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Introduction: Comorbidities and immunosuppressive therapies are associated with reduced immune re-

sponses toprimaryCOVID-19mRNAvaccination in kidney transplant recipients (KTRs). Inhealthy individuals,

prior SARS-COV-2 infection is associated with increased vaccine responses, a phenotype called hybrid im-

munity. In this study,weexplored thepotential influenceof immunesuppressiononhybrid immunity inKTRs.

Methods: Eighty-two KTRs, including 59 SARS-CoV-2-naïve (naïve KTRs [N-KTRs]) and 23 SARS-CoV-2-

experienced (experienced KTRs [E-KTRs]) patients, were prospectively studied and compared to 106

healthy controls (HCs), including 40 SARS-CoV-2-naïve (N-HCs) and 66 SARS-CoV-2-experienced (E-HCs)

subjects. Polyfunctional antibody and T cell responses were measured following 2 doses of BNT162b2

mRNA vaccine. Associations between vaccine responses and clinical characteristics were studied by

univariate and multivariate analyses.

Results: In naïve KTRs, vaccine responses were markedly lower than in HCs and were correlated with older

age, more recent transplantation, kidney retransplantation after graft failure, arterial hypertension, and

treatment with mycophenolate mofetil (MMF). In contrast, vaccine responses of E-KTRs were similar to

those of HCs and were associated with time between transplantation and vaccination, but not with the

other risk factors associated with low vaccine responses in naïve KTRs.

Conclusion: In conclusion, hybrid immunity overcomes immune suppression and provides potent hu-

moral and cellular immunity to SARS-CoV-2 in KTRs.
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first waves of the pandemic.1,2 This higher risk has been
attributed to immunosuppressive therapies required to
prevent allograft rejection, a higher prevalence of
comorbidities, and increased healthcare-associated
exposure to the virus.3,4 KTRs also developed lower
humoral and cellular immune responses to primary
COVID-19 vaccination as compared to healthy in-
dividuals and have been at higher risk of breakthrough
infections.5-12 Reduced vaccine responses were associ-
ated with recent induction therapy, cumulative
635
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immunosuppressive treatments particularly with MMF
or belatacept, and specific comorbidities such as lower
kidney function.8,13-16 Multiple doses of vaccines have
been proposed as a mean to induce higher levels of im-
munity among KTRs.17-21 However, about 50%, 40%,
and 20% of patients remained low responders even
following 3, 4, and 5 vaccinations, respectively.19,20,22-24

Therefore, optimal vaccination strategies to protect this
vulnerable population in the context of a pandemic
remain uncertain and require further investigations.

In healthy adults, previous SARS-CoV-2 infection
markedly modifies immunity induced by COVID-19
vaccination. This hybrid immunity is characterized by
higher levels of neutralizing antibodies (nAbs) and
antibody Fc-dependent effector functions as well as
enhanced effector CD4 T cell responses as compared to
COVID-19 vaccination alone.25-30 In contrast, recent
studies suggest a reduction of CD8 T cell responses to
vaccination in subjects with previous SARS-CoV-2
infection.31 The basis for this differential regulation of
vaccine-induced immune response components after
SARS-CoV-2 infection remains incompletely understood.

We and others have previously reported that KTRs
preinfected with SARS-CoV-2 infection have higher
binding and nAb responses to mRNA vaccination than
patients who were SARS-CoV-2-naïve before vaccina-
tion.32-35 This observation suggests that the factors
reducing vaccine responses in naïve KTRs may have a
limited impact on the response of previously infected
patients. In this study, we provide a detailed charac-
terization of hybrid immunity in KTRs. Beyond nAbs,
we explored key components of humoral immunity to
COVID-19, including SARS-CoV-2 spike (S) protein-
specific antibody isotypes and subclasses, as well as
IgG binding to Fcg receptors and Fc-dependent effector
functions, including antibody-dependent complement
deposition (ADCD) and antibody-dependent cellular
phagocytosis (ADCP).36-39 In addition, we assessed S
protein-specific T cell responses that are a key
component of COVID-19 vaccine-induced immunity in
KTRs.9 We then explored how clinical factors under-
lying immune suppression influence vaccine-induced
immunity in KTRs who were either naïve or infected
with SARS-CoV-2 before vaccination.
METHODS

Study Design and Participant Characteristics

The study was designed to evaluate associations be-
tween clinical characteristics and immune responses to
BioNTech/Pfizer BNT162b2 mRNA (Comirnaty) vacci-
nation in COVID-19 naïve (N) and experienced (E) KTRs
and HCs. KTRs were recruited from the department of
nephrology, dialysis, and transplantation of the Hôpital
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Erasme, Belgium; and HCs were healthcare workers
recruited from 2 Belgian nursing homes. Patients
transplanted with multiple organs or with active
invasive cancer were excluded from the study. All
participants were adults of at least 18 years of age and
provided written informed consent. Participants were
enrolled before COVID-19 vaccination and then
received 2 doses of the BNT162b2 vaccine (30 mg) 21
days apart, according to the Belgian national vaccina-
tion program. Patients recruited in this study were also
included in our previously published report.32

The ethics committee of the Hôpital Erasme, Brussels,
Belgium (references P2020/284 and A2021/131) and the
Belgian Federal Agency for Medicines and Health Prod-
ucts (FAMHP, EudraCT 2021-000-412-28) approved the
monocentric prospective phase IV investigator-initiated
study of the immunogenicity of the BNT161b2 vaccine
(Pfizer-BioNTech) in KTRs. HCs were included from a
prospective cohort study named PICOV-VAC.40,41 This
latter studywas approved by the Ethics Committee of the
Hôpital Erasme, Brussels, Belgium (reference
B4062020000134), the Federal Agency for Medicines and
Health Products (2021-000401-24) and is registered on
ClinicalTrials.gov (NCT04527614).

