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ABSTRACT 

Background. New equations to estimate glomerular filtration rate based on creatinine (eGFRcr ), cystatin C (eGFRcys ) or both (eGFRcr-cys ) 
have been developed by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and the European Kidney Function Consor- 
tium (EKFC). There is a need to evaluate the performance of these equations in diverse European settings to inform implementation 

decisions, especially among people with key comorbid conditions. 

Methods. We performed a cross-sectional study including 6174 adults referred for single-point plasma clearance of iohexol in 

Stockholm, Sweden, with 9579 concurrent measurements of creatinine and cystatin C. We assessed the performance of the CKD- 
EPI 2009/2012/2021, EKFC 2021/2023, revised Lund-Malmö (RLM) 2011 and Caucasian, Asian, Pediatric and Adult (CAPA) 2014 equations 
against measured GFR (mGFR). 

Results. Mean age was 56 years, median mGFR was 62 mL/min/1.73 m2 and 40% were female. Comorbid conditions were common: 
cardiovascular disease (30%), liver disease (28%), diabetes (26%) and cancer (26%). All eGFRcr-cys equations had small bias and P30 (the 
percentage of estimated values within 30% of mGFR) close to 90%, and performed better than eGFRcr or eGFRcys equations. Among 
eGFRcr equations, CKD-EPI 2009 and CKD-EPI 2021 showed larger bias and lower P30 than EKFC 2021 and RLM. There were no meaningful 
differences in performance across eGFRcys equations. Findings were consistent across comorbid conditions, and eGFRcr-cys equations 
showed good performance in patients with liver disease, cancer and heart failure. 

Conclusions. In conclusion, eGFRcr-cys equations performed best, with minimal variation among equations in this Swedish cohort. The 
lower performance of CKD-EPI eGFRcr equations compared with EKFC and RLM may reflect differences in population characteristics 
and mGFR methods. Implementing eGFRcr equations will require a trade-off between accuracy and uniformity across regions. 
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GRAPHICAL ABSTRACT 

KEY LEARNING POINTS 

What was known: 

• Novel equations have been developed by the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) and the European 
Kidney Function Consortium (EKFC) to estimate glomerular filtration rate based on creatinine (eGFRcr ), cystatin C (eGFRcys ) or 
both (eGFRcr-cys ).

• Evaluation of their performances in diverse European settings is needed to inform implementation decisions.

This study adds: 

• Among eGFRcr equations, CKD-EPI 2009 and CKD-EPI 2021 showed larger bias and lower P30 than EKFC 2021 and revised Lund- 
Malmö in this Swedish cohort of patients referred for single-point plasma iohexol clearance.

• There were no meaningful differences in performance across eGFRcys equations.
• All eGFRcr-cys equations had small bias and P30 close to 90%, and performed better than eGFRcr or eGFRcys equations.

Potential impact: 

• Implementing eGFRcr equations in clinical practice may require a trade-off between accuracy and uniformity across regions.
• These findings also support recent recommendations by leading kidney organizations to “facilitate increased, routine and timely 

use of cystatin C.”
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INTRODUCTION 

Estimated glomerular filtration rate (eGFR) is central to the diag-
nosis, staging, prognosis and management of patients with kid-
ney disease [1 , 2 ]. The 2012 international guidelines by Kidney
Disease: Improving Global Outcomes (KDIGO) recommended use
of the 2009 creatinine-based equation (eGFRcr ) by the Chronic
Kidney Disease Epidemiology Collaboration (CKD-EPI), or alter-
natives that were more accurate [3 ], as the first-line test. Fur-
thermore, the CKD-EPI 2012 equations based on cystatin C and
creatinine–cystatin C (eGFRcys and eGFRcr-cys , respectively) were 
recommended for use when eGFRcr is less accurate. Recently,
several new eGFR equations have been developed by CKD-EPI 
[4 ] (2021) and European Kidney Function Consortium (EKFC) [5 ,
6 ] (2021, 2023). The US National Kidney Foundation and Ameri- 
can Society of Nephrology have recommended implementation of 
the CKD-EPI 2021 eGFRcr equation which does not include terms 
for race either in its development or in its computation [7 –13 ].
However, European organizations have not endorsed implemen- 
tation of the CKD-EPI 2021 eGFRcr equation on the basis of poorer 
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erformance compared with the 2009 equation in predominately
hite European populations [14 –17 ]. 
There is a need to evaluate the performance of the CKD-EPI

nd EKFC equations in diverse European settings to inform imple-
entation decisions. Furthermore, while these equations were de-
eloped in relatively healthy individuals with stable/predictable
uscle mass and few comorbid conditions [18 ], eGFR is used in a
uch wider set of clinical settings including persons with comor-
id conditions such as heart failure, cancer, extreme body mass
ndex (BMI) or liver disease. The performance of the novel eGFR
quations has not been well investigated in these populations. 
The objective of this study was to compare novel CKD-EPI and

KFC eGFR equations (eGFRcr , eGFRcys and GFRcr-cys ) against mea-
ured GFR (mGFR). To achieve this goal, we analyzed more than
500 simultaneous measurements of serum creatinine and cys-
atin C in a real-world, independent cohort of referrals for iohexol
learance in Stockholm, Sweden. 

