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Motivation

In base 2, we write 78 as 1001110 and 7/3 as 10 ¢ 01010101 - - - .
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Identifying integers?

When % — (3, there is a similar relationship with representations of real numbers via some
n
alternate base B = (8p—1,- .., 080)-



Cantor real numeration systems

A Cantor real base is a biinfinite sequence B = (31)ncz of bases such that

> B, € Ryq for all n
> Hﬁn = Hﬁ—n = +o0.

n>0 n>1

We consider biinfinite sequences a = (ap),ez over N having a left tail of zeros, that is, there
exists some N € Z such that a, =0 for all n > N.
ay_1---ap®a_ia_on--- ifN>1

OOO_NQN,IEN,ZH' IfNSO

The associated value map is defined as

a_ a_
valg(a) = -+ + @321 80 + a26160 + a1 + a0 + Fan L Y ; +---
1 _1B8-2

provided that the series is convergent.

If x = valg(a), we say that a is a B-representation of x.
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The greedy algorithm

A distinguished B-representation, called the B-expansion, is obtained as follows:
» For x € [0,1):
> We first set r_; = x.
P Then for n < 0, we iteratively compute a, = [Bnra] and ro—1 = Bara — an.

P> Then dg(x) =0ea_ja_o---

» For x > 1:
P> We let N > 1 be the minimal integer such that x < By_1 - - - Bo.
P Let S(B) = (Bnt1)nez and compute dSN(B) (m) =0eay_1any_o---.

P Then the B-expansion of x is defined as dg(x) = ay—1---ag®a_1a_2---.

In particular:
> The greedy digits a, belong to the alphabet {0, ..., [8,] — 1} for all n.
> We have dg(1) = 1e0%.
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An alternate base is a periodic Cantor real base. In this case, we simply write

B = (ﬁpflv"'vﬁo)

and we use the convention that 8, = 8, mod p for all n.



An alternate base is a periodic Cantor real base. In this case, we simply write

and we use the convention that 8, = 8, mod p for all n.

> For B = (16,3, %) we have dB(

-+ Bo)

=) = 0e1(10)*.

n=1-—

1

= |Voro| = [-1+v6] =1

NG

r1:\/6r0730:—2+\/5 31:L3I‘1J=L—673\/6J:1
r2:3r1731:—7+3\/5 a = 2+T\/6r2 = % =0
r3_2+—3‘/6r2—a2:4;3\/6 33:|‘\@r3J:\‘_6%4\/6J:
r4—\[r3fa3 79+4\/> as = L3I‘4J = L79+4\/6J =0

rs =3r, —as = —9+4v6 as = 2+3\/6r5 = % =1
f6772+3\/6r5—35:73_3\/6 a6 = L\/érsJ |2+ 8]
"7_2+3\/5r6*a6:—2+\/6 a7 = |3r7] L, ,3\/5J




Parry’s theorem for Cantor real bases

Theorem (C. & Cisternino 2021)

A sequence 0 ® a_1a_p - - is the B-expansion of some number x € [0, 1) if and only if
an—1an—2 " <lex d;n(B)(l) for all n.

Here we used the quasi-greedy B-expansion of 1, which is given by
dg(1) = didhdz - -

where |im dB(X):0.d1d2d3-~~.

x—1"



Parry’s theorem for Cantor real bases

Theorem (C. & Cisternino 2021)

A sequence 0 ® a_1a_p - - is the B-expansion of some number x € [0, 1) if and only if
an—1an—2 " <lex d;n(B)(l) for all n.
Here we used the quasi-greedy B-expansion of 1, which is given by

dg(1) = didads - -

where |im dB(X):OOd1d2d3-~~.

x—1"

13 | 13
For B = (13, %) we can compute

dj(1) = 20(01)* = 20010101+ and  dgg (1) = (10)* = 101010--- .

The sequence
0 ¢ 20001020(001)*

is the B-expansion of some x € [0, 1), whereas it is not the case of the sequence

0  2000120(001).
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The B-integers

A real number x > 0 is a B-integer if its B-expansion is of the form
dpg(x) = ap—1---ap 0¥ with n e N.

The set of all B-integers is denoted by Ng.

» In the case where 3, = 8 for all n € N, the B-integers coincide with the classical
[B-integers introduced by Gazeau.

» We have Ng = N if and only if all products H?:o [; are integers.