Previous SARS-CoV-2 infection statuswas established
according to the following criteria. Participants with a
previous laboratory-confirmed SARS-CoV-2 infection
were considered previously infected irrespective of
prevaccination serology. All other participants with a
baseline antireceptor binding domain (anti-RBD) IgG
level <5 binding antibody units (BAU)/ml were
considered infection naïve, and those with a level >20
BAU/ml were considered previously infected. Partici-
pants with a level >5 and <20 BAU/ml were further
tested with a multiplexed Luminex assay, as previously
described,42 detecting IgG specific for 4 antigens,
including SARS-CoV-2 RBD, spike subunit 1 (S1), spike
subunit 2 (S2) and nucleocapsid. Participants with
detectable IgG to $3 out of 4 antigens were considered
previously infected.

The first vaccine dose was administered to HCs be-
tween January 21 and January 28, 2021, and to KTRs
between March 2 and March 18, 2021. The second
vaccine dose was administered to HCs between
February 11 and February 18, 2021, and to KTRs be-
tween March 23 and April 8, 2021. Blood was collected
to assess humoral and cellular immunity to SARS-CoV-2
just before the first vaccine dose (baseline, or day 0)
and 4 weeks after the second dose (day 49).

Binding Antibodies

Levels of total IgG specific for the Wuhan SARS-CoV-2
RBD were measured using an enzyme-linked immuno-
sorbent assay (Wantai SARS-CoV-2 IgG ELISA
Kidney International Reports (2024) 9, 635–648
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[Quantitative]; CE-marked; WS-1396; Beijing Wantai
Biological Pharmacy Enterprise Co., Ltd, China), as pre-
viously described.41,43 Levels lower than the limit of
detection of 5 BAU/ml were attributed the value 2.5
BAU/ml. Detailed methods are provided in the
Supplementary Methods.
Antibody Avidity

Avidity of Wuhan SARS-CoV-2 RBD-specific IgG was
measured with biolayer interferometry, as previously
described.44 Biolayer interferometry measurements
were performed using the Fortebio HTX Octet instru-
ment and Fortebio AR2G biosensors. Of note, IgG
avidity was only calculated in KTRs and HCs who had
detectable levels of RBD-binding IgG. Detailed methods
are provided in the Supplementary Methods.
nAbs

Titers of antibodies neutralizing Wuhan SARS-CoV-2
were measured using a live virus neutralization assay,
as previously described.45 TheReed-Muenchmethodwas
used to calculate the nAb titer that reduced the number of
infectedwells by 50%or 90%. Titers lower than the limit
of detection of 50 IU/ml for 50% neutralization titer were
attributed the value of 25 IU/ml. Detailed methods are
provided in Supplementary Methods.
IgG Subclasses and Fc-Dependent Functions

Levels of SARS-CoV-2-specific antibody isotypes, sub-
classes, FcgR-binding profiles and ADCD were
measured using a 96-well-based customized multi-
plexed immunoassay, as previously described.42,46,47

Antigens used for multiplex assays included Wuhan
SARS-CoV-2 S1 protein (Sanyou Biopharmaceuticals
#PNA002), SARS-CoV-2 S2 protein (Sinobiological
#40590-V08H1), SARS-CoV-2 RBD (Proteogenix #PX-
COV-P046) and SARS-CoV-2 N protein (Sanyou Bio-
pharmaceuticals #PNA006). Data were acquired with a
BioPlex-200 (Bio-Rad, CA) and measured as median
fluorescence intensity. Of note, systems serology anal-
ysis was done in all N-KTRs, E-KTRs, N-HCs and in a
subset of 40 E-HCs. In addition, IgA, IgG2, and IgG4
were measured only in a subset of the cohort, including
14 N-KTRs, 22 E-KTRs, 10 N-HCs, and 18 E-HCs. ADCP
was assessed using the human monocyte cell line THP-
1 (ATCC #TIB-202), as previously described.48 Bead
phagocytosis was measured by flow cytometry with an
LSR Fortessa Flow Cytometer (BD), and analysis was
performed using FlowJo V10.8.1. A phagocytosis score
was calculated as follows: Percentage of cells that
phagocytosed beads � median fluorescence intensity of
bead positive cells/10,000. Detailed methods are pro-
vided in Supplementary Methods.
Kidney International Reports (2024) 9, 635–648
Cellular Immune Responses

SARS-CoV-2 S1 and S2 of Wuhan strain-specific T cell
frequencies were measured in peripheral blood mono-
nuclear cells by flow cytometry following intracellular
cytokine staining (BD Fastimmune, BD-Beckton Dick-
inson and Company-Biosciences, San Jose, CA), as pre-
viously described,49,50 and analysis was performed using
FlowJo V10.8.1. Percentages of CD4 and CD8 T cells
expressing CD154 (only in CD4), interferon-g, and IL-2
were measured. Gating strategies are shown in
Supplementary Figure S1. The lower limit of quantitation
was set at 0.0001% (after background subtraction).
Detailed methods are provided in Supplementary
Methods.

