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Motivation

In base 2, we write 78 as 1001110 and 7/3 as 10 • 01010101 · · · .

Integer bases b

Representing integers
via an integer

base sequence U

Representing real numbers
via a real base β

Identifying integers?
N recognizable?

Un+1
Un

→ β

When Un+p
Un

→ β, there is a similar relationship with representations of real numbers via some
alternate base B = (βp−1, . . . , β0).



Cantor real numeration systems

A Cantor real base is a biinfinite sequence B = (βn)n∈Z of bases such that
▶ βn ∈ R>1 for all n
▶

∏
n≥0

βn =
∏
n≥1

β−n = +∞.

We consider biinfinite sequences a = (an)n∈Z over N having a left tail of zeros, that is, there
exists some N ∈ Z such that an = 0 for all n ≥ N.

aN−1 · · · a0 • a−1a−2 · · · if N ≥ 1

0 • 0−NaN−1aN−2 · · · if N ≤ 0.

The associated value map is defined as

valB(a) = · · · + a3β2β1β0 + a2β1β0 + a1β0 + a0 +
a−1
β−1

+
a−2

β−1β−2
+ · · ·

provided that the series is convergent.

If x = valB(a), we say that a is a B-representation of x .



The greedy algorithm

A distinguished B-representation, called the B-expansion, is obtained as follows:

▶ For x ∈ [0, 1):
▶ We first set r−1 = x .
▶ Then for n < 0, we iteratively compute an = ⌊βnrn⌋ and rn−1 = βnrn − an.
▶ Then dB(x) = 0 • a−1a−2 · · ·

▶ For x ≥ 1:
▶ We let N ≥ 1 be the minimal integer such that x < βN−1 · · · β0.

▶ Let S(B) = (βn+1)n∈Z and compute dSN (B)

(
x

βN−1···β0

)
= 0 • aN−1aN−2 · · · .

▶ Then the B-expansion of x is defined as dB(x) = aN−1 · · · a0 • a−1a−2 · · · .

In particular:
▶ The greedy digits an belong to the alphabet {0, . . . , ⌈βn⌉ − 1} for all n.
▶ We have dB(1) = 1 • 0ω .
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Let’s look at a few examples

▶ B = (1 + 2n)n∈Z is not a Cantor real base since
∏
n≥1

(1 + 1
2n ) ∼ 2.38423.

If we perform the greedy algorithm on x = 1
2 then we obtain the digits 0 • 0010ω ,

although valB(0 • 0010ω) = 64
135 ̸= 1

2 .

▶ B = (2 + 2n)n∈Z is a Cantor real base since
∏
n≥0

(2 + 2n) = ∞ and
∏
n≥1

(2 + 1
2n ) = ∞.
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An alternate base is a periodic Cantor real base. In this case, we simply write

B = (βp−1, . . . , β0)

and we use the convention that βn = βn mod p for all n.

▶ For B = (
√

6, 3, 2+
√

6
3 ), we have dB

(
1 − 1√

6

)
= 0 • 1(10)ω .

r0 = 1 − 1√
6

a0 =
⌊√

6r0
⌋

=
⌊

−1 +
√

6
⌋

= 1

r1 =
√

6r0 − a0 = −2 +
√

6 a1 = ⌊3r1⌋ =
⌊

−6 − 3
√

6
⌋

= 1

r2 = 3r1 − a1 = −7 + 3
√

6 a2 =
⌊

2+
√

6
3 r2

⌋
=

⌊
4−

√
6

3

⌋
= 0

r3 = 2+
√

6
3 r2 − a2 = 4−

√
6

3 a3 =
⌊√

6r3
⌋

=
⌊

−6+4
√

6
3

⌋
= 1

r4 =
√

6r3 − a3 = −9+4
√

6
3 a4 = ⌊3r4⌋ =

⌊
−9 + 4

√
6
⌋

= 0

r5 = 3r4 − a4 = −9 + 4
√

6 a5 =
⌊

2+
√

6
3 r5

⌋
=

⌊
6−

√
6

3

⌋
= 1

r6 = 2+
√

6
3 r5 − a5 = 3−

√
6

3 a6 =
⌊√

6r6
⌋

=
⌊

−2 +
√

6
⌋

= 0

r7 = 2+
√

6
3 r6 − a6 = −2 +

√
6 a7 = ⌊3r7⌋ =

⌊
−6 − 3

√
6
⌋

= 1



An alternate base is a periodic Cantor real base. In this case, we simply write

B = (βp−1, . . . , β0)

and we use the convention that βn = βn mod p for all n.