ATERIALS AND METHODS 

ata source and study population 

e used data from the Stockholm Creatinine Measurements
SCREAM) project [19 ]. SCREAM contains healthcare utilization
ata from residents of Stockholm, Sweden between 2006 and 2021.
 single healthcare provider in the Stockholm region provides
niversal and tax-funded healthcare to 20%–25% of the popula-
ion of Sweden. Through unique personal identification numbers
20 ], we linked regional and national administrative databases
ith complete information on demographics, healthcare utiliza-
ion, dispensed drugs [21 ], diagnoses [22 ], vital status [23 ], kid-
ey replacement therapy [24 ] and completed laboratory tests. The
egional Ethical Review Board in Stockholm approved the study
2017/793-31); informed consent was not deemed necessary since
ll data were de-identified at the Swedish Board of Health and
elfare. 
All patients older than 18 years who received iohexol clearance

esting between 1 January 2011 and 31 December 2021 were in-
luded for this study ( Supplementary data, Fig. S1). Additional eli-
ibility criteria were presence of a plasma creatinine and cystatin
 test in the 30 days before or after the iohexol clearance mea-
urement; no history of maintenance dialysis; and no implausi-
le mGFR values ( < 0 or > 150 mL/min/1.73 m2 ). Whenever multi-
le concurrent iohexol–creatinine–cystatin C tests were available
or the same patient during follow-up, we included all measure-
ents to increase statistical efficiency; in sensitivity analyses we

estricted to the first measurement per patient. 

easurement of GFR 

ohexol clearance was analyzed at a central laboratory, the
epartment of Clinical Chemistry, at Karolinska University Hos-
ital in Stockholm, with clearance procedures performed by
ndication at specialist departments in the region of Stock-
olm following standardized protocols (additional details in
upplementary data) [25 ]. GFR was measured using single-point
lasma clearance of iohexol [26 ]. Single-point iohexol clearance is
ighly correlated with multisample iohexol; the mean [standard
eviation (SD)] difference is 0.52 (4.3) and 95% limits of agreement
re −8.1 to 9.1 compared with multisample iohexol [27 –29 ]. Ultra-
igh performance liquid chromatography separation and UV de-
ection was used to determine serum iohexol concentrations. The
erformance of the creatinine, cystatin C and iohexol assays was
onitored through internal controls as well as an external qual-
ty assessment program standardization across the country by the
onitoring company Equalis (Uppsala, Sweden). 

iltration markers, GFR estimating equations 
nd covariates 
reatinine was measured with either an enzymatic or Jaffe
ethod (kinetic alkaline picrate reaction) and standardized to

sotope dilution mass spectrometry (IDMS) traceable methods.
ystatin C measurements were also standardized [30 , 31 ]. Ana-
yzers or reagents at the hospital laboratories have varied over
he years for both analytes. In total, we validated 11 eGFR equa-
ions: 4 eGFRcr [CKD-EPI 2009 [32 ] (with race), CKD-EPI 2021 [4 ]
without race), EKFC 2021 [5 ], revised Lund-Malmö (RLM) 2011
33 ]], 3 eGFRcys [CKD-EPI 2012 [34 ] (without race), EKFC 2023 [6 ],
aucasian, Asian, Pediatric and Adult (CAPA) 2014 [35 ]] and 4
GFRcr-cys [CKD-EPI 2012 [34 ] (with race), CKD-EPI 2021 [4 ] (with-
ut race), mean of EKFC 2021 [5 ] and EKFC 2023 [6 ], mean of RLM
011 [33 ] and CAPA 2014 [35 ]]. The formulas for each equation
re provided in the Supplementary data. Since it is not permit-
ed to collect information on race in Sweden in order to prevent
iscrimination, the CKD-EPI 2009 eGFRcr and 2012 eGFRcr-cys equa-
ions were calculated without the Black race coefficient. Data on
ountry of birth are collected and published by the government
nnually. From these, we estimated that around 2.5% of the in-
luded cohort were born in African countries [36 ]. These partici-
ants were not excluded from our analyses. 
For each individual, we extracted the following covariates: age,

ex, BMI, cardiovascular disease (composite of myocardial infarc-
ion, other ischemic heart disease, heart failure, stroke, other cere-
rovascular disease, arrhythmia and peripheral vascular disease),
ypertension, cancer, liver disease, whether the individual had a
idney transplant or was a kidney donor (definitions are provided
n Supplementary data, Table S1). 