Statistical Analyses

Demographic characteristics of KTRs and HCs are
presented as median (first quartile Q1 � third quar-
tile Q3) for continuous variables and n (%) for cate-
gorical variables. The comparison of categorical
variables was done using the c2 test, or Fisher’s exact
test when appropriate. Single comparisons between
other metrics were done using the 2-tailed Mann-
Whitney U test. Simple comparisons between
groups of RBD-binding IgG, IgG avidity, nAb, sub-
classes and isotypes, FcgR-binding, ADCD, ADCP,
CD4, and CD8 T cells responses were performed using
the 2-tailed Mann-Whitney U test and multiple
comparisons were done using the analysis of variance
Kruskal-Wallis test with Dunn’s correction.
Spearman correlation analysis was used for single
continuous variate correlation analyses. Associations
between immune variables (RBD IgG, IgG avidity,
wild type 50% neutralization titer, S1 CD154þCD4,
S1 IFNgþCD4, and S1 IL2þCD4) and continuous
clinical characteristics (age, body mass index, time
between transplantation and vaccination, absolute
lymphocyte count, plasmatic creatinine, estimated
glomerular filtration rate, time between infection and
vaccination) and categorical variables (sex, kidney
retransplantation after graft failure described as
transplantation rank with the number of trans-
plantations, induction treatment, number of chronic
immunosuppressive treatments, corticosteroids,
MMF, azathioprine, tacrolimus, cyclosporine A,
everolimus, donor-specific antibodies, arterial hy-
pertension, diabetes, cardiovascular disease, chronic
respiratory disease, chronic kidney insufficiency,
noninvasive skin cancer or cancer remission, oxygen
dependance, and intensive care unit hospitalization
during SARS-CoV-2 infection) were explored by
univariate and multivariate linear regressions. All
variables with univariate P < 0.1 were included in
the multivariate model and the best models after
637
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multicollinearity assumption are shown in
Supplementary Methods. RBD IgG avidity, levels of
RBD-binding IgG, wild type 50% neutralization titer,
S1 IgG1, S2 IgG1, RBD IgG1, S1 IgG3, S2 IgG3, RBD
IgG3, S1 FcgRIIa, S2 FcgRIIa, RBD FcgRIIa, S1
FcgRIIIa, S2 FcgRIIIa, RBD FcgRIIIa, S1 ADCD, S2
ADCD, RBD ADCD, RBD ADCP, S1 CD154þCD4, S1
IFNgþCD4, S1 IL2þCD4, S1 IFNgþCD8, S1
IL2þCD8, S2 CD154þCD4, S2 IFNgþCD4, S2
IL2þCD4, S2 IFNgþCD8, and S2 IL2þCD8 responses
after mRNA vaccination were selected for principal
component analysis (PCA). Levels of IgG2, IgG4, and
IgA were not selected for PCA because of missing
data. PCA was applied to reduce the immunological
features to a minimal set of features to the entire
cohort on the one hand, and in N-KTRs and E-KTRs
separately on the other hand. R packages stats51 and
ggplot252 were used to perform and visualize PCA in
scaled and centered data. A 2-sided P-value less than
0.05 was considered statistically significant. Statisti-
cal analyses were done using GraphPad Prism 9.5.0
(GraphPad Software, San Diego, CA), R version 4.2.0
and Rstudio version 1.3.1073 with R version 4.2.1.51

RESULTS

Cohorts and Participant Characteristics

Eighty-six KTRs were enrolled in the study, including
63 N-KTRs and 23 E-KTRs. Four N-KTRs were
excluded because a SARS-CoV-2 infection was diag-
nosed between the 2 doses of COVID-19 vaccine. No
SARS-CoV-2 infection was diagnosed in E-KTRs be-
tween enrolment and day 49 postvaccination. De-
mographic and clinical characteristics were similar
between N-KTRs and E-KTRs except for age, ever-
olimus treatment, and estimated glomerular filtration
rate (Table 1). A total of 106 healthcare workers
enrolled in the parallel PICOV-VAC trial were
included in our analysis as HCs, with 40 N-HCs and 66
E-HCs. Detailed characteristics of N-KTRs, E-KTRs, N-
HCs, and E-HCs are summarized in Supplementary
Table S1. HCs were younger than KTRs. As previ-
ously described for patients with chronic kidney
disease,53 most KTRs were male. All KTRs were taking
immunosuppressive treatment and had a higher pro-
portion of comorbidities as compared to HCs. SARS-
CoV-2 infections among experienced participants
were more commonly symptomatic among E-KTRs,
who required more oxygen than E-HCs.

