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A B S T R A C T   

Objectives: Diagnosis of Mild Cognitive Impairment (MCI) requires lengthy diagnostic procedures, typically 
available at tertiary Health Care Centers (HCC). This prospective study evaluated a flexible Machine Learning 
(ML) framework toward identifying persons with MCI or dementia based on information that can be readily 
available in a primary HC setting. 
Methods: Demographic and clinical data, informant ratings of recent behavioral changes, self-reported anxiety 
and depression symptoms, subjective cognitive complaints, and Mini Mental State Examination (MMSE) scores 
were pooled from two aging cohorts from the island of Crete, Greece (N = 763 aged 60–93 years) comprising 
persons diagnosed with MCI (n = 277) or dementia (n = 153), and cognitively non-impaired persons (CNI, n =
333). A Balanced Random Forest Classifier was used for classification and variable importance-based feature 
selection in nested cross-validation schemes (CNI vs MCI, CNI vs Dementia, MCI vs Dementia). Global-level 
model-agnostic analyses identified predictors displaying nonlinear behavior. Local level agnostic analyses pin
pointed key predictor variables for a given classification result after statistically controlling for all other pre
dictors in the model. 
Results: Classification of MCI vs CNI was achieved with improved sensitivity (74 %) and comparable specificity 
(73 %) compared to MMSE alone (37.2 % and 94.3 %, respectively). Additional high-ranking features included 
age, education, behavioral changes, multicomorbidity and polypharmacy. Higher classification accuracy was 
achieved for MCI vs Dementia (sensitivity/specificity = 87 %) and CNI vs Dementia (sensitivity/specificity = 94 
%) using the same set of variables. Model agnostic analyses revealed notable individual variability in the 
contribution of specific variables toward a given classification result. 
Conclusions: Improved capacity to identify elderly with MCI can be achieved by combining demographic and 
medical information readily available at the PHC setting with MMSE scores, and informant ratings of behavioral 
changes. Explainability at the patient level may help clinicians identify specific predictor variables and patient 
scores to a given prediction outcome toward personalized risk assessment.   

1. Background and significance 

Whereas dementia is the most common of the age-related degener
ative diseases in modern societies, milder forms of neurocognitive 
decline, such as Mild Cognitive Impairment (MCI), are more prevalent 
and have a significant impact on the wellbeing of affected persons and 
their families [1]. A comprehensive neuropsychiatric and 

neuropsychological evaluation, available at tertiary health care facil
ities, is typically required to set the diagnosis of MCI [2]. Consequently, 
MCI is highly underdiagnosed especially among persons with low edu
cation and living in rural areas [3]. In this setting, primary healthcare 
centers (PHCs) are the first point of contact for most elderly. General 
practitioners, PHC nurses and other personnel could be trained to 
recognize early signs and symptoms and administer cognitive screening 
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instruments, such as the Mini Mental State Examination (MMSE), which 
has adequate diagnostic accuracy in identifying persons with dementia 
but poor performance in discriminating persons with MCI from cogni
tively non-impaired elderly [4]. In clinical practice additional variables 
are usually considered toward MCI diagnosis, such as physical and 
psychiatric comorbidities (more importantly late-onset depression and 
overall emotional status), polypharmacy and drug interactions. Changes 
in cognition are usually accompanied by behavioral symptoms (such as 
depressed mood, irritability, or subtle changes in personality) [5]. 
Cognitive and behavioral difficulties are often under- or overestimated 
by persons with MCI highlighting the importance of informant reports as 
diagnostic aids [6]. 