nalysis 
he performance of all equations compared with mGFR was
valuated using the following metrics: bias, interquartile range
IQR), P30 and correct classification of GFR categories. Bias was
xpressed as the median difference in eGFR minus mGFR, with
egative biases indicating underestimation of mGFR. A bias
 ±5 mL/min/1.73 m2 was considered small, ±5–10 mL/min/
.73 m2 as moderate and > ±10 mL/min/1.73 m2 as large. IQR was
efined as the magnitude of the IQR of the differences between
GFR and eGFR, and is a measure of precision, with higher values

eflecting greater imprecision. P30 , described as the percentage of
stimated values within 30% of mGFR, is a measure of accuracy
nd is affected by both bias and imprecision. A P30 value of 75%–
0% is considered to be acceptable for GFR evaluation in many
ircumstances [37 ], and a P30 value of ≥90% is preferred; these
alues correspond to approximately 60%–70% agreement and
 70% agreement of eGFR with measured GFR in GFR categories.
orrect classification of GFR categories was defined as agreement
f eGFR and mGFR categories using the KDIGO GFR categories
 < 15, 15–29, 30–44, 45–59, 60–89 and ≥90 mL/min/1.73 m2 ). We
sed the bootstrap method to calculate 95% confidence inter-
als (CIs) for each metric, using 10 000 bootstrap samples. The
ootstrap accounts for the fact that the same individual could
ontribute multiple measurements to the analysis. All analyses
ere performed using R version 3.6.2 (R Foundation for Statistical
omputing) [38 ]. 

https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
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Subgroup and sensitivity analyses 
Performance within subgroups of interest was assessed with bias,
P30 and correct classification. A priori –defined strata included age
( < 40, ≥45–64 or ≥65 years), sex, BMI ( < 25 or ≥25 kg/m2 ), eGFR
( < 60 or ≥60 mL/min/1.73 m2 ), and the presence of cardiovascular
disease, heart failure, diabetes mellitus, liver disease and cancer.
We also assessed bias for each eGFR equation according to con-
tinuous age, BMI and eGFR levels. In these analyses, we truncated
the population at the 2.5th and 97.5th percentiles. We did not in-
vestigate performance categorized by mGFR, since a correlation
is expected between mGFR and eGFR minus mGFR, even for an
unbiased eGFR estimation, as shown by Hsu et al . [39 ]. 

We performed four sensitivity analyses. First, differences in
performance between equations may be explained by the fact
that different GFR measurement methods were used in the co-
horts in which equations were developed [40 ]. The CKD-EPI equa-
tions were developed in cohorts that used urinary iothalamate
clearance (the most common method used in the USA), whereas
EKFC and RLM cohorts predominantly used plasma iohexol clear-
ance (the most common method used in Europe). Iothalamate
clearance is the sum of glomerular filtration as well as tubu-
lar secretion of iothalamate, and thus is expected to be higher
than iohexol clearance [28 ]. To investigate how sensitive the re-
sults are to differences in GFR measurement methods, we in-
creased the mGFR values in the SCREAM study population uni-
formly between 1% and 15%, and re-evaluated the performance
of the CKD-EPI equations under each scenario. We used a range
of values since the precise relative difference between urinary
iothalamate and plasma iohexol clearance is uncertain [26 , 41 ,
42 ]. This analysis assumes that the relative difference between
both GFR measurement methods is constant, and does not de-
pend on characteristics such as age, comorbid conditions or GFR
level. Note that true calibration would require simultaneous mea-
surement of both urinary iothalamate clearance and plasma io-
hexol clearance for each individual. Second, the EKFC developed
cystatin C–based equations with and without sex. The equation
without sex-specific rescaling factors (EKFCA ) was used in our
main analysis, but we also evaluated the EKFC cystatin C equa-
tion that used sex-specific rescaling factors (EKFCAS ). Third, we re-
stricted our analysis to measurements of iohexol, creatinine and
cystatin C taken on the same day, instead of using a 30-day win-
dow ( n = 7818 measurements). Fourth, we used the first measure-
ment for each patient rather than all measurements ( n = 6174
measurements). Lastly, we combined both sensitivity analyses
by restricting to same-day measurements of iohexol, creatinine
and cystatin C and only including each patient once, by selecting
the first available measurement ( n = 5015 measurements/unique
persons). 

RESULTS 

Baseline characteristics 
We included 6174 individuals who contributed 9579 mGFR mea-
surements ( Supplementary data, Fig. S2). Mean (SD) age was 56
(17) years, with 37% of the sample aged 65 years or older, and 40%
were female (Table 1 ). Comorbid conditions such as cardiovascu-
lar disease (30%), liver disease (28%), diabetes (26%) and cancer
(26%) occurred frequently. The median mGFR was 62 mL/min/
1.73 m2 (IQR 41–83 mL/min/1.73 m2 ). Distributions for each eGFR
equation are shown in Supplementary data, Fig. S3. In general,
the highest eGFR was observed for eGFRcr and the lowest for
eGFRcys , with eGFRcr-cys in between (Table 1 , Supplementary data,
Fig. S3). For instance, median eGFRcr , eGFRcys and eGFRcr-cys were 
67, 59 and 64 mL/min/1.73 m2 , respectively, when using the EKFC 

equations, and 74, 57 and 65 mL/min/1.73 m2 when using the 
most recent CKD-EPI equations. 