E-KTRs Have Higher Antibody Responses to

COVID-19 mRNA Vaccination Than N-KTRs

At baseline, SARS-CoV-2 specific antibodies were not
detected in naïve KTRs and HCs, whereas most previ-
ously infected participants had detectable antibodies
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(Figure 1). Intriguingly, E-KTRs had significantly higher
levels of RBD IgG avidity and higher titers of nAb
(Figure 1) as well as higher levels of RBD and S1 specific
IgG3 (Figure 2a) than E-HCs. Following vaccination, N-
KTRs had markedly lower levels of binding and nAbs as
compared to N-HCs (Figure 1 and Figure 2b), as previ-
ously described.5,6 In contrast, high antibody responses
to vaccination were detected in both E-HCs and E-KTRs.
On day 49, E-KTRs had markedly higher levels of SARS-
CoV-2 specific IgG, IgG avidity and nAb (Figure 1) as
well as IgG subclasses and IgA (Figure 2b) than N-KTRs.
Antibody levels in vaccinated E-KTRs reached similar
levels as those detected in E-HCs, and the higher levels of
SARS-CoV-2 specific IgG3 detected at baseline in E-KTRs
than in E-HCs were also detected after vaccination
(Figure 2b).

E-KTRs Develop Higher IgG Fc-Dependent

Effector Responses to mRNA Vaccination Than

N-KTRs

To understand how prior SARS-CoV-2 infection in-
fluences vaccine-induced antibody Fc-dependent
effector functions among KTRs, we measured the
binding capacity of IgG to human Fc-receptors. At
baseline, levels of spike-specific antibody binding to
FcgRIIa and FcgRIIIa levels were similar in E-KTRs
and E-HCs, except for S2-specific antibody binding to
FcgRIIa that were significantly higher in E-KTRs.
Consistent with binding IgG responses to vaccination,
spike-specific antibody binding to Fcg receptors were
higher in E-KTRs than in N-KTRs and were compa-
rable to those detected in E-HCs (Figure 3). To deter-
mine whether these FcgR-binding profiles translated
to increased antibody effector functions, we measured
ADCD and ADCP activities. At baseline and post-
vaccination, E-KTRs had similar levels of ADCD and
ADCP as E-HCs, thus supporting a role for Fc-
dependent effector functions in hybrid immunity ac-
quired by KTRs (Figure 4).

E-KTRs Have Higher CD4 T Cell and Similar CD8

T Cell Responses to mRNA Vaccination

Compared to N-KTRs

To assess the impact of previous SARS-CoV-2 infection
on cellular immunity of KTRs, we explored T cell re-
sponses to the spike protein by flow cytometry. Pre-
vaccination, E-KTRS had higher frequencies of CD4 T
cell expressing CD154, IFNg, and IL2 in response to
both S1 and S2 than E-HCs (Figure 5a). Post-
vaccination, E-KTRs had significantly higher fre-
quencies of CD4 T cells expressing CD154, IFNg, and
IL2 in response to both S1 and S2 than N-KTRs
(Figure 5b). Frequencies of S1- and S2-specific CD4 T
cells expressing CD154 were higher in E-KTRs than in
Kidney International Reports (2024) 9, 635–648



Table 1. Comparison of baseline characteristics between SARS-CoV-2-naïve and SARS-CoV-2-experienced KTRs

N (%) or Median (Q1--Q3)

N-KTRs E-KTRs

P -valueiN [ 59 N [ 23

Age, yr 63 (54–70) 51 (45–63) 0.011

Female sex 27 (45.8) 6 (26.1) 0.167

Body mass index, KG/M2 25.5 (21.4–29.5) 26.0 (22.6–27.6) 0.942

Time between KT and RNA vaccination, yr 9.7 (3.5–15.7) 8.1 (2.9–12.2) 0.227

Transplantation rank >1 7 (11.9) 4 (17.4) 0.493

Immunosuppression

Induction (BX/ATG/MUROMONAB-CD3) 35/17/5 (61.4/29.8/8.8)a 14/8/2 (60.9/34.8/8.7)b 0.553

CS 45 (76.3) 19 (82.6) 0.744

MMF 30 (50.8) 10 (43.5) 0.723

AZA 15 (25.4) 7 (30.4) 0.855

TAC 39 (66.1) 14 (60.9) 0.851

CyA 8 (13.6) 0 0.098

EVE 14 (23.7) 12 (52.2) 0.026

Triple is chronic therapy 33 (55.9) 16 (69.6) 0.379

DSA prior vaccination 4 (6.9)c 1 (5)d 1

Comorbidities

Arterial hypertension 50 (84.7) 18 (78.3) 0.522

Diabetes 22 (37.3) 10 (43.5) 0.792

Cardiovascular disease 16 (27.1) 8 (34.8) 0.678

Chronic respiratory disease 5 (8.5) 0 0.315

Chronic kidney insufficiency
(EGFR <30 ml/min per 1.73 m2)

