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Abstract. We consider Cantor real numeration system as a frame in which every non-
negative real number has a positional representation. The system is defined using a
bi-infinite sequence B = (βn)n∈Z of real numbers greater than one. We introduce the set
of B-integers and code the sequence of gaps between consecutive B-integers by a symbolic
sequence in general over the alphabet N. We show that this sequence is S-adic. We focus
on alternate base systems, where the sequence B of bases is periodic and characterize
alternate bases B, in which B-integers can be coded using a symbolic sequence vB over
a finite alphabet. With these so-called Parry alternate bases we associate some substi-
tutions and show that vB is a fixed point of their composition. The paper generalizes
results of Fabre and Burdík et al. obtained for the Rényi numerations systems, i.e., in
the case when the Cantor base B is a constant sequence.
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1. Introduction

In the pursuit of a generalization of the famous Cobham’s theorem, Fabre [16] has as-
sociated substitutions with numeration systems with one real base β which is a Parry
number. Such substitutions have for their fixed points infinite sequences which are some-
times called Parry words, or k-bonacci-like words. They include the famous Fibonacci
sequence corresponding to the golden ratio numeration system. Although Fabre himself
viewed the substitutions in the context of automata recognizing the language of an asso-
ciated linear numeration system, it can be derived already from Thurston [24] that the
substitutions may serve for generating the set of numbers with integer expansion in base β,
the so-called β-integers. These numbers were identified as a suitable tool in the description
of mathematical models of quasicrystals [10], since their arithmetic and diffractive proper-
ties generalize the arithmetic and diffractive properties of ordinary integers which give an
underlying structure of periodic crystals. Certain physical properties of materials such as
electron conductivity can be derived from the character of the spectrum of a Schroedinger
operator associated with the model. As identified in the works of Damanik [14, 15], the
spectrum depends on combinatorial properties of infinite sequences coding distances in
the β-integers, such as the factor complexity, palindromicity, repetition index, etc. Other
physical properties can be derived from their geometric behavior [1, 3, 21].

First studies of combinatorics of Parry sequences date back to the paper of Burdík et
al. [10]. More general results about their factor complexity can be found in [17, 5]. Palin-
dromic complexity is the subject of [2]. Turek in [25] gives a tool to compute abelian
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complexity and balances of Parry words. The balance properties have been used for de-
termining arithmetical features of numeration systems [4]. Recently, Gheeraert et al. [20]
study their string attractors.

Our aim is to generalize the notion of β-integers and corresponding symbolic sequences
to positional numeration systems defined using multiple bases. The so-called Cantor real
numeration system was introduced recently in [12] for representations of numbers in the
interval [0, 1). The system is given by a sequence B = (βn)n≥1 of real bases βn > 1.
B-expansion of a number x ∈ [0, 1) is the lexicographically greatest string (xn)n≥1 of
non-negative integers such that x =

∑+∞
n=1

xn
β1β2···βn . The Rényi numeration system can

be viewed as the special case when the sequence B is constant. The adjective "Cantor
real" added to the name of numeration system is linked to the fact that the idea of using
multiple bases comes already from Cantor [11], who however, required all the bases βn to
be integers. When the Cantor real base B is a periodic sequence, we speak of alternate
base systems.

In our paper, we first modify the definition of a Cantor real system so that it represents
also positive numbers outside of the unit interval, see Section 3. For that, we consider
a bi-infinite sequence B = (βn)n∈Z. Consequently we introduce the set of B-integers
(Section 4) and determine the distances between its consecutive elements (Section 5). For
the special case of alternate base systems, we study in Section 6 when the distances between
consecutive B-integers take finitely many values. It turns out that this happens precisely
when the base is an Parry alternate base, as defined in [13]. The sequence of distances
between B-integers then can be coded by an infinite symbolic sequence vB over a finite
alphabet. Then we show that vB is a fixed point of a primitive substitution. In Section 8
we describe the bases B which yield a sturmian infinite sequence vB.

In order to give intuition all along the text, we refer the reader to Section 7, where we
use a running example in order to illustrate the concepts under study and the obtained
results.

2. Combinatorics on words

An alphabet is a countable set. In this paper we consider both finite and infinite alpha-
bets, usually A = {0, 1, . . . , k − 1} for k ∈ N, or A = N. The set of all finite words over
the alphabet A, equipped with the empty word ϵ and the operation of concatenation, is
a monoid denoted by A∗. The length of a word w = a0a1 · · · an−1 ∈ A∗ with ai ∈ A is
denoted |w| = n. We have |ϵ| = 0. For a ∈ A and w = a0 · · · an−1 ∈ A∗ we denote the
number of occurrences of a in w by |w|a, i.e., |w|a = #{0 ≤ i < n : wi = a}.

We consider right-sided infinite words v = a0a1a2 · · · ∈ AN with ai ∈ A. Such an infinite
word is purely periodic if it can be written as an infinite concatenation of a single finite
word w ∈ A∗. We write v = www · · · = wω. The infinite word v is eventually periodic if
there exist words u,w ∈ A∗ such that v = uwω.

The frequency of a letter a in an infinite word v = a0a1a2 · · · is defined as the limit

ρa = lim
n→∞

#{0 ≤ i < n : ai = a}
n

,

if it exists.
Given an alphabet A, a substitution ψ over A is a monoid endomorphism ψ : A∗ → A∗

such that there is a letter a ∈ A with ψ(a) = aw for w ∈ A∗, w ̸= ϵ. The action of a
substitution can be extended to right-sided infinite sequences by

ψ(a0a1a2 · · · ) = ψ(a0)ψ(a1)ψ(a2) · · · .
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An infinite sequence v ∈ AN is a fixed point of a substitution ψ if ψ(v) = v. It is easy to
see that a substitution ψ has always a fixed point, namely limn→∞ ψn(a), where the limit
is considered over the product topology.

The incidence matrix of a substitution ψ over the alphabet A = {0, 1, . . . , k − 1} with
#A = k, is a k × k matrix Mψ with non-negative entries defined as (Mψ)i,j = |ψ(j)|i. For
two substitutions ψ, ψ̃ over A it holds that Mψ◦ψ̃ =MψMψ̃.

An infinite sequence v ∈ AN is an S-adic sequence if there exists a sequence (σn)n∈N of
substitutions over an alphabet A and a letter a ∈ A such that

v = lim
n→∞

(
σ0 ◦ σ1 ◦ · · · ◦ σn−1 ◦ σn

)
(a).

For a more general definition of S-adic systems see [8]. A substitution ψ is said to be
primitive if Mn

ψ is a positive matrix for some n ≥ 1. It can be shown that a fixed point
of a primitive substitution has well-defined non-zero frequencies of all letters. Moreover,
the positive vector (ρ0, . . . , ρk−1)

⊤ is an eigenvector of Mψ corresponding to the Perron-
Frobenius eigenvalue of Mψ. See [23] for more details.

3. Two-way real Cantor bases

In this section, we generalize the framework of [12] in order to be able to represent all
real numbers x ≥ 0. Let B = (βn)n∈Z a bi-infinite sequence of real numbers greater than
one and such that

∏+∞
n=0 βn = +∞ and

∏+∞
n=1 β−n = +∞. We call such a sequence a

two-way real Cantor base. The associated value map is defined only on those sequences
a = (an)n∈Z in NZ having a left tail of zeros, that is, such that there exists some N ∈ Z
such that an = 0 for all n ≥ N . For such a sequence a, we define

valB(a) =
N∑
n=0

anβn−1 · · ·β0 +
∞∑
n=1

a−n
β−1 · · ·β−n

,

provided that the infinite sum defines a convergent series. In this case, we say that a is a
B-representation of the so-obtained non-negative real number valB(a). The sequence a is
usually written as {

aN · · · a0 • a−1a−2 · · · if N ≥ 0;

0 • 0−N−1aNaN−1 · · · if N < 0.

In general, a non-negative real number x can have more than one B-representation.
Among all of these, we consider the greedy one defined as follows.

First, consider the case where x ∈ [0, 1). We use the greedy algorithm defined in the
one-way Cantor base (β−1, β−2, . . .) as defined in [12]: first, set r−1 = x, and then, for
n ≤ −1, iteratively compute an = ⌊βnrn⌋ and rn−1 = βnrn − an. In the two-way real
Cantor base B, the B-expansion of x in then denoted by

dB(x) = 0 • a−1a−2 · · · .