▶ For B = (
√

6, 3, 2+
√

6
3 ), we have dB

(
1 − 1√

6

)
= 0 • 1(10)ω .

r0 = 1 − 1√
6

a0 =
⌊√

6r0
⌋

=
⌊

−1 +
√

6
⌋

= 1

r1 =
√

6r0 − a0 = −2 +
√

6 a1 = ⌊3r1⌋ =
⌊

−6 − 3
√

6
⌋

= 1

r2 = 3r1 − a1 = −7 + 3
√

6 a2 =
⌊

2+
√

6
3 r2

⌋
=

⌊
4−

√
6

3

⌋
= 0

r3 = 2+
√

6
3 r2 − a2 = 4−

√
6

3 a3 =
⌊√

6r3
⌋

=
⌊

−6+4
√

6
3

⌋
= 1

r4 =
√

6r3 − a3 = −9+4
√

6
3 a4 = ⌊3r4⌋ =

⌊
−9 + 4

√
6
⌋

= 0

r5 = 3r4 − a4 = −9 + 4
√

6 a5 =
⌊

2+
√

6
3 r5

⌋
=

⌊
6−

√
6

3

⌋
= 1

r6 = 2+
√

6
3 r5 − a5 = 3−

√
6

3 a6 =
⌊√

6r6
⌋

=
⌊

−2 +
√

6
⌋

= 0

r7 = 2+
√

6
3 r6 − a6 = −2 +

√
6 a7 = ⌊3r7⌋ =

⌊
−6 − 3

√
6
⌋

= 1



Parry’s theorem for Cantor real bases

Theorem (C. & Cisternino 2021)
A sequence 0 • a−1a−2 · · · is the B-expansion of some number x ∈ [0, 1) if and only if
an−1an−2 · · · <lex d∗

Sn(B)(1) for all n.

Here we used the quasi-greedy B-expansion of 1, which is given by

d∗
B(1) = d1d2d3 · · ·

where lim
x→1−

dB(x) = 0 • d1d2d3 · · · .

For B =
(

1+
√

13
2 , 5+

√
13

6

)
, we can compute

d∗
B(1) = 20(01)ω = 20010101 · · · and d∗

S(B)(1) = (10)ω = 101010 · · · .

The sequence
0 • 20001020(001)ω

is the B-expansion of some x ∈ [0, 1), whereas it is not the case of the sequence

0 • 2000120(001)ω .
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The B-integers

A real number x ≥ 0 is a B-integer if its B-expansion is of the form

dB(x) = an−1 · · · a0 • 0ω with n ∈ N.

The set of all B-integers is denoted by NB .

▶ In the case where βn = β for all n ∈ N, the B-integers coincide with the classical
β-integers introduced by Gazeau.

▶ We have NB = N if and only if all products
∏n

i=0 βi are integers.
▶ The set NB is unbounded and has no accumulation point in R.

Proof of dicreteness: The B-expansion of a B-integer smaller than βn−1 · · ·β0 is of the form
amam−1 · · · a0 • 0ω with m ≤ n. Since ai < βi for each i , there are only finitely many
B-expansions having this property.

Let (xk)k∈N be the increasing sequence of B-integers:

NB = {xk : k ∈ N}.
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For every n ∈ N, we define MB,n = max{x ∈ NB : x < βn−1 · · ·β0}.

As a consequence of the characterization of admissible sequences, we obtain:

Proposition
For all n ∈ N, if we write d∗

Sn(B)(1) = dn,1dn,2dn,3 · · · , then dB(MB,n) = dn,1 · · · dn,n • 0ω .

