a logistic function (sigmoid function) for the diffuse fraction of global solar irradiance on 308 
a horizontal surface based on the sky clearness index, which is the ratio of the terrestrial global 309 
horizontal solar irradiance to the extraterrestrial horizontal solar irradiance. The 310 
extraterrestrial horizontal solar irradiance is calculated from the solar elevation and the extra-311 
atmospheric solar irradiance received on a theoretical surface orthogonal to the sun’s rays and 312 
at the Earth’s mean distance from the sun (depending on the Earth’s orbital angle). This 313 
fraction includes both the horizontal direct and diffuse solar irradiance components of 314 
horizontal solar irradiance. This model is used for the generation of direct-normal solar 315 
irradiance54, which is required for building energy simulation. It is computed as the ratio of the 316 
direct horizontal solar irradiance to the cosine of the solar zenith angle. Calculation of direct-317 
normal solar irradiance can yield unphysical results when the direct-horizontal solar irradiance 318 
and the cosine of the solar zenith angle are both small because the sun is low. In this case, a 319 
threshold is introduced by applying a physical model55 that considers the Rayleigh optical 320 
depth (in the function of the air mass) and the Linke Turbidity (TL)56, which accounts for 321 
scattering and absorption by both atmospheric aerosols and atmospheric gases.  322 

Creating typical years from multiyear hourly datasets  323 

The TMYs were created using the international standard EN ISO 15927-4 – Hygrothermal 324 
performance of buildings, Calculation and presentation of climatic data, Part 4: Hourly data 325 
for assessing the annual energy use for heating and cooling method5. The procedure is 326 
applicable for assessing the climate change impact on the long-term mean energy loads of 327 
buildings. However, this method based on average values is not suitable for studying extreme 328 
meteorological events. TMYs are constructed from 12 representative months (typical months) 329 
from multiyear records. Two sets of parameters are considered for selecting the typical 330 
months: primary parameters, including dry-bulb air temperature, global solar irradiance, and 331 
relative humidity (or air absolute humidity, water vapor pressure, or dew point temperature), 332 
and secondary parameters, including wind speed. For each primary climatic parameter, 𝑝, the 333 
daily means, 𝑝, are calculated from all multi-year records of hourly values of 𝑝 (at least ten 334 
years). After sorting the 𝑝  values for a specific month, m, of all the years in increasing order, 335 
the cumulative distribution function is calculated for each parameter and 𝑖th day as: 336 

 

Φ(𝑝, 𝑚, 𝑖) =
𝐾(𝑖)

𝑁 + 1
 

(1) 
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where (i)K  is the rank order of the  𝑖th day and N is the number of days for a month overall 337 

multi-year records. Afterward, the cumulative function is calculated for each year of the multi-338 
year records for a specific month, m, and specific year, y, according to equation 2:  339 

                                                                             

𝐹(𝑝, 𝑦, 𝑚, 𝑖) =  
𝐽(𝑖)

𝑛 + 1
 

(2) 

 340 

where (i)J  is the rank order of the  𝑖th day and n is the number of days for the specific month 341 

and year. Subsequently, the Finkelstein–Schafer statistic (Fs)57 is calculated for all the primary 342 
climatic parameters for each calendar month and year of multi-year records. Fs is a goodness-343 
to-fit statistic that proved more potent than conventional alternatives and is calculated as: 344 
 345 

𝐹𝑠(𝑝, 𝑦, 𝑚 =  ∑|𝐹(𝑝, 𝑦, 𝑚, 𝑖) − Φ(𝑝, 𝑚, 𝑖)|

𝑛

𝑖=1

 (3) 

For each calendar month and each year, Fs  values are calculated and ranked in increasing 346 
order. By calculating the total ranking (the sum of the primary parameter’s ranks) for each 347 
year, three months with the lowest total ranking are selected for each calendar month. The 348 
month with the lowest deviation in wind speed (secondary parameter) is selected as the 349 
typical month to be included in the typical year. This method was applied to the 20-year bias-350 
corrected RCM data to generate one TMY for each period. The TMYs were then converted to 351 
EnergyPlus weather files (.EPW) for use in building energy simulations. The EnergyPlus 352 
auxiliary program “weather converter” tool58 was used for this purpose.  353 

Selecting extreme heatwaves from multi-year datasets 354 

The method proposed by Ouzeau et al.6 was used to select heatwaves from the 20-year 355 
periods based on high quantiles of daily temperature distributions. The method was validated 356 
for France by comparing heatwave detection on an EURO-CORDEX regional multi-model 357 
ensemble with the French SAFRAN thermal indicator, historically used by French authorities 358 
for cold spell detection. The adopted method has the advantage of applying to different cities 359 
worldwide since it is based on relative thresholds and not absolute thresholds. It detects 360 
heatwaves based on three temperature thresholds calculated from the historical multiyear 361 
period: The 99.5 threshold (99.5 percentile) is used to detect a temperature peak and a 362 
potential heatwave. The 97.5 threshold (97.5 percentile) is used to calculate the heatwave 363 
duration (days during which the temperature is above the threshold) and severity (degree-364 
days above the threshold). If the temperature goes under this threshold for more than three 365 
consecutive days, the heatwave stops. The 95 threshold (95 percentile) is used to end the 366 
heatwave drastically if the temperature drops below this threshold. The chosen method was 367 
recently demonstrated to be the most effective in detecting and characterizing heat waves for 368 
building resilience analysis59. The current work builds on the methodology initiated by 369 
Machard et al.3 to assemble future weather files, including heatwave for building energy and 370 
thermal performance simulations from CORDEX climate data. In the proposed approach, each 371 
heatwave is characterized by three criteria: intensity (maximum daily mean temperature °C 372 
reached during the heatwave), duration (in days), and severity (aggregated temperature 373 
above the 97.5 threshold in °C.day). Applying this method, many heatwaves were found during 374 
each multiyear period in each city. Since the purpose of the datasets is to carry out building 375 
performance resilience assessments, the three most extreme heatwaves were selected, 376 
according to these three criteria: the most intense, the most severe, and the longest 377 
heatwaves. 378 
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Data Records 379 

The entire datasets (Table 6) produced for this work are organized into three categories:  380 
o Multiyear (MY) 381 
o Typical meteorological year (TMY) 382 
o Heatwave year (HWY) 383 