» The set Ng is unbounded and has no accumulation point in R.

Proof of dicreteness: The B-expansion of a B-integer smaller than 3,_1 - - - B is of the form
amam—1 -+ ap ® 0 with m < n. Since a; < B for each i, there are only finitely many
B-expansions having this property.

Let (xx)ken be the increasing sequence of B-integers:

Ng = {xx : k € N}.



For every n € N, we define Mg , = max{x € Ng : x < Bn—1---Bo}.

As a consequence of the characterization of admissible sequences, we obtain:

Proposition

For all n € N, if we write d;‘,,(B)(l) = dp,1dp2dp3---, then dg(Mp p) = dn1- - dnne0¥.



For every n € N, we define Mg , = max{x € Ng : x < Bn—1---Bo}.

As a consequence of the characterization of admissible sequences, we obtain:

Proposition

For all n € N, if we write d;n(B)(l) = dp,1dp2dp3---, then dg(Mp p) = dn1- - dnne0¥.

Since dj(1) = 20(01)¥ = 20010101 --- and dg(B)(l) = (10)¥ = 101010 - -,
we can compute the numbers Mg , as follows:

dg(Mg.n) Mg,
€ 0

1 1

20 5413

101 5113

17+44+/13
2001 R

10101 84213
200101 109429113

N o o~ WN = O

1010101 26 +7/13



Let us now compute the first B-integers x:

k Xk dB(Xk) k Xk dB(Xk) k X dB(Xk)
0 0 [ 12 8.03 1100 24 | 16.64 | 100001
1 1 1 13 9.03 1101 25 | 17.07 | 100010
2 1.43 10 14 9.47 2000 26 | 18.07 | 100011
3 2.43 11 15 | 10.47 2001 27 | 18.51 | 100020
4 2.86 20 16 | 10.90 10000 28 | 18.94 | 100100
5 3.30 100 17 | 11.90 10001 29 | 19.94 | 100101
6 4.30 101 18 | 12.34 10010 30 | 20.38 | 101000
7 4.73 1000 19 | 13.34 10011 31 | 21.38 | 101001
8 5.73 1001 20 | 13.77 10020 32 | 21.81 | 101010
9 6.17 1010 21 | 14.21 10100 33 | 22.81 | 101011
10 | 7.17 1011 22 | 15.21 10101 34 | 23.25 | 101020
11 | 7.60 1020 23 | 15.64 | 100000 35 | 23.68 | 101100

20

25
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Distances between B-integers

» How many values can be taken by x;;1 — xx?

» What are the possible values?

Proposition

The distances between consecutive B-integers take only values of the form

A= pn-1-Bo— Mg

accordingly to the first position n > 0 where their B-expansions differ (from left to right).

Note that:
> Ago=1and Ag, <1 forall n#0.

> It may happen that Ag , = Ag v even though n # n'.

We consider the infinite sequence

wg = (Wk)keN

where
W =n

if dg(xx) and dg(xky1) differ at index n and not at greater indices.



We can compute a prefix of wg by looking at the first position where consecutive B-integers
differ:

k Xk dp(xk) | ws k Xk dg(xk) | was k X dpg(xk) | ws
0 0 € 0 12 | 8.03 1100 | O 24 | 16.64 | 100001 1
1 1 1 1 13 9.03 1101 3 25 | 17.07 | 100010 0
2 1.43 10 0 14 9.47 2000 0 26 | 18.07 | 100011 1
3 2.43 11 1 15 | 10.47 2001 4 27 | 18.51 | 100020 2
4 2.86 20 2 16 | 10.90 10000 0 28 | 18.94 | 100100 0
5 3.30 100 0 17 | 11.90 10001 1 29 | 19.94 | 100101 3
6 | 4.30 101 3 18 | 12.34 10010 | O 30 | 20.38 | 101000 0
7 4.73 1000 0 19 | 13.34 10011 1 31 | 21.38 | 101001 1
8 5.73 1001 1 20 | 13.77 10020 2 32 | 21.81 | 101010 0
9 6.17 1010 0 21 | 14.21 10100 0 33 | 22.81 | 101011 1
10 | 7.17 1011 1 22 | 15.21 10101 5 34 | 23.25 | 101020 2
11 | 7.60 1020 2 23 | 15.64 | 100000 0 35 | 23.68 | 101100 0

wp = 010120301012030401012050101203010120 - - -



The sequence wg is S-adic

Proposition
We have wB(Ws(B)) = wg where g is the substitution over N defined by

Vg N = N*| ns 0%+1(n+1)

where a, is the least significant digit of dg(Mp ,).