B =
(

1+
√

13
2 , 5+

√
13

6

)
Since d∗

B(1) = 20(01)ω = 20010101 · · · and d∗
S(B)(1) = (10)ω = 101010 · · · ,

we can compute the numbers MB,n as follows:

n dB(MB,n) MB,n

0 ε 0
1 1 1
2 20 5+

√
13

3

3 101 5+
√

13
2

4 2001 17+4
√

13
3

5 10101 8 + 2
√

13

6 200101 109+29
√

13
6

7 1010101 26 + 7
√

13
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Let us now compute the first B-integers xk :

k xk dB(xk ) k xk dB(xk ) k xk dB(xk )
0 0 ε 12 8.03 1100 24 16.64 100001
1 1 1 13 9.03 1101 25 17.07 100010
2 1.43 10 14 9.47 2000 26 18.07 100011
3 2.43 11 15 10.47 2001 27 18.51 100020
4 2.86 20 16 10.90 10000 28 18.94 100100
5 3.30 100 17 11.90 10001 29 19.94 100101
6 4.30 101 18 12.34 10010 30 20.38 101000
7 4.73 1000 19 13.34 10011 31 21.38 101001
8 5.73 1001 20 13.77 10020 32 21.81 101010
9 6.17 1010 21 14.21 10100 33 22.81 101011
10 7.17 1011 22 15.21 10101 34 23.25 101020
11 7.60 1020 23 15.64 100000 35 23.68 101100

0 5 10 15 20 25



Distances between B-integers

▶ How many values can be taken by xk+1 − xk?
▶ What are the possible values?

Proposition
The distances between consecutive B-integers take only values of the form

∆B,n = βn−1 · · ·β0 − MB,n

accordingly to the first position n ≥ 0 where their B-expansions differ (from left to right).

Note that:
▶ ∆B,0 = 1 and ∆B,n < 1 for all n ̸= 0.
▶ It may happen that ∆B,n = ∆B,n′ even though n ̸= n′.

We consider the infinite sequence
wB = (wk)k∈N

where
wk = n

if dB(xk) and dB(xk+1) differ at index n and not at greater indices.
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B =
(

1+
√

13
2 , 5+

√
13

6

)
We can compute a prefix of wB by looking at the first position where consecutive B-integers
differ:

k xk dB(xk ) wB k xk dB(xk ) wB k xk dB(xk ) wB

0 0 ε 0 12 8.03 1100 0 24 16.64 100001 1
1 1 1 1 13 9.03 1101 3 25 17.07 100010 0
2 1.43 10 0 14 9.47 2000 0 26 18.07 100011 1
3 2.43 11 1 15 10.47 2001 4 27 18.51 100020 2
4 2.86 20 2 16 10.90 10000 0 28 18.94 100100 0
5 3.30 100 0 17 11.90 10001 1 29 19.94 100101 3
6 4.30 101 3 18 12.34 10010 0 30 20.38 101000 0
7 4.73 1000 0 19 13.34 10011 1 31 21.38 101001 1
8 5.73 1001 1 20 13.77 10020 2 32 21.81 101010 0
9 6.17 1010 0 21 14.21 10100 0 33 22.81 101011 1
10 7.17 1011 1 22 15.21 10101 5 34 23.25 101020 2
11 7.60 1020 2 23 15.64 100000 0 35 23.68 101100 0

wB = 010120301012030401012050101203010120 · · ·



The sequence wB is S-adic

Proposition
We have ψB(wS(B)) = wB where ψB is the substitution over N defined by

ψB : N → N∗, n 7→ 0an+1 (n+1)

where an is the least significant digit of dB(MB,n).

By the term substitution, we mean that ψB(w0w1w2 · · · ) = ψB(w0)ψB(w1)ψB(w2) · · · .

Corollary
▶ For an alternate base B = (βp−1, . . . , β0), the sequence wB is fixed by the composition
ψB ◦ · · · ◦ ψSp−1(B).

▶ In general, the sequence wB is the S-adic sequence given by the sequence of substitutions
(ψSn(B))n∈N applied on the letter 0:

wB = lim
n→+∞

ψB ◦ ψS(B) ◦ · · · ◦ ψSn(B)(0).
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ψB : N → N∗, n 7→ 0an+1 (n+1)

where an is the least significant digit of dB(MB,n).

By the term substitution, we mean that ψB(w0w1w2 · · · ) = ψB(w0)ψB(w1)ψB(w2) · · · .

Corollary
▶ For an alternate base B = (βp−1, . . . , β0), the sequence wB is fixed by the composition
ψB ◦ · · · ◦ ψSp−1(B).

▶ In general, the sequence wB is the S-adic sequence given by the sequence of substitutions
(ψSn(B))n∈N applied on the letter 0:

wB = lim
n→+∞

ψB ◦ ψS(B) ◦ · · · ◦ ψSn(B)(0).