Since we have assumed that
∏+∞
n=1 β−n = +∞, this greedy algorithm converges, meaning

that valB(dB(x)) = x.
Next, we consider the case where x ≥ 1. In this case, we will need to use the bases

βn for n ≥ 0 as well. Let N ≥ 0 be the minimal integer such that x < βN · · ·β0. Note
that such an integer exists since we have assumed that

∏+∞
n=0 βn = +∞. We compute

the greedy B(N)-representation of x
βN ···β0 , where B(N) is the shifted one-way Cantor base
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(βN , βN−1, . . .). If the obtained expansion is aNaN−1 · · · , then the B-expansion of x is
denoted by

dB(x) = aN · · · a0 • a−1a−2 · · · .
In particular, the obtained digits an belong to the alphabet {0, . . . , ⌈βn⌉ − 1} for all n.
Also note that, in this setting, the B-expansion of 1 is always dB(1) = 1 • 0ω.

Let us collect some properties of the B-expansions. These properties are straightforward
consequences of analogue results in [12] for one-way Cantor real bases.

Lemma 1. Let B = (βn)n∈Z be a two-way real Cantor base. A sequence (an)n∈Z over N
having a left tail of zeros is the B-expansion of some non-negative real number if and only
if we have

N∑
n=0

anβn−1 · · ·β0 +
∞∑
n=1

a−n
β−1 · · ·β−n

< βN · · ·β0 for all N ≥ 0

and
∞∑
n=N

a−n
β−1 · · ·β−n

<
1

β−1 · · ·β−N+1
for all N > 0.

Let us define a total order on the B-expansions of non-negative real numbers. Let
a = (an)n∈Z and b = (bn)n∈Z be sequences in NZ different from (0)n∈Z, for which there
exists some minimal indices M,N ∈ Z such that an = 0 for all n > M and bn = 0 for all
n > N . Then we say that a is less than or equal to b in the radix order if either M < N ,
or if M = N and (aM−n)n∈N is lexicographically less than or equal to (bM−n)n∈N. In this
case, we write a ≤rad b. We also set (0)n∈Z ≤rad a for any sequence a ∈ NZ having a left
tail of zeros. As usual, we write a <rad b if a ≤rad b and a ̸= b.

Lemma 2. Let B = (βn)n∈Z be a two-way real Cantor base.

(1) For all non-negative real numbers x and y, we have x < y if and only if dB(x) <rad

dB(y).
(2) The B-expansion of a non-negative real number is maximal in the radix order among

all its B-representations.

4. B-integers

We are interested in the analogue of the set N in the context of real Cantor bases.

Definition 3. Let B = (βn)n∈Z be a two-way real Cantor base. A non-negative real
number x is called a B-integer if its B-expansion is of the form

dB(x) = an−1 · · · a0 • 0ω

with n ∈ N. Otherwise stated, its B-expansion has only zeros after the radix point. In
this case, we say that n is the length of the B-expansion of x. The set of all B-integers is
denoted by NB.

In the case where βn = β for all n ∈ N, then the set of B-integers coincides with the
classical β-integers introduced by Gazeau [19] and widely studied, see for instance [10, 16].
Moreover, note that NB = N if and only if all bases βn are integers.

Clearly, the set of B-integers is unbounded. Let us show that it is also a discrete set.

Proposition 4. The set NB has no accumulation point in R.



SUBSTITUTIONS AND CANTOR REAL NUMERATION SYSTEMS 5

Proof. It suffices to see that for all n ≥ 0, the set of B-integers that are smaller than
βn−1 · · ·β0 is finite. The B-expansion of any such B-integer is of the form amam−1 · · · a0 •0ω

with m ≤ n. Each digit ai being bounded by βi, there are only finitely many B-expansions
having this property. □

In view of this result, there exists an increasing sequence (xk)k∈N such that

NB = {xk : k ∈ N}.

In particular, we have x0 = 0 and x1 = 1, and limk→+∞ xk = +∞.

Definition 5. For every n ∈ N, we define

MB,n = max{x ∈ NB : x < βn−1 · · ·β0}

and we write the β-expansion of Mn as

dB(MB,n) = mB,n,n−1 · · ·mB,n,0 • 0ω.

By Lemma 2, the number MB,n is the largest B-integer among those having a B-
expansion of length at most n.

Proposition 6. Let k ∈ N and write dB(xk) = · · · a2a1a0 •0ω and dB(xk+1) = · · · b2b1b0 •0ω.
Define n to be the maximal index such that an ̸= bn. Then

(1) xk+1 − xk = βn−1 · · ·β0 −MB,n ≤ 1
(2) dB(xk) = · · · an+2an+1akmB,n,n−1mB,n,n−2 · · ·mB,n,0 • 0ω

(3) dB(xk+1) = · · · bn+2bn+1(an + 1)0n • 0ω.

Proof. By definition of MB,n, adding one to the right-most digit mB,n,0 violates the greedy
condition, which means that MB,n + 1 ≥ βn−1 · · ·β0. The rest of the statement follows
from the fact that the B-expansions of consecutive B-integers are consecutive in the radix
order. □

The above theorem states that the distances between consecutive B-integers take values
of the form

(4.1) ∆n := βn−1 · · ·β0 −MB,n, for n ∈ N,

accordingly to the position where they differ. Quite obviously, we have ∆0 = 1−0 = 1 and
∆n < 1 for n ̸= 0. At specific cases it may happen that ∆n = ∆n′ even though n ̸= n′.
Nevertheless, as will be seen later, it is still important to keep track of the position n.

In view of the previous proposition, we encode the distances between consecutive B-
integers by an infinite sequence.

Definition 7. With a two-way real Cantor base B, we associate a sequence wB = (wk)k∈N
over N as follows: for all k ∈ N, we let wk be the greatest non-negative integer n such that
dB(xk) and dB(xk+1) differ at index n.

If the set of distances {xk+1 − xk : k ∈ N} = {∆n : n ∈ N} between B-integers
is finite, then we can project wB onto a sequence over a finite alphabet and study its
substitutivity. To see the connection of this notion to the Rényi numeration system, we
recall that Fabre [16] assigned to a Parry base β a primitive substitution over a finite
alphabet. This substitution turned out to be the substitution fixing the β-integers defined
by Gazeau [19]. Our aim in the next sections will be to find a generalization of these
results.
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For a two-way real Cantor base B = (βn)n∈Z , we write S(B) the two-way real Cantor
base S(B) = (βn+1)n∈Z. Thus, we have

valB(aN−1 · · · a0 • a−1a−2 · · · ) = β0 · valS(B)(aN−1 · · · a1 • a0a−1a−2 · · · ).

For N ∈ N, we let SN be the N -th iterate of S, i.e., SN (B) = (βn+N )n∈Z. We extend this
definition to all integers N ∈ Z in a natural fashion simply by setting SN (B) = (βn+N )n∈Z.

Lemma 8. For all real number x > 0, we have that dB(x) = aN−1 · · · a0 • a−1a−2 · · · if
and only if dS(B)(

x
β0
) = aN−1 · · · a1 • a0a−1 · · · .

Proof. This follows from the definition of S(B) and the greedy algorithm. □

We now describe the relationship between B-integers and S(B)-integers.

Lemma 9. We have β0NS(B) ⊂ NB ⊂ β0NS(B) + {0, . . . , ⌈β0⌉ − 1}.

Proof. This follows from Lemma 8. □

Lemma 10. For all n ∈ N, we have dS(B)(MS(B),n) = mB,n+1,n · · ·mB,n+1,1 • 0ω.

Proof. By Lemma 8, we know that

dS(B)

(
MB,n+1

β0

)
= mB,n+1,n · · ·mB,n+1,1 •mB,n+1,00

ω.

From this, it follows that

dS(B)

(
MB,n+1 −mB,n+1,0

β0

)
= mB,n+1,n · · ·mB,n+1,1 • 0ω.

Now, our aim is to show that

(4.2) MS(B),n =
MB,n+1 −mB,n+1,0

β0
.

By Lemma 2, it then suffices to see that for all x ∈ NS(B) such that x < βn · · ·β1, the S(B)-
expansion of x is less than or equal to mB,n+1,n · · ·mB,n+1,1 • 0ω in the radix order. This is
indeed the case since if dS(B)(x) = an · · · a1 •0ω, then dB(β0x) = an · · · a10 •0ω by Lemma 8.
But then by Lemma 2, we obtain that an · · · a10 • 0ω ≤rad mB,n+1,n · · ·mB,n+1,0 • 0ω, and
hence an · · · a1 • 0ω ≤rad mB,n+1,n · · ·mB,n+1,1 • 0ω. □

We now show that the infinite sequence wS(B) can be mapped to the infinite sequence
wB by using a substitution over the infinite alphabet N. This will then allow us to prove
that wB is an S-adic sequence.

