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RÉSUMÉ. La rupture dans les géomatériaux est souvent précédée par la formation de fines 
bandes de localisation des déformations. La formation de ces bandes de localisation est un 
processus non négligeable, étudié à la fois sur le plan expérimental et sur le plan théorique. 
Cet article résume les principaux phénomènes observés sur les processus localisés et propose 
quelques outils théoriques et numériques nécessaires à la caractérisation de ces processus de 
localisation. Afin de tenir compte des interactions entre les différentes phases des milieux 
poreux, une technique de régularisation basée sur des modèles de type second gradient est 
étendue aux couplages mutiphysiques. 
ABSTRACT. Rupture in geomaterials is often preceded by a localization of the deformations 
within thin bands. The strain localization is thus an important process, which has been 
studied both experimentally and theoretically. This paper summaries main observations on 
localized phenomena and proposes theoretical and numerical tools to characterize 
localization processes. To deal with interactions occurring between the different phases of 
porous media, a regularization technique based on the second gradient model has been 
extended to multiphysic couplings.  
MOTS-CLÉS : localisation des déformations, modélisation couplée, milieux enrichis, modèle 
second gradient. 
KEYWORDS: strain localization, coupled modelling, enriched continuum, second gradient 
model. 
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1. Introduction 

In many Civil Engineering problems (in a broad sense), the rupture of the 
foundation soil may be the relevant phenomenon for the global stability of a 
structure. For geomaterials, experimental observations show clearly localized 
ruptures (Desrues et al., 1996). Some authors (Khoa et al., 2006) refer also to 
diffuse mode of failure (which means homogeneous failure in laboratory tests). In 
the first case, the phenomenon is preceded by progressive strain localization within 
thin bands, leading finally to rupture lines. It is thus very important to be able to 
model numerically the post localization behaviour of geomaterials, for applications 
like the evaluation of bearing capacity, of slope stability or of damage zone around a 
tunnel… Furthermore, soils and rocks are porous materials, where the porous 
volume is filled with one or several fluids (water, gas, oil …). The general 
behaviour of the medium depends not only on the skeleton response (solid phase) to 
a given loading path, but also on the interactions occurring between the different 
phases of the medium. Capillary effects, temperature variations, chemical reactions 
induce specific behaviours, which have to be modelled by multiphysical constitutive 
laws. It has been shown that these latter laws share a same structure (See Collin et 
al., 2005). The numerical tools for the modelling of post failure problems have thus 
to be extended to this multiphysic context, to deal with applications related to 
nuclear waste disposal, concrete behaviour under severe loading… Then, new 
questions arise concerning the interactions between localization process and 
physical process (like liquid diffusion for example). The answer to these new 
questions can only be given by experimental evidences. The section 2 of this paper 
will summarized the main observations on localization phenomenon, coming from 
the experimental results. The section 3 is related to the theoretical tools devoted to 
localization process. The section 4 is the description of the coupled second gradient 
model, which is the regularization technique used for the application described in 
section 5. Some conclusions end up the paper in section 6.  

2. Experimental evidences 

During the last 20 years, a lot of experimental work has been devoted to the 
study of strain localization in soils and rocks. These studies performed by 
Vardoulakis and co-workers (Vardoulakis et al., 1978, Han et al., 1991), Finno and 
co-workers (Finno et al., 1996, Finno et al., 1997) and Desrues and co-workers 
(Desrues, 1984, Desrues et al., 2004) among others have mainly focused on the 
purely mechanical problem (dry sample or globally drained at low strain rate) or on 
the hydromechanical problem (undrained or globally drained at fast strain rate). The 
study of the evolution of strain localization processes during the experiment needs 
for special techniques like stereophotogrammetry, 3D digital image correlation or 
X-ray micro tomography (Lenoir et al., 2007). Thus, as in triaxial experiment (and 
more generally in axi-symmetric tests) the localization zone may remain more or 



Numerical post failure methods in multiphysical problems     3 

less hidden inside the sample, most of the experimental campaigns on localization 
have been performed in biaxial apparatus, where this latter process is ‘clearly’ 
evidenced.  