8 (13.6) 1 (4.4) 0.231

Cancer 16 (27.1) 3 (13) 0.287

Biological data

Absolute lymphocyte count,/mm3 1390 (770–2108)e 1340 (1015–1970)f 0.493

EGFR, ml/min per 1.73 M2 48 (36–61) 62 (43–73) 0.051

Plasmatic creatinine, mg/dl 1.40 (1.08–1.72) 1.17 (1.04–1.43) 0.213

SARS-CoV-2 infection

Time between SARS-CoV-2 infection and RNA vaccination, D NA 149 (126–335.5)g NA

Asymptomatic NA 6 (26.1) NA

Need for supplemental oxygen NA 3 (13.6)h NA

Intensive care requirement NA 1 (4.5)h NA

ATG, antithymocyte globulin; AZA, azathioprine; BX, basiliximab; CS, corticosteroids; CyA, cyclosporine A; DSA, donor-specific antibodies; eGFR, estimated glomerular filtration rate; EVE,
everolimus; IS, immunosuppressive; KT, kidney transplantation; KTR, kidney transplant recipient; MMF, mycophenolate mofetil; NA, not applicable or not available; RNA, ribonucleic acid;
TAC, tacrolimus.
Continuous variables are expressed as median (Q1–Q3) and categorical variables as frequency (%).
a57 values.
bOne immune KTR received BX and ATG.
c58 values.
d20 values.
e44 values.
f21 values.
g17 values.
h22 values.
iQualitative variables were compared using a Fisher’s Exact or chi-square test and quantitative variables were compared using a Mann-Whitney U test.
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E-HCs. In contrast, CD8 T cell responses to S1 and S2
were similar in SARS-CoV-2-experienced groups at
baseline and postvaccination across study groups,
except for S1-specific CD8 T cells expressing IFNg that
were significantly higher in E-HCs than in N-HCs.

Integrated Analysis of Immune Response to

mRNA Vaccination in Naïve and SARS-CoV-2

Experienced KTRs and HCs

To visualize and characterize differences in immune
response features across individuals and groups,
dimensionality reduction was performed using PCA.54

PCA resulted in 2 components with eigenvalues >1
that described relationships between immunological
Kidney International Reports (2024) 9, 635–648
parameters following mRNA vaccination. The 2 major
components, PC1 and PC2, accounted for 50.8% of the
total variance (Figure 6a). N-KTRs, N-HCs, and E-HCs
formed distinct clusters whereas responses among E-
KTRs were more diffuse, encompassing N-HCs and E-
HCs. Within KTRs and HCs, PC1 and PC2 were distinct
between SARS-CoV-2-naïve and experienced subjects
(Figure 6b). As shown in Figure 6c, humoral immune
response features dominated the main principal
component, PC1, where T cell response features as well
as IgG3 responses, contributed most to PC2. Together,
these analyses indicate that N-KTRs and E-KTRs have
unique vaccine response profiles across many different
immune effectors. The potential contribution of clinical
639



Figure 1. Binding IgG, RBD IgG avidity, and neutralizing antibody responses to SARS-CoV-2 mRNA vaccination in naïve and experienced KTRs.
Serum levels of SARS-CoV-2 RBD specific binding IgG (BAU: binding antibody units), RBD specific IgG avidity (koff: dissociation rate constant)
and titers of neutralizing antibodies (NT50: 50% neutralization titer) were measured before vaccination (D0) and 1 month after 2 doses of mRNA
vaccine (D49) in naïve KTRs (N-KTRs, light pink), experienced KTRs (E-KTRs, dark pink), naïve HCs (N-HCs, light blue) and experienced HCs (E-
HCs, dark blue). Bars indicate median values. Horizontal grid lines indicate a technical negative signal (blank). Groups were compared using the
analysis of variance Kruskal-Wallis test with Dunn’s correction. For within HC or KTR comparisons, ns; aP < 0.05; bP < 0.01; cP < 0.001. For
comparisons between HC and KTR, ns; dP < 0.05; eP < 0.01; fP < 0.001. HC, healthy control; KTR, kidney transplant recipient; ns, not significant;
RBD, receptor binding domain.
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factors to these different profiles was assessed by
multivariate analyses. As shown in Table 1, N-KTRs
were older, included fewer patients taking everolimus
and had poorer kidney function than E-KTRs. Multi-
variate linear regression showed that previous SARS-
CoV-2 infection was the only significant variable
determining the differences of immune response fea-
tures between N-KTRs and E-KTRs (Supplementary
Table S2).

Immune Response to mRNA Vaccination in

N-KTRs and E-KTRs Do Not Correlate With the

Same Clinical Characteristics

The contrast between the low responses to mRNA
vaccination in N-KTRs and the potent hybrid immunity
acquired in E-KTRs suggests a different role for
immunosuppression-related factors in the 2 study
groups. Univariate and multivariate linear regressions
were used to explore correlations between demographic
and clinical factors and the immune response features
that differed most between N-KTRs and E-KTRs.

In N-KTRs, levels of RBD binding IgG were nega-
tively correlated with age, arterial hypertension, kid-
ney retransplantation after graft failure and MMF
treatment; and were positively correlated with azathi-
oprine treatment in univariate analyses (Table 2 and
Supplementary Table S3). Significant correlations were
also observed in multivariate analyses, except for
azathioprine treatment (Table 2 and Supplementary
640
Table S3). RBD IgG avidity and titers of nAb were
not included in these analyses because of their very
low values in N-KTRs. Several clinical parameters were
correlated with S1-specific CD4 T cell responses in
univariate analyses (Supplementary Tables S4, S5, and
S6). In multivariate analyses, only absolute lymphocyte
counts were negatively correlated with frequencies of
SI-specific IFNgþ CD4 T cells (Supplementary
Table S5). Together, these results indicate that clin-
ical factors associated with immune suppression nega-
tively correlate with humoral immune responses in N-
KTRs, with limited correlations with cellular immune
responses.