Definition 11. We define a map ψB from N to N∗ (where N is seen as an infinite alphabet)
as follows:

ψB : N → N∗, n 7→ 0mB,n+1,0(n+ 1).

We see ψB as a substitution over N, meaning that if w = (wk)k∈N is an infinite sequence
over N, then ψB(w) is the infinite concatenation of the blocks ψB(wk).

Proposition 12. We have ψB(wS(B)) = wB.

Proof. Let (xk)k∈N be the strictly increasing sequence for which NB = {xk : k ∈ N} and
let (x̃k)k∈N be the strictly increasing sequence for which NS(B) = {x̃k : k ∈ N}. Write
wB = w0w1 · · · and wS(B) = w̃0w̃1 · · · where the wk’s and the w̃k’s are letters in N. Let
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k ∈ N and let n = w̃k. By Proposition 6, we have x̃k+1 − x̃k = βn · · ·β1 −MS(B),n =: ∆̃n.
By Lemma 10, we also have

dS(B)(MS(B),n) = mB,n+1,n · · ·mB,n+1,1 • 0ω.

Proposition 6 allows us to write

dS(B)(x̃k) = aN−1 · · · an+1 an mB,n+1,n· · · mB,n+1,1 • 0ω

dS(B)(x̃k+1) = aN−1 · · · an+1(an + 1) 0 · · · 0 • 0ω

for some index N > n. By Lemma 9, both β0x̃k and β0x̃k+1 belong to NB. By Lemma 8,
their B-expansions are

dB(β0x̃k) = aN−1 · · · an mB,n+1,n· · ·mB,n+1,1 0 • 0ω

dB(β0x̃k+1) = aN−1 · · ·(an + 1) 0 · · · 0 0 • 0ω.

Lemma 2 implies that the B-expansion of every B-integer laying between β0x̃k and β0x̃k+1

is of the form
aN−1 · · · anmB,n+1,n · · ·mB,n+1,1b • 0ω

where b ∈ {0, . . . ,mB,n+1,0}. We have

valB(aN−1 · · · anmB,n+1,n · · ·mB,n+1,1b • 0ω) = β0x̃k + b.

The letter assigned by Definition 7 to the distance between β0x̃k + b and β0x̃k + b + 1 is
0 for each b ∈ {0, . . . ,mB,n+1,0 − 1}, whereas the letter assigned to the distance between
β0x̃k+mB,n+1,0 and β0x̃k+1 is n+1. Since k has been chosen arbitrarily, the sequence wB
is the infinite concatenation of the blocks

ψB(w̃k) = 0mB,n+1,0(n+ 1)

for each k. Otherwise stated, we have ψB(wS(B)) = wB, as announced. □

From the proof of the previous proposition, we derive the relation between distances ∆n

between consecutive B-integers and distances ∆̃n between consecutive S(B)-integers.

Corollary 13. For all n ∈ N, we have

β0∆̃n = ∆n+1 +mB,n+1,0.

Proof. Let n ∈ N. By Proposition 6 and Definition 7, we have ∆̃n = βn · · ·β1 −MS(B),n

and ∆n+1 = βn · · ·β0 − MB,n+1. Then, by the equality (4.2) obtained in the proof of
Lemma 10, we see that β0∆̃n −∆n+1 =MB,n+1 − β0MS(B),n = mB,n+1,0. □

We are now ready to prove that the B-integers form an S-adic system.

Corollary 14. The infinite sequence wB is the S-adic sequence given by the sequence of
substitutions (ψSn(B))n∈N applied on the letter 0, i.e.,

wB = lim
n→+∞

ψB ◦ ψS(B) ◦ · · · ◦ ψSn(B)(0).

Proof. For all n ∈ Z, we have mSn(B),1,0 ≥ 1 since βn > 1. So, the image of 0 under
ψSn(B) has length at least 2 and starts with at least one zero. Hence, for all n ∈ N, the
(finite) word ψB ◦ψS(B) ◦ · · · ◦ψSn−1(B)(0) is a strict prefix of ψB ◦ψS(B) ◦ · · · ◦ψSn(B)(0).
Therefore, the sequence of finite words (ψB ◦ ψS−1(B) ◦ · · · ◦ ψS−n(B)(0))n∈N converges to
some limit infinite sequence with respect to the prefix distance. Moreover, it follows from
Proposition 12 that ψSn(B)(wSn+1(B)) = wSn(B) for all n ∈ Z. This implies that for all
n ∈ N, the word ψB ◦ ψS(B) ◦ · · · ◦ ψSn(B)(0) is a prefix of wB. Hence the limit is indeed
the infinite sequence wB. □
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5. Computing the distances between consecutive B-integers thanks to the
quasi-greedy expansions

In the paper [12], the admissible Cantor base expansions were characterized. In order to
be able to exploit the results from [12], we extend the definition of quasi-greedy expansions
of 1 to two-way Cantor real bases. For B = (βn)n∈Z a two-way Cantor real base, we
consider the limit

lim
x→1−

dB(x).

This sequence has the form 0 • a−1a−2a−3 · · · where the first digit a−1 is positive. Moreover,
it does not end with a tail of zeroes and it evaluates to 1, meaning that valB(d

∗
B(1)) = 1.

We then define the quasi-greedy expansion of 1 as the infinite word

d∗B(1) = a−1a−2a−3 · · ·
made of the digits after the radix point. We can then work with the usual lexicographic
order between infinite words.

Theorem 15. [12, Theorem 26] A sequence 0 • c−1c−2 · · · is the B-expansion of some
number x ∈ [0, 1) if and only if cn−1cn−2 · · · <lex d

∗
Sn(B)(1) for all indices n ≤ 0.

Note that the previous theorem is also valid for positive indices n since for n > 0, the
digit cn−1 is zero and the leading digit of d∗Sn(B)(1) is positive.

In view of Theorem 15, we see that we need to compare all shifts of a sequence to the
quasi-greedy expansions of 1 with respect to the corresponding shifted bases Sn(B). From
now on, for all n ∈ N, we write

d∗Sn(B)(1) = dn,1dn,2 · · · .

Observe that unlike previously, we have increasing indices as we read from left to right.
With this notation, we can express the distances between consecutive B-integers in terms
of the digits of the quasi-greedy expansions in the corresponding bases.

Proposition 16. For all n ∈ N, we have

dB(MB,n) = dn,1 · · · dn,n • 0ω and ∆n = valB(0 • dn,n+1dn,n+2 · · · ).

Proof. Let n ∈ N. As previously, write dB(MB,n) = mB,n,n−1 · · ·mB,n,0 • 0ω. On the
one hand, by Theorem 15, the truncated infinite sequence 0 • dn,1 · · · dn,n0ω is the Sn(B)-
expansion of some x ∈ [0, 1). By Lemma 8, we get that dB(βn−1 · · ·β0x) = dn,1 · · · dn,n •0ω.
By definition of MB,n and by Lemma 2, we obtain that dn,1 · · · dn,n • 0ω ≤rad dB(MB,n),
and hence that dn,1 · · · dn,n ≤lex mB,n,n−1 · · ·mB,n,0. On the other hand, Lemma 8 also
implies that

dSn(B)

(
MB,n

βn−1 · · ·β0

)
= 0 •mB,n,n−1 · · ·mB,n,00

ω.

But then Theorem 15 gives us that mB,n,n−1 · · ·mB,n,00
ω ≤lex d

∗
Sn(B)(1), and hence we ob-

tain that mB,n,n−1 · · ·mB,n,0 ≤lex dn,1 · · · dn,n. Therefore, we get the first desired equality,
i.e., dB(MB,n) = dn,1 · · · dn,n • 0ω.

Next, we compute

valB(0 • dn,n+1dn,n+2 · · · ) = valB(dn,1 · · · dn,n • dn,n+1dn,n+2 · · · )− valB(dn,1 · · · dn,n • 0ω)

= βn−1 · · ·β0 · valSn(B)(0 • dn,1dn,2 · · · )−MB,n

= βn−1 · · ·β0 −MB,n

= ∆n

which gives us the second equality of the statement. □
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Corollary 17. For all n ∈ N, we have 0 • dn,n+1dn,n+2 · · · = limx→(∆n)− dB(x).

Proof. This is a consequence of Lemma 8 and Proposition 16. □

6. B-integers in systems associated with alternate bases

A two-way Cantor real base B = (βn)n∈Z is called an alternate base if it is periodic, that
is, if there exists a positive integer p such that βn+p = βn for all n ∈ Z. In this case, we
simply denote B = (βp−1, . . . , β0) and the integer p is called the period of B.