The datasets are available at the link: https://www.wdc-384 
climate.de/ui/entry?acronym=WDTF_Annex80_build_v1.060 385 
 386 
The first category of files is MY datasets in CSV format. There are three MY files for each city, 387 
containing the hourly values of the bias-corrected RCM variables for each 20-year reference 388 
period. The variables included in the CSV files are air temperature (tas), near-surface relative 389 
humidity (hurs), near-surface specific humidity (huss), surface atmospheric pressure (ps), 390 
surface downwelling shortwave irradiance (rsds), and wind speed (sfcWind). Some cities have 391 
fewer variables due to missing observational data to perform the bias-correction. Cloud cover 392 
(clt) is available for London and Stockholm. The MY file name format is: 393 
“climatezone_city_MY_referenceperiod.csv”. For instance: “0B_Abu Dhabi_MY_2081-2100”. 394 
The MY files were used to create both TMYs and HWYs. 395 
There are three TMYs per city, representing the typical meteorological conditions 396 
corresponding to historical (2001-2020), mid-term future (2041-2060), and long-term future 397 
(2081-2100) periods. The TMYs are provided in the EnergyPlus weather file (EPW) format. The 398 
EPW file details hourly dry bulb air temperature (°C), dew point temperature (°C), relative 399 
humidity (%), atmospheric pressure (Pa), global horizontal solar irradiance (Wh/m2), direct 400 
normal irradiance (Wh/m2), diffuse horizontal irradiance (Wh/m2), wind speed (m/s), and wind 401 
direction (°). For the cities of London and Stockholm, the total sky cover (tenths) is also 402 
provided. In TMYs, values for wind direction were extracted from the historical time series of 403 
METEONORM61 for each city because wind direction is needed to perform building energy 404 
simulations but is not available for all CORDEX domains. The EPW files were generated using 405 
the EnergyPlus weather converter, auxiliary software of EnergyPlus 58.  406 
The file name of each TMY has the following format: 407 
“climatezone_city_TMY_referenceperiod.epw”. For instance, the file 408 
“4A_London_TMY_2041-2060” is the TMY for the city of London, located in the ASHRAE 409 
climate zone 4A, for the mid-term future period (2041- 2060).  410 
Finally, the HWYs are also provided in EPW format. Each city can have a maximum of nine HWY 411 
files, corresponding to the years with the most intense, most severe, and longest heatwaves 412 
found in the three reference periods. As the most intense and/or the longest heatwaves are 413 
also the most severe in many cases, the total number of HWY files is generally less than nine. 414 
The HWY file name format is 415 
“climatezone_city_HW_referenceperiod_heatwavetype_year.epw”. For instance, the file 416 
“6A_Stockholm_HW_Historical_MostSevere_Longest_2002.epw” contains the most severe 417 
and longest heatwave occurring in the historical period, in 2002, in Stockholm (climate zone 418 
6A). 419 
 420 

Table 6 - Datasets available for each city and data periods (Historical 2001 -2020, Mid-term future 2041-2060, 421 
Long-term Future (2081-2100). 422 

Category Short description Extension Link 

MY - Multiyear dataset 
A file containing hourly values of 20-

years bias-corrected climate data  
csv 

https://www.wdc-

climate.de/ui/entry?acronym=WDTF_

Annex80_build_v1.060  

  

https://www.wdc-climate.de/ui/entry?acronym=WDTF_Annex80_build_v1.0
https://www.wdc-climate.de/ui/entry?acronym=WDTF_Annex80_build_v1.0
https://www.wdc-climate.de/ui/entry?acronym=WDTF_Annex80_build_v1.0
https://www.wdc-climate.de/ui/entry?acronym=WDTF_Annex80_build_v1.0
https://www.wdc-climate.de/ui/entry?acronym=WDTF_Annex80_build_v1.0
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TMY - Typical 

Meteorological Year  

Weather file to run building 

performance simulations 

representative of typical meteorological 

conditions over 20 years 

epw 

HWY – Heatwave year 

(year containing 

heatwaves) 

Weather file to run building 

performance simulations including 

extreme heatwaves (i.e., most severe, 

longest, or most intense over 20 years) 

epw 

Technical Validation 423 

For technical validation, the multiyear raw climate outputs, observations, and bias-adjusted 424 
datasets were compared and analyzed. The mean values of ambient air temperature, relative 425 
humidity, global solar irradiance, and wind speed in the typical years during the historical 426 
period were compared to the mean values in the multiyear datasets, showing good agreement 427 
in values. The extreme values of ambient air temperature for the heatwave years were 428 
compared to the extreme of the multiyear datasets. An assessment of the future weather files 429 
confirms that climate change will increase the mean temperature in all cities. Heatwave 430 
frequency, intensity, and duration will also increase in all cities and more drastically in the four 431 
hottest cities (Singapore, Abu Dhabi, Guayaquil, and Sao Paulo) analyzed.  432 

Comparison of raw-output and bias-corrected data 433 

The validation of the bias-correction step was performed by comparing bias-corrected climate 434 
estimates with observations over a validation time-period that varies from city to city 435 
depending on the time period of observations available to them. The validation time period is 436 
considered the period overlapping between observational and historical time-periods. This 437 
allowed us to make use of the entire length of observational data available in different cities 438 
for performing validation of bias-correction methods. The validation results show that the 439 
QDM/MBCn methods were able to reduce the bias associated with RCM simulations 440 
effectively. This can be seen from the results presented in Table 7, in which mean climate 441 
statistics from observations, raw RCM, and bias-corrected (bc) RCM are presented for the 442 
validation time period. The results show that the projected temperature, solar irradiance, 443 
wind speed, and relative humidity from raw RCMs have noticeable bias, which is reduced by 444 
the application of the bias-correction step. For instance, RCM over-predicts the mean 445 
temperature in Singapore by 0.5°C, which is effectively eliminated after the bias correction. 446 
Table 8 presents the standard deviation of observations (OBS), RCM-raw, and RCM-bs for 447 
these four climate variables, which also shows the bias reduction between OBS and bias-448 
corrected RCM data. Not only is the bias correction effective in correcting bias in average 449 
climate characteristics over the cities, but it also reduces bias across the whole distribution of 450 
climate variables. This is evident from Figure 4, in which probability density functions (PDFs) 451 
of temperature, wind speed, and relative humidity from observations (grey), raw RCM (blue), 452 
and bias-corrected RCM (red) datasets are presented for Singapore, London, and Toronto. 453 
PDFs of raw RCM are effectively adjusted by the bias-correction procedure to mimic the PDFs 454 
of observations. This is true not only for temperature but also for relatively more complex 455 
variables such as wind speed, highlighting the effectiveness of the bias-correction step in 456 
simulating realistic estimates of a range of climate variables considered in this study.  457 
 458 
 459 
 460 

Table 7 - Mean temperature, solar irradiance, wind speed, and relative humidity in the cities over the validation 461 
time period. 462 
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  Temperature  
(°C) 

Solar irradiance 
(W/m2) 

Wind speed 
(m/s) 

Relative humidity 
(%) 

CZ City OBS 
RCM 
(raw) 

RCM 
(bc) 

OBS 
RCM 
(raw) 

RCM 
(bc) 

OBS 
RCM 
(raw) 

RCM 
(bc) 

OBS 
RCM 
(raw) 

RCM 
(bc) 

