

Context

Introduction of impulse based on Newton's law of restitution (no friction) Dynamic model

 \rightarrow **instantaneous** correction on the object dynamics

 \checkmark No artificial geometric correction

 \checkmark Requires only the impact point normal, cylinder velocity and position

Obstacles model Simple rectangular model **Generalization** Discretization of any shapes for a systematic study of 3 types of collision:

into rectangles :

Conclusion

The numerical model reproduces the **dynamics of floating debris collisions** phenomena

 \implies model for studying clogging phenomena

Limitations and future work

- •multiple floating debris \implies need for the study of additional collisions •obstacle contouring validation \implies need for experimental data on detailed trajectories
- •field application \implies need for the introduction of unsteady flows, friction force, etc.

Flexible representation of obstacles in Lagrangian description for the drift of large floating debris in rivers during floods

D. Sansen¹, P. Archambeau¹, M. Pirotton¹, S. Erpicum¹, B. Dewals¹

¹Hydraulics in Environmental and Civil Engineering (HECE), Research Unit Urban & Environmental Engineering (UEE), University of Liège, Belgium.

Model

Model

floating debris

(*steady*), finite volume

Results

Debris size and its interaction with obstacles

- •Varying parameter : debris length L_D
- Same simulation duration and debris type
- \implies Increase in the number of collisions
- \implies Direct consequences on the object dynamics with temporary clogging

References

- transport", *J. hydroinformatics*, 16 (5):1077-1096, Sept. 2014.
- C. Hecker. "Collision response Part 3", *Game Developer Magazine*, page 11–18, 1997.

• E. Persi, G. Petaccia, and S. Sibilla. "Large wood transport modelling by a coupled Eulerian- Lagrangian approach", Nat. Hazards (Dordr.), Apr. 2017. •V. Ruiz-Villanueva, E. Bladé, M. Sanchez-Juny, B. Marti-Cardona, A. Diez-Herrero, and J. M. Bodoque. "Two-dimensional numerical modeling of wood

0.8 flow velocity

Initial condition sensitivity

Contact

Damien Sansen Email address ightarrow damien.sansen@uliege.be LinkedIn