Machine Learning models (ML) and Artificial Intelligence (AI) are 
inherently suitable to address the challenges posed by multi-modal 
datasets, including: (i) scalability, (ii) high dimensionality, (iii) hetero
geneity and complexity and (iv) distribution of the data [7,8]. A key 
advantage of these methods is their ability to automate the process of 
hypothesis generation and evaluation, in comparison to conventional 
statistical approaches. Ensemble models have been used extensively for 
feature selection and optimal classification of patients into MCI and 
cognitively non-impaired groups, as well as for identifying persons with 
MCI at higher risk for developing dementia. Recent meta-analyses report 
average accuracies ranging between 60 and 98 % based on combinations 
of neuropsychological test results [9] and 70–80 % on the basis of 
neuroimaging biomarkers [10]. However very few studies have com
bined clinical (e.g., physical comorbidities, polypharmacy), informant- 
based neuropsychiatric manifestations, patient self-reported cognitive 
and emotional symptoms, and patient scores on brief cognitive 
screening tools (e.g., MMSE) in order to support health care pro
fessionals in the PHC setting to achieve early detection of MCI. 

Although ML and AI are becoming well-established tools in various 
areas of healthcare research, explainability, transparency and, most 
importantly, accountability and responsibility are often overlooked. 
Especially in healthcare-related topics, the ability to understand why 
and/or how a particular model reached specific predictions is of para
mount importance. Without attempting to investigate models further, 
the possibility of erroneous results, overfitting or fitting using spurious 
and unimportant features and characteristics is increased. Explainable 
AI (XAI) provides computational tools to improve understanding of 
underlying mechanisms driving the results of ML-based classification 
[11–14]. These tools are often applied in the form of model-agnostic 
analyses conducted on already developed and tested models, of vary
ing types of underlying estimators, to produce explainability/inter
pretability profiles on a global or subject level. Particularly in rural 
regions where access to relevant healthcare specialties (e.g., neurolo
gists, psychiatrists, neuropsychologists) is limited, decision-support al
gorithms that could be used by specially trained PHC practitioners to 
estimate risk for neurocognitive disorders may be valuable in the context 
of early detection efforts. The present work addresses this problem with 
data from two elderly cohorts from the island of Crete, Greece where our 
group has previously reported very high rates of underdiagnosis of 
neurocognitive impairment among community-dwelling persons over 
60 years of age [3] despite local prevalence rates in the upper limits of 
the range found in other European countries (i.e., 10.8 % for dementia of 
any type and 32.4 % for MCI). 

2. Objectives 

The first aim of this study was to assess the overall accuracy of a 
flexible ML framework toward differentiating persons with MCI from 
cognitively non-impaired elderly and from patients with dementia, 
based on information that can be readily available in a PHC setting. This 
information includes sociodemographic, clinical, self-reported symp
toms of anxiety and depression, and informant-rated behavioral changes 
in daily life. 

A secondary aim was to apply model-agnostic explainability/ 

interpretability analyses to aid interpretation of prediction results in 
evaluating the classification process and to further investigate the 
contribution of specific predictor variables to the classification results. 
Specifically, model agnostic analyses were applied: (i) at the global 
(population-specific) level to help clarify which features are most sig
nificant for this comparison and how they contribute toward model 
decisions and, (ii) at the local (i.e., person-specific) level to identify 
predictor variables of primary importance for a particular clinical 
prediction. 

3. Methods 

3.1. Participants 

Data for the ML modeling were derived from two cohorts of 
community-dwelling adults aged > 60 years from the island of Crete, 
Greece: (a) The Cretan Aging Cohort (CAC, n = 506 [3]) recruited from 
13 PHC centers mainly in rural regions, and (b) the SKEPSI cohort (n =
257) of self-referred urban-dwelling participants [15]. Both cohorts 
were initially tested during 2013–2014 as part of prospective studies on 
aging. Participants from CAC were initially screened using MMSE and 
referred for comprehensive neuropsychological and neuropsychiatric 
examination if they scored < 24. To ensure that a representative sample 
of cognitively non-impaired elders were examined, 181 participants 
who scored in the low-risk range on MMSE (≥24points) were also 
included. Participants from the SKEPSI cohort either responded to ad
vertisements in local media inviting persons aged 50 years or older to be 
tested for “memory and other cognitive difficulties they may be expe
riencing” or were referred for neuropsychological testing by local phy
sicians. Assessments were performed, and clinical diagnosis was 
reached, using identical instruments and procedures in both cohorts by 
the same group of experts (neurologists, gerontologists, psychiatrists, 
and neuropsychologists) [3]. The final sample of 763 persons included 
277 persons meeting formal clinical criteria for MCI, 153 persons with 
dementia, and 333 cognitively non-impaired persons (CNI group). 
Sociodemographic characteristics of the total sample and each of the 
three groups are presented in Table 1. Additional details on participant 
recruitment and testing procedures is available in the Supplementary 
Material. 