Performance of equations based on creatinine, 
cystatin C or both 

Scatterplots for eGFR against mGFR are shown in 
Supplementary data, Figs S4–S6 and Bland–Altman plots in 
Supplementary data, Figs S7–S9. eGFRcr-cys equations performed 
better than eGFRcr or eGFRcys equations, regardless of the specific 
equation used (Table 2 ). All eGFRcr-cys equations had small bias: 
0.8 for CKD-EPI 2012, 2.5 for CKD-EPI 2021, 1.0 for EKFC and
−1.5 mL/min/1.73 m2 for the mean of RLM/CAPA. IQR was 12–
13 mL/min/1.73 m2 , P30 was close to 90% and correct classification 
was around 66%. 

Among eGFRcr equations, CKD-EPI 2009 and CKD-EPI 2021 
showed larger overestimates of mGFR than EKFC and RLM, with 
biases of 5.6, 9.1, 2.7 and 0.2 mL/min/1.73 m2 , respectively. Fur-
thermore, the EKFC and RLM equations had lower IQR and higher 
P30 than the CKD-EPI equations. For instance, P30 was 82.2% for 
RLM 2011, 79.5% for EKFC, 74.1% for CKD-EPI 2009 and 68.1% for
CKD-EPI 2021. The correct classification ranged from 51.8% for 
CKD-EPI 2021 to 58.9% for EKFC. 

There were no meaningful differences in performance across 
eGFRcys equations, with biases of −2.6 for CKD-EPI, −1.1 for EKFC 

and −3.7 mL/min/1.73 m2 for CAPA, and P30 of 82.5%, 84.5% and 
83.2%, respectively. 

Performance of equations in subgroups 
Among subgroups, eGFRcr-cys had better performance than equa- 
tions using each marker alone (Fig. 1 , Supplementary data,
Table S2). This was particularly evident among patients with heart 
failure, liver disease and cancer, where P30 for eGFRcr ranged be- 
tween 52% and 84.7%, and for eGFRcr-cys between 75.9% and 91.8%.

Among older patients, eGFRcr equations tended to overestimate 
and eGFRcys equations tended to underestimate mGFR, whereas 
equations using both filtration markers had smaller bias (Fig. 2 ).
The CKD-EPI eGFRcr equations showed large overestimation at 
younger age ( < 30 years), whereas such overestimation was not 
seen for the EKFC and RLM equations. 

At low BMI, eGFRcr equations tended to overestimate GFR re- 
gardless of the equation used, whereas bias was smaller for 
eGFRcys equations (Fig. 3 ). Again, there was wider variation be- 
tween eGFRcr , and less variation between eGFRcys or eGFRcr-cys 

equations. 
All eGFRcr-cys equations had small bias at eGFR levels 

< 60 mL/min/1.73 m2 (Fig. 4 ), but larger bias at higher eGFR lev-
els. Furthermore, variation in performance of eGFRcr equations 
was smaller among those with eGFRcr < 60 mL/min/1.73 m2 : bias 
was 2.0 for CKD-EPI 2009, 4.1 for CKD-EPI 2021, 1.4 for EKFC and
0.2 mL/min/1.73 m2 for RLM. P30 were 72.0%, 66.0%, 74.4% and 
76.2%, respectively. Regardless of filtration marker or equation 
used, bias was larger at higher eGFR than at lower eGFR (Fig. 4 ,
Supplementary data, Figs S4–S6). 

Sensitivity analyses 
The performance of the CKD-EPI equations was re-evaluated 
under different scenarios to account for the fact that GFR mea- 
sured with urinary iothalamate differs from iohexol clearance.
For each percentage that urinary iothalamate would be higher 
than iohexol, bias of CKD-EPI equations would decrease by 

https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
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Table 1: Baseline characteristics of 6174 persons (with 9579 observations) referred for iohexol clearance testing in Stockholm during 
2011–21, overall and stratified by mGFR categories. 

mGFR category (mL/min/1.73 m2 ) 

Overall ≥105 90–104 60–89 45–59 30–44 15–29 < 15 

Iohexol measurements, n (%) 9579 608 1126 3386 1729 1358 1022 350 
Mean age (SD), years 56 (17) 39 (15) 44 (16) 53 (16) 61 (14) 65 (13) 65 (15) 63 (15) 
Age ≥65 years, n (%) 3581 (37) 36 (6) 122 (11) 975 (29) 813 (47) 814 (60) 630 (62) 191 (55) 
Female sex, n (%) 3826 (40) 230 (38) 382 (34) 1323 (39) 726 (42) 568 (42) 441 (43) 156 (45) 
Mean BMI (SD), kg/m2 26 (8) 26 (18) 25 (4) 26 (10) 26 (5) 26 (5) 27 (6) 27 (6) 
BMI category, n (%) b 

Missing 2074 (22) 220 (36) 436 (39) 779 (23) 241 (14) 180 (13) 156 (15) 62 (18) 
< 20 690 (7) 37 (6) 66 (6) 216 (6) 139 (8) 104 (8) 99 (10) 29 (8) 
20 to < 25 2951 (31) 182 (30) 299 (27) 1089 (32) 597 (35) 415 (31) 279 (27) 90 (26) 
25 to < 30 2531 (26) 123 (20) 223 (20) 898 (27) 494 (29) 420 (31) 275 (27) 98 (28) 
≥30 1333 (14) 46 (8) 102 (9) 404 (12) 258 (15) 239 (18) 213 (21) 71 (20) 