The main conclusions of the experimental works can be summarized as follow 
(Desrues, 2005): 

- Strain localization in shear band mode can be observed in most laboratory 
tests leading to rupture in geomaterials, 

- Complex localization patterns may be the result of specific geometrical or 
loading conditions, 

- Well marked stress peaks in stress-strain curves can be considered as the 
signature of an established shear band system over the specimens (Figure 
1). 
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Figure 1. Drained biaxial test on Hostun sand [After Mokni et al., 1999] 

Comparing to pure mechanical experiment (on dry sample), hydro-mechanical 
experiment introduces another physical phenomenon (i.e the fluid diffusion) that 
can influence the localization processes. This latter potential interaction depends of 
course on the (mechanical and diffusive) material properties, but also on the 
boundary conditions of the problem. For drained conditions (if the value of the 
permeability is sufficient low with respect of the velocity of the loading), the 
interactions are inexistent, as far as no overpressures are generated and the 
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experimental observations are equivalent to those corresponding to dry conditions. 
For undrained conditions, overpressures are generated and some interactions exist 
between the two processes. It should be pointed out that, in the laboratory, the 
boundary conditions which can be prescribed correspond to globally undrained 
conditions and not to locally undrained ones. It means that, even in undrained 
conditions, some fluid flows can be created. The undrained experiments performed 
in Grenoble (Mokni et al., 1999; Roger et al., 1998) among others have shown some 
common features and have lead to the following observations: 

- Plane strain undrained tests performed on loose and dense Hostun sand 
exhibit localization pattern. 

- For dense (dilatant) sand specimen, localization is possible only when 
cavitation occurs in the pore fluid. 

This last observation clearly evidences the interaction between the localization 
and the fluid diffusion, as far as the diffusion processes inhibits the localization 
before the cavitation within the pore volumes. Such phenomenon should thus be 
addressed both theoretically and numerically in a robust modelling of the rupture. 

Experimental studies of the strain localisation in other multiphysic context 
(unsaturated conditions, thermo-mechanical, chemo-mechanical …) are rather poor 
and there is clearly a need for further investigations. It is indeed important to know 
whether the temperature or the suction influence the occurrence of localization and 
the size of the process zone. 

3. Theoretical concepts 

The experimental results show that shear band formation can occur in 
geomaterials for many loading conditions. The constitutive laws devoted to the 
modelling of their behaviour have to be able to reproduce such phenomenon. The 
principal questions are thus the following: how could we know if the constitutive 
model can predict a strain localization mode and if this bifurcation occurs, how 
could we model it properly?  

 

3.1. Theoretical background 

Following the previous works by (Hadamard, 1903), (Hill, 1958) and (Mandel, 
1966), Rice and co-workers (Rice, 1976, Rudnicki et al., 1975) have proposed the 
so-called Rice criterion, which analyses the stress state and investigates the 
possibility of a bifurcation by formation of a shear band in the stress and strain 
paths, for incrementally linear behaviour. The theoretical scheme of a shear band is 
presented on figure 2. This criterion is based on a kinematical condition, a static 
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condition and on the constitutive equation. The superscript 0 denotes variables 
outside the band and the superscript 1 denotes variables inside the band. 

 

Figure 2. Theoretical scheme of a shear band 

The static condition expresses the surface equilibrium at the interface between 
the inner and outer band: 

 ( )1 0 0n σ σ− =  [1] 

The kinematic condition expresses the strain jump across the band interface by a 
dilatant strain jump and a shear strain jump, but without any longitudinal strain 
jump 

 1 0L L g n= + ⊗  [2] 

where L is the velocity gradient, n is the vector normal to the band, and g is a 
vector describing the band mode. 