By the term substitution, we mean that Yg(wowiws - - - ) = Yg(wo)Ye(wi)pg(wsa) - -



The sequence wg is S-adic

Proposition
We have wB(Ws(B)) = wg where Y is the substitution over N defined by

Yp: N = N* n+— 091 (n+1)

where a, is the least significant digit of dg(Mp ,).

By the term substitution, we mean that Yg(wowiws - - - ) = Yg(wo)e(wi)pg(wa) - - -.
Corollary
» For an alternate base B = (fp—1, ..., o), the sequence wg is fixed by the composition
ppo---o stpfl(s)-

» In general, the sequence wg is the S-adic sequence given by the sequence of substitutions
(¥sn(B))nen applied on the letter O:

wg = lim wBOdJS(B)O"'OlZ’S"(B)(O)'

n—-+o00



Computing ¥g: N — N*, n— 0%+1(n+1) for
We get that
dg(Msg 2n) and ds(p)(Ms(g),2n4+1) are prefixes of dg(1) = 20010101 - - -
and
dg(Mg 2n11) and dsg)(Ms(g),2n) are prefixes of d;(B)(l)) =101010--- .
We then obtain the two substitutions

0—01
Y {12 and  tgp):
n~— 0(n+1l) forn>2

0+~ 001
n— n+l forn>1.

and their composition

0+~ 01012

Pp = ppopsp):
) n— 0(n+2) forn>1

fixes wg:

wg = d3(0) = (01012)(03)(01012)(03)(04)(01012)(05)(01012)(03)(01012)(03)(04) - - -



More can be said for alternate bases

Theorem (C., Cisternino, Masakova & Pelantova 2024+)

Let B=(Bp—1,...,P0) be an alternate base. There are finitely many possible distances
between consecutive B-integers if and only if the base B is Parry, meaning that
d;.(B)(l) is eventually periodic for each i.

For such a base B, we can encode the distances between consecutive B-integers by a sequence
taking only finitely many values.

For , we consider the writings
dg(1) = 20(01)%, d;(B)(l) = (10)“ = 10(10)~.
in order to obtain common preperiods and periods multiple that are multiple of p = 2, and the
projection
n, if ne{0,1};
7w N—={0,1,2,3}, n— ¢ 2, if n> 2, even;
3, ifn>2, odd.



The projected sequence vg = m(wpg) also codes the distances between consecutive B-integers:

Vk = Vit == Xk+1 — Xk = X/ 41 — X! -

k | x | ds(x) | we | vg || k Xk ds(xx) | we | ve || k Xk dp(xx) | we | vs
0 0 5 0 0 12 8.03 1100 0 0 24 | 16.64 | 100001 1 1
1 1 1 1 1 13 9.03 1101 3 3 25 17.07 100010 0 0
2 1.43 10 0 0 14 9.47 2000 0 0 26 | 18.07 100011 1 1
3 2.43 11 1 1 15 10.47 2001 4 2 27 | 18.51 100020 2 2
4 2.86 20 2 2 16 | 10.90 10000 0 0 28 | 18.94 | 100100 0 0
5 3.30 100 0 0 17 | 11.90 10001 1 1 29 | 19.94 | 100101 3 3
6 4.30 101 3 3 18 | 12.34 10010 0 0 30 | 20.38 101000 0 0
7 4.73 1000 0 0 19 | 13.34 10011 1 1 31 | 21.38 101001 1 1
8 5.73 1001 1 1 20 | 13.77 10020 2 2 32 | 21.81 101010 0 0
9 6.17 1010 0 0 21 14.21 10100 0 0 33 22.81 101011 1 1
10 | 7.17 1011 1 1 22 | 15.21 10101 5 3 34 | 23.25 101020 2 2
11 | 7.60 1020 2 2 23 | 15.64 | 100000 0 0 35 | 23.68 | 101100 0 0

wp = 010120301012030401012050101203010120 - - -
vg = 010120301012030201012030101203010120 - - -




The two projected substitutions over the finite alphabet {0,1,2,3} are

0+~ 01 0 — 001
1—2 1—2
B: and  g(p):
2+— 03 23
302 32,
and their composition
0 — 01012
1~ 03
P = ppopsep):
2+ 02
3—03

is a primitive substitution that fixes vg:

vg = ®5(0) = (01012)(03)(01012)(03)(02)(01012)(03)(01012)(03)(01012)(03)(02) - - -



Suppose that all dsf(B)(l) have the same preperiod ¢ and period m, which are multiple of p.