GFR evaluations, median (IQR) 
Creatinine, μmol/L a 94 (76, 125) 66 (55, 77) 74 (63, 85) 82 (70, 96) 102 (89, 118) 128 (109, 150) 193 (149, 255) 373 (277, 494) 
Cystatin C, mg/L 1.26 

(0.98–1.76) 
0.79 

(0.72–0.90) 
0.89 

(0.80–0.98) 
1.08 

(0.95–1.22) 
1.44 

(1.29–1.62) 
1.83 

(1.61–2.11) 
2.73 

(2.32–3.27) 
3.88 

(3.44–4.54) 
Measured GFR, mL/min/1.73 m2 62 (41, 83) 112 (108, 120) 96 (93, 100) 74 (67, 82) 52 (48, 56) 38 (34, 41) 23 (19, 26) 11 (9, 13) 
Creatinine-based equations, 
mL/min/1.73 m2 

CKD-EPI 2009 70 (47, 92) 109 (100, 121) 99 (89, 110) 82 (71, 94) 60 (51, 70) 45 (38, 53) 27 (20, 36) 12 (9, 17) 
CKD-EPI 2021 74 (51, 96) 112 (104, 123) 103 (94, 113) 87 (75, 99) 64 (55, 75) 48 (40, 57) 29 (22, 39) 13 (10, 18) 
EKFC 67 (46, 86) 104 (93, 111) 93 (84, 103) 78 (68, 88) 57 (50, 67) 43 (36, 51) 27 (21, 36) 13 (10, 17) 
RLM 65 (45, 81) 96 (87, 106) 87 (79, 95) 74 (65, 83) 56 (49, 64) 42 (34, 51) 24 (19, 33) 13 (10, 17) 

Cystatin C–based equations, 
mL/min/1.73 m2 

CKD-EPI 2012 57 (35, 83) 109 (95, 120) 96 (84, 107) 71 (60, 85) 47 (40, 55) 34 (28, 40) 20 (16, 25) 12 (10, 15) 
EKFC 59 (39, 82) 103 (90, 110) 91 (82, 103) 72 (61, 83) 50 (44, 57) 38 (32, 44) 24 (20, 29) 16 (13, 19) 
CAPA 57 (37, 78) 102 (89, 117) 89 (79, 100) 69 (58, 81) 48 (41, 55) 35 (29, 41) 20 (16, 26) 12 (9, 15) 

Combined equations, 
mL/min/1.73 m2 

CKD-EPI 2012 63 (41, 87) 111 (99, 120) 98 (89, 107) 76 (66, 88) 53 (46, 60) 38 (33, 44) 22 (18, 28) 12 (10, 14) 
CKD-EPI 2021 65 (43, 89) 113 (103, 122) 101 (92, 110) 79 (69, 90) 55 (48, 62) 40 (34, 46) 23 (18, 29) 12 (10, 15) 
EKFC 64 (44, 83) 102 (93, 109) 91 (85, 100) 75 (67, 84) 54 (48, 61) 41 (36, 46) 26 (21, 32) 15 (12, 18) 
Mean of RLM and CAPA 61 (42, 80) 100 (89, 109) 88 (81, 96) 71 (64, 80) 52 (47, 58) 39 (33, 45) 22 (18, 29) 12 (10, 15) 

Medical history, n (%) 
Cardiovascular disease b 2828 (30) 45 (7) 108 (10) 761 (22) 624 (36) 592 (44) 529 (52) 169 (48) 
Heart failure 988 (10) 5 (1) 23 (2) 187 (6) 202 (12) 215 (16) 263 (26) 93 (27) 
Diabetes mellitus 2503 (26) 82 (13) 140 (12) 676 (20) 523 (30) 511 (38) 428 (42) 143 (41) 
Cancer 2468 (26) 168 (28) 286 (25) 906 (27) 528 (31) 386 (28) 164 (16) 30 (9) 
Liver disease 2705 (28) 118 (19) 213 (19) 956 (28) 668 (39) 449 (33) 267 (26) 34 (10) 
Kidney transplantation 291 (3) 1 (0) 3 (0) 66 (2) 71 (4) 62 (5) 59 (6) 29 (8) 
Kidney donor 303 (3) 19 (3) 41 (4) 170 (5) 72 (4) 0 (0) 1 (0) 0 (0) 

a To convert plasma creatinine from μmol/L to mg/dL, multiply by 0.0113. 
b Cardiovascular disease was defined as a composite of myocardial infarction, other ischemic heart disease, heart failure, stroke, other cerebrovascular disease, 
arrhythmia and peripheral vascular disease. 
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.5–0.6 mL/min/1.73 m2 from the baseline bias ( Supplementary
ata, Table S3). For example, if urinary iothalamate would lead
o a 5% higher mGFR value, then bias for eGFRcr equations
ould be 2.8 for CKD-EPI 2009 and 6.2 mL/min/1.73 m2 for
KD-EPI 2021; −5.3 mL/min/1.73 m2 for CKD-EPI 2012 eGFRcys 