3.2. Predictor variables 

The following 80 variables were included as predictors in all ML 
models (Model Set 1 and 2):  

• Sociodemographic: Age and education in years, living alone, family 
status, residence (urban, rural), (former) occupation type (sedentary 
vs manual).  

• Medical: Number of physical illnesses, number of major operations, 
polypharmacy (defined by > 4 medications).  

• MMSE total score  
• Informant scales: Cambridge Behavioral Inventory [16], a 45-item 

questionnaire providing carer ratings on the following domains: 
Memory/orientation/attention, Challenging Behaviors, Self-care, 
Motivation, Mood, Eating Behavior, Abnormal beliefs, Stereotypic 
Behaviors, Sleep; Mayo Fluctuations Scale [17] providing scores on 
four common manifestations of Lewy Body Dementia (daytime 
sleepiness/lethargy, excessive daytime sleep, disorganized ideas, 
staring into space). Item-level scores were entered in the models.  

• Self-reported mental health symptoms: Total scores on the Center for 
Epidemiological Studies Depression Scale (CESD [18]) and State 
Trait Anxiety Inventory Form Y (STAI [19]), assessing symptoms of 
depression and anxiety, respectively.  

• Presence of at least one type of cognitive complaint (episodic 
memory, word finding, name recall). 
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Additional variables, which were included only in model Set 2 
included 13 age- and education-adjusted z scores representing perfor
mance on tests of memory, visuoconstructive ability, language, atten
tion/processing speed, and executive functions. 

3.3. Machine learning pipeline 

The analysis pipeline adopted to address the main objective of the 
study entailed preprocessing steps, feature selection, model training and 
testing. 

3.3.1. Handling of missing values 
Univariate imputation via replacement with mean was used on 

missing values. Missing values were never over 20 % per variable. The 
balanced random forest model was utilized in the present study, an 
improvement on the classic RF with the addition of internal random 
bootstrap sample undersampling in order to achieve better class 
balancing [20]. To avoid bias, imputation was performed inside the 
cross-validation loop separately for training and testing subsets. 

3.3.2. ML classifier 
The Balanced Random Forest Classifier (RF) was used for classifi

cation and consensus feature importance-based feature selection in a 
nested cross-validation scheme. RF models use bagging, an ensemble 
technique employed to enhance prediction accuracy and control model 
overfitting [21]. Ensemble or averaging ML methods combine multiple 
“weak” learners, often decision trees and average their predictions in 
order to produce the final class estimate. Individual decision trees are 
characterized by high variance in their estimate and do not perform 
well, by combining multiple complimentary simple estimators a 

substantially better prediction machine is created. Decision trees get 
their name from the tree-like structure of the set of rules that defines 
them. They consist of multiple splits, nodes and leaves (terminal nodes), 
which produce the output variables. 