We define a projection

n, ifo<n<fl+m-—1,

mN—={0,....4+m—1}, n—
L+ ((n—L)modm), ifn>¢+m.

Then we consider the projected sequence vg = w(wg) and the substitution g defined by
pp(n) = m(yvp(n)) for n€ {0,..., £+ m—1}.

Theorem (C., Cisternino, Masakova & Pelantovéa 2024+)

The composition pp © sy 0 -0 Psp-1(8) is a primitive substitution which fixes vg.



A graph associated with is built from the quasi-greedy expansions
dg(1) = 20(01)* and d;‘(B)(l) =10(10)~.

> We can see the subtitutions g and ¢s(g) in this graph.

> The primitiveness of the composition g o p5(g) corresponds to the strong connectiveness
of the graph.



Combinatorial properties of vg

A sequence ajazaz - - - is sturmian if it has exactly n+ 1 length-n factors a; - - - aj1p—1 for all n.

Proposition (C., Cisternino, Masakova & Pelantova 2024+)

Let B= (Bp—1,..-,P0) be a Parry alternate base. The sequence vg is sturmian if and only if
one of the following cases is satisfied.

Case 1. p=1 and dj(1) = (d0)¥ with d > 1.
Case 2. p=1 and dj(1) = (d +1)d* withd > 1.

Case 3. p=2, df(1) = (d0)~ and d;(B)(l) = (e0)* with d,e > 1.



In all cases, one can derive frequencies pp, p1 of letters 0 and 1 in the sturmian sequence vg
from the primitive substitution.

We write x = [ag, a1, a2, . . .| if
) 1
vy= lim ay+
n—+o00 1
at—m——
1
at+ ———mm
. 1
- ap—1+ —
an
and ap € Z and ap € N for every n > 0.
If the sequence ap, a1, a2, . . . is eventually periodic, then we use the notation
[0, a1, -+, @i, 311, 32, - -+ Bitk]-

Proposition (Continued)

Case 1. We have (po, p1) = (%, ﬁ)

Case 2. We have (po, p1) = (,8(;3;17 ﬂ%) and po = [0,1,d].

Case 3. We have (po, p1) = (Bﬁ-l’ 511_'_1) and pg = [0,1, e, d].

and po = [0,1,d].




Surprisingly, one can obtain a sturmian sequence vg with frequency pg = [0, 1, a] in different
numeration systems.

1+
2

)

» For p = 1, this is only possible for a = 1 and the real bases 7 and 72 where T =
P 7 belongs to Case 1 with d = 1.

» 72 belongs to Case 2 with d = 1.

> If we allow p € {1,2} then there are infinitely many pairs of numeration systems giving
the same frequency po = [0, 1, a].

> p=1with di(1) = (a+ 1)a*.

For a = 2, we obtain the real base (2 + v/3).
The sequence vg is fixed by the substitution 0 — 0001 and 1 — 001.

> p =2 with dj(1) = (10)“ and dgg)(1) = (a0)“.

For a = 2, we get the alternate base B = (81, 80) = (%, 1+/3).
The sequence vg is fixed by another substitution, namely, 0 — 0010 and 1 > 001.



Minimal alphabet

In our specific example , since Ag1 = Ag o = Apg 3, the image
o(vg) =0101101010110101 - - -

under the projection
0—0

o:{0,1,2,3}* = {0,1}*,
1,2,31

contains enough information to encode the distances between consecutive B-integers.
This new infinite sequence o(vg) is the fixed point of the projected substitution

0+~ 01011
1+~ 01.

and hence is sturmian.



Minimal alphabet

In our specific example , since Ag1 = Ag o = Apg 3, the image
o(vg) =0101101010110101 - - -

under the projection
0—0

o:{0,1,2,3}* = {0,1}*,
1,2,31

contains enough information to encode the distances between consecutive B-integers.
This new infinite sequence o(vg) is the fixed point of the projected substitution

0+~ 01011
1+~ 01.

and hence is sturmian.

Thank you!