quation; and −1.7 for CKD-EPI 2012 and 0.0 mL/min/1.73 m2 

or CKD-EPI 2021 eGFRcr-cys equations. Under more extreme
cenarios (e.g. 15%), CKD-EPI eGFRcr equations would have
maller bias than CKD-EPI eGFRcys or eGFRcr-cys equations. P30 
or eGFRcr and eGFRcys equations followed a similar pattern to
hat of the bias ( Supplementary data, Table S4). However, P30 
f CKD-EPI eGFRcr-cys equations remained higher than CKD-EPI
GFRcr or eGFRcys equations, even in the extreme scenarios. No
eaningful differences were found between the EKFC eGFRcys and
GFRcr-cys equations when sex-specific rescaling factors were used
 Supplementary data, Table S5). Findings were consistent when
estricting to same-day measurements ( Supplementary data,
able S6), when restricting to one measurement per patient
 Supplementary data, Table S7) or when combining both analyses
 Supplementary data, Table S8). 

ISCUSSION 

n this comparative study of eGFR equations, we used a large co-
ort of iohexol plasma clearance referrals with concurrent testing
or creatinine and cystatin C using methods traceable to reference
tandards. We found that eGFRcr-cys equations had superior perfor-
ance to eGFRcr or eGFRcys regardless of specific equation used,
ith small bias and high P30 . We also observed that all eGFRcys 

quations had more homogeneous performance than eGFRcr .

https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
https://academic.oup.com/ndt/article-lookup/doi/10.1093/ndt/gfad219#supplementary-data
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Table 2: Bias, IQR, P30 and correct classification of different GFR estimating equations compared with single-point plasma iohexol 
clearance. 

Bias, mL/min/ 
1.73 m2 (95% CI) a 

IQR, 
mL/min/1.73 m2 

(Q1, Q3) b P30 , % (95% CI) c 

Correct 
classification, % 

(95% CI) d 

Creatinine-based equations 
CKD-EPI 2009 5 .6 (5.3 to 6.0) 17 .6 ( −2.3 to 15.3) 74.1 (73.2 to 75.0) 56.4 (55.4 to 57.4) 
CKD-EPI 2021 9 .1 (8.8 to 9.5) 18 .6 (0.6 to 19.2) 68.1 (67.2 to 69.1) 51.8 (50.9 to 52.8) 
EKFC 2021 2 .7 (2.5 to 3.0) 15 .6 ( −4.6 to 11.0) 79.5 (78.7 to 80.3) 58.9 (57.9 to 59.9) 
RLM 2011 0 .2 ( −0.2 to 0.4) 15 .6 ( −7.7 to 7.9) 82.2 (81.4 to 82.9) 58.6 (57.6 to 59.5) 

Cystatin C–based equations 
CKD-EPI 2012 −2 .6 ( −2.9 to −2.3) 15 .0 ( −10.4 to 4.6) 82.5 (81.7 to 83.3) 58.3 (57.4 to 59.3) 
EKFC 2023 −1 .1 ( −1.4 to −0.9) 14 .6 ( −11.5 to 3.1) 84.5 (83.8 to 85.2) 60.8 (59.8 to 61.7) 
CAPA 2014 −3 .7 ( −4.0 to −3.4) 14 .8 ( −9.0 to 5.8) 83.2 (82.5 to 84.0) 58.1 (57.2 to 59.1) 

Creatinine–cystatin C–based equations 
CKD-EPI 2012 0 .8 (0.6 to 1.0) 12 .6 ( −5.0 to 7.6) 89.1 (88.4 to 89.7) 66.7 (65.7 to 67.6) 
CKD-EPI 2021 2 .5 (2.3 to 2.8) 13 .1 ( −3.3 to 9.8) 87.6 (86.9 to 88.2) 66.3 (65.3 to 67.2) 
Mean of EKFC eGFRcr 
and EKFC eGFRcys 

1 .0 (0.8 to 1.3) 12 .0 ( −7.9 to 4.1) 88.5 (87.9 to 89.2) 66.8 (65.8 to 67.7) 

Mean of RLM and 
CAPA 

−1 .5 ( −1.7 to −1.3) 12 .0 ( −5.2 to 6.8) 90.8 (90.2 to 91.4) 65.8 (64.8 to 66.7) 

a Bias was expressed as the median difference in eGFR minus mGFR (95% CI). A negative bias indicates underestimation of the mGFR, and a positive bias indicates 
overestimation of the mGFR. 
b IQR is defined as the IQR and a measure of precision (the dispersion of individual errors around the bias). 
c P30 was defined as the percentage of individuals with eGFRs within 30% of mGFR (95% CI). 
d Correct classification of GFR categories was defined as agreement of eGFR and mGFR categories using the KDIGO GFR categories ( < 15, 15–29, 30–44, 45–59, 60–89 
and ≥90 mL/min/1.73 m2 ). 
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Indeed, eGFRcr equations had the largest variation in perfor-
mance, with the CKD-EPI equations performing worse than EKFC
or RLM, especially in the younger age group. Our findings were
consistent in various sensitivity analyses and subgroups, includ-
ing patients with comorbid conditions known to affect serum cre-
atinine or cystatin C levels. 