Definition 18. An alternate base B is called Parry if the sequence d∗
Si(B)

(1) is eventually
periodic for every i ∈ {0, . . . , p− 1}.

The above notion allows us to characterize alternate bases B for which the set of B-
integers has a finite number of distances between consecutive elements.

Proposition 19. Let B = (βp−1, . . . , β0) be an alternate base. Then the set of distances
between consecutive B-integers is finite if and only if the base B is Parry.

Proof. By Proposition 16, we have to show that the set

D = {valB(0 • dn,n+1dn,n+2 · · · ) : n ∈ N}

is finite if and only if B is Parry. For i ∈ {0, . . . , p− 1} we let

Di = {valB(0 • di,n+1di,n+2 · · · ) : n ∈ N, n ≡ i mod p}.

Since D = ∪p−1
i=0Di, the set D is finite if and only if Di is finite for every i. We will show

that for every i, the sequence d∗
Si(B)

(1) is eventually periodic if and only if Di is finite. Let
us fix i ∈ {0, . . . , p− 1}.

First, suppose that d∗
Si(B)

(1) is eventually periodic. Without loss of generality we
may assume that there exist ℓ ≥ 0 and m ≥ 1 such that d∗

Si(B)
(1) has preperiod ℓp

and period mp. Then for all n > ℓp such that n ≡ i mod p, we have di,n+1di,n+2 · · · =
di,n+mp+1di,n+mp+2 · · · . Hence, the set Di has at most ℓ+m elements.

Conversely, suppose that the set Di is finite. Then there exist n, n′ ∈ N such that n < n′,
n ≡ i mod p, n′ ≡ i mod p and ∆n = valB(0•di,n+1di,n+2 · · · ) = valB(0•di,n′+1di,n′+2 · · · ) =
∆n′ . Let us show that if the valuation of these two strings in base B coincide, then the
strings must coincide as well. By Corollary 17 and since n ≡ i mod p and n′ ≡ i mod p,
we have

0 • di,n+1di,n+2 · · · = lim
x→(∆n)−

dB(x) = lim
x→(∆n′ )−

dB(x) = 0 • di,n′+1di,n′+2 · · · .

Consequently, the sequence di,ndi,n+1 · · · is purely periodic and thus d∗
Si(B)

(1) = di,1di,1 · · ·
is eventually periodic. □

For an alternate base B = (βp−1, . . . , β0), since B and Sp(B) coincide, the sequence wB
is fixed by the composition ψB ◦ · · · ◦ψSp−1(B). In the case where B is Parry, the sequence
of distances between consecutive elements in NB can be coded by an infinite word vB over
a finite alphabet.

Definition 20. Let B = (βp−1, . . . , β0) be a Parry alternate base, and let ℓ ≥ 0 and m ≥ 1
such that dSi(B)(1) has preperiod ℓp and period mp for every i ∈ {0, . . . , p− 1}. Let then
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A be the finite alphabet {0, . . . , ℓp +mp − 1}. We define an infinite word vB = (vk)k∈N
over A by setting

vk =

{
wk, if 0 ≤ wk < ℓp;

ℓp+ ((wk − ℓp) mod mp), otherwise

(where the letters wk are those from Definition 7). We also define a substitution φB : A∗ →
A∗ by setting

φB(n) =

{
0dn+1,n+1(n+ 1), if 0 ≤ n < ℓp+mp− 1;

0d0,ℓp+mp(ℓp), if n = ℓp+mp− 1

for each n ∈ A.

Proposition 21. Let B = (βp−1, · · · , β0) be a Parry alternate base, let vB = (vk)k∈N as
in Definition 20 and let (xk)k∈N be the increasing sequence of B-integers. If k, k′ ∈ N are
such that vk = vk′ then xk+1 − xk = xk′+1 − xk′ .

Proof. Proposition 16 and the periodicity of d∗
Si(B)

(1) imply that ∆n = ∆n+mp for all
n ≥ ℓp. Then, by Proposition 6, for all n ≥ ℓp and N ≥ 0, distances of consecutive B-
integers coded in wB by the letters n and n+Nmp coincide. Since the word vB is obtained
from wB by identifying the letters of the form n + Nmp for n ≥ ℓp and N ≥ 0 with the
letter n, we get that the infinite word vB satisfies the property of the statement, that is, if
vk = vk′ then xk+1 − xk = xk′+1 − xk′ . □

We show that the composition φB ◦φS(B)◦· · ·◦φSp−1(B) gives us a primitive substitution
that fixes the infinite word vB.

Theorem 22. Let B = (βp−1, · · · , β0) be a Parry alternate base. The substitution φB ◦
φS(B) ◦ · · · ◦ φSp−1(B) is primitive and φB ◦ φS(B) ◦ · · · ◦ φSp−1(B)(vB) = vB.

Proof. By Proposition 12, the substitution ψB maps wS(B) to wB. By Proposition 16, we
have mB,n+1,0 = dn+1,n+1 for all n. So we can rewrite the images of the letters n under
ψB as ψB(n) = 0dn+1,n+1(n+ 1). Let us show that the substitution φB maps vS(B) to vB.
In our setting, we have dℓp+mp,ℓp+mp = d0,ℓp+mp and dn+1+Nmp,n+1+Nmp = dn+1,n+1 for all
n ≥ ℓp and N ≥ 0. We get that ψB(n + Nmp) = 0dn+1,n+1(n + 1 + Nmp) for all n ≥ ℓp
and N ≥ 0. Since the word vB is obtained from wB by identifying the letters of the form
n + Nmp for n ≥ ℓp and N ≥ 0 with the letter n and the same holds true for vS(B) and
wS(B), the substitution φB maps vS(B) to vB. If we now consider the substitutions φSn(B),
which are defined as in Definition 20 but for the shifted bases Sn(B) instead of B itself,
we can deduce that φSn(B)(vSn+1(B)) = vSn(B) for all n. Now, since Sp(B) = B, the word
vB is fixed by φ = φB ◦ φS(B) ◦ · · · ◦ φSp−1(B).

It remains to show that the substitution φB ◦φS(B) ◦ · · · ◦φSp−1(B) is primitive. In [12],
a deterministic finite automaton associated with a Parry alternate base was defined. We
will exploit this automaton by using the special form of its adjacency matrix, which can
be interpreted in terms of the incidence matrices of the p substitutions φSi(B) for i ∈
{0, . . . , p− 1}.

We depict only the graph underlying this automaton, as specifying the initial and final
states is irrelevant here. The set of vertices is Q = {0, . . . , p−1}×{0, . . . , ℓp+mp−1}. In
what follows, operations on the first component of a vertex is always considers modulo p.
For each vertex (i, n) with n < ℓp+mp− 1, there is an arrow labeled by di+n+1,n+1 from
(i, n) to (i−1, n+1). Moreover, there is an arrow from each vertex (i, ℓp+mp−1) to (i−1, ℓp)
which is labeled by di,ℓp+mp. Finally, for each vertex (i, n) and s ∈ {0, . . . , di+n+1,n+1− 1},
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there is an arrow labeled by s from (i, n) to (i − 1, 0). This construction is illustrated in
Section 7 on an example and the corresponding graph is depicted in Figure 4.

Let us recall that the adjacency matrix of a graph with d vertices is a square matrix
M ∈ Nd×d such that for each pair a, b of vertices of the graph, the entry Ma,b is equal to
the number of arrows starting in b and ending in a. We will later use the well known fact
that (M j)a,b equals the number of oriented paths of length j starting in the vertex b and
ending in the vertex a. Similarly, the incidence matrix of a substitution σ over a finite
alphabet A of size d is a square matrix M ∈ Nd×d such that for each pair a, b of letters in
A, the entry Ma,b is equal to the number of occurrences of the letter a in the image σ(b).

By construction, the adjacency matrix of our graph where the vertices are ordered as

(p− 1, 0), . . . , (p− 1, ℓp+mp− 1), . . . , (0, 0), . . . , (0, ℓp+mp− 1),

is of the form

M =


Θ Mp−1 Θ · · · Θ
Θ Θ Mp−2 · · · Θ
...

...
Θ Θ Θ · · · M1

M0 Θ Θ · · · Θ

 ,

where Θ is the zero matrix of size ℓp +mp and each block Mi is a square matrix of size
ℓp+mp.