The third equation introduced in the Rice criterion is the constitutive law, which 
is generally speaking an incrementally non linear relationship. If it is assumed to be 
linear, one has then: 

 :C Lσ =  [3] 

where C is the assumed constitutive tangent tensor. If different constitutive 
tensors are assumed inside C1 and outside C0 the band, then introducing [3] into [1] 
and [2] gives a third order equation system in which the unknowns are the 
components of the g vector. 

 ( 1 0 0 0: ( ) : 0n C L g n C L )+ ⊗ − =  [4] 
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The trivial solution g = 0 is always possible but means that no shear band can 
appear. When it is assumed that C1=C0=C, the condition for g ≠ 0 is met if and only 
if the determinant of the acoustic tensor is less or equal to zero: 

 det( ) 0nCn ≤  [5] 

This assumption is a strong one, often forgotten. However, in the case of a 
classical single-mechanism elastoplastic model, it has been proved that the previous 
criterion holds, provided C is chosen as the constitutive tensor corresponding to 
plastic loading (Chambon, 1986). 

These developments are valid for pure mechanical analysis. In a multiphysic 
context, Loret and co-workers (Loret et al., 1991) showed that for hydromechanical 
problems the condition of localization depends only on the drained properties of the 
medium. Nevertheless, it should be emphasized that in coupled problems much 
more complex localization pattern can be obtained, at least theoretically (figure 3; 
Vardoulakis, 1996, assuming an incrementally linear constitutive equation).  
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Figure 3. Shear banding mode in water-saturated sand (Vardoulakis, 1996) 

3.2. Regularization techniques 

Rupture in localized mode is observed experimentally; theoretical tools permit to 
characterize it when the conditions of occurrence of such phenomenon are met. The 
further step is to define a correct and robust modelling of the strain localization 
leading finally to the rupture. However, it is well known that classical finite element 
models suffer of a pathological problem of mesh dependency for strain localisation 
modelling. This is due to properties of the underlying mathematical problem. In 
order to put in evidence this deficiency of classical tools, let us consider a very 
simple one-dimensional problem of a constant section bar under uniaxial tension 
(Figure 4), made of a material with a very simple constitutive law (Figure 5-a). This 
law may be the result of an elastic damage model or a strain softening elastoplastic 
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model. It should be pointed out that the following discussion is also valid for a 
material layer under shear (replacing normal stress by shear stress). 

When submitted to an axial displacement, the load-displacement curve remains 
linear up to the stress state reaches the yield stress fy. After this point, the axial stress 
decreases but it has to remain homogeneous all along the bar according the static 
equilibrium condition. For each point of the bar, two options exist: either the 
softening loading or the elastic unloading. Let us define α as the ratio of the length 
Ls (where we have softening loading) over L. For α = 1, the load will decrease 
linearly down to zero for ∆ = L εr. For a limit case (α = 0), the load will decrease 
linearly down to zero at the origin without energy consummation (Figure 5-b). A 
priori, with classical numerical model, the length Ls is undetermined and, as far as 
the problem is ill-posed, we observe a mesh-dependency of the response of the 
model. For an algorithm finding the most localized solution, Ls will be equal to the 
size of the smallest element: if the number of element is increasing, the ratio α will 
tend to zero! The situation is even worse, when considering the complete initial 
boundary value problem (see Kotronis et al., 2008). 
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Figure 4. Constant section bar under uni-axial tension 
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 (a) : Local constitutive law (b) : Global response of the bar 

Figure 5. Local and global behaviour of the bar 

This simple example evidences the need of an internal length scale for a correct 
modelling of the post peak behaviour. Several approaches have been proposed to 
introduce such internal length scale in the problem. We can distinguish two 
categories of regularization techniques: 
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- Enrichment of the constitutive law 

The theory introduces an internal length scale at the level of the constitutive 
model. The advanced analysis of localization phenomena has shown that 
constitutive equations with internal length are necessary to properly model the 
experimental results involving some localized patterns: see for instance the 
pioneering works of Aifantis (1984), which introduced gradient of internal 
variables, or the works of Bazant, Pijaudier-Cabot and co-workers (Bazant et al., 
1984, Pijaudier-Cabot et al., 1987), which proposed a family of constitutive 
models derived from non local damage theory in which a non local internal 
variable is used instead of the local one. This latter theory has also generated the 
implicit gradient models (Peerlings et al., 1996), where the non local internal 
variable is an additional unknown and solution of the Helmoltz differential 
equation. 