Computing ψB : N → N∗, n 7→ 0an+1 (n+1) for B =
(

1+
√

13
2 , 5+

√
13

6

)
We get that

dB(MB,2n) and dS(B)(MS(B),2n+1) are prefixes of d∗
B(1) = 20010101 · · ·

and
dB(MB,2n+1) and dS(B)(MS(B),2n) are prefixes of d∗

S(B)(1)) = 101010 · · · .

We then obtain the two substitutions

ψB :


0 7→ 01
1 7→ 2
n 7→ 0(n+1) for n ≥ 2

and ψS(B) :

{
0 7→ 001
n 7→ n+1 for n ≥ 1.

and their composition

ΦB = φB ◦ φS(B) :

{
0 7→ 01012
n 7→ 0(n+2) for n ≥ 1

fixes wB :

wB = Φω
B (0) = (01012)(03)(01012)(03)(04)(01012)(05)(01012)(03)(01012)(03)(04) · · ·



More can be said for alternate bases

Theorem (C., Cisternino, Masáková & Pelantová 2024+)
Let B = (βp−1, . . . , β0) be an alternate base. There are finitely many possible distances
between consecutive B-integers if and only if the base B is Parry, meaning that
d∗

S i (B)(1) is eventually periodic for each i.

For such a base B, we can encode the distances between consecutive B-integers by a sequence
taking only finitely many values.

For B =
(

1+
√

13
2 , 5+

√
13

6

)
, we consider the writings

d∗
B(1) = 20(01)ω , d∗

S(B)(1) = (10)ω = 10(10)ω .

in order to obtain common preperiods and periods multiple that are multiple of p = 2, and the
projection

π : N → {0, 1, 2, 3}, n 7→


n, if n ∈ {0, 1};
2, if n ≥ 2, even;
3, if n ≥ 2, odd .



The projected sequence vB = π(wB) also codes the distances between consecutive B-integers:
vk = vk′ =⇒ xk+1 − xk = xk′+1 − xk′ .

k xk dB(xk ) wB vB k xk dB(xk ) wB vB k xk dB(xk ) wB vB

0 0 ε 0 0 12 8.03 1100 0 0 24 16.64 100001 1 1
1 1 1 1 1 13 9.03 1101 3 3 25 17.07 100010 0 0
2 1.43 10 0 0 14 9.47 2000 0 0 26 18.07 100011 1 1
3 2.43 11 1 1 15 10.47 2001 4 2 27 18.51 100020 2 2
4 2.86 20 2 2 16 10.90 10000 0 0 28 18.94 100100 0 0
5 3.30 100 0 0 17 11.90 10001 1 1 29 19.94 100101 3 3
6 4.30 101 3 3 18 12.34 10010 0 0 30 20.38 101000 0 0
7 4.73 1000 0 0 19 13.34 10011 1 1 31 21.38 101001 1 1
8 5.73 1001 1 1 20 13.77 10020 2 2 32 21.81 101010 0 0
9 6.17 1010 0 0 21 14.21 10100 0 0 33 22.81 101011 1 1
10 7.17 1011 1 1 22 15.21 10101 5 3 34 23.25 101020 2 2
11 7.60 1020 2 2 23 15.64 100000 0 0 35 23.68 101100 0 0

wB = 010120301012030401012050101203010120 · · ·

vB = 010120301012030201012030101203010120 · · ·



The two projected substitutions over the finite alphabet {0, 1, 2, 3} are

φB :


0 7→ 01
1 7→ 2
2 7→ 03
3 7→ 02

and φS(B) :


0 7→ 001
1 7→ 2
2 7→ 3
3 7→ 2.

and their composition

ΦB = φB ◦ φS(B) :


0 7→ 01012
1 7→ 03
2 7→ 02
3 7→ 03

is a primitive substitution that fixes vB :

vB = Φω
B (0) = (01012)(03)(01012)(03)(02)(01012)(03)(01012)(03)(01012)(03)(02) · · ·



Suppose that all dS i (B)(1) have the same preperiod ℓ and period m, which are multiple of p.

We define a projection

π : N → {0, . . . , ℓ+ m − 1}, n 7→

{
n, if 0 ≤ n ≤ ℓ+ m − 1;
ℓ+ ((n − ℓ) mod m), if n ≥ ℓ+ m.