In the present work cross validation utilized 80/20 stratified split, 
externally repeated 400 times to stabilize classification metrics. Inter
nally, a stratified 6-fold split was repeated 60 times in order to derive the 
top 15 most important features across all internal iterations (thus 
“consensus” features). This approach was utilized in previous work of 
our team [22,23] in order to avoid overfitting and obtain stable and 
reliably reproducible final features of increased significance to the 
particular clinical comparison [24,25]. The number of selected features 
in the final models was kept relatively low in order to avoid model 
overfitting and to aid interpretability. Furthermore, adding more fea
tures did not aid in model performance or produce noteworthy results in 
terms of local and global level explainability. Externally, the number of 
selected features (via consensus feature-importance ranking) was set to 
15. In the nested CV internal loop, more features were selected to allow 
for the calculation of more accurate feature prevalence statistics across 
iterations. 

3.3.3. Models tested 
ML models were built to perform binary classification problems (CNI 

vs MCI, CNI vs Dementia, MCI vs Dementia). A multi-class classification 
model was also tested. Primary models only considered variables that 
may be available to PHC practitioners (sociodemographic and clinical 
information, MMSE score, severity of anxiety and depression symptoms 
as measured by self-reported instruments, informant-based ratings of 
everyday cognitive difficulties and other behavioral manifestations of 
age-related neurodegenerative conditions;Model Set 1). For comparison 
purposes, a second set of models were examined which in addition to all 
variables included in Model Set 1, also considered scores on the stan
dardized neuropsychological tests routinely used in MCI and dementia 
diagnosis (age- and education-adjusted z scores derived from Greek 
population norms. Specificity, sensitivity, accuracy, precision, F-score, 
and AUC were used to evaluate the performance of the cross-validated 
model on the test set. 

3.3.4. Model agnostic analysis 
Model-agnostic analysis was applied to the final cross-validated 

models, which were trained only with the sets of variables that 
emerged as significant features (Model Sets 1 and 2, separately). 

Global-level analyses aimed to identify variables that display 
nonlinear behavior as predictors (partial dependence plots [26,27]), and 
potentially determine clinically useful cutoff scores to aid interpretation 
of the results of the neuropsychological evaluation. The term “nonlinear’ 
here refers to variable responses that demonstrated abrupt, step-type 
changes in predicted class membership, i.e., a limited increase in a 
variable’s value leads to a significant change in estimated prediction 
value, potentially causing a change in the person’s predicted class. 

At the patient/local level we sought to identify predictor variables 
that emerge as key contributors to a given classification result after 
statistically controlling for all other predictors in the model [28,29]. 
This was possible with the use of ceteris paribus profiles [30] as well as 
break down plots [31], both created for individual subject predictions 
while utilizing the model trained on the remaining subjects. 

The ceteris paribus profiles and break-down plots (local level) as well 
as partial dependence plots (global level) were developed using the 
dalex Python package [29], the default values in the arguments of the 
main function were applied. Ceteris paribus profiles (subject-specific) 
indicate for each valuable separately, the estimated change in prediction 
(continuous value that determines class membership) regarding variable 
value fluctuations. The Partial Dependence Plots (PDP) (and Accumu
lated Local Effects (ALE)) are created as group averages of individual 
ceteris paribus profiles, offering the same potential interpretation on a 
more global level. 

Table 1 
Sample sociodemographic and clinical characteristics.   

Total 
sample 

NI MCI Dementia 

n 763 333 277 153 
Age (years) 

Range 
72.4 ± 9.0 
60–93 

67.5 ±
8.1# 

60–90 

74.6 ±
7.7#§

60–93 

79.2 ±
6.6$§

60–92 
Education (years) 

Range 
7.4 ± 4.6 
0–23 

9.3 ±
4.6# 

0–23 

6.1 ±
4.1#§

0–20 

5.7 ± 3.8$§

0–17 

Women (%) 63.3 67.6#$ 62.5# 55.6$  

Marital status (%) 
Single 2.1 2.1 1.7 2.6 
Married 69.5 71.3 68.8 66.4 
Widowed 24.1 19.3#$ 27.4# 29.6$ 