- Enrichment of the kinematics 

The theories based on an enhancement of the kinematics itself can be traced 
back to the pioneering works of (Toupin, 1962), (Mindlin, 1964) and (Germain, 
1973). Here we consider the materials with microstructure as defined by (Mindlin, 
1964) and (Germain, 1973). Adding some mathematical constraints to the more 
general materials with microstructure yields a large set of models. Among all these 
models, the more ancient and famous one is the Cosserat model (Cosserat and 
Cosserat, 1909). In the following, we will mainly use the second gradient model 
developed in Grenoble (Chambon et al., 1998 and 2001), but the obtained 
conclusions can be generalized to the other regularization techniques. 

The extension of these regularization techniques to multiphasic materials and 
multi-physic problems leads to the question of interactions between the physical 
problems and the localization process. Loret and co-workers have been shown that 
diffusion equation (fluid or thermal) introduces an internal length scale (Loret et al., 
1991). Zhao, Schrefler and co-workers (Zhang et al., 1999, Zhang et al., 2001) have 
studied the potential interaction between the different lengths. They showed that the 
interaction between the different phenomena can appear for a given range of 
parameters, nevertheless a robust mechanical model is still needed even for coupled 
problems. 

4. Numerical modelling 

Among the different regularization techniques, we propose in the following to 
use the second gradient model (Chambon et al., 1998 and 2001). The second grade 
model is extended to biphasic medium (Collin et al., 2006) in order to show the 
possible interaction between the internal lengths introduced by the model and the 
diffusion process. In this model, the porous medium is considered as the 
superposition of several continua (Coussy, 1995): the solid skeleton (grains 
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assembly) and the fluid phases (water, air, oil...). Based on averaging theories 
(Hassanizadeh and Gray, 1979a, 1979b), (Lewis and Schrefler, 2000) proposed the 
governing equations for the full dynamic behaviour of a partially saturated porous 
medium. Hereafter these equations are restricted for quasi-static problem in 
unsaturated conditions, under Richard’s assumptions (constant air pressure). This 
assumption may be irrelevant in the particular case of low and ultra low permeable 
porous media. For this study, isothermal condition and incompressible solid grains 
are assumed. The unknowns of the mechanical and the flow problems are 
respectively the displacements ui and the pore water pressure pw (possibly negative 
in unsaturated case). In the following developments, the balance equations are 
written in the current solid configuration denoted Ωt (updated Lagrangian 
formulation). 

4.1. Balance of momentum equation 

In the mixture balance of momentum equation, the interaction forces between 
fluid phases and grain skeleton cancels. In a weak form (virtual work principle), this 
equation reads for any kinematically admissible virtual displacement field : *

iu

 ( ),(1 ) wt t t

t t t t t t t t t  [6] ij ij s r w i i i id S g u d t u d
σ

σ ε ρ φ ρ φ∗ ∗ ∗

Ω Ω Γ
Ω = − + Ω + Γ∫ ∫ ∫

where ( ) ( )(0.5 t

ij i j j iu x u xε ∗ ∗ ∗= ∂ ∂ + ∂ ∂ )t  is the kinematically admissible virtual 

strain field, tφ  is the porosity defined as ,t v tφ t= Ω Ω  where Ωt is the current 
volume of a given mass of skeleton and Ωv,t the corresponding porous volume, ρs is 
the solid grain density,  is the water relative saturation, ,

t

r wS t
wρ  is the water density, 

gi is the gravity acceleration and σΓ t  is the part of the boundary where tractions t
it  

are known. 

The total stress t

ijσ  is defined as a function of the kinematics. Here we assume 

first that the Bishop’s definition of effective stress holds (Nuth and Laloui, 2008):  

 '

,

t t t t

ij ij r w w ijS pσ σ= − δ  [7] 

with ' t

ijσ  the effective stress, t

wp  the pore water pressure and ijδ  the Kronecker 

symbol. 