0A Singapore 27.8 28.1 27.7 - - - 1.9 4.7 2.0 83.8 74.1 83.3 

0B Abu Dhabi 27.6 29.0 27.6 237.9 246.7 238.1 3.2 4.0 3.2 60.0 55.5 60.2 

1A Guayaquil 27.0 27.1 27.0 263.1 218.4 266.9 1.7 1.9 1.8 74.6 77.4 74.3 

2A Sao Paulo 19.3 9.0 19.3 188.6 265.8 188.6 6.1 2.0 6.1 80.6 44.7 80.6 

3A Buenos Aires 18.0 19.1 17.7 191.4 197.5 190.0 4.5 4.5 4.4 72.1 66.9 72.3 

3A Rome 16.3 16.5 16.3 187.8 163.9 188.0 3.6 2.7 3.6 72.5 70.0 72.4 

3B Los Angeles 16.7 20.7 16.7 215.1 223.3 214.7 1.7 2.4 1.7 72.3 57.5 72.4 

4A Brussels 10.8 11.1 10.8 127.2 109.1 127.2 3.6 3.7 3.6 78.5 82.0 78.5 

4A Ghent 11.1 11.3 11.1 126.4 110.3 126.3 3.4 4.1 3.4 78.6 82.8 78.7 

4A London 11.6 11.1 11.8 118.8 106.8 117.5 4.2 2.8 4.0 75.5 79.5 75.7 

4C Vancouver 10.1 7.8 10.6 142.7 130.5 153.7 3.7 3.3 4.4 78.9 69.2 74.5 

5A Toronto 9.2 6.6 7.8 159.0 146.6 153.7 4.4 3.6 4.4 69.3 79.1 69.2 

5A Copenhagen 8.8 9.3 8.8 118.2 102.1 118.2 3.3 4.6 3.3 82.4 84.9 82.4 

6A Montreal 7.7 4.9 7.8 153.8 134.8 153.7 4.4 3.5 4.4 69.2 83.6 69.2 

6A Stockholm 6.6 6.4 6.6 116.5 92.9 116.6 3.9 3.0 3.9 79.6 86.0 79.6 

    463 
 464 
Table 8 - Standard deviation of temperature, solar irradiance, wind speed, and relative humidity in the cities over 465 

the validation time period. 466 

  Temperature  
(°C) 

Solar irradiance 
(W/m2) 

Wind speed 
(m/s) 

Relative humidity 
(%) 

CZ City OBS 
RCM 
(raw) 

RCM 
(bc) 

OBS 
RCM 
(raw) 

RCM 
(bc) 

OBS 
RCM 
(raw) 

RCM 
(bc) 

OBS 
RCM 
(raw) 

RCM 
(bc) 

0A Singapore 2.2 1.5 2.1 - - - 1.6 1.9 1.6 9.9 6.9 10.0 

0B Abu Dhabi 7.9 7.7 7.9 312.4 326.9 313.2 2.2 2.1 2.2 20.4 21.4 20.5 

1A Guayaquil 3.4 3.3 3.4 380.8 312.1 382.3 1.0 0.9 1.0 12.4 14.4 12.0 

2A Sao Paulo 4.7 6.5 4.7 256.4 362.4 256.4 2.9 1.1 3.0 256.4 362.4 256.4 

3A Buenos Aires 5.6 5.1 5.7 283.5 297.3 282.5 2.4 1.9 2.4 15.2 16.3 15.4 

3A Rome 7.1 7.3 7.1  270.4 255.6 270.4 2.2 1.7 2.2 16.7 17.6 16.7 

3B Los Angeles 4.4 7.4 4.4 295.9 310.6 296.1 1.0 1.3 1.0 22.3 22.8 22.2 

4A Brussels 6.8 6.8 6.8 196.2 201.0 196.1 1.8 1.8 1.8 14.3 14.1 14.3 

4A Ghent 6.8 6.6 6.8 201.0 193.5 200.6 1.9 2.0 1.9 15.4 13.5 15.2 

4A London 6.1 6.3 6.1 193.1 195.9 191.3 2.2 1.2 2.2 15.9 14.0 15.7 

4C Vancouver 5.3 12.0 6.0 231.2 511.1 235.4 2.3 2.2 2.5 13.0 16.8 12.7 

5A Toronto 10.9 9.2 12.0 241.4 222.8 235.4 2.7 1.8 2.5 16.2 14.5 16.8 

5A Copenhagen 7.2 6.3 7.2 196.0 191.4 196.1 2.1 2.2 2.1 15.4 11.7 15.4 

6A Montreal 12.0 8.7 12.0 235.4 213.4 253.4 2.6 1.8 2.5 16.8 13.4 16.8 

6A Stockholm 7.9 7.7 7.9 184.7 178.0 184.7 1.7 1.4 1.7 14.6 11.7 14.6 

 467 
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 468 
Figure 4 - Probability density functions of temperature, wind speed, and relative humidity in Singapore, London, 469 

and Toronto from observations (grey), raw RCM (blue), and bias-corrected RCM (red) datasets over the validation 470 
time period. 471 

Projected changes in weather variables over multi-year (MY) 472 

future periods 473 

The values of mean temperature, solar irradiance, wind speed, and relative humidity over the 474 
2010s, 2050s, and 2090s for all cities are presented in Table 9. In general, between the 475 
historical period (the 2010s) and the two future time periods (2050s, 2090s), mean 476 
temperatures are projected to increase in all cities located in different climate zones (CZs). In 477 
most cities, the increase in MY by the 2050s is about 1 °C, while it will be about 2-3 °C by the 478 
2090s, with the largest increase of 4.2 °C in Abu Dhabi (CZ: 0B – Extremely Hot Dry) and the 479 
smallest increase of 1.6 °C in Buenos Aires (CZ: Warm Humid). Mean temperature increases 480 
within the same ASHRAE climate zone are consistent: in zone ASHRAE CZ: 4A - Mixed Humid, 481 
the temperature increase in Brussels, Ghent, and London are about 0.8 °C, 0.7 °C, and 0.7 °C 482 
between MY-2050s and MY-2010s, and of 2.6 °C, 2.6 °C, and 2.5 °C between MY-2090s and 483 
MY-2010s. Global solar irradiance is projected to decrease in the majority of the cities, with 484 
the largest decrease of 12.8 W/m2 by the 2090s is projected for Stockholm (CZ: Cold Humid), 485 
whereas a slight increase of 0.6 W/m2 is projected for Abu Dhabi (CZ 0B -: Extremely Hot Dry). 486 
Such a reduction in future solar irradiance was also found in other studies47, 63. According to 487 
Cutforth and Judiesch64, this can be the consequence of two factors: 1) higher attenuation of 488 
solar irradiance from increased aerosol concentrations and sometimes from increasing 489 
cloudiness, and 2) an increase in annual number of precipitation events. These assumptions 490 
are coherent since the irradiance is not decreasing in Abu Dhabi, for which cloud cover is very 491 
low. However, this trend in decreasing global solar irradiance cannot be generalized. It can be 492 
due to a coarse representation of rain and cloud events at the model spatial resolution (25 or 493 
50 km depending on the CORDEX domain) and to potential biases for this climate parameter 494 
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in the selected climate model. In terms of wind speed and relative humidity, a general change 495 
is not observed. Most cities have minimal change in wind projections in the future: The largest 496 
decrease of 0.4 m/s in wind speed is projected for Buenos Aires (CZ: Warm Humid), whereas 497 
the largest increase of 0.3 m/s in wind speed is projected for Sao Paulo (CZ: Hot Humid). Finally, 498 
the largest variability in the sign of projected future change is obtained for relative humidity. 499 
While the cities of Singapore (CZ: 0A - Extremely Hot Humid), Guayaquil (CZ: 1A - Very Hot 500 
Humid), Buenos Aires (CZ: 3A - Warm Humid), Los Angeles (CZ: 3B - Warm Dry) are projected 501 
to experience increases in relative humidity of up to 5%, the cities of Sao Paulo (CZ: 2A - Hot 502 
Humid) and Abu Dhabi (CZ: 0B - Extremely Hot Dry) are projected to experience future 503 
decreases of up to 4%. Smaller future changes in relative humidity are projected for other 504 
cities such as Montreal and Stockholm (CZ: 6A - Cold Humid) as well as Ghent, Brussels, and 505 
London (CZ: 4A - Mixed Humid and 5A – Cold Humid).     506 
 507 

