INTEGERS IN REAL NUMERATION SYSTEMS

ÉMILIE CHARLIER¹, CÉLIA CISTERNINO¹, ZUZANA MASÁKOVÁ² AND EDITA PELANTOVÁ²

A real numeration system is defined by a strictly increasing biinfinite sequence $\mathcal{U} = (\mathcal{U}_n)_{n \in \mathbb{Z}}$ of positive real numbers such that

(1)
$$\mathcal{U}_0 = 1, \quad \lim_{n \to +\infty} \mathcal{U}_n = +\infty, \quad \lim_{n \to -\infty} \mathcal{U}_n = 0.$$

A representation of a real number $x \ge 0$ in the system \mathcal{U} is a biinfinite sequence $(x_n)_{n\in\mathbb{Z}}$ of nonnegative integers such that $x = \sum_{n\in\mathbb{Z}} x_n\mathcal{U}_n$. By (1), necessarily there exists $N \in \mathbb{Z}$ such that $x_n = 0$ for each $n \ge N$. The lexicographically largest of all representations of $x \ge 0$ in the system \mathcal{U} is obtained by the greedy algorithm and it is called \mathcal{U} -expansion of x. The \mathcal{U} -expansion of x is denoted $(x)_{\mathcal{U}}$ and we write

$$(x)_{\mathcal{U}} = \begin{cases} x_{N-1}x_{N-2}\cdots x_{0} \cdot x_{-1}x_{-2}\cdots & \text{if } N > 0, \\ 0 \cdot 0^{N}x_{N-1}x_{N-2}\cdots & \text{if } N \le 0. \end{cases}$$

The above concept includes the classical *b*-ary expansions, with $b \in \mathbb{N}_{\geq 2}$, if $\mathcal{U}_n = b^n$, or more general Rényi β -expansions, with $\beta \in \mathbb{R}_{>1}$, if $\mathcal{U}_n = \beta^n$ for $n \in \mathbb{Z}$.

A non-negative real number x is called a \mathcal{U} -integer if the \mathcal{U} -expansion of x is of the form

$$(x)_{\mathcal{U}} = x_N x_{N-1} \cdots x_0 \cdot 0^{\omega}.$$

The set of all \mathcal{U} -integers is denoted by $\mathbb{N}_{\mathcal{U}}$. We thus generalize the notion of β -integers, introduced for the Rényi numeration system by Burík et al. [1].

Our first aim is to study the generalization of the classical properties of the positional numeration systems [3] to the real numeration system framework. Next, we study certain properties of the set $\mathbb{N}_{\mathcal{U}}$. We describe the distances between consecutive elements of $\mathbb{N}_{\mathcal{U}}$. We show that the infinite word $w_{\mathcal{U}}$ (over an infinite alphabet) coding the ordering of the distances in $\mathbb{N}_{\mathcal{U}}$ is an *S*-adic word. As the main tool we use the results on the recently defined Cantor real base and alternate base systems [2]. In fact, we link the \mathcal{U} -expansion of a non-negative real number x and the β -expansion of x/\mathcal{U}_N where β is the Cantor real base $(\mathcal{U}_n/\mathcal{U}_{n-1})_{n\leq N}$. We give a necessary and sufficient condition so that the distances between consecutive \mathcal{U} -integers take only finitely many values. In that case we show that the word $w_{\mathcal{U}}$ can be projected to an infinite word over a finite alphabet which is a fixed point of a substitution. The incidence matrix of the substitution is irreducible and, as a consequence, we may derive using the Perron-Frobenius theorem a result on uniqueness in alternate base systems, i.e., in the systems where $(\mathcal{U}_n/\mathcal{U}_{n-1})_{n\leq 0}$ is purely periodic.

References

- C. Burdík, C. Frougny, J. P. Gazeau, and R. Krejcar. Beta-integers as natural counting systems for quasicrystals. J. Phys. A, 31(30):6449–6472, 1998.
- [2] É. Charlier and C. Cisternino. Expansions in Cantor real bases. Monatsh. Math., 195:585–610, 2021.
- [3] M. Lothaire. Algebraic combinatorics on words, volume 90 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 2002.

¹Department of Mathematics, University of Liège, Allée de la Découverte 12, 4000 Liège, Belgium, ²Department of Mathematics, Czech Technical University in Prague, Trojanova 13, 120 00 Praha 2, Czech Republic

E-mail address: echarlier@uliege.be, ccisternino@uliege.be zuzana.masakova@fjfi.cvut.cz and edita.pelantova@fjfi.cvut.cz