We claim that each Mi is the transposed incidence matrix of the substitution φSi(B).
Fix some i ∈ {0, . . . , p − 1} and consider r, s ∈ {0, . . . , ℓp +mp − 1}. Then (Mi)r,s is the
number of arrows from the vertex (i, r) to the vertex (i− 1, s). By definition of the graph,
this number is equal to 1 either if r < ℓp +mp − 1 and s = r + 1, or if r = ℓp +mp − 1
and s = ℓp, it is equal to di+r+1,r+1 if s = 0, and it is equal to 0 otherwise. Now,
consider the incidence matrix Ni of φSi(B). We want to show that (Ni)s,r = (Mi)r,s.
The entry (Ni)s,r is the number of occurrences of the letter s in the image φSi(B)(r). By
definition of the substitution φSi(B), there are di+r+1,r+1 occurrences of the letter 0 and
one occurrence of the letter r + 1 in φSi(B)(r) if r < ℓp+mp− 1, while there are di,ℓp+mp
occurrences of the letter 0 and one occurrence of the letter ℓp in φSi(B)(ℓp+mp−1). Since
di,ℓp+mp = di+ℓp+mp,ℓp+mp, we obtain the desired claim.

Consequently, the p-th power of M has the form

(6.1) Mp =


Dp−1 Θ · · · Θ Θ
Θ Dp−2 · · · Θ Θ
...

...
Θ Θ · · · Dp−2 Θ
Θ Θ · · · Θ D0

 ,

where Dp−1 =Mp−1 · · ·M1M0 is the transposed incidence matrix of the substitution φB ◦
φS(B) ◦ · · · ◦ φSp−1(B).

We now show that our graph is strongly connected, i.e., that there exists a cycle visiting
all vertices of the underlying graph. We consider three kinds of subpaths. First, for every
i ∈ {0, . . . , p − 1}, the prefix di+1,1 · · · di+1,ℓp+mp of length ℓp + mp of d∗

Si(B)
(1) labels a

path going through the vertices

(i, 0), . . . , (i− p+ 1, p− 1),

(i, p), . . . , (i− p+ 1, 2p− 1),

. . . ,
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(i, ℓp), . . . , (i− p+ 1, (ℓ+ 1)p− 1),

. . . ,

(i, (ℓ+m− 1)p), . . . , (i− p+ 1, (ℓ+m)p− 1),

(i, ℓp).

Second, for every i ∈ {0, . . . , p − 1}, the periodic part di+1,ℓp+1 · · · di+1,ℓp+mp of d∗
Si(B)

(1)

must contain a non-zero digit di+1,ji , where ji ∈ {ℓp+1, . . . , ℓp+mp}. Therefore, there is
an arrow labeled by 0 from the vertex (i− ji+1, ji− 1) to (i− ji, 0). Note that the vertex
(i− ji + 1, ji − 1) belongs to the cycle

(i, ℓp), . . . , (i− p+ 1, (ℓ+ 1)p− 1),

. . . ,

(i, (ℓ+m− 1)p), . . . , (i− p+ 1, (ℓ+m)p− 1),

(i, ℓp)

considered before. Third, we show that there is a cycle visiting all the vertices of the form
(i, 0) for i ∈ {0, . . . , p−1}. Every quasi-greedy-expansions d∗

Si(B)
(1) starts with a non-zero

digit di,1. Therefore, for every i ∈ {0, . . . , p− 1}, there is an arrow labeled by 0 from (i, 0)
to (i− 1, 0). Thus, there exist exponents ti ≥ 1 such that the word 0ti labels a path from
the vertex (i− ji + 1, ji − 1) to the vertex (i− 1, 0). Altogether, we see that the word

(d0,1 · · · d0,ℓp+mp)(d0,ℓp+1 · · · d0,j0−1)0
tp−1

(dp−1,1 · · · dp−1,ℓp+mp)(dp−1,ℓp+1 · · · dp−1,jp−1−1)0
tp−2

· · ·
(d1,1 · · · d1,ℓp+mp)(d1,ℓp+1 · · · d1,j1 − 1)0t0

labels a cycle from (p− 1, 0) to (p− 1, 0) that visits all vertices of the graph.
By definition of the graph, for any given i ∈ {0, . . . , p− 1}, the length of any path from

a vertex (i, n) to a vertex (i, n′) must be a multiple of p. We deduce that the matrices Di

are irreducible. Moreover, the first entry on the diagonal of Di is positive since the word
0p labels a path from (i, 0) to (i, 0). These two properties force primitivity of every matrix
Di, and hence of the substitution φB ◦ φS(B) ◦ · · · ◦ φSp−1(B). □

We conclude this section by proving an important consequence of Theorem 22 about the
uniqueness of the alternate base. We first prove a lemma which is of interest by itself.

Lemma 23. Let B = (βp−1, . . . , β0) be a Parry alternate base. The Perron–Frobenius
eigenvalue of the incidence matrix of the substitution φB ◦φS(B) ◦ · · · ◦φSp−1(B) is given by
the product βp−1 · · ·β0 of the bases.

Proof. Let us keep the notation from the proof of Theorem 22. The incidence matrix of
the substitution φSi(B) is given by

(Mi)
⊺ =


di+1,i+1 di+2,i+2 · · · di+ℓp+mp−1,i+ℓp+mp−1 di,i+iℓp+mp

1 0 · · · 0 0
0 1 · · · 0 0
...
0 0 · · · 1 0

+ Ei

where Ei is the square matrix of size ℓp+mp defined by Eℓp−1,ℓp+mp−1 = 1 and En,n′ = 0
otherwise.
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Now, for each i ∈ {0, . . . , p − 1}, let ∆i,n denote the distance between Si(B)-integers
differing at index n. We thus have ∆i,n = βi+n−1 · · ·βi −MSi(B),n. From Corollary 13
combined with Proposition 16, we know that βi∆i+1,n = ∆i,n+1 + di+n+1,i+n+1 for all
i and n. We focus on the values n ∈ {0, . . . , ℓp + mp − 1} in order to write, for every
i ∈ {0, . . . , p − 1}, the corresponding ℓp +mp equalities in a matrix form. In order to do
so, we define ∆(i) = (∆i,0, . . . ,∆i,ℓp+mp−1). Since ∆i,0 = 1 and ∆i,ℓp+mp = ∆i,ℓp for all
i ∈ {0, . . . , p− 1}, we get the matrix equalities

βi∆
(i+1) = ∆(i)(Mi)

⊺, i ∈ {0, 1, . . . , p− 1}

From this, we derive

β0 · · ·βp−2βp−1∆
(0) = β0 · · ·βp−2βp−1∆

(p)

= ∆(0)(M0)
⊺ · · · (Mp−2)

⊺(Mp−1)
⊺

= ∆(0)(Mp−1Mp−2 · · ·M0)
⊺

= ∆(0)Dp−1.

In other words, the primitive matrix Dp−1 has a positive left eigenvector ∆(0) correspond-
ing to the eigenvalue βp−1βp−2 · · ·β0. The Perron-Frobenius theorem implies that this
eigenvalue is precisely the Perron-Frobenius eigenvalue. □

Theorem 24. Let B = (βp−1, · · · , β0) be a Parry alternate base. Then no other alternate
base of length p has the same list of quasi-greedy expansions of 1.

Proof. Assume that the list of quasi-greedy expansions d∗
Si(B)

(1) for i ∈ {0, . . . , p − 1}
also gives the list of quasi-greedy expansions of 1 associated with an alternate base Γ =
(γp−1, γp−2, . . . , γ0) which is different from B. But for each i ∈ {0, . . . , p−1}, the substitu-
tion φSi(B) only depends on the digits of d∗

Si(B)
(1). Therefore, we must have φSi(Γ) = φSi(B)

for every i ∈ {0, . . . , p−1}, and thus also φΓ◦φS(Γ)◦· · ·◦φSp−1(Γ) = φB◦φS(B)◦· · ·◦φSp−1(B).
By Lemma 23, we obtain that the products βp−1 · · ·β1β0 and γp−1 · · · γ1γ0 are the same.
Then by [13, Proposition 20], we derive that Γ = B. □

Let us mention that the question of the uniqueness of an alternate base given a list of
quasi-greedy expansions of 1 remains open in case that the base is not assumed to be a
Parry alternate base.

7. A running example

In this section, we illustrate our constructions and results on an example. Consider the
alternate base B = (1+

√
13

2 , 5+
√
13

6 ). It is Parry since d∗B(1) = 20(01)ω and d∗S(B)(1) =

(10)ω. We set ℓ = m = 2, that is we consider the writings 20(01)ω and 10(10)ω of the two
quasi-greedy expansions of 1 in order to have common preperiods and periods which are
multiple of p = 2.

