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Abstract
Traumatic Brain Injury (TBI) is a frequently occurring condition and approximately 90% of TBI cases are classified as 
mild (mTBI). However, conventional MRI has limited diagnostic and prognostic value, thus warranting the utilization of 
additional imaging modalities and analysis procedures. The functional connectomic approach using resting-state functional 
MRI (rs-fMRI) has shown great potential and promising diagnostic capabilities across multiple clinical scenarios, includ-
ing mTBI. Additionally, there is increasing recognition of a fundamental role of brain dynamics in healthy and pathologi-
cal cognition. Here, we undertake an in-depth investigation of mTBI-related connectomic disturbances and their emotional 
and cognitive correlates. We leveraged machine learning and graph theory to combine static and dynamic functional 
connectivity (FC) with regional entropy values, achieving classification accuracy up to 75% (77, 74 and 76% precision, 
sensitivity and specificity, respectively). As compared to healthy controls, the mTBI group displayed hypoconnectivity in 
the temporal poles, which correlated positively with semantic (r = 0.43, p < 0.008) and phonemic verbal fluency (r = 0.46, 
p < 0.004), while hypoconnectivity in the right dorsal posterior cingulate correlated positively with depression symptom 
severity (r = 0.54, p < 0.0006). These results highlight the importance of residual FC in these regions for preserved cogni-
tive and emotional function in mTBI. Conversely, hyperconnectivity was observed in the right precentral and supramar-
ginal gyri, which correlated negatively with semantic verbal fluency (r=-0.47, p < 0.003), indicating a potential ineffective 
compensatory mechanism. These novel results are promising toward understanding the pathophysiology of mTBI and 
explaining some of its most lingering emotional and cognitive symptoms.
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Abbreviations
mTBI  mild Traumatic Brain Injury
rs-fMRI  resting-state functional Magnetic Resonance 

Imaging
GCS  Glasgow Comma Scale
ML  Machine Learning
S/D FC  Static/Dynamic Functional Connectivity
ROI  Region Of Interest
FCG  Functional Connectivity Graph
OMST  Orthogonal Minimum