In E-KTRs, levels of RBD binding IgG were posi-
tively correlated with time between transplantation
and vaccination, and nAb titers were positively
correlated with absolute lymphocyte count in univar-
iate analyses but no significant correlation was
observed in multivariate analyses (Table 2,
Supplementary Tables S7 and S8). RBD IgG avidity was
positively correlated with time between trans-
plantation and vaccination, and with muromonab-CD3
treatment in univariate analysis; and only time be-
tween transplantation and vaccination was signifi-
cantly correlated in multivariate analyses
(Supplementary Table S9). Univariate analyses indi-
cated significant correlations between demographic and
clinical factors and S1-specific CD4 T cell responses
(Supplementary Tables S10, S11, and S12). In
Kidney International Reports (2024) 9, 635–648



Figure 2. IgG Subclasses and IgA responses to SARS-CoV-2 mRNA vaccination in naïve and experienced KTRs. Serum levels of SARS-CoV-2
RBD specific, spike S1 subunit specific, and spike S2 subunit specific IgG1, IgG2, IgG3, IgG4 and IgA were measured before vaccination (D0,
panel a) and 1 month after vaccination (D49, panel b) in naïve KTRs (N-KTRs, light pink), experienced KTRs (E-KTRs, dark pink), naïve HCs (N-
HCs, light blue) and experienced HCs (E-HC, dark blue). Bars indicate median values. Horizontal grid lines indicate a technical negative signal
(blank). Groups were compared using the analysis of variance Kruskal-Wallis test with Dunn’s correction. For within HC or KTR comparisons,
aP < 0.05; bP < 0.01; cP < 0.001. For comparisons between HC and KTR, ns; dP < 0.05; eP < 0.01; fP < 0.001. HC, healthy control; KTR, kidney
transplant recipient; MFI, median fluorescent intensity; ns, not significant; RBD, receptor binding domain.
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multivariate analyses, frequencies of S1-specific IFNgþ
CD4 T cells and IL2þ CD4 T cells were negatively
correlated with time between SARS-CoV-2 infection
and vaccination (Supplementary Tables S11 and S12).
To further explore the role of demographic and clinical
factors in immune response features in N-KTRs and E-
KTRs, we performed PCA and analyzed their correla-
tions with dominant PCs (Supplementary Figures S2
and S3). In line with multivariate regression analyses,
in N-KTRs, PC1 was correlated with time between
transplantation and vaccination, kidney retrans-
plantation after graft failure, arterial hypertension, and
azathioprine treatment (Supplementary Table S13). In
E-KTRs, PC1 was correlated with time between trans-
plantation and vaccination and PC2 was correlated with
time between infection and vaccination
(Supplementary Table S14). Together, these data
Kidney International Reports (2024) 9, 635–648
indicate that, except for time between transplantation
and vaccination, factors associated with low vaccine
responses in N-KTRs were not correlated with vaccine
responses in E-KTRs.

DISCUSSION

The defective immune response of KTRs to mRNA
vaccination remains a concern for the protection of this
vulnerable population against emerging infectious
diseases. The acquisition of hybrid immunity to SARS-
CoV-2 provides proof-of-principle that KTRs can
develop high immune responses to viruses despite their
state of immune suppression. This study provides a
comprehensive analysis of hybrid immunity in KTRs as
compared to HCs and provides evidence that vaccine
responses in E-KTRs are not correlated with most fac-
tors associated with decreased responses in N-KTRs.
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Figure 3. Fcg receptors binding antibody responses to SARS-CoV-2 mRNA vaccination in naïve and experienced KTRs. Serum levels of SARS-
CoV-2 RBD specific, spike S1 subunit specific, and spike S2 subunit specific antibodies binding the Fcg receptors, FcgRIIa and FcgRIIIa were
measured before vaccination (D0, panel a) and 1 month after vaccination (D49, panel b) in naïve KTRs (N-KTRs, light pink), experienced KTRs (E-
KTRs, dark pink), naïve HCs (N-HCs, light blue) and experienced HCs (E-HC, dark blue). Bars indicate median values. Horizontal grid lines
indicate a technical negative signal (blank). Groups were compared using the analysis of variance Kruskal-Wallis test with Dunn’s correction.
For within HC or KTR comparisons, ns; aP < 0.05; bP < 0.01; cP < 0.001. For comparisons between HC and KTR, ns; dP < 0.05; eP < 0.01; fP <
0.001. HC, healthy control; KTR, kidney transplant recipient; MFI, median fluorescent intensity; ns, not significant; RBD, receptor binding domain