 
4.2. Mass balance equation 

The water mass balance equation reads in a weak form: 
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t t t

q

t t t t t tw
w i w wt

i

p tM p m d Q p d q p d
x

∗
∗ ∗

Ω Ω

∂
− Ω = Ω −

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠
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Γ
Γ∫  [8] 

where wp∗  is the virtual pore water pressure field, Qt is a sink term and  is the 
part of the boundary where the input water mass per unit area 

t

qΓ
tq  is prescribed. Mt 

and  are respectively the mass of the water inside the current configuration of the 
skeleton Ω

t
im

t and the mass flow. They are defined hereafter respectively in Equation 
[11] and Equation [9].  

Water mass balance equation (Equation 8) has to hold for any time t, the virtual 
quantities in this equation being dependant on the history of boundary conditions 
and on time t. 

The mass flow  is defined as follows: t
im

 ,

t t
t t tr w w
i w wt

w i

 k p
m

x

κ
ρ

µ

∂
= − +

∂

⎛ ⎞
⎜
⎝ ⎠

igρ ⎟  [9] 

where κ is the intrinsic permeability,  is water relative permeability and µ,

t

r wk w is the 
water dynamic viscosity. 

The compressible fluid is assumed to respect the following relationship (Lewis 
and Schrefler, 2000). This predicts an increase of water density as a function of the 
pore water pressure, defining χw as the water bulk modulus: 

 
t

t w
w

w

p
ρ

ρ
χ

= t

w  [10] 

If the grains are assumed to be incompressible (which means ρs is constant), the 
time derivative of the water mass is obtained directly by using Equation [10] and 
mass balance equation for the solid phase. This yields for a unit mixture volume: 

 , , ,

t t
t t t t t t t

w r w r w r w t

w

p
M S S Sρ φ φ

χ

Ω
= + +

Ω

⎡ ⎤
⎢ ⎥
⎣ ⎦

 [11] 

 

4.3 Local second gradient model for monophasic medium 

Let us recall first the governing equations of a monophasic medium with 
microstructure. This kind of models can be traced back to the pioneering work of 
the Cosserat brothers (Cosserat and Cosserat, 1909), (Mindlin, 1964) and (Germain, 
1973). In the framework of microstructure continuum theory, a microkinematic 
gradient field vij is introduced to describe strain and rotation at the microscale. With 
respect to classical continuum mechanics, additional terms are then added in the 
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internal virtual work of a given body (Germain, 1973). The following expression 
holds for any virtual quantities: 

 
*

* * *( )
t

t t ti
i ij ij ij ij ijk ijkt

j

u
W v F

x
σ τ

Ω

∂
= + − + Σ

∂

⎛ ⎞
⎜
⎝ ⎠

∫ * th dΩ⎟  [12] 

where *

ijF is the virtual macrodeformation gradient,  is the virtual microkinematic 

gradient, 

*

ijv
t

ijτ called microstress is an additive stress associated to the microstructure, 

 is the virtual microsecond gradient and *

ijkh t

ijkΣ  is the double stress dual of . *

ijkh

In the local second gradient model used in the following, an assumption is 
added: the micro kinematic gradient is equal to the macro-deformation gradient 

  [13] ij ijv F=

As a consequence: . Finally, the principle of virtual work can be 

rewritten as follows: 

*

ij ijv F= *

 
* 2 *

*
t

t ti i
i ij ijkt t t

j j k

u u
W

x x x
σ

Ω

∂ ∂
= + Σ

∂ ∂ ∂

⎛ ⎞
⎜
⎝ ⎠

∫ tdΩ⎟  [14] 

Assuming that the boundary Ωt is regular, the external virtual work  can be 
defined as follows: 

*

eW

 ( )* * * *
t t

t

e i i i i i iW g u d tu T Du
σ

ρ
Ω Γ

= Ω + +∫ ∫ tdΓ  [15] 

where it  is the external (classical) forces per unit area and iT  an additional external 

(double) force per unit area, both applied on a part t

σΓ  of the boundary of Ωt. D 
denotes the normal derivative of any quantity q, (Dq = (∂q/∂xk)nk). To the authors’ 
knowledge, the additional boundary condition (on iT ) allows to produce solutions 
with boundary layers.  