By Proposition 16, we can compute the largest B-integers MB,n with a B-expansion
of length less than or equal to n. The numbers MB,n and (the left part of) their B-
expansions are given in Table 1 for n ≤ 7. Then, in Table 2 are given the B-integers with
a B-expansions of length at most 5 (up to two decimal digits), their B-expansions, the
corresponding prefixes of the sequence wB and its projection vB onto the finite alphabet
{0, . . . , ℓp+mp− 1} = {0, 1, 2, 3}. From the proof of Proposition 19, we see that there can
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n dB(MB,n) MB,n

0 ε 0
1 1 1

2 20 5+
√
13

3

3 101 5+
√
13

2

4 2001 17+4
√
13

3

5 10101 8 + 2
√
13

6 200101 109+29
√
13

6

7 1010101 26 + 7
√
13

Table 1. The first numbers MB,n for the alternate base B = (1+
√
13

2 , 5+
√
13

6 ).

k xk dB(xk) wB vB k xk dB(xk) wB vB k xk dB(xk) wB vB
0 0 ε 0 0 12 8.03 1100 0 0 24 16.64 100001 1 1
1 1 1 1 1 13 9.03 1101 3 3 25 17.07 100010 0 0
2 1.43 10 0 0 14 9.47 2000 0 0 26 18.07 100011 1 1
3 2.43 11 1 1 15 10.47 2001 4 2 27 18.51 100020 2 2
4 2.86 20 2 2 16 10.90 10000 0 0 28 18.94 100100 0 0
5 3.30 100 0 0 17 11.90 10001 1 1 29 19.94 100101 3 3
6 4.30 101 3 3 18 12.34 10010 0 0 30 20.38 101000 0 0
7 4.73 1000 0 0 19 13.34 10011 1 1 31 21.38 101001 1 1
8 5.73 1001 1 1 20 13.77 10020 2 2 32 21.81 101010 0 0
9 6.17 1010 0 0 21 14.21 10100 0 0 33 22.81 101011 1 1
10 7.17 1011 1 1 22 15.21 10101 5 3 34 23.25 101020 2 2
11 7.60 1020 2 2 23 15.64 100000 0 0 35 23.68 101100 0 0

Table 2. B-expansions of the first B-integers and the corresponding pre-
fixes of wB and vB, with respect to the alternate base B = (1+

√
13

2 , 5+
√
13

6 ).

be at most ℓp+mp = 4 possible distances between consecutive B-integers. In our case, we
only get two of them since

∆0 = valB(0 • d0,1d0,1 · · · ) = valB(0 • 20(01)ω) = 1

∆1 = valB(0 • d1,2d1,3 · · · ) = valB(0 • (01)ω) =
−1 +

√
13

6
∼ 0.434259

∆2 = valB(0 • d0,3d0,4 · · · ) = valB(0 • (01)ω) = ∆1

∆3 = valB(0 • d1,4d1,5 · · · ) = valB(0 • (01)ω) = ∆1.

The first B-integers, the B-expansions of which are given in Table 2, are represented in
Figure 1.

0 5 10 15 20 25

Figure 1. The first B-integers, with respect to the alternate base B = (1+
√
13

2 , 5+
√
13

6 ).



SUBSTITUTIONS AND CANTOR REAL NUMERATION SYSTEMS 15

Now, we consider the shifted base S(B) = (5+
√
13

6 , 1+
√
13

2 ), which we simply denote by
B̃ for conciseness (this brings no ambiguity since p = 2). To illustrate Lemma 9, the
B-integers belonging to β0NB̃ are those having a right-most digit 0 in their B-expansion.
In Figure 2 are represented the B-integers from Figure 1 that belong to β0NB̃. On the

0 5 10 15 20

Figure 2. The first B-integers belonging to the subset β0NB̃, with respect
to the alternate base B = (1+

√
13

2 , 5+
√
13

6 ).

other hand, since ⌈β0⌉ = ⌈5+
√
13

6 ⌉ = 2, the second inclusion from Lemma 9 gives NB ⊂
β0NB̃ + {0, 1}, which can be seen in Table 2 as all B-integers end either in a digit 0 or
1. Note that some numbers in β0NB̃ + {0, 1} are not B-integers. For example, x4 =
5+

√
13

3 belongs to β0NB̃ as dB(x4) = 20 • 0ω, but x4 + 1 = 8+
√
13

3 is not a B-integer since
dB(x4 + 1) = 100 • 1010ω.

Let us denote the k-th B̃-integer by x̃k and the distance between consecutive B̃-integers
differing in (maximal) position n by ∆̃n. The B̃-integers MB̃,n and their B-expansions are
given in Table 3 for n ≤ 7. Table 4 is the analogue of Table 2 for the shifted base B̃. For

n dB̃(MB̃,n) MB̃,n

0 ε 0
1 2 2

2 10 1+
√
13

3

3 200 3 +
√
13

4 1010 9+3
√
13

2

5 20010 23+7
√
13

2

6 101010 17 + 5
√
13

7 2001010 81+23
√
13

2

Table 3. The first numbers MB̃,n for the alternate base B̃ = (5+
√
13

6 , 1+
√
13

2 ).

the base B̃, we get two possible distances between consecutive B̃-integers:

∆̃0 = valB̃(0 • d1,1d1,1 · · · ) = valB̃(0 • (10)ω) = 1

∆̃1 = valB̃(0 • d0,2d0,3 · · · ) = valB̃(0 • 0(01)ω) =
−3 +

√
13

2
∼ 0.302776

∆̃2 = valB̃(0 • d1,3d1,4 · · · ) = valB̃(0 • (10)ω) = ∆̃0

∆̃3 = valB̃(0 • d0,4d0,5 · · · ) = valB(0 • (10)ω) = ∆̃0.

The first B̃-integers, the B̃-expansions of which are given in Table 2, are represented in
Figure 3.

We now illustrate Proposition 12, which says that ψB(wB̃) = wB. From Table 1, we see
that the map ψB : N → N∗ is given by 0 7→ 01, 1 7→ 2 and n 7→ 0(n + 1) for all n ≥ 2.
Computing a prefix

ψB(wB̃) = ψB(001200123001400120012300140015 · · · )
= 01012030101203040101205010120301012030401012050101206 · · ·
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k x̃k dB̃(x̃k) wB̃ vB k x̃k dB̃(x̃k) wB̃ vB̃ k x̃k dB̃(x̃k) wB̃ vB̃
0 0 ε 0 0 12 9.90 1010 4 2 24 20.51 11002 1 1
1 1 1 0 0 13 10.90 10000 0 0 25 20.81 11010 4 2
2 2 2 1 1 14 11.90 10001 0 0 26 21.81 20000 0 0
3 2.30 10 2 2 15 12.90 10002 4 2 27 22.81 20001 0 0
4 3.30 100 0 0 16 13.21 10010 2 2 28 23.81 20002 1 1
5 4.30 101 0 0 17 14.21 10100 0 0 29 24.11 20010 5 2
6 5.30 102 1 1 18 12.21 10101 0 0 30 25.11 100000 0 0
7 5.60 110 2 2 19 16.21 10102 1 1 31 26.11 100001 0 0
8 6.60 200 3 3 20 16.51 10110 2 2 32 27.11 100002 0 0
9 7.60 1000 0 0 21 17.51 10200 3 3 33 27.42 100010 2 2
10 8.60 1001 0 0 22 18.51 11000 0 0 34 28.42 100100 0 0
11 9.60 1002 1 1 23 19.51 11001 0 0 35 29.42 100101 0 0

Table 4. B̃-expansions of the first B̃-integers and the corresponding pre-
fixes of wB̃ and vB̃, with respect to the alternate base B̃ = (5+

√
13

6 , 1+
√
13

2 ).

0 5 10 15 20 25 30

Figure 3. The first B-integers, with respect to the alternate base B̃ = (5+
√
13

6 , 1+
√
13

2 ).

of ψB(wB̃), we see that it indeed coincides with a prefix of wB.
Now, let us compute the graph described in the proof of Theorem 22 associated with the

base B. This graph is depicted in Figure 4. The set of vertices is given by {0, 1}×{0, 1, 2, 3}.

1, 0 0, 1 1, 2 0, 3

0, 0 1, 1 0, 2 1, 3

2

0, 1

0 0

1

0

1

0

0 1

0

0

Figure 4. The graph associated with the base B = (1+
√
13

2 , 5+
√
13

6 ).