Figure 4. IgG-dependent complement deposition and phagocytosis responses to SARS-CoV-2 mRNA vaccination in naïve and experienced
KTRs. Serum levels of SARS-CoV-2 RBD specific, spike S1 subunit specific, and spike S2 subunit specific IgG promoting complement deposition
(ADCD) and cellular phagocytosis (ADCP) were measured before vaccination (D0, panel a) and 1 month after vaccination (D49, panel b) in naïve
KTRs (N-KTRs, light pink), experienced KTRs (E-KTRs, dark pink) naïve HCs (N-HCs, light blue) and experienced HCs (E-HCs, dark blue). Levels of
ADCD are expressed as MFI. Levels of ADCP are expressed as phagocytic score (see methods). Bars indicate median values. Horizontal grid
lines indicate a technical negative signal (blank). Groups were compared using the analysis of variance Kruskal-Wallis test with Dunn’s
correction. For within HC or KTR comparisons, ns; aP <0.05; bP < 0.01; cP < 0.001. For comparisons between HC and KTR, ns; dP < 0.05; eP <
0.01; fP < 0.001. HC, healthy control; KTR, kidney transplant recipient; MFI, median fluorescent intensity; ns, not significant; RBD, receptor
binding domain.
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Figure 5. CD4 and CD8 T cell responses to SARS-CoV-2 mRNA vaccination in naïve and experienced KTRs. Percentage of SARS-CoV-1 spike S1
subunit and spike S2 subunit specific CD4 T cells expressing CD154, IFNg and IL2, and of CD8 T cells expressing IFNg and IL-2 were measured
in peripheral blood before vaccination (D0, panel a) and 1 month after vaccination (D49, panel b) in naïve KTRs (N-KTRs, light pink), experienced
KTRs (E-KTRs, dark pink), naïve HCs (N-HCs, light blue) and experienced HCs (E-HC, dark blue). Bars indicate median values. Groups were
compared using the analysis of variance Kruskal-Wallis test with Dunn’s correction. HC, healthy control; KTR, kidney transplant recipient; ns,
not significant.
For within HC or KTR comparisons, ns; aP < 0.05; bP < 0.01; cP < 0.001.
For comparisons between HC and KTR, ns; dP < 0.05; eP < 0.01; fP < 0.001.
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Although the mechanisms underlying hybrid im-
munity remain incompletely understood, priming of B
and T cell responses by natural infection probably
plays a central role. Before vaccination, polyfunctional
antibody and T cell responses to SARS-CoV-2 spike
protein were detected in E-KTRs. Whereas the levels of
RBD binding antibodies were similar in E-KTRS and E-
HCs before vaccination, E-KTRs had higher RBD IgG
avidity and higher titers of nAbs. This observation
suggests higher germinal center reactions following
SARS-CoV-2 infection in E-KTRs, a possibility sup-
ported by the higher frequency of CD4 T cells
expressing CD154, with potential B cell help capacity,
in E-KTRs than in E-HCs. At baseline, E-KTRs also had
higher frequencies of CD4 T cells expressing IFNg and
IL2 than E-HCs. In contrast, frequencies of spike spe-
cific CD8 T cells were similar in the 2 groups. The
higher levels of immune effectors in E-KTRs as
Kidney International Reports (2024) 9, 635–648
compared to E-HCs following SARS-CoV-2 infection
could be related to several factors. Symptomatic
COVID-19 was associated with more intense immune
responses.55 This factor is unlikely to play a dominant
role because most E-KTRs had experienced mild
COVID-19 and because RBD binding antibody levels
were similar in the 2 groups. Previous studies have
shown defective antibody and T cell responses to
SARS-CoV-2 in KTRs than in controls during the
early phase of the infection.56,57 In contrast, KTRs
and controls were shown to have similar levels of
SARS-CoV-2 specific antibodies and T cells during
the convalescent phase,58 in line with our observa-
tions. The delayed acquisition of antibody and T cell
responses in KTRs as compared to controls may be
related to the duration of SARS-CoV-2 antigen
exposure that may have further stimulated B cells
and CD4 T cells. In support of this hypothesis,
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Figure 6. Principal component analysis of immune responses to SARS-CoV-2 mRNA vaccination in naïve and experienced KTRs. (a) Scatter plot
of PCA including all immune response parameters except IgG2, IgG4 and IgA measured 1 month after vaccination (D49) in naïve KTRs (N-KTRs,
light pink), experienced KTRs (E-KTRs, dark pink), naïve HCs (N-HCs, light blue) and experienced HCs (E-HC, dark blue). (b) Comparison of PC1
and PC2 values between groups by analysis of variance Kruskal-Wallis test with Dunn’s correction with P < 0.1. (c) Relative weighting of
individual immune response parameters in PC1 and PC2. HC, healthy control; KTR, kidney transplant recipient, PC, principal component; PCA,
principal component analysis.
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prolonged viral excretion was observed in KTRs
following COVID-19.59 Prolonged antigen stimulation
may have also played a role in the higher levels of
the IgG3 observed in E-KTRs at baseline, because
this subclass is typically produced following recent
antigen exposure. Alternatively, the high levels of
Table 2. Univariate and multivariate linear regressions related to humora