Clinical implications and comparison 

with previous studies 
Our findings of superior performance of eGFRcr-cys equations to
any of the eGFRcr or eGFRcys equations align with previous ob-
servations from research cohorts [4 , 6 ] and support recent rec-
ommendations by leading kidney organizations to “facilitate in-
creased, routine and timely use of cystatin C” [13 ]. Importantly,
we extend the findings of previous studies by demonstrating the
superior accuracy of eGFRcr-cys in a real-world setting with individ-
uals having one or more comorbid conditions. Differences in per-
formance between equations were small, and implementation of
any of the equations in the setting of SCREAM would be suitable.

Among eGFRcr equations, we found that each of the equations
performed worse in SCREAM than in their respective validation
cohorts. For instance, we found a bias of 9.1 mL/min/1.73 m2 and
P30 of 68.1% for the CKD-EPI 2021 equation, whereas the CKD-EPI
validation cohort reported a bias of 3.9 mL/min/1.73 m2 and P30 of
86.5% among non-Black participants [4 ]. For the EKFC 2021 equa-
tion, we observed a bias of 2.7 mL/min/1.73 m2 and P30 of 79.5%,
whereas bias and P30 were better in the EKFC validation cohort
(0.6 mL/min/1.73 m2 and 85.8%, respectively) [6 ]. The poorer per-
formance in SCREAM may be explained by the higher prevalence
of comorbid conditions affecting non-GFR determinants of crea-
tinine in our routine care cohort compared with the development
and validation datasets which included research populations that
are likely to have been healthier. This difference in characteristics
may be a reflection of the indications for measuring GFR in clinical
practice. 
We also found larger variation in the performance of eGFRcr 

equations within SCREAM, with EKFC and RLM showing bet- 
ter performance than the CKD-EPI equations. Thus, implemen- 
tation of the EKFC and RLM would be preferred for the setting
of SCREAM. The difference in performance between equations 
may be due to population differences between the development 
datasets and our study. EKFC and RLM were developed in white 
populations similar to SCREAM [5 , 33 ], whereas the CKD-EPI equa-
tions were developed in a more diverse population, including 31% 

Black individuals. Black individuals in North America and Europe 
have higher serum creatinine levels than white individuals for 
the same age, sex and mGFR [43 ]. The CKD-EPI 2009 equation in-
cluded a race variable to account for this observation, whereas 
the race variable was removed in 2021 equation. This likely ex- 
plains the better performance of the CKD-EPI 2009 than the CKD-
EPI 2021 in our predominantly white population, as has been 
shown elsewhere [4 ]. Furthermore, studies have shown that the 
race coefficient in the CKD-EPI 2009 equation was not accurate for 
African populations and overestimated GFR [44 , 45 ], and that cur-
rent equations exhibit variable performance in African and Asian 
populations [44 , 46 –48 ]. These findings suggest that the perfor- 
mance of eGFRcr equations may vary between geographic regions 
depending on population characteristics. This lends support to the 
proposal that large regions (countries or health systems) consider 
using eGFRcr equations that are optimal for their settings. How- 
ever, variation in use of eGFRcr equations across regions may lead 
to regional variations in clinical practice and difficulty in harmo- 
nizing research studies and public health policies. Thus, it appears 
that there would be an unavoidable trade-off between accuracy 
vs uniformity in selection of eGFRcr equations for use across re- 
gions. In contrast, previous research has shown minimal influence 
of race and source population on serum cystatin C levels [43 ]. Our
findings that all eGFRcys and eGFRcr-cys equations had more consis- 
tent performance across populations than eGFRcr equations sug- 
gests that eGFRcys or eGFRcr-cys equations could be more routinely 
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Figure 1: Bias for GFR estimating equations across subgroups of age, sex, BMI, eGFR, cancer, cardiovascular disease, diabetes, heart failure and liver 
disease. CVD, cardiovascular disease; DM, diabetes mellitus; HF, heart failure. 
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Figure 2: Bias for GFR estimating equations across continuous age. The x -axis is truncated at the 2.5th and 97.5th percentiles. 
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Figure 3: Bias for GFR estimating equations across continuous BMI. The x -axis is truncated at the 2.5th and 97.5th percentiles. 
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Figure 4: Bias for GFR estimating equations across continuous eGFR. The x -axis is truncated at the 2.5th and 97.5th percentiles. 
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mplemented without necessitating a trade-off between accuracy
nd uniformity. 
Our study highlights that variation in measurement meth-

ds used when developing the equations may be an important
ontributor to the variation in performance between eGFRcr 

quations. The measurement methods for GFR in SCREAM were
ore similar to those used for development of the EKFC and RLM
quations (plasma iohexol clearance for mGFR) than for CKD-EPI
quations (urinary iothalamate clearance for mGFR). Further-
ore, differences also exist between single-point vs multipoint

ohexol clearance [27 –29 ]. Accounting for possible systematic
ifference between methods in a sensitivity analysis attenuated
ifferences between EKFC and RLM vs CKD-EPI equations, with
ittle effect on differences among eGFRcys or eGFRcr-cys equa-
ions. However, this analysis was based on strong assumptions.
urthermore, we note that the true difference between GFR
easurement methods used in these studies is unknown, and