Then we consider the projected sequence vB = π(wB) and the substitution φB defined by
φB(n) = π(ψB(n)) for n ∈ {0, . . . , ℓ+ m − 1}.

Theorem (C., Cisternino, Masáková & Pelantová 2024+)
The composition φB ◦ φS(B) ◦ · · · ◦ φSp−1(B) is a primitive substitution which fixes vB .



A graph associated with B =
(

1+
√

13
2 , 5+

√
13

6

)
is built from the quasi-greedy expansions

d∗
B(1) = 20(01)ω and d∗

S(B)(1) = 10(10)ω .

1, 0 0, 1 1, 2 0, 3

0, 0 1, 1 0, 2 1, 3

2

0, 1

0 0

1

0

1

0

0 1

0

0

▶ We can see the subtitutions φB and φS(B) in this graph.
▶ The primitiveness of the composition φB ◦φS(B) corresponds to the strong connectiveness

of the graph.



Combinatorial properties of vB

A sequence a1a2a3 · · · is sturmian if it has exactly n + 1 length-n factors ai · · · ai+n−1 for all n.

Proposition (C., Cisternino, Masáková & Pelantová 2024+)
Let B = (βp−1, . . . , β0) be a Parry alternate base. The sequence vB is sturmian if and only if
one of the following cases is satisfied.

Case 1. p = 1 and d∗
B(1) = (d0)ω with d ≥ 1.

Case 2. p = 1 and d∗
B(1) = (d + 1)dω with d ≥ 1.

Case 3. p = 2, d∗
B(1) = (d0)ω and d∗

S(B)(1) = (e0)ω with d , e ≥ 1.



In all cases, one can derive frequencies ρ0, ρ1 of letters 0 and 1 in the sturmian sequence vB
from the primitive substitution.

We write x = [a0, a1, a2, . . .] if

γ = lim
n→+∞

a0 +
1

a1 +
1

a2 +
1

. . . an−1 +
1
an

and a0 ∈ Z and an ∈ N≥1 for every n > 0.

If the sequence a0, a1, a2, . . . is eventually periodic, then we use the notation

[a0, a1, . . . , ai , ai+1, ai+2, . . . , ai+k ].

Proposition (Continued)
Case 1. We have (ρ0, ρ1) =

(
β0

β0+1 ,
1

β0+1

)
and ρ0 = [0, 1, d].

Case 2. We have (ρ0, ρ1) =
(

β0−1
β0

, 1
β0

)
and ρ0 = [0, 1, d].

Case 3. We have (ρ0, ρ1) =
(

β1
β1+1 ,

1
β1+1

)
and ρ0 = [0, 1, e, d].



Surprisingly, one can obtain a sturmian sequence vB with frequency ρ0 = [0, 1, a] in different
numeration systems.

▶ For p = 1, this is only possible for a = 1 and the real bases τ and τ2 where τ = 1+
√

5
2 .

▶ τ belongs to Case 1 with d = 1.

▶ τ 2 belongs to Case 2 with d = 1.

▶ If we allow p ∈ {1, 2} then there are infinitely many pairs of numeration systems giving
the same frequency ρ0 = [0, 1, a].

▶ p = 1 with d∗
B (1) = (a + 1)aω .

For a = 2, we obtain the real base (2 +
√

3).
The sequence vB is fixed by the substitution 0 7→ 0001 and 1 7→ 001.

▶ p = 2 with d∗
B (1) = (10)ω and d∗

S(B)(1) = (a0)ω .

For a = 2, we get the alternate base B = (β1, β0) = ( 1+
√

3
2 , 1 +

√
3).

The sequence vB is fixed by another substitution, namely, 0 7→ 0010 and 1 7→ 001.



Minimal alphabet

In our specific example B =
(

1+
√

13
2 , 5+

√
13

6

)
, since ∆B,1 = ∆B,2 = ∆B,3, the image

σ(vB) = 0101101010110101 · · ·

under the projection

σ : {0, 1, 2, 3}∗ → {0, 1}∗,

{
0 7→ 0
1, 2, 3 7→ 1

contains enough information to encode the distances between consecutive B-integers.

This new infinite sequence σ(vB) is the fixed point of the projected substitution{
0 7→ 01011
1 7→ 01.

and hence is sturmian.

Thank you!
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