Following the prefix 2001 of d∗B(1) starting from the vertex (1, 0), we successively visit the
states (0, 1), (1, 2), (0, 3) and then (1, 2) again. Similarly, by following the prefix 1010 of
d∗S(B)(1) starting from the vertex (0, 0), we successively visit the states (1, 1), (0, 2), (1, 3)
and then (0, 2) again. When we read a letter less than the one prescribed by the current
quasi-greedy expansion from a vertex of the form (i, n), we go to the vertex (i− 1, 0). We
thus get the arrows from (1, 0) to (0, 0) labeled by 0 and 1, the arrow from (0, 3) to (1, 0)
labeled by 0, and the arrow from (0, 2) to (1, 0) labeled by 0. Note that the obtained
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graph is bipartite: we always go from states with first component 0 to states with first
component 1, and conversely, we always go from states with first component 1 to states
with first component 0. So, if we order the states as

(1, 0), (1, 1), (1, 2), (1, 3), (0, 0), (0, 1), (0, 2), (0, 3),

the corresponding adjacency matrix if given by

M =



0 0 0 0 2 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0


The matrices

M0 =


1 1 0 0
0 0 1 0
1 0 0 1
1 0 1 0

 and M1 =


2 1 0 0
0 0 1 0
0 0 0 1
0 0 1 0


are respectively the transposed incidence matrices of the substitutions φB and φB̃ over the
alphabet {0, 1, 2, 3}, which are defined by

φB :


0 7→ 01

1 7→ 2

2 7→ 03

3 7→ 02

and φB̃ :


0 7→ 001

1 7→ 2

2 7→ 3

3 7→ 2.

Observe that, as described in the proof of Theorem 22, the associated graph is strongly
connected and the word (2001)(0)(00)(1010)(0) labels a path from (1, 0) to (1, 0). The
matrix

D1 =M1M0 =


2 2 1 0
1 0 0 1
1 0 1 0
1 0 0 1


is thus the transposed incidence matrix of the substitution

φB ◦ φB̃ :


0 7→ 01012

1 7→ 03

2 7→ 02

3 7→ 03.

This matrix is primitive as we have

(D1)
3 =


23 14 10 6
10 6 4 3
10 6 5 2
10 6 4 3

 .

Computing a prefix

01012 · 03 · 01012 · 03 · 02 · 01012 · 03 · 01012 · 03 · 01012 · 03 · 02 · · ·



SUBSTITUTIONS AND CANTOR REAL NUMERATION SYSTEMS 18

of the fixed point of the substitution φB ◦ φB̃, we see that it indeed corresponds to the
prefix of the infinite word vB coding the distances between B-integers given in Table 2.

Moreover, the characteristic polynomial of D1 is given by X4 − 4X3 + 2X2 + X,
which factors as X(X − 1)(X2 − 3X − 1). The eigenvalues of D1 are thus given by
0, 1, 3+

√
13

2 , 3−
√
13

2 . The dominant eigenvalue is 3+
√
13

2 , which is precisely the product β1β0
as stated in Lemma 23.

Note that, in our specific example, since we have ∆1 = ∆2 = ∆3, the image

π(vB) = 0101101010110101 · · ·

under the projection π : {0, 1, 2, 3}∗ → {0, 1}∗, 0 7→ 0, 1 7→ 1, 2 7→ 1, 3 7→ 1 contains
enough information to code the distances between consecutive B-integers. Clearly, this
new infinite sequence π(vB) is the fixed point of the substitution given by

(7.1)

{
0 7→ 01011

1 7→ 01.

8. Sturmian sequences

Balanced sequences over an alphabet {a, b} that are not eventually periodic are called
sturmian. Recall that a binary sequence (vn)n∈N is balanced if for every length n ∈ N and
every i, j ∈ N the number of occurrences of the letter a in the words vivi+1 · · · vi+n−1 and
vjvj+1 · · · vj+n−1 differs at most by 1.

There are many equivalent definitions of sturmian sequences, see [22]. For our purposes,
we use the result of [6] which characterizes sturmian sequences among fixed points of prim-
itive substitutions: An infinite binary word over the alphabet {0, 1} that is fixed by a
primitive morphism is sturmian if and only if the morphism belongs to the so-called stur-
mian monoid, i.e., the monoid of binary morphisms generated by the following morphisms:

E :

{
0 7→ 1

1 7→ 0
G :

{
0 7→ 0

1 7→ 01
and G̃ :

{
0 7→ 0

1 7→ 10
.

Sturmian morphisms are precisely those which map a sturmian sequence to a sturmian
sequence. For more details on sturmian morphisms, see [22].

Sequences vB, as introduced in Definition 20, are fixed by a substitution over an alphabet
with ℓp + mp letters where ℓ and m are chosen so that all quasi-greedy expansions of 1
have preperiods and periods of the same lengths ℓp and mp respectively.

As we have seen on the example in Section 7, in some cases this alphabet is exagger-
ated and the sequence of distances between consecutive B-integers could be coded by a
projection π of vB onto a smaller alphabet. The new sequence π(vB) can also be fixed by
a substitution.

In this section, we are interested in the cases where vB itself (not its projection) is a
sturmian sequence. This situation happens to be quite rare, even if we allow alternate base
numeration systems. The following proposition describes all the possible cases.

Proposition 25. Let B = (βp−1, . . . , β0) be a Parry alternate base. The infinite sequence
vB is sturmian if and only if one of the following cases is satisfied.

Case 1. We have p = 1 and d∗B(1) = (d0)ω with d ≥ 1, in which case β0 is the positive
root of X2 − dX − 1 and vB is the sturmian sequence fixed by the substitution
0 7→ 0d1, 1 7→ 0.
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Case 2. We have p = 1 and d∗B(1) = (d+ 1)dω for d ≥ 1, in which case β0 is the largest
root of X2− (d+2)X +1 and vB is the sturmian sequence fixed by the substitution
0 7→ 0d+11, 1 7→ 0d1.

Case 3. We have p = 2 and d∗B(1) = (d0)ω, d∗S(B)(1) = (e0)ω with d, e ≥ 1, in which case
β0 and β1 are the largest roots of dX2 − deX − e and eX2 − deX − d respectively,
the product β1β0 is the largest root of X2 − (de+ 2)X + 1, and vB is the sturmian
sequence fixed by the substitution 0 7→ (0e1)d0, 1 7→ 0e1.

Proof. The case when p = 1 has been treated in [17] and [18]. Assume that p ≥ 2 and
that vB is sturmian. Since sturmian sequences are binary words and the infinite word vB
is defined over the alphabet {0, . . . , ℓp +mp − 1}, we must have (ℓ +m)p = 2. Since in
addition p ≥ 2 and m ≥ 1, this gives p = 2, ℓ = 0 and m = 1, i.e., d∗B(1) and d∗S(B)(1) are
of the form

(8.1) d∗B(1) = (d1d2)
ω and d∗S(B)(1) = (e1e2)

ω.

By Theorem 22, the infinite word vB is fixed by the primitive substitution φB ◦φS(B) where

φB : 0 7→ 0e11 and φS(B) : 0 7→ 0d11

1 7→ 0d2+1 1 7→ 0e2+1.

Since vB is a sturmian sequence, any substitution that fixes it must be a sturmian mor-
phism. Consequently, its incidence matrix A1A0 with

A0 =

(
e1 d2 + 1
1 0

)
and A1 =

(
d1 e2 + 1
1 0

)
,

has determinant equal to ±1, and hence detA0 = ±1 and detA1 = ±1. This implies
d2 = e2 = 0. Setting d1 = d, e1 = e into (8.1), we derive that 1 = d

β1
+ 1

β1β0
= e

β0
+ 1

β1β0
.

It is then not difficult to see that β0 and β1 are the largest roots of the polynomials
dX2 − deX − e and eX2 − deX − d, respectively. We then also get that

(β1β0)
2 = dβ1β

2
0 + β1β0

= β1(deβ0 + e) + β1β0

= (de+ 1)β1β0 + eβ1

= (de+ 1)β1β0 + β0β1 − 1

= (de+ 2)β1β0 − 1

hence β1β0 is the largest root of the polynomial X2−(de+2)X+1 (the other one belonging
to the interval (0, 1)). Moreover, the corresponding substitution φB ◦ φS(B) is given by

φB ◦ φS(B) : 0 7→ (0e1)d0

1 7→ 0e1.

Conversely, suppose that we are in Case 3. Then the morphisms φB and φS(B) are given
by

φB : 0 7→ 0e1 and φS(B) : 0 7→ 0d1

1 7→ 0 1 7→ 0,

which are both sturmian morphisms, as φB = Ge ◦ E and φS(B) = Gd ◦ E. Thus, so is
their composition φB ◦ φS(B), and hence its fixed point vB is a sturmian sequence. □
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In all cases, one can derive frequencies ρ0, ρ1 of letters 0 and 1 in the sturmian sequence
vB from the corresponding substitution. Frequencies of letters will be expressed in terms
of its continued fraction. Recall, that a continued fraction [a0, a1, a2, . . .] with a0 ∈ Z and
an ∈ N, an ≥ 1 for every n ∈ N, n > 0, represents the irrational number γ, when

γ = lim
n→+∞

a0 +
1

a1 +
1

a2 +
1

. . . an−1 +
1

an

.