here is currently no consensus on whether such a correction
hould be applied. In addition, there are also differences in serum
reatinine measurements between CKD-EPI (more corrected Jaffe
ethod) and EKFC (more enzymatic assays). While there has
een substantial effort to harmonize serum assays for creatinine
49 , 50 ] and cystatin C [30 , 31 ], residual variation remains. Varia-
ion in methods for mGFR has received less attention, and while
e attempted to address potential differences between mGFR
ethods used for development of these equations in a sensitivity
nalysis, calibration of mGFR methods to urinary clearance of
nulin, the reference standard, is uncertain for these and most
ther methods, and a direction for future research [26 ]. 
An important novelty is that our cohort included many people
ith comorbid conditions, such as cardiovascular disease, cancer,

iver disease and diabetes. Some of these populations have been
inimally included in the research cohorts in which the novel
quations were developed or validated; and therefore the perfor-
ance of the eGFR equations in these patients has been uncer-

ain [18 ]. We showed that eGFRcr-cys equations had small bias and

30 > 85%, and performed better than eGFRcr or eGFRcys equations
mong people at older age or who had liver disease or cancer. Our
nding that eGFRcr-cys was more accurate than either eGFRcr or
GFRcys suggests substantial variation in non-GFR determinants 
f both creatinine and cystatin C in these groups. In certain pa-
ients with these comorbid conditions, eGFRcr-cys may thus be an
cceptable alternative to measuring GFR. Furthermore, bias for
FR estimating equations was larger at the higher eGFR range
han the lower eGFR range, regardless of the specific filtration
arker or equation used. However, one may argue that precision

s more important at low eGFR, as decision-making is often based
n GFR thresholds. This overestimation was more apparent for the
KD-EPI 2021 than the 2009 equation. 
The greater bias of eGFRcr in the younger age group for the

KD-EPI vs EKFC and RLM equations is consistent with previously
eported results in the EKFC population and in Sweden, but not
ith results from the CKD-EPI validation study population [5 , 51 –
4 ]. These findings are not explained, but may be partly due to
ifferences in how the variable “age” is considered in the differ-
nt equations [55 , 56 ]. Furthermore, it may be another example
f differences in study populations in which the equations were
eveloped. For example, many of the young people in the CKD-EPI
evelopment population were people with type 1 diabetes partici-
ating in research studies or kidney donor candidates with higher
FR, while many of the young people in EKFC or RLM development
opulations may have been referred because of lower GFR associ-
ted with comorbid conditions, which may have been more likely
o affect the non-GFR determinants of creatinine than cystatin C.
dditional studies are needed in young adults. 

trengths and limitations 
trengths of our analysis include its large size and its routine
are setting, with ample representation of comorbid conditions.
s such, our study may better capture the performance of GFR
stimating equations in clinical practice compared with research
ohorts that included relatively healthy individuals. Furthermore,
ur cohort was not involved in the development or validation of
ny of the equations that were assessed. Lastly, Sweden has tax-
unded healthcare which may minimize selection bias from dis-
arate access to care due to lack of insurance. Our study also
as limitations. First, our findings may be less generalizable to
ther regions as our dataset solely included patients from Stock-
olm, Sweden, especially regions with a greater racial and eth-
ic mix. Therefore, we encourage independent validation studies
f the novel eGFR equations in cohorts from different geographic
egions. Second, we used International Classification of Diseases,
0th revision (ICD-10) codes to define comorbid conditions such
s liver disease, heart failure and cancer. Although ICD-10 codes
n general have high positive predictive value, they do not capture
he severity of disease. Furthermore, the patients included in our
tudy may have had a history of comorbid conditions rather than
ctive comorbid conditions. Third, we used single-sample plasma
ohexol clearance as reference method. A previous study showed
mall bias compared with multisample iohexol clearance, but lim-
ts of agreement were wide [27 , 29 ]. Nevertheless single-sample
lasma iohexol is frequently used in Swedish clinical practice.
ourth, we did not know the precise indications for GFR testing.
ifth, serum creatinine in our study was measured using both
odified Jaffe and enzymatic assays. Despite standardization, dif-

erences between the two may remain. Sixth, our study included
easurements from routine clinical practice, and the indications

or measuring GFR may have affected the performance of eGFR
quations. Lastly, although the SCREAM cohort was not involved
n the development or validation of the EKFC equations, EKFC in-
luded among others a cohort of 641 adult patients from Stock-
olm which may partly overlap with our population. 

onclusion 

n conclusion, in this large routine care and independent cohort,
e found that eGFRcr-cys equations performed better than eGFRcr 

r eGFRcys equations overall and in key subgroups, with little vari-
tion in performance across equations. Furthermore, there was
arger variation in the performance of eGFRcr than eGFRcys or
GFRcr-cys across equations and subgroups, likely reflecting pop-
lation differences. Implementing eGFRcr equations in clinical
ractice may require a trade-off between accuracy and uniformity
cross regions. 
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