Divorced 4.4 7.3#$ 2.1# 1.3$  

Occupation (%) 
Professional 28.0 36.9#$ 22.6# 15.8$ 

Agricultural/skilled 
worker 

42.3 33.0#$ 46.2# 58.6$ 

Small Business/mixed 29.7 30.1 31.3 25.7  

Geographic origin (%) 
Urban 46.6 60.4#$ 37.5#§ 33.1$§

Small town 10.3 10.5 9.8 10.6 
Rural 43.1 29.1#$ 52.7#§ 56.3$§

Number of physical 
diseases 

3.4 ± 1.8 3.2 ±
1.8# 

3.6 ± 1.8# 3.3 ± 1.9 

Number of operations 1.5 ± 1.5 1.5 ±
1.5$ 

1.6 ± 1.7§ 1.1 ± 1.3$§

Polypharmacy (%) 40.1 31.9#$ 46.9# 48.0$ 

Values depict means ± 1 standard deviation, unless otherwise specified. Sta
tistically significant differences (p <.05) are noted with # for comparisons be
tween NI and MCI, $ for comparisons between NI and Dementia, § for 
comparisons between MCI and AD groups. Polypharmacy: >4 medications. 
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4. Results 

Results comparing the three study groups on the predictor variables 
using univariate analyses are presented in the Supplementary Material. 

4.1. Classification results 

Table 2 presents the performance indices of the two sets of the ML 
models. Model Set 1 displayed fair classification accuracy (74 %) on the 
main comparison of interest (CNI vs MCI) with balanced sensitivity and 
specificity estimates (74 and 73 %, respectively). Corresponding values 
based on MMSE alone are listed in the Supplementary Material. In Fig. 1 
(upper panel) the 15 top features/predictors are presented for the CNI vs 
MCI comparison according to their impact on model output (Shap 
values), i.e., their relative contribution to the final predictive model’s 
performance, separately for each class (blue: CNI, red: MCI). MMSE and 
age had the highest contribution to model performance, with additional 
sociodemographic, behavioral, emotional and clinical variables 
featuring in the top 15 list. Specifically, older age, lower education, rural 
residence, memory problems (forgetting recent events, repetitive ques
tioning, loss of objects, forgetting what day it is), behavioral manifes
tations (rigid thinking), emotional difficulties (self-reported symptoms 
of anxiety and depression), multicomorbidities and polypharmacy 
emerged as important features in correctly identifying persons with MCI 
in comparison to cognitively non-impaired persons. 

Classification accuracy was considerably higher for the secondary 
comparison (MCI vs Dementia: accuracy = 85 %, sensitivity/specificity 
= 87 %; CNI vs Dementia: accuracy = 94 %, sensitivity/specificity = 94 
%). Several of the highest-ranking features for the former contrast (see 
Fig. 1, lower panel) were common to those supporting the CNI vs MCI 
contrast, presented in Fig. 1-upper panel (MMSE, age, education, anxi
ety and depression symptoms, memory problems) with some additional 
features (difficulties performing everyday tasks, confusion, disorganized 
ideas). Please note that in the upper panel of Fig. 1 (CNI vs MCI model), 
CNI represents class 0 and MCI class 1, while in the lower panel (MCI vs 
Dementia model), MCI represents class 0 while Dementia is class 1. 

As expected, the second set of (comparison) models performed 
considerably better for the CNI vs MCI contrast (82 %, 83 %, and 81 % 
for overall accuracy, sensitivity, and specificity, respectively). Adding 
neuropsychological test scores as predictors did not improve model 
performance for the secondary comparisons (MCI vs Dementia, CNI vs 
Dementia). 

4.2. Model agnostic analyses: Global level 

The prominent role of some of the highest-ranking predictors 
(MMSE, age, education) toward discriminating CNI from MCI partici
pants according to Model 1 is supported by the abrupt response in 
estimated model prediction driven by the shift of variable values in the 
partial dependence plots (Fig. 2). 