Table 9 – 20-year mean temperatures, solar irradiance, wind speed, and relative humidity in the cities over the 508 
2010s, 2050s, and 2090s time periods obtained from multi-year bias-corrected RCM data. Cells with future 509 

projected increases (decreases) in climate variables are highlighted in red (green). Grey color means no change. 510 
Values in brackets represent the change (absolute value for temperature, solar irradiance, and relative humidity, 511 

relative change for wind speed) between the selected term and the 2010s. 512 

CZ 

 
Temperature  

(°C) 
Solar irradiance 

(W/m2) 
Wind speed 

(m/s) 
Relative humidity 

(%) 

City 2010s 2050s 2090s 2010s 2050s 2090s 2010s 2050s 2090s 2010s 2050s 2090s 

0A 
Singapore 27.9 

29.1 
(1.2) 

30.3 
(2.4) 

168.6 
169.0 
(0.4) 

166.2 
(-2.4) 

2.0 
2.0 

(0.0%) 
2.0 

(0.0%) 
83.2 

84.7 
(1.5) 

84.6 
(1.4) 

0B 
Abu Dhabi 27.7 

29.3 
(1.6) 

31.9 
(4.2) 

240.3 
241.1 
(0.8) 

240.9 
(0.6) 

3.2 
3.2 

(0.0%) 
3.1  

(-3.1%) 
60.0 

58.8 
(-1.2) 

57.3 
(-2.7) 

1A 
Guayaquil 26.9 

28.1 
(1.2) 

30.2 
(3.3) 

263.0 
258.1 
(-4.9) 

253.5 
(-9.5) 

1.7 
1.7 

(0.0%) 
1.7 

(0.0%) 
74.9 

75.2 
(0.3) 

75.7 
(0.8) 

2A 
Sao Paulo 19.8 

21.3 
(1.5) 

23.3 
(3.5) 

188.8 
188.5 
(-0.3) 

182.8 
(-6.0) 

6.1 
6.0  

(-1.6%) 
6.0 

(-1.6%) 
80.3 

80.0 
(-0.3) 

80.3 
(0.0) 

3A 
Buenos Aires 17.9 

18.7 
(0.8) 

19.5 
(1.6) 

188.4 
184.5 
(-3.9) 

178.8 
(-9.6) 

4.3 
4.2  

(-2.3%) 
3.9 

(-9.3%) 
73.5 

75.7 
(2.2) 

78.3 
(4.8) 

3A 
Rome 16.1 

17.1 
(1.0) 

19.6 
(2.5) 

187.7 
183.7 
(-4.0) 

185.7 
(-2.0) 

3.6 
3.6 

(0.0%) 
3.5 

(-2.8%) 
72.1 

73.3 
(1.2) 

71.4 
(-0.7) 

3B 
Los Angeles 16.7 

17.9 
(1.2) 

19.4 
(2.7) 

214.7 
211.2 
(-3.5) 

205.9 
(-8.8) 

1.7 
1.6 

(-5.9%) 
1.6 

(-5.9%) 
72.4 

74.6 
(2.2) 

77.1 
(4.7) 

4A 
Brussels 10.8 

11.6 
(0.8) 

13.4 
(2.6) 

126.2 
123.3 
(-2.9) 

118.3 
(-7.9) 

3.6 
3.6 

(0.0%) 
3.6 

(0.0%) 
78.6 

78.6 
(0.0) 

78.7 
(0.1) 

4A 
Ghent 11.0 

11.7 
(0.7) 

13.6 
(2.6) 

108.1 
105.9 
(-2.2) 

101.7 
(-6.4) 

4.2 
4.2 

(0.0%) 
4.2 

(0.0%) 
83.1 

83.1 
(0.0) 

83.1 
(0.0) 

4A 
London 12.0 

12.7 
(0.7) 

14.5 
(2.5) 

118.4 
115.2 
(-3.2) 

113.1 
(-5.3) 

4.0 
4.0 

(0.0%) 
4.0 

(0.0%) 
75.1 

75.3 
(0.2) 

74.9 
(-0.2) 

4C 
Vancouver 7.8 

9.1 
(1.3) 

10.9 
(3.1) 

153.8 
149.4 
(-4.4) 

142.9 
(-10.9) 

4.4 
4.3 

(-2.3%) 
4.1 

(-6.8%) 
69.2 

69.5 
(0.3) 

70.4 
(1.2) 

5A 
Toronto 7.9 

8.9 
(1.0) 

11.1 
(3.2) 

153.7 
153.4 
(-0.3) 

149.6 
(-4.1) 

4.4 
4.3 

(-2.3%) 
4.2 

(-4.6%) 
68.9 

68.7 
(-0.2) 

69.2 
(0.3) 

5A 
Copenhagen 8.8 

9.7 
(0.9) 

11.3 
(2.5) 

117.8 
114.9 
(-2.9) 

108.0 
(-9.8) 

3.3 
3.2 

(-3.0%) 
3.3 

(0.0%) 
82.4 

82.6 
(0.2) 

83.0 
(0.6) 

6A 
Montreal 7.9 

8.9 
(1.0) 

10.9 
(3.0) 

154.3 
156.8 
(2.5) 

152.0 
(-2.3) 

4.4 
4.4 

(0.0%) 
4.2 

(-4.6%) 
69.0 

68.6 
(-0.4) 

69.0 
(0.0) 

6A 
Stockholm 7.7 

8.9 
(1.2) 

10.6 
(2.9) 

116.4 
110.5 
(-5.9) 

103.6 
(-12.8) 

3.8 
4.0 

(5.3%) 
4.0 

(5.3%) 
79.1 

78.9 
(-0.2) 

79.1 
(0.0) 

 513 
The change between future 20-year periods (2050s and 2090s) compared to the present 514 
period (2010s) in presented for the mean temperature, mean solar irradiance, mean wind 515 
speed, and mean relative humidity in Figure 5. 516 
 517 
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 518 

 519 
Figure 5 - Changes in climatic variables from the 2010s to 2050s and 2090s: a: absolute change for temperature, 520 

b: relative change in wind speed, c: absolute change in solar radiation, d: absolute change in relative humidity  521 

 522 
 523 
Table 10 highlights changes at the 99 percentiles of the multi-year distributions. A sharp 524 
increase in temperatures is witnessed, especially in the four hottest cities, with changes up to 525 
+5.8 °C by the end of the century (i.e., Sao Paulo). For the solar irradiance, wind speed, and 526 
relative humidity, similar trends are observed for the mean values. 527 
 528 

Table 10 - 20-year 99% temperatures, solar irradiance, wind speed, and relative humidity in the cities over the 529 
2010s, 2050s, and 2090s time periods obtained from multi-year bias-corrected RCM data. Cells with future 530 

projected increases (decreases) in climate variables are highlighted in red (green). Grey color means no change. 531 

CZ 

 
Temperature 

(°C) 
Solar irradiance 

(W/m2) 
Wind speed 

(m/s) 
Relative humidity 

(%) 

City 2010s 2050s 2090s 2010s 2050s 2090s 2010s 2050s 2090s 2010s 2050s 2090s 

0A 
Singapore 33.0 

34.4 
(1.4) 