One of the advantages of local second gradient is the fact that constitutive 
equations remain local and therefore it is straightforward to formulate a second 
gradient extension of any classical models. The previous virtual work equation of 
second gradient models can of course be used in a finite element code. However, 
this equation needs the use of C1 functions for the displacement field as second 
derivatives of the displacement are involved. In order to avoid such functions in the 
virtual work principle [14], the equalities between  and *

ijv *

ijF  and between  and ijv
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ijF  are introduced through a field of Lagrange multipliers λij related to a weak form 

of the constraint [13] (see Chambon et al., 1998): 

 
** *

* * 0
t t

ijt t t t ti i
ij ijk ij ij et t t

j k j

vu u
d v d

x x x
σ λ

Ω Ω

∂∂ ∂
+ Σ Ω − − Ω − =

∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∫ ∫ W  [16] 

 * 0
t

t
t ti

ij ijt

j

u
v d

x
λ

Ω

∂
− Ω =

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫  [17] 

4.4 Local second gradient coupled model 

Starting from Equations [6] and [8] of the coupled problem in classical 
poromechanics, microstructure effects can be introduced in the momentum balance 
equation by adding microkinematic gradient terms, under the previous assumptions 
(  = *

ijv *

ijF , vij = Fij). Assuming that pore fluid has no influence at the microstructure 

level, microkinematic gradient are not generated by pore pressure variations. This 
latter hypothesis follows the ideas of Ehlers (Ehlers et al., 1998) concerning a 
Cosserat model for biphasic medium. Cosserat model (Cosserat and Cosserat, 1909) 
is in fact a particular case of microstructured medium. 

According to the previous assumptions, we have the following governing 
equations: 

 (
* 2 *

, * * *
t t t

t t t mix t ti i
ij ijk i i i i i it t t

j j k

u u
d g u d tu T Du

x x x σ

σ ρ
Ω Ω Γ

∂ ∂
+ Σ Ω = Ω + + Γ

∂ ∂ ∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫ ∫ ) td  [18] 

 
t t t

q

t t t t t tw
w i w wt

i

p tM p m d Q p d q p d
x

∗
∗ ∗

Ω Ω

∂
− Ω = Ω −

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫ ∗

Γ
Γ∫  [19] 

where ρmix,t is the mass density of the mixture (ρmix,t = ρs (1 − φ t ) + ρw,t φ t ). 
Introducing Lagrange multiplier fields (like in the previous section), the governing 
equations of the local second gradient coupled problem are then the following: 

 
** *

* * 0
t t

ijt t t t ti i
ij ijk ij ij et t t

j k j

vu u
d v d

x x x
σ λ

Ω Ω
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+ Σ Ω − − Ω − =

∂ ∂ ∂

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
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∫ ∫ W  [20] 

 * 0
t

t
t ti

ij ijt

j

u
v d

x
λ

Ω

∂
− Ω =

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫  [21] 
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t t t

q

t t t t t tw
w i w wt

i

p tM p m d Q p d q p d
x

∗
∗ ∗

Ω Ω

∂
− Ω = Ω −

∂

⎛ ⎞
⎜ ⎟
⎝ ⎠
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Γ
Γ∫  [22] 

In the present work, the stress tensor σij in Equation [20] is a total stress defined 
according to Terzaghi’s postulate [7], on the contrary the double stress Σijk has no 
link with the pore pressure. 

Equations [20]–[22] have to hold for any time t, the virtual quantities in these 
equations being dependant on the history of boundary conditions and then on time t. 
Moreover the constitutive equations also have to hold for any time t. 