The partial dependence plots displayed in Figs. 2 and 3 refer to all 
participants in each of the two groups of interest (CNI and MCI) and are 
averages of individual ceteris paribus plots. In this type of explainability 
diagram, all variables are kept fixed except for the one displayed. The 

final plot shows the expected change in prediction value in the 0 to 1 
range (y axis) as a function of a specific variable’s values. Prediction 
values < 0.5 indicate an increased probability of ‘low’ class (class ’‘0’) 
membership (CNI in this case), while prediction values ≥ 0.5 indicate an 
increased probability of ‘high’ class (class ’1’) membership (MCI in this 

Table 2 
Results of the Balance RF classifier in differentiating between participants with MCI or dementia from cognitively non-impaired controls (CNI) according to two types 
of models (Model sets 1 and 2).  

Contrast Model set Accuracy Precision Sensitivity Specificity F1 ROC-AUC 

CNI vs MCI 1 74 ± 3 68 ± 4 74 ± 5 73 ± 5 71 ± 4 74 ± 3 
CNI vs MCI 2 82 ± 3 77 ± 4 83 ± 5 81 ± 4 80 ± 3 82 ± 3 
MCI vs Dementia 1 85 ± 3 90 ± 3 87 ± 5 87 ± 5 88 ± 3 84 ± 3 
MCI vs Dementia 2 84 ± 4 90 ± 4 86 ± 5 86 ± 5 88 ± 3 83 ± 4 
CNI vs Dementia 1 94 ± 2 86 ± 6 94 ± 5 94 ± 3 90 ± 4 94 ± 2 
CNI vs Dementia 2 94 ± 2 89 ± 5 91 ± 8 96 ± 3 90 ± 4 93 ± 4 

Abbreviations; MCI: Mild Cognitive Impairment, CNI: Cognitively Non-Іmpaired. 

Fig. 1. Most significant features that emerged from Model type 1. Upper panel: 
Model discriminating between CNI (class 0) vs MCI (class 1) participants. Lower 
panel: Model discriminating between MCI (class 0) vs Dementia groups (class 
1). Abbreviations; MMSE: total Mini Mental Status Examination score, Mayo3: 
Disorganized thoughts, CBI1: Forgets events that took place in the previous 
days (e.g., conversations, trips, etc), CBI2: Asks the same questions over and 
over again, CBI3: Loses things or does not remember where he/she placed them, 
CBI6: Has difficulty concentrating when reading or watching television, CBI7: 
Forgets what day it is, CBI8: Appears to be confused or “lost” in unfamiliar 
surroundings, CBI9: Has difficulty using electrical appliances (e.g., television, 
radio, stove, washing machine), CBI11: Has difficulty using the telephone, 
CBI13: Has difficulty handling money or paying bills, CBI37: Remains fixed in 
his/her ideas (even when s/he is clearly wrong), STAI_B: State Trait Anxiety 
Inventory Form Y (Trait Anxiety), CESD: Center for Epidemiological Studies 
Depression Scale total score. 
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case). 
As shown in Fig. 2, MMSE scores < 23 points ‘mandate’ that a 

participant be categorized as MCI (class ’1’, prediction > 0.6), whereas 
persons with values > 24 are significantly more likely to be classified in 
the CNI group by the model (prediction values < 0.5). Regarding age, 
persons aged 75 years or older are given an increased probability for an 
MCI diagnosis, albeit not significant enough to drive a definitive diag
nosis according to the developed model. Furthermore, more years of 
education potentially reduce the probability of MCI class membership. 
Specifically, individuals with >7 or 8 years of education have a signif
icantly higher chance of not being characterized as suffering MCI than 
subjects with <4 years of education. Importantly, the partial depen
dence plots in Fig. 3 indicate that informant ratings as low as 1 on the 4- 
point CBI scale indicating even occasional presence of a given memory 
or behavioral manifestation is sufficient to drive the model’s prediction 
slightly over the 0.5 class membership threshold. 