38.2 
(5.2) 

965.1 
960.0 
(-5.1) 

949.4 
(-15.7) 

6.2 
6.2 

(0.0%) 
6.0 

(-3.3%) 
99.4 

100 
(0.6) 

100 
(0.6) 

0B 
Abu Dhabi 44.3 

46.4 
(2.1) 

49.5 
(5.2) 

940.3 
934.9 
(-5.4) 

927.3 
(-13.0) 

9.2 
9.1 

(-1.1%) 
9.0 

(-2.2%) 
95.1 

94.8 
(-0.3) 

94.4 
(-0.7) 

1A 
Guayaquil 34.6 

35.7 
(1.1) 

37.8 
(3.2) 

1,296.5 
1,281.0 
(-15.5) 

1,260.3 
(-36.2) 

4.7 
4.7 

(0.0%) 
4.5 

(-4.4%) 
99.0 

99.0 
(0.0) 

99.0 
(0.0) 

2A 
Sao Paulo 31.0 

33.6 
(2.6) 

36.8 
(5.8) 

895.6 
891.4 
(-4.2) 

881.7 
(-13.9) 

13.9 
14.1 

(1.4%) 
14.5 

(4.1%) 
100 

100 
(0.0) 

97.7 
(-2.3) 

3A Buenos 
Aires 

29.5 
30.0 
(0.5) 

30.6 
(1.1) 

1,011.0 
1,002.8 
(-8.2) 

994.7 
(-16.3) 

11.1 
10.9 

(-1.8%) 
10.4 

(-6.7%) 
100 

100 
(0.0) 

100 
(0.0) 

3A 
Rome 30.6 

32.0 
(1.4) 

35.9 
(5.3) 

906.0 
898.8 
(-9.2) 

892.0 
-14) 

10.5 
10.5 

(0.0%) 
10.4 

(-1.0%) 
100 

100 
(0.0) 

100 
(0.0) 

3B Los 
Angeles 

28.1 
29.8 
(1.7) 

31.0 
(2.9) 

956.0 
946.1 
(-9.9) 

934.9 
(-21.1) 

4.2 
4.2 

(0.0%) 
4.2 

(0.0%) 
100 

100 
(0.0) 

100 
(0.0) 

4A 
Brussels 26.4 

28.0 
(1.6) 

29.3 
(2.9) 

759.0 
749.7 
(-9.3) 

733.1 
(-25.9) 

8.7 
9.0 

(3.3%) 
9.0 

(3.3%) 
98.9 

98.8 
(-0.1) 

98.8 
(-0.1) 
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4A 
Ghent 26.9 

28.1 
(1.2) 

29.5 
(2.6) 

779.4 
771.6 
(-7.8) 

753.8 
(-25.6) 

9.6 
9.8 

(2.0%) 
9.9 

(3.0%) 
100 

100 
(0.0) 

100 
(0.0) 

4A 
London 26.7 

27.8 
(1.1) 

29.9 
(3.2) 

779.4 
770.6 
(-8.8) 

763.6 
(-15.8) 

10.5 
10.7 

(1.9%) 
10.6 

(0.9%) 
98.0 

98.0 
(0.0) 

98.0 
(0.0) 

4C 
Vancouver 28.9 

30.4 
(1.5) 

31.7 
(2.8) 

882.5 
872.7 
(-9.8) 

858.6 
(-23.9) 

11.8 
11.6 

(-1.7%) 
11.5 

(-2.6%) 
98.3 

98.1 
(-0.2) 

98.1 
(-0.2) 

5A 
Toronto 29.0 

30.7 
(1.7) 

32.9 
(3.9) 

882.4 
879.6 
(-2.8) 

863.6 
(-18.8) 

11.9 
11.7 

(-1.7%) 
11.6 

(-2.6%) 
98.1 

98.2 
(0.1) 

98.2 
(0.1) 

5A Copenhag
en 

24.7 
25.7 
(1.0) 

26.4 
(1.7) 

779.1 
770.9 
(-8.2) 

757.8 
(-21.3) 

9.2 
9.2 

(0.0%) 
9.3 

(1.1%) 
100 

100 
(0.0) 

100 
(0.0) 

6A 
Montreal 29.0 

30.0 
(1.0) 

31.8 
(2.8) 

883.6 
881.0 
(-2.6) 

872.8 
(-10.8) 

11.9 
11.7 

(-1.7%) 
11.4 

(-4.4%) 
97.8 

97.9 
(0.1) 

97.3 
(-0.5) 

6A 
Stockholm 24.2 

24.9 
(0.7) 

25.6 
(1.4) 

699.0 
696.3 
(-2.7) 

682.7 
(-16.3) 

8.4 
8.7 

(3.4%) 
8.8 

(4.5%) 
99.0 

99.0 
(0.0) 

98.9 
(-0.1) 

Projected changes in weather variables of typical 532 

meteorological years (TMY) for building performance 533 

simulations 534 

Table 11 presents the values of mean temperatures, solar irradiance, wind speed, and relative 535 
humidity in the three typical meteorological years (TMY) generated from each 20-year dataset. 536 
The projected changes in climate variables in the future TMYs are generally consistent with 537 
those resulting from the comparison of the 20-year datasets. This means that the TMYs are 538 
indeed representative of the climate projections over an interval (i.e., 20 years) and thus 539 
suitable for assessing the impact of climate change on building energy loads.  540 
 541 
Table 11 - Mean temperatures, solar irradiance, wind speed, and relative humidity in the three TMYs weather files 542 

generated based on the bias-corrected 20-years datasets for each city.  543 

CZ City 

Temperature 
(°C) 

Solar irradiance 
(W/m2) 

Wind speed 
(m/s) 

Relative humidity 
(%) 