RBD binding IgG

Univariate linear regression

Estimate (B) 95% CI

N-KTRS

Age �0.02 �0.03, 0.00

Transplantation rank

1 0.39 �0.17, 0.96

2 �0.51 �1.1, 0.09

Time between KT and RNA vaccination 0.01 �0.01, 0.03

Arterial hypertension �0.75 �1.2, �0.28

MMF �0.61 �0.94, �0.28

AZA 0.75 0.38, 1.1

E�KTRS

Age 0.01 �0.01, 0.02

Transplantation rank

1 �0.26 �0.78, 0.26

2 0.01 �0.71, 0.72

Time between KT and RNA vaccination 0.03 0.00, 0.05

Arterial hypertension 0.30 �0.17, 0.77

MMF 0.08 �0.34, 0.49

AZA 0.34 �0.09, 0.78

AZA, azathioprine; CI, confidence interval; E-KTRs, SARS-CoV-2-experienced kidney transplant r
naïve kidney transplant recipients; RBD, receptor binding domain.
Significant univariate (P < 0.1) and multivariate (P < 0.05) linear regressions with log(10) RBD
analyses, all variables that were significant (P < 0.1) in N-KTRs and/or E-KTRs are reported for b
(P < 0.1) significant in its own group.
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antibodies and T cells detected in convalescent KTRs
may also involve a better survival of patients with
highest immune responses in the early phase of the
infection. This possibility is not supported by lon-
gitudinal studies showing delayed acquisition of an-
tibodies in KTRs compared to controls.
l response after mRNA vaccination in N-KTRs and E-KTRs
Multivariate linear regression

P-value Estimate Standard error P-value

0.037 �0.014452 0.005833 0.016

0.2

0.093 �0.641834 0.231526 0.008

0.3

0.002 �0.611656 0.197785 0.003

<0.001 �0.664619 0.141061 <0.001

<0.001

0.2

0.3

>0.9

0.063 0.02502 0.01270 0.063

0.2

0.7

0.12

ecipients; KT, kidney transplantation MMF: mycophenolate mofetil; N-KTRs: SARS-CoV-2-

binding IgG after vaccination in N-KTRs and E-KTRs, respectively. For the univariate
oth groups. A multivariate analysis per group was then done, including only the variables
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Postvaccination, N-KTRs had lower humoral re-
sponses to the spike protein than N-HCs, as previously
reported.5-8,60-62 Levels of RBD binding IgG were
negatively correlated with age, arterial hypertension,
kidney retransplantation after graft failure, and MMF
treatment, confirming previous reports.8,13-15,34 Hu-
moral and cellular responses to vaccination were
markedly higher in E-KTRs than in N-KTRs. E-KTRs
produced high levels of high avidity binding IgG and
IgA and high titers of nAbs in response to mRNA
vaccination. They also displayed high binding to Fcg
receptors, including FcgRIIa, a receptor promoting
antibody-dependent phagocytosis by myeloid cells,
and FcgRIIIa, a receptor promoting activation of nat-
ural killer cells by IgG. These high levels of FcgR
binding IgG were associated with high levels of ADCP
and ADCD. E-KTRs also had high frequencies of CD4 T
cells expressing CD154, IFNg and IL2. This higher level
of vaccine-induced immunity in E-KTRs than in N-
KTRs is likely to provide increased protection against
breakthrough infections. Indeed, we recently reported
that both antibody and T cell responses to vaccination
correlated with the risk of breakthrough infection in
N-KTRs.9 In contrast to CD4 T cells, E-KTRs did not
show higher frequencies of spike-specific CD8 T cells
than N-KTRs. A dissociation between CD4 and CD8 T
cell responses to mRNA vaccination was also observed
in healthy adults who acquired hybrid immunity to
SARS-CoV-2.31 However, Gao et al.31 reported lower
CD8 T cell responses to vaccination in SARS-CoV-2-
experienced than in naïve subjects, a phenomenon
that was not observed in our study. The factors asso-
ciated with decreased vaccine responses in N-KTRs did
not correlate with either antibody or T cell responses to
vaccination in E-KTRs. Time between transplantation
and vaccination were correlated with RBD IgG avidity,
but not with the other immune vaccine response fea-
tures, suggesting the immune suppression induced at
the time of transplantation has some impact on vaccine
response in E-KTRs. A negative correlation was also
observed between T cell responses and time between
SARS-CoV-2 infection and vaccination, suggesting
waning of cellular immune response priming.

An important strength of this study is that KTRs and
HCs were recruited before the administration of the first
dose of COVID-19 vaccine and were included in parallel
studies with standardized protocols and procedures. A
limitation of the study is its relatively small sample size,
in relation to the monocentric recruitment of KTRs.
However, differences in vaccine responses between
groups and risk factors associated with low vaccine re-
sponses in N-KTRs that were previously reported in
larger studies could be confirmed in our study. Further
studies of hybrid immunity in other KTR populations
Kidney International Reports (2024) 9, 635–648
are needed to validate our observations. Other limita-
tions are the lack of follow-upwith the study population
and the focus of the analysis on the immune response to
the vaccine strain. The study was focused on the
response to primary immunization because it offered the
best model to compare vaccine-induced immunity and
their determinants independently of postvaccination
exposure to SARS-CoV-2 variants.

In conclusion, this study shows that KTRs can ac-
quire potent humoral and cellular immune responses to
COVID-19 mRNA vaccination when they have been
primed by natural infection and that these responses
are not correlated with factors associated with low
vaccine responses in SARS-CoV-2-naïve patients. Un-
derstanding the cellular and molecular bases of hybrid
immunity in KTRs should help the development of
optimized vaccination strategies against emerging
pathogens for this vulnerable population.
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