4.3. Model agnostic analyses: Local level 

Model agnostic analyses at the local (person-specific) level are 
designed to aid interpretation of a given classification decision by the 
model and to identify potential risk factors for a specific participant. The 
first example presented here (Fig. 4) is of a CNI participant, with a 
prediction probability of 0.03, indicating a very low probability of 
membership to the MCI class. Small increases in the values of informant- 
ratings of memory problems (CBI questions 1, 3, 7) and rigid thinking 
(CBI question 37) each have the potential of increasing the projected 
prediction by as much as 0.3 points. Considering that each individual 
ceteris paribus profile is calculated while keeping all other values fixed, 
if these values are all increased simultaneously, the model would likely 
produce a probability value exceeding the threshold for membership to 
the MCI class. 

Fig. 5 illustrates a ceteris paribus plot of a person correctly classified 
to the MCI class with a very high probability (0.85). A change in MMSE 
score from (the observed) 21 to 26 points, would shift model prediction 
below 0.5 and thus toward the CNI class. 

5. Discussion 

The key finding of the present study is that by considering a rela
tively small set of sociodemographic, clinical, brief cognitive screening, 
and behavioral variables it is possible to achieve fair sensitivity and 
specificity (74 %) in identifying persons who actually meet criteria for 
MCI from cognitively non-impaired elderly (Model Set 1). This was the 
primary contrast of interest in the present study given that diagnosis of 
MCI typically requires extensive cognitive/neuropsychological testing 

Fig. 2. Partial dependence plots at the global (group) level of the four highest- 
ranking predictors: CNI vs MCI (Model 1). Abbreviations; MMSE: total Mini 
Mental Status Examination score, STAI_B: State Trait Anxiety Inventory Form Y 
(Trait Anxiety). 

Fig. 3. Partial dependence plots at the global (group) level for Model 1 
discriminating between CNI vs MCI participants: variables 5–15 among the 
highest-ranking predictors. Abbreviations; CBI1: Forgets events that took place 
in the previous days (e.g., conversations, trips, etc), CBI2: Asks the same 
questions over and over again, CBI3: Loses things or does not remember where 
he/she placed them, CBI7: Forgets what day it is, CBI37: Remains fixed in his/ 
her ideas (even when s/he is clearly wrong). 
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which is available only at tertiary HC centers. While sociodemographic 
and clinical variables can be readily extracted from the patient’s medical 
record, the remaining predictor variables can be obtained from health 
care personnel following minimal training. Importantly, by combining 
informant reports on a handful of relevant questions and obtaining brief 
self-reported ratings of anxiety and depression it is possible to comple
ment the results of brief cognitive screening tools (such as the MMSE) 
and significantly improve its sensitivity (37.2 to 41.6 % depending on 
the cutoff). These findings are consistent with previous literature, 
reporting a wide range of MMSE performance in identifying persons 
with MCI from cognitively non-impaired elderly (sensitivity: 18–86 %, 
specificity: 48–100 %) [4]. 

The most significant factors among those entered in the model to 

predict MCI vs CNI, were MMSE score (<24 points), age (>75 years) and 
education (<4years). Education is a well-known protective factor for 
dementia as indicated by large epidemiological studies has been shown 
to contribute in decrease of dementia rate [32]. Consistent with previous 
reports, this study confirmed the significance of education in predicting 
MCI among those with <4 years of education or CNI in those with seven 
or more years of education. It should be noted, however, that education 
may be a risk factor for neurocognitive impairment indirectly through 
socioeconomic status by limiting access to high quality healthcare ser
vices. While the two groups did not differ significantly on self-rated 
symptoms of anxiety and depression both scores were among the 15 
top-ranking features in the model classifying CNI from MCI persons. 
Such results in the context of ML modeling often indicate that these 
variables are involved in more complex interactions with other variables 
in determining class probability. Conversely, despite the small (non- 
significant) tendency of persons with MCI to report cognitive complaints 
as compared to persons in the CNI group, this variable did not rank 
among the strongest predictors in the corresponding models. This 
finding is consistent with the notion that the probability of reporting 
cognitive difficulties in elderly is primarily determined by non-cognitive 
factors (such as emotional status and physical health [33]). 