2010s 2050s 2090s 2010s 2050s 2090s 2010s 2050s 2090s 2010s 2050s 2090s 

0A Singapore 27.9 29.1 30.3 163.7 167.5 165.6 2.1 2.0 2.0 82.7 84.8 84.8 

0B Abu Dhabi 27.9 29.4 31.7 233.9 235.5 234.7 3.2 3.2 3.1 59.7 58.4 57.7 

1A Guayaquil 27.1 28.5 30.4 255.5 243.4 232.5 1.7 1.8 1.6 73.4 71.8 75.8 

2A Sao Paulo 19.8 21.3 23.1 190.9 193.3 183.8 6.0 6.0 6.0 80.3 80.6 80.6 

3A Buenos Aires 17.8 18.9 19.5 192.8 190.1 182.9 4.3 4.1 3.9 73.5 74.9 78.5 

3A Rome 16.1 17.2 19.5 189.4 185.6 187.2 3.6 3.6 3.6 73.2 72.5 70.5 

3B Los Angeles 16.7 17.8 19.3 219.8 210.1 206.1 1.7 1.6 1.6 71.4 75.5 79.0 

4A Brussels 11.2 11.4 13.5 124.9 119.9 118.8 3.7 3.7 3.7 79.5 78.6 78.4 

4A Ghent 10.9 11.5 13.3 124.5 119.0 118.5 3.4 3.5 3.4 79.0 79.6 79.2 

4A London 12.1 12.7 14.2 116.9 114.4 110.6 4.1 4.0 4.0 75.1 75.2 76.0 

4C Vancouver 7.7 9.3 10.7 156.3 147.2 147.8 4.7 4.2 4.0 67.6 71.5 76.0 

5A Toronto 8.2 9.3 11.4 155.1 155.4 149.8 4.3 4.4 4.2 71.0 67.4 69.5 

5A Copenhagen 9.0 9.7 11.2 119.8 113.1 107.4 3.3 3.2 3.4 81.2 83.3 83.0 

6A Montreal 7.9 9.0 10.8 153.9 156.5 149.0 4.3 4.7 4.4 69.8 70.1 69.9 

6A Stockholm 7.9 8.9 10.7 119.5 111.9 108.8 3.8 3.9 4.0 79.7 79.7 78.4 

 544 
The air temperature is consistently higher in the future weather files for all the cities, with a 545 
higher increase in the long-term (2090s) future TMY than in the mid-term (2050s) future TMY. 546 
The 2090s-TMY of Abu Dhabi (CZ: 0B Extremely Hot Dry) has the largest increase in 547 
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temperature of 3.8 °C whereas the TMY of Buenos Aires (CZ: 3A Warm Humid) has the smallest 548 
increase of 1.7 °C for the same period. Many cities are projected to have significantly higher 549 
increases in temperature in the long-term than in the mid-term (e.g., Brussels, Ghent, and 550 
London). These results are in close agreement with the changes obtained from the 20-year 551 
projections. As for the MYs, global solar irradiance will be reduced in the future TMYs of most 552 
cities. This is also in agreement with the 20-year projections. The 2090-TMY of Guayaquil (CZ: 553 
1A Very Hot Humid) has the largest decrease in solar irradiance (23.0 W/m2). The TMYs with 554 
slight increases in long-term global solar irradiance are those of Singapore (CZ: 0A Extremely 555 
Hot Humid) and Abu Dhabi (CZ: 0B Extremely Hot Dry). Regarding wind speed, the changes 556 
between the 2010s, 2050s, and 2090s weather files are minimal. The 2090s-TMY of Vancouver 557 
(CZ: 4C Mixed Marine) has the largest decrease in mean wind speeds of 0.7 m/s. 558 
Finally, the future TMYs reflect a high variability in the sign of future changes in relative 559 
humidity in agreement with the results of the 20-years projections. The cities of Singapore (CZ: 560 
0A Extremely Hot Humid), Guayaquil (CZ: 1A Very Hot Humid), Buenos Aires (CZ: 3A Warm 561 
Humid), Los Angeles (CZ: 3B Warm Dry) and Vancouver (CZ: 4C Mixed Marine) have an 562 
absolute increase in relative humidity up to 8% in the 2090-TMYs while Abu Dhabi (CZ: 0B 563 
Extremely Hot Dry) has a reduction of relative humidity in the 2090-TMY of 2%. The other cities 564 
have relatively smaller changes in relative humidity in future TMYs. This variability can be 565 
explained by two phenomena. On the one hand, there is general warming, and warmer air can 566 
hold more water vapor (air can contain about 7% more moisture for every 1 °C temperature 567 
increase according to the Clausius-Clapeyron equation). On the other hand, global warming 568 
leads to more evaporation of water and, thus, an increase in specific humidity. Therefore, to 569 
keep relative humidity the same, specific humidity must also increase by 7% per °C of warming. 570 
However, the oceans are warming more slowly than the land surface, which also means that 571 
not enough moisture has evaporated, and relative humidity has, therefore, been reduced.  572 

Projected changes in heatwaves (HWY) and selected extreme 573 

heatwaves for building performance simulations 574 

Table 12 presents the three thresholds calculated for each city from the 20-year bias-adjusted 575 
historical daily temperatures data from 2001 to 2020 for heatwave selection. The relative 576 
thresholds are similar for all cities, resulting in different absolute thresholds presented in Table 577 
12. Abu Dhabi is the city with the highest daily mean temperatures. The three European cities 578 
in CZ 4A have equivalent thresholds. For the colder climate zones 5A and 6A, Toronto and 579 
Montreal in the eastern of Canada have similar thresholds, while European cities Copenhagen 580 
and Stockholm also have similar thresholds.  581 
 582 

Table 12 - Thresholds used over the historical period 2010s (2001-2020) for heatwave selection and number of 583 
heatwaves found per period in each city 584 

 

Threshold to detect heatwaves 
over 2010s 

Number of heatwaves 
detected 

CZ 

City CORDEX 
Domain 

95 
Threshold 

(°C) 

97.5 
Threshold 

(°C) 

99.5 
Threshold 

(°C) 

2010s 2050s 2090s 

0A Singapore SEA 30.4 30.9 31.7 7 58 136 

0B Abu Dhabi SEA 37.1 38.1 39.3 5 47 61 

1A Guayaquil AFR 29.3 29.8 30.8 8 40 207 

2A Sao Paulo SAM 25.3 26.3 28.3 7 87 172 

3A 
Buenos 

Aires 
SAM 

25.3 26.4 28.0 6 19 32 

3A Rome EUR 25.6 26.4 27.9 7 21 36 

3B Los Angeles NAM 22.0 22.8 24.4 3 40 81 

4A London EUR 20.6 21.9 24.3 6 16 46 

4A Brussels EUR 20.4 22.0 24.6 9 14 36 
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4A Ghent EUR 20.2 21.8 25.0 7 20 33 

4C Vancouver NAM 24.0 25.3 27.5 8 23 54 

5A Toronto NAM 23.3 24.2 25.7 4 39 85 

5A Copenhagen EUR 18.7 20.1 22.3 10 19 23 

6A Montreal NAM 23.3 24.1 25.5 4 38 88 

6A Stockholm EUR 18.6 19.8 21.7 9 25 27 

 585 
Table 12 also presents the evolution in the number of heatwaves found during each 20-year 586 
period. While between 3 and 10 heatwaves are found during the historical period, depending 587 
on the cities, a substantial increase in heatwave numbers in the future will be observed in all 588 
cities. By 2050, the increase is more pronounced in cities in the four hottest climate zones, 589 
followed by cities in North America and then in Europe. Still, in the twenty-year period, every 590 
city displays at least one heatwave per summer on average by the mid-century. By the end of 591 
the century, the three cities in hot-humid climate zones (Singapore, Guayaquil, and Sao Paulo) 592 
showcase an impressive number of heatwaves, beyond a hundred, which would be equivalent 593 
to an average of five heatwaves per summer. In these cities, due to the large increase in 594 
temperatures, the heatwaves thresholds are exceeded many times during the same summer. 595 
 596 
An illustration of the selection of the extreme heatwaves (the most intense, the most severe, 597 
and the longest of each period) is made in Figure 6 for the city of Los Angeles. A bubble 598 
represents a heatwave, which size is linked to its severity. Figure 6 a) illustrates well the 599 
tremendous increase throughout the century and the diversity of heatwaves that are found as 600 
well. In comparison with the historical period, during which only very short heatwaves of five 601 
days are witnessed, in the mid-term future, longer heatwaves that are both less or more 602 
intense than the most intense heatwave of the historical period are found. By the end of the 603 
century, heatwaves are more severe and also longer. In Figure 6 b), the three most extreme 604 
heatwaves, the ones that are selected for future periods, are highlighted. During the 2050s: 605 

o the most intense heatwave is 8 days long with an intensity of 30.1 °C and a severity of 606 
14.2 °C.d; 607 

o the most severe heatwave is 21 days long with an intensity of 27.6 °C and a severity 608 
of 32.4 °C.d; 609 

o the longest heatwave is 22 days long with an intensity of 25.6 °C and a severity of 610 
17.5 °C.d; 611 