4.5 Local second gradient model in a multiphysic context 

The procedure to extend local second gradient model to other multiphysical 
context is more or less the same: additional balance equations appear to model the 
other processes. The main issue is not a numerical one but rather a physical one. 
What are the possible interactions between the second gradient model and the 
thermal diffusion, the suction or the chemical reaction? These questions should be 
first addressed by the experimental campaign. Concerning the internal length 
introduced by the second gradient model, it comes as the ratio of two constitutive 
moduli (the one related to the second gradient constitutive law and the one related to 
the classical law). Considering that the classical constitutive moduli are influenced 
by the different processes (chemical, thermal, suction …), the conclusions should be 
that the internal length scale should be modified by these latter processes (under the 
condition that second gradient law is not influenced by the processes). This should 
be again confirmed by some experimental evidences! 

5. Applications 

The following example exhibits the interest of using the theoretical tools 
presented but points out also their limitations. We propose to study a typical 
problem of nuclear waste disposal: the excavation of a storage gallery. It is 
proposed to model the excavation process with a very simple strain-softening 
constitutive law able to reproduce the main phenomena appearing during tunnelling: 
the progressive decrease of material strength during loading and the strain 
localisation. This coupled modelling is a benchmark exercise proposed by the GDR-
Momas and organized by EDF-CEA (Chavant et al., 2005). 

 

5.1. Definition of the problem 

The proposed constitutive law is an elasto-plastic strain-softening model. The 
yield criterion is a Drucker-Prager model given by the following equation: 
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 *

3 3 0
2 tan

cF II m Iσ σ φ
⎛ ⎞

≡ + −⎜ ⎟
⎝ ⎠

=  [23] 

where IIσ∗ is the second deviatoric stress invariant, Iσ is the first stress invariant, φ is 
the friction angle, parameter m is a function of φ: m = 2 sin(φ)/(3-sin(φ)), the 
cohesion c= c0 f (γ p) is the softening variable, c0 is the initial cohesion and γ p is the 
equivalent deviatoric plastic deformation.  

A cylindrical unsupported cavity of 3 m diameter is located in an homogeneous 
low permeability formation. The initial state of stress and pore pressure is the 
following: 
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The excavation process is modelled by decreasing both radial total stress and the 
pore pressure at the cavity wall: 

at r = 3m 

'

'

0

11.5 1

15.4 1

4.7 1

0

xx xx w

yy yy w

w

xx yy w

t T
tbp MPa
T
tbp MPa
T

tp MPa
T

t T
p

σ σ

σ σ

σ σ

≤ ≤⎧
⎪

⎛ ⎞⎪ = − = − −⎜ ⎟⎪ ⎝ ⎠
⎪

⎛ ⎞⎪ = − = − −⎪ ⎜ ⎟
⎝ ⎠⎨

⎪ ⎛ ⎞⎪ = −⎜ ⎟⎪ ⎝ ⎠
⎪ >⎪
⎪ = = =⎩

 and at r = ∝ 
11.5
15.4

4.7

xx

yy

w

MPa
MPa

p MPa

σ
σ

⎧ = −
⎪ = −⎨
⎪ =⎩

  

The excavation duration T is equal to 1.5 Ms (about 17 days) and the final 
modelling time is 300 Ms (about 9.5 years).  

 

5.2. Constitutive law and Rice criterion 

As seen in section 3.1, the Rice criterion is relevant for a single mechanism 
classical elastoplastic model. In this case, the Rice criterion can be transformed in a 
fourth order equation in tan(θ)=z, with θ being the angle between n and the x-axis, 
and ai being real parameters depending on the constitutive moduli: 

 ( 4 3 2

1 2 3 4 5 0a z a z a z a z a )+ + + + =  [24] 
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At the beginning of loading, this equation does not have any real solution. After 
some load steps, the first real solution is a double one (Wang, 1993), which then 
gives two bifurcation directions. 