As expected, classification performance was considerably higher 
when applying Model type 1 to the discrimination of persons with de
mentia from persons diagnosed with MCI (approximately 85 %). This 
performance level is notable for two reasons: Firstly, for not taking into 
account informant-ratings of daily functionality which weighted 
considerably toward establishing clinical diagnosis of dementia in the 
present cohort. Secondly, given the relatively mild severity of dementia 
characterizing the present cohort. However, this performance is some
what lower than that achieved by MMSE alone. 

In view of the rapidly growing application of ML to address clinical 
questions and problems, it is important to stress the dangers and pitfalls 
of ill-designed ML models. Conceptually, the most crucial issues concern 
poor evaluation strategies, ineffective feature selection, and choices that 
can easily lead to overfitted, biased or seemingly “over-performing” 
models. For these reasons, we have selected a nested cross-validation 
strategy paired with an importance-based consensus feature selection. 
In addition, we carefully examined individual feature importance and 
prediction response over the entire range of feature values on a global 
level (sample-wide). 

Whereas explainability at the group level may help future users to 
interpret classification results, routine clinical use could benefit from 
information pertaining to the importance of specific predictor variables 
and individual values to a given prediction outcome. This approach is 
meaningful given the high level of individual variability in relevant 
profiles, i.e., ceteris paribus and breakdown profiles. Aside from facili
tating the in-depth study of each predictor’s effect on the estimator’s 
outcome, individualized predictor-prediction and feature importance 
profiles allow for personalized risk assessment and can direct treatments 
such as cognitive conditioning or guide the production of personalized 
recommendations based on the test performance and estimated outcome 
of each individual. 

5.1. Limitations 

The most notable limitations of the present results relate to the cross- 
sectional nature of the dataset used for model training and cross- 
validation and to certain sample characteristics. Regarding the former 
issue, MCI diagnosis, achieved following comprehensive neuropsycho
logical and neuropsychiatric evaluation of all participants, could be 
considered as tentative given the likelihood of reverting to normal status 
at a later assessment especially in non-clinical settings [34]. Sample 
characteristics are also notable for the high percentage of persons 
residing in rural areas (43.1 %) and having <6 years of formal education 
(26.3 %). 

Fig. 4. Ceteris paribus profile of a CNI participant, derived from Model type 1 
contrasting CNI vs MCI groups. Observed values are marked by dots. Abbre
viations; CBI1: Forgets events that took place in the previous days (e.g., con
versations, trips, etc), CBI3: Loses things or does not remember where he/she 
placed them, CBI7: Forgets what day it is, CBI37: Remains fixed in his/her ideas 
(even when s/he is clearly wrong). 

Fig. 5. Ceteris paribus profile of a MCI participant, derived from Model type 1 
contrasting CNI vs MCI groups. The observed value is marked by a dot. 
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6. Conclusions 

The findings of this study suggest that machine learning techniques 
could contribute to better, faster, and simpler diagnostic procedures 
within PHC. These results extend previous research indicating that 
machine learning techniques could help optimize algorithms to improve 
detection of dementia and/or progression from MCI to dementia based 
on health records [35]. Future research that integrates additional, easy 
to obtain biomarkers, such as voice-derived indices of neurocognitive 
decline, via ensemble or artificial neural networks, are forthcoming to 
improve identification of persons likely to suffer from MCI and identify 
early markers of progression to dementia. 

Clinical Relevance Statement 

The current results stress the need to train GPs and PHC personnel to 
recognize specific risk factors and manifestations of MCI. The current 
results show that clinical data obtained at the PHC level could help 
differentiate MCI from normal cognition and dementia. 
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