

Flipping: A Control Strategy for Centrifugal Microfluidic Systems

Ali Gholizadeh¹, Gabriel Mazzucchelli², Olivier Verlaine¹, Tristan Gilet¹

1. Introduction

Valves are usually required for controlling fluid flow in centrifugal microfluidics

a) Passive valves are:

- Operated by varying the angular speed of the rotating device (e.g., disk)
- Geometry and size-dependent
- Simple and low-cost
- **NOT sufficiently** robust to run complex sequences of microfluidic functions

b) Active valves are:

Operated by external stimulation (e.g., heat, magnetic force)

3. Analytical Model

Instability Threshold: Although the chip is flipped and centrifuged, the metered liquid

may remain in the metering chamber below the threshold.

Instability threshold inferred from an energy analysis

- Event-triggered and effective
- **NOT** as simple and low-cost to fabricate as passive valves

Flipping suggested as a valve-free strategy to control fluid flow

- Metering chamber decoupled from further microfluidic units
- Simple and low-cost for manufacturing
- Robust to run sequential microfluidic functions

> Liquid transfer to the storage chamber when centrifugal force dominates capillary forces

$$z = f(x, y) + \eta(x, y, t) \longrightarrow a_c = \frac{\sigma}{\rho} \left(\frac{c_1}{W^2} + \frac{c_2}{WH} + \frac{c_3}{H^2} \right) \text{ where } \frac{W}{H} > 1$$

Involved parameters $c_1, c_2, c_3 = \text{coefficients} [-]$ $\eta = perturbation function [m]$ $a_c = \text{acceleration} [\text{m s}^{-2}]$ W =width [m] $\sigma = \text{surface tension [N m⁻¹]}$ H = height [m]

 $\rho = \text{density} [\text{kg m}^{-3}]$

4. Results

Linear fit of experimental data for different chambers

□ Microfluidic chips were centrifuged in two configurations:

a) Chip-on-a-disk:

- Microfluidic chips were clamped between two PMMA disks
- > A home-made setup was developed to centrifuge the disk up to 3000 rpm (chip at 504 *g*)
- > A camera was triggered to image the chip once per rotation

b) Chip-*off*-a-disk:

Wallonie

- Microfluidic chips were placed within a 3D-printed support
- This support was adapted to the swinging-bucket rotor of a conventional lab centrifuge for acceleration up to 2204 g

- $\blacktriangle \quad \text{Metering} \text{Water} \text{PMMA}$ \succ Smaller W and H yield a higher threshold (a_c) \blacktriangle Metering – EG – PMMA • Storage – Water – PMMA \succ For given W and H the acceleration threshold (a_c) is: ✓ Different for chambers with different boundary $\times g]$ conditions ✓ **NOT** dependent on liquid volume > Dependence of a_c on σ/ρ validated for different liquids 1.0 1.5 2.0 2.5 3.0 0.5 > For effective capillary length $\lambda = \sqrt{\sigma/\rho a_c}$ at which: W [mm] $\checkmark \lambda < H \Rightarrow$ Flat interface $\Rightarrow a_c$ depends on W (c_1 term) torage – Water – PMMA $\checkmark \lambda > H \Rightarrow$ Curved interface $\Rightarrow a_c$ depends on W & Hering - Water - Resinorage - Water - ResinMetering - EG - PMMAMetering - PBS - Resin> Metering: $c_1 = 15.97, c_2 = 2.82, c_3 = 0.44$ $\bullet \quad \text{Metering} - \text{SDS0.1\%} - \text{Resin}$ \blacktriangle Metering – Glycerin50% – R > Storage: $c_1 = 8.17, c_2 = 3.21, c_3 = 0.017$ **5. Conclusions** -- 15% -- 30% **Clamping** microfluidic chips is an efficient strategy 10^{2} $a_c^{(\text{measured})} [\times g]$ to test and develop microfluidic designs **Flipping** validated quantitively as a robust strategy
- to control fluid flow

Decoupling microfluidic chips from rotating support enables:

- Centrifugation of several microfluidic chips simultaneously \checkmark
- Reorientation of each chip with respect to centrifugal force

()

✓ Fabrication of chips rather than disks at significant cost and time savings

ΔB

SPECTROMETRY

✓ Fabrication of these chips out of different materials (e.g., PMMA, PDMS, 3D-printed chips)

SIFFIS

innovation

forward

No back flow to inlet *well* guaranteed by the

asymmetric boundary conditions in chamber

Chamber's width & **height** are the key

parameters setting the instability threshold

Physical model predicts instability threshold

Acknowledgments

This work has been carried out in the framework of a Win2Wal project (ChipOmics, 201026) funded by Wallonia Public Service SPW.

Reference

Gholizadeh, Ali; Mazzucchelli, Gabriel; & Gilet, Tristan; (2024). Flipping: A Valve-Free Strategy to Control Fluid Flow in Centrifugal Microfluidic Systems. Sensors and Actuators B: Chemical, 135778.

Affiliations

¹University of Liège, Microfluidics Lab, Belgium ²University of Liège, Molsys-Mass Spectrometry Lab, Belgium

Ali Gholizadeh

Microfluidics Lab Department of Aerospace & Mechanical Engineering