In order to emphasize this theoretical concept with the proposed constitutive 
law, the homogeneous response of a drained biaxial experiment is first studied to 
observe when the Rice condition is met (Figure 6). 
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 (a) : Local constitutive law (b) : Global response of the bar 

Figure 6. Biaxial test response of the constitutive law 

Figure 7 presents the evolution of the Rice criterion as a function of the loading 
history. When the behaviour is elastic, the criterion exhibits only one minimum and 
is always positive. The behaviour becoming elastoplastic, the criterion exhibits two 
extrema but remains positive up to a loading level, for which two symmetric 
directions of bifurcation are predicted. The loading path going on, a fan of 
directions exists, where the Rice criterion is met. 
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Figure 7. Rice criterion (as a function of z) for several loading steps 

The numerical modelling of a perfect sample remains homogeneous even if the 
Rice criterion is met. In the reality, geomaterial samples have some heterogeneity, 
leading to localization processes. In order to reproduce numerically these processes, 
it is possible to introduce some defect (soft element, parasite force …) in order to 
force the occurrence of localization (Figure 8). However, even in a perfect sample, 
it is possible to find localized solutions, using special techniques (See Chambon et 
al., 2001).  
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Figure 8. Localized solution for non-perfect sample 

5.3. Model predictions for the excavation problem 

During the excavation, the behaviour of the material becomes plastic near the 
tunnel and permanent strains are created. The yield criterion is first met in the 
direction where the orthoradial stress is the major principal stress. Dilatancy effects 
are evidenced on Figure 9-a, where the pore pressure becomes negative at the end of 
the tunnelling. Then, during the remaining modelling time, the pore pressure 
increases progressively. Figure 9-b shows the radial displacement curve: during the 
tunnelling phase, cavity convergence remains around 1,5 cm. Most of the 
convergence appears later and reaches 22,6 cm. Indeed, negative pore pressure 
allows a additional cohesive strength; this effect is maximum after 1,5 Ms and 
decreases progressively still 300 Ms.  

Shear band localization is also influenced by the hydro-mechanical coupling. 
Indeed, at the end of excavation, there is no clear localization patterning even if the 
Rice’s criterion is verified. After that phase, pore pressure increases progressively 
and a patterning is gradually created. Figure 10-a presents a map of the equivalent 
strains where the different shear bands clearly appear. The Vilotte’s indicator is 
shown in Figure 10-b; this indicator evidences the strain activity of the shear band. 
One can see here that only the external shear band is active at the end of the 
simulation and that a chip is finally created.  
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(b)  

Figure 9. Pore pressure and displacement curve during coupled excavation  

(a)  (b)  

Figure 10. Equivalent strain and Vilotte’s indicator for active shear band (t = 
300Ms) – Classical medium 

These results (Figure 10) have been obtained with classical finite elements and 
are thus mesh dependent. We propose now to perform the same modelling with 
coupled second gradient model. We see (Figure 11) that the results are now 
independent of the mesh size. Regularization techniques are a solution for this 
problem but it should be pointed out that these theories do not restore the 
uniqueness of the solution. 
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Figure 11. Equivalent strain for two mesh sizes with second gradient dilation model 
(Fernandes, 2009) 

6. Conclusions 

Rupture in geomaterials is often preceded by a localization of the deformations 
within thin bands. The strain localization is thus an important process, which has 
been studied both experimentally and theoretically. The developments of 
geomechanics in the field of coupled multiphysic processes impose the study of the 
strain localization to these new conditions. Interactions between the different 
processes can indeed occur. 

The numerical modelling of shear bands with classical finite element suffers of a 
mesh dependency problem. An internal length scale has to be introduced in the 
problem. Among the different regularization techniques, we propose a second 
gradient coupled model for an application to gallery excavation. It has been shown 
that the model regularizes the solution but does not restore the uniqueness (see 
Sieffert et al., 2009). The extension of such theories to other multiphysic context is 
more an experimental problem than a numerical one. Experiments still have to 
exhibit the influence of temperature, suction or chemical concentration on the 
occurrence and the thickness of the strain localization! 
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