During the 2100s, only two extreme heatwaves are selected: 612 
o the most intense, which is also the most severe: intensity of 32.1 °C, duration of 16 613 

days, and severity of 39.1 °C.d;  614 
o the longest, which is 38 days long with an intensity of 28.7 °C and a severity of 53.6 °C.d 615 

 616 

 617 
Figure 6 – Heatwaves in Los Angeles (CZ 3B): a) All heatwaves detected and b) extreme heatwaves selection  618 

For each city, the three extreme heatwaves (the most intense, most severe, and longest 619 
heatwave) are selected. 620 



20 
 

621 
Figure 7 shows the characteristics (intensity, severity, and duration) of the most intense and 622 
longest heat waves in each climate zone. Characteristics of the most severe heatwaves are 623 
often similar to the longest heatwaves and are not shown here. 624 
 625 
The intensity of both extreme heatwaves strongly increases between the three periods and in 626 
each climate zone. The increase in intensity of the most intense heatwave by the end of the 627 
century is, in each city, between +2 °C (European cities in climate zone 4A) and +7 °C (Sao 628 
Paulo). The intensity of the longest heatwaves is between 0 °C and 3.4 °C (Vancouver), inferior 629 
to the most intense heatwaves in the 2010s, of 0 °C and 4.5 °C (Los Angeles) inferior in the 630 
2050s, and of 0.2 and 3.8 °C (Vancouver) by the 2100s. 631 
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 632 
The extreme heatwaves’ durations strongly increase between the three time periods, 633 
especially the one of the longest heatwaves. The increase is more pronounced between 2100s 634 
and 2050s than between 2050s and 2010s. By the 2010s, the duration of both the most intense 635 
and longest extreme heat waves is generally around one to three weeks, depending on the 636 
city. However, by 2050s, the extreme heatwaves last more than a month in Abu Dhabi (41 637 
days), Rome (42 days), and Stockholm (37 days), between 6 and 24 days for the most intense 638 
heatwaves in the other cities, between 7 and 49 days for the longest heatwaves in the other 639 
cities. By the 2100s, in the five hottest cities (from climate zones 0A, 0B, 1A, 2A, and 3A), the 640 
longest and the most intense heatwaves last 3 to 4 months. This high number is found because 641 
the temperatures will constantly be above the current thresholds during the hot period of the 642 
year. In other parts of the world, the longest heatwave will be between three weeks and 2 643 
months long by the 2100s, except in Buenos Aires. For climate zone 3A, the severity and 644 
duration of the heat waves in Rome are more significant than in Buenos Aires. This disparity 645 
might be attributed to the heatwave data record, which shows European cities have more 646 
exposure to heatwaves19. As expected, we observe that the durations of extreme intense 647 
heatwaves are generally shorter than the longest heatwaves. 648 
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649 
Figure 7 - Characteristics (intensity, severity, and duration) of the most intense and longest XTRM-HW: a) intensity 650 
of the most intense HW, b) intensity of the longest HW, c) severity of the most intense HW, d) severity of the longest 651 
HW, e) duration of the most intense HW, f) duration of the longest HW 652 

Effect of future TMY and HWY weather files on building 653 

performance 654 

 655 
Lee and Levinson65 evaluated the effect of cool envelope strategies on heating, ventilation, 656 
and air conditioning (HVAC) primary energy use intensity and thermal comfort for a 657 
mechanically cooled single-family home in Los Angeles in Figure 8. They used the future TMYs 658 
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produced based on the methodology introduced in this paper (named CORDEX 2010, 2050, 659 
and 2090) as well as the historical Typical Meteorological Year 3 (TMY3), which spans 1991-660 
200566. Panel A shows that cooling demand grows over time. They also calculated the thermal 661 
sensation scale unit (TSSU) weighted warm discomfort exceedance hours (TSSU·h) to evaluate 662 
the Predicted Mean Vote (PMV) based thermal comfort, which is the sum of summer thermal 663 
discomfort when PMV exceeds +0.7 according to ISO 1772-2:201867. PMV greater than +0.7 is 664 
considered uncomfortably warm during the summer season according to ISO 17772-1:2017 665 
Annex H.1 Category III68. Annex H.1 Category III, considered uncomfortably warm during the 666 
summer season. Panel B shows that the occupants experience many more TSSU-weighted 667 
warm-discomfort exceedance hours in the future because the cooling system is sized based 668 
on historical TMY3 weather, which results in many hours during which the cooling system 669 
cannot meet future loads. They also show that use of passive strategies such as cool envelope 670 
materials, helps decrease these loads. These results emphasize the need to use future TMYs 671 
to anticipate an increase in cooling energy use intensity and take necessary action to adapt 672 
building design or refurbishment to future climate. 673 
 674 

  675 
Figure 8 – Effect of future TMYs on energy use (A) and summer thermal discomfort (B) in an air-conditioned single-676 

family home in Los Angeles (Lee and Levinson65) 677 

Another example of how these weather files can be used is the work of Sengupta et al.69 in 678 
which they evaluated the overheating of an educational building in Ghent, Belgium, under 679 
future weather files, comparing the results with the future TMY and HWY prepared in this 680 
paper. Educational buildings in Belgium are not equipped with mechanical air conditioning, 681 
and recent heat waves have already posed a threat to occupants’ cognitive performance and 682 
health conditions. In their paper, they analyzed the thermal resilience of test lecture rooms 683 
with open windows at night for natural ventilation to flush heat and equipped with indirect 684 
evaporative cooling to cool the air during the daytime. Figure 9 shows the results of unmet 685 
degree hours (UDH) for different weather files: a) TMY and b) HWY (1A: 2010s intense HW, 686 
1B: 2010s severe and longest HW, 2A: 2050s intense HW, 2B: 2050s severe HW, 2C: 2050s 687 
longest HW, 3A: 2100s intense HW, 3B: 2100s severe and longest HW) with and without power 688 
outage (PO). The results emphasize that the HWYs present a much larger number of UDH when 689 
compared to TMY. The variety of HWY shows that HWY 1B leads to many UDHs due to its 690 
length of 28 days, while HWs of the 2100s also predict a very elevated number of UDHs due 691 
to the increase in outdoor temperatures 692 
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(693 
Figure 7). Additionally, a study by Sengupta et al.70 identifying, quantifying, and comparing 694 
different shocks that can increase overheating risk in buildings (e.g., outdoor shocks such as 695 
heatwaves and mechanical shocks such as solar shading failure, cooling strategy failure, 696 
natural night ventilation failure) proves that heatwaves are by far the most intense shocks for 697 
buildings that impact the thermal resilience to overheating. Thus, assessing and improving the 698 
buildings’ performance against heatwaves are a crucial step to future proof these buildings, 699 
emphasizing the robust methodology needed to develop and utilize future weather data and 700 
heatwave data to assess and design buildings.  701 

 702 
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 703 

 704 

Figure 9 – a) Impact of future TMYs and b) Impact of future HWYs on summer thermal discomfort from Sengupta 705 
et al. 69 706 

