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A real numeration system is defined by a strictly increasing biinfinite sequence U = (Un)n∈Z of
positive real numbers such that

(1) U0 = 1, lim
n→+∞

Un = +∞, lim
n→−∞

Un = 0.

A representation of a real number x ≥ 0 in the system U is a biinfinite sequence (xn)n∈Z of non-
negative integers such that x =

∑
n∈Z xnUn. By (1), necessarily there exists N ∈ Z such that xn = 0

for each n ≥ N . The lexicographically largest of all representations of x ≥ 0 in the system U is obtained
by the greedy algorithm and it is called U-expansion of x. The U-expansion of x is denoted (x)U and
we write

(x)U =

{
xN−1xN−2 · · ·x0 • x−1x−2 · · · if N > 0,

0 • 0NxN−1xN−2 · · · if N ≤ 0.

The above concept includes the classical b-ary expansions, with b ∈ N≥2, if Un = bn, or more general
Rényi β-expansions, with β ∈ R>1, if Un = βn for n ∈ Z.

A non-negative real number x is called a U-integer if the U-expansion of x is of the form(
x
)
U = xNxN−1 · · ·x0 • 0ω .

The set of all U-integers is denoted by NU . We thus generalize the notion of β-integers, introduced for
the Rényi numeration system by Burík et al. [1].

Our first aim is to study the generalization of the classical properties of the positional numeration
systems [3] to the real numeration system framework. Next, we study certain properties of the set NU .
We describe the distances between consecutive elements of NU . We show that the infinite word wU
(over an infinite alphabet) coding the ordering of the distances in NU is an S-adic word. As the main
tool we use the results on the recently defined Cantor real base and alternate base systems [2]. In fact,
we link the U-expansion of a non-negative real number x and the β-expansion of x/UN where β is the
Cantor real base (Un/Un−1)n≤N . We give a necessary and sufficient condition so that the distances
between consecutive U-integers take only finitely many values. In that case we show that the word
wU can be projected to an infinite word over a finite alphabet which is a fixed point of a substitution.
The incidence matrix of the substitution is irreducible and, as a consequence, we may derive using the
Perron-Frobenius theorem a result on uniqueness in alternate base systems, i.e., in the systems where
(Un/Un−1)n≤0 is purely periodic.
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