If the sequence a0, a1, a2, . . . of the so-called partial quotients in the continued fraction is
eventually periodic with the period ai+1, ai+2, . . . , ai+k we use the notation

[a0, a1, . . . , ai, ai+1, ai+2, . . . , ai+k].

Corollary 26. Let B = (βp−1, . . . , β0) be a Parry alternate base such that the infinite
sequence vB is sturmian. Then the frequency vector (ρ0, ρ1) of the letters 0 and 1 in vB is
given as follows, according to the cases described in Proposition 25.

Case 1. We have (ρ0, ρ1) = ( β0
β0+1 ,

1
β0+1) and the continued fraction of ρ0 is [0, 1, d].

Case 2. We have (ρ0, ρ1) = (β0−1
β0

, 1
β0
) and the continued fraction of ρ0 is [0, 1, d].

Case 3. We have (ρ0, ρ1) = ( β1
β1+1 ,

1
β1+1) and the continued fraction of ρ0 is equal to

[0, 1, e, d].

Proof. The case when p = 1 has been treated in [17] and [18]. Suppose here that p ≥ 2.
The vector (ρ0, ρ1) is an eigenvector of the incidence matrix(

de+ 1 e
d 1

)
of the substitution φB ◦ φS(B) corresponding to the Peron-Frobenius eigenvalue β1β0, and
of course, such that ρ0+ρ1 = 1. So we easily compute that ρ0 = β1β0−1

β1β0−1+d . Since we are in
Case 3, we know that 1 = d

β1
+ 1

β1β0
= e

β0
+ 1

β1β0
, hence β1β0 − 1 = dβ0 = eβ1. We obtain

that (ρ0, ρ1) = ( β0
β0+1 ,

1
β0+1).

Let us show that the continued fraction of ρ0 is equal to [0, 1, e, d]. Since β0 is a root of
dx2 − dex− e, we have β0 − e− e

dβ0
= 0. As dβ0 = eβ1, we derive β0 = e+ 1

β1
. By similar

argumentation, we obtain β1 = d+ 1
β0

. Together

β0 = e+
1

d+ 1
β0

,

and thus β0 has the purely periodic continued fraction β1 = [e, d] and for the frequency ρ0
we have

ρ0 =
β0

β0 + 1
=

1

1 + 1
β0

= [0, 1, e, d].

□

Surprisingly, we see that one can obtain a sturmian word vB with frequency ρ0 = [0, 1, a]
as a coding of integers in two different numeration systems. For p = 1, this is only possible
for the real bases τ and τ2 where τ = 1+

√
5

2 is the golden ratio. On the one hand, the
real base τ fulfills the condition of Case 1 with d = 1, and we get ρ0 = τ

τ+1 = [0, 1]. On
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the other hand, the real base τ2 fulfills the condition of Case 2 with d = 1, and we get
ρ0 =

τ2−1
τ2

= τ
τ+1 = [0, 1].

But if we allow alternate bases, there are in fact infinitely many pairs of numeration
systems giving the same frequency ρ0 = [0, 1, a]. It happens for p = 1 with d∗B(1) =
(a+1)aω. In this case β0 is a root ofX2−(a+2)X+1 and the distances between consecutive
B-integers take values ∆0 = 1 and ∆1 = valB(0 • aω) = a

β0−1 . For example, for a = 2, we
obtain the real base 2 +

√
3 and the frequency ρ0 is given by β0−1

β0
= −1 +

√
3 = [0, 1, 2].

The infinite word vB is fixed by the substitution 0 7→ 0001 and 1 7→ 001.
Another possibility is to take p = 2 with d∗B(1) = (10)ω and d∗S(B)(1) = (a0)ω. Here,

β0 is a root of X2 − aX − a and β1 is a root of aX2 − aX − 1, their product β1β0 being
a root of X2 − (a + 2)X + 1. The distances between consecutive B-integers take values
∆0 = 1 and ∆1 = valB(0 • (0a)ω) = a

β1β0−1 . For a = 2, we get the alternate base B =

(β1, β0) = (1+
√
3

2 , 1+
√
3) and the frequency ρ0 is also given by β0

β0+1 = −1+
√
3 = [0, 1, 2].

The infinite word vB is fixed by another substitution, namely, 0 7→ 0010 and 1 7→ 001.
From the substitutions we see that although the two sturmian words have the same

frequency of letters, the sequences do not coincide: The one from Case 2 with p = 1 has
the prefix 0001, whereas the sequence from Case 3 with p = 2 has the prefix 0010.

For the list d∗B(1), d
∗
S(B)(1), . . . , d

∗
Sp−1(B)(1) in general, the associated word vB from

Definition 20 is rarely binary. Nevertheless, the phenomenon that gaps between consecutive
B-integers take only two values can occur for arbitrary p when the quasi-greedy expansions
of unity are of specific form. Then the structure of the set of B-integers can be coded by
a projection π of the sequence vB to a binary alphabet.

In the running example of Section 7, the projected word π(vB) onto the binary alphabet
is fixed by the substitution φ defined in (7.1). It can be easily verified that φ = EG̃EG2E.
Therefore the infinite word π(vB) is sturmian. Noteworthy, we can calculate that the
frequencies of letters in this case are ρ0 = [0, 2, 3] and ρ1 = [0, 1, 1, 3], and so this sturmian
sequence is different from all the cases described in Proposition 25. The following example
illustrates that not every set of B-integers that can be coded by a binary infinite word
gives a sturmian sequence.
Example 27. Consider p = 2 and d∗B(1) = (3020)ω and d∗S(B)(1) = 4(2030)ω. For β0, β1
and their product δ we have

1 =
3

β1
+

2

δβ1
+

1

δ2

1 =
4

β0
+

2

δ
+

3

δ2
+

2

δ3
+

1

β0δ3
,

which yields that δ is a root of X2 − 14X − 12, i.e., δ = 7 +
√
61. Moreover, β0 = δ2−1

3δ+2 =
11+

√
61

4 and β1 = δ
β0

= 4
15(4 +

√
61).

According to Proposition 16, there are only two possible distances between consecutive
B-integers, which are given by ∆0 = valB(3020)

ω = 1 and ∆1 = valB(2030)
ω = 2δ+3

3δ+2 =
√
61−5
4 ∼ 0.7. More precisely, for all n ≥ 0 and j ∈ {0, 1, 2, 3}, we have

∆4n+j =

{
∆0, if j ∈ {0, 3};
∆1, if j ∈ {1, 2}.

By Proposition 6, we can compute the first B-integers; see Table 5. We see that the binary
infinite word vB coding B-integers thus contains the word 00 (coding distances between
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x0, x1, x2) and the word 11 (coding the distances between x14, x15, x16). Therefore the
sequence is not balanced, hence not sturmian.

k xk dB(xk) wB vB k xk dB(xk) wB vB
0 0 ε 0 0 9 8.7 14 1 1
1 1 1 0 0 10 9.4 20 0 0
2 2 2 0 0 11 10.4 21 0 0
3 3 3 0 0 12 11.4 22 0 0
4 4 4 1 1 13 12.4 23 0 0
5 4.7 10 0 0 14 13.4 24 1 1
6 5.7 11 0 0 15 14.1 30 2 1
7 6.7 12 0 0 16 14.8 100 0 0
8 7.7 13 0 0 17 15.8 101 0 0

Table 5. The first B-integers and the corresponding prefixes of wB and
vB, with respect to the alternate base B = ( 4

15(4 +
√
61), 11+

√
61

4 ).

9. Comments and open problems

The infinite symbolic sequences associated with β-integers in the context of Rényi nu-
meration systems may have affine factor complexity. The characterization of such cases is
given in [5] using a detailed description of special factors. This allows one to determine
which Parry sequences are sturmian, or more generally Arnoux-Rauzy. It turns out that
Arnoux-Rauzy sequences originated from β-integers are standard. It is worth mentioning
that the sturmian sequence coding distances between consecutive B-integers of our running
example is not standard.

Infinite symbolic sequences vB coding B-integers as defined in this paper represent a
very rich family of infinite sequences. Similarly as we have identified sturmian sequences
among the infinite words vB, it would be interesting to find which of those infinite words vB
belong to a recently introduced class of dendric sequences [7]. Dendric sequences appear to
be S-adic [9] and generalize two very extensively studied classes of infinite words, namely
sequences coding interval exchange transformations and episturmian sequences.
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