     Usage Notes 707 

The provided typical meteorological years (TMY) and years containing heatwaves (HWY) in 708 
both EPW format are ready-to-use weather datasets to perform building performance 709 
simulations using Energy Plus, TRNSYS, or any other building energy model. They permit 710 
assessment of the thermal performance of buildings under typical and extreme future climate 711 
scenarios. Therefore, they help evaluate the efficiency and resilience of building renovation 712 
solutions to climate change in different climate zones. In particular, the TMY can be used to 713 
analyze changes in building heating and cooling loads under typical future weather conditions. 714 
The HWYs allow prediction of building thermal response under extreme heat events, which 715 
will be one major issue in the next decades. The multi-year (MY) datasets are also provided in 716 
CSV format to allow other authors to test different methods for assembling different types of 717 
future typical or extreme weather files for building performance assessments or in other 718 
sectors. 719 
 720 
The provided datasets were generated based on the bias-corrected climate model MPI-ESM-721 
LR/REMO, whose temperature projections are found to be the closest to the median of all 722 
climate model projections31. At least two other GCM/RCM model combinations satisfy the 723 
required spatial and temporal resolutions in the CORDEX database to generate weather files 724 
for building thermal performance analysis. These are the HadGEM2-ES/REMO and the 725 
NorESM1-M/REMO. Therefore, the results of this paper can be further expanded by 726 
comparing the outputs of all available CORDEX models. This can be used in future work to 727 
enrich the datasets. The datasets were generated based on RCP 8.5 climate projections, the 728 
worst-case socioeconomic scenario at the time of the IPCC AR5, and the most realistic based 729 
on the past and current emissions of greenhouse gases by the global community71. This means 730 
that they are suitable for applications in studies of system resilience, but they should be used 731 
with caution in building retrofits and HVAC system designs to avoid system oversizing or 732 
under-sizing.  733 
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 734 
It is possible to assemble additional weather files for other cities worldwide using other 735 
climate models with the same methodology as provided in this paper. The Python code to 736 
assemble the datasets from CORDEX climate projections is provided in the section “Code 737 
Availability.” Additional weather variables, such as cloud cover, precipitation, and longwave 738 
solar irradiance, would be an added value in the datasets. However, these additional variables 739 
were not currently available for all cities, neither observation. Indeed, robust climate 740 
observations are needed, and in this study, for some cities, only a few years (<10 years) of 741 
observations for the bias correction were available, which can affect the final result to an 742 
important extent for those cities. Future climate projections available on the CORDEX 743 
platform, with the newest SSP scenarios from CMIP6, might allow the include additional 744 
climate data in the datasets. In that case, observational data for these specific variables must 745 
also be found to correct the model. 746 
 747 
Given that the multi-year datasets are provided, they could be used to select heatwaves based 748 
on methods different from the one chosen here. The common method used detects 749 
heatwaves solely based on the temperature; however, in some hot and humid parts of the 750 
world, humidity is known to be an important variable affecting indoor heat stress. The simple 751 
method proposed here was validated for several cities in France and allows a standardized 752 
approach that fits the purpose of a common method for all cities, climates, building typologies, 753 
and other local specificities. Nevertheless, the multiyear datasets allow the use of additional 754 
criteria to select the heatwaves with different methods. Beyond a different method, less 755 
future extreme heatwaves could also be selected for building design4. 756 
 757 
As explained in the “boundary conditions” section, the datasets do not incorporate urban 758 
effects. In the selected GCM/RCM-REMO model, urban areas are represented as simple 759 
impervious surfaces. Recent studies have shown that a more detailed urban parametrization 760 
allows a better understanding of the regional-urban climate interactions and urban climate 761 
effects, such as UHI intensity72–75. However, this entails a significant increase in computing 762 
power and time, limiting the analysis to shorter time periods. Due to such limitations in 763 
modelling urban areas, the RCM REMO model does not accurately simulate climate 764 
modifications induced by urban features, such as the urban heat island effect or urban 765 
microclimates. Accordingly, bias-correction of the model projections was performed using 766 
observational data from weather stations located outside cities. The urban heat island effect 767 
and other urban climate modifications can be added to the weather datasets following 768 
different methodologies already proposed in building performance simulation studies76–79. 769 
Most climate models do not explicitly model urban areas and, at best, describe them as rock 770 
covers. Nonetheless, the very high resolutions reached now by the regional climate models 771 
may justify and require a more realistic parameterization of surface exchanges between urban 772 
canopy and atmosphere. 773 
 774 
To quantify the potential impact of urbanization on the regional climate and evaluate the 775 
benefits of a detailed urban canopy model compared with a simpler approach, a sensitivity 776 
study was carried out over France at a 12km horizontal resolution with the ALADIN-Climate 777 
regional model for 1980–2009 time period. Different descriptions of land use and urban 778 
modeling were compared, corresponding to an explicit modeling of cities with the urban 779 
canopy model TEB, a conventional and simpler approach representing urban areas as rocks, 780 
and a vegetated experiment for which cities are replaced by natural covers. A general 781 
evaluation of ALADIN-Climate was first done, which showed an overestimation of the incoming 782 
solar irradiance but satisfying results in terms of precipitation and near-surface temperatures. 783 
The sensitivity analysis then highlighted those urban areas had a significant impact on modeled 784 
near-surface temperature. A further analysis of a few large French cities indicated that over 785 
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the 30 years of simulation, they all induced a warming effect both at daytime and nighttime 786 
with values up to + 1.5 °C for the city of Paris. The urban model also led to regional warming 787 
extending beyond the boundaries of urban areas. Finally, the comparison to temperature 788 
observations available for the Paris area highlighted that the detailed urban canopy model 789 
improved the modeling of the urban heat island compared with a simpler approach. 790 
The urban heat island effect could be added to the weather datasets by using offline urban 791 
canopy tools like the Urban Weather Generator (UWG)80,81, the Surface Urban Energy and 792 
Water Balance Scheme (SUEWS)82 module of the Urban Multi-scale Environmental 793 
Predictor (UMEP) GIS tool, or other similar urban canopy models83. Urban canopy models can 794 
also be coupled with mesoscale models such as the Weather Research and Forecasting (WRF) 795 
Model84,85 or the Global Environmental Multi-scale (GEM) Model86 for a better consideration 796 
of the urban boundary layer conditions87. The UWG is an easy-to-use, computational 797 
inexpensive tool that directly outputs urban weather files. However, it assumes that the city’s 798 
urban fabric is homogeneous and that the city is surrounded by rural areas. This can make its 799 
results inaccurate for coastal cities or inhomogeneous urban fabrics88,89. UWG accuracy may 800 
also be limited by the simplified ways in which it calculates latent heat balance flux and urban 801 
canyon wind speed81. Recently, new stand-alone UCM models have been developed that 802 
overcome some of the UWG limitations, such as the Stand-alone Urban Energy/Climate Model 803 
(SUECM)90. City Fast Fluid Dynamics (CityFFD)91 and the Vertical-city Weather Generator 804 
(VCWG)92. Machine learning techniques were also used to interpolate weather data spatially93–805 
95. Any of these tools can be used to add urban effects as well as the evolution of land use to 806 
both the present and future TMYs and heatwave weather files presented in this data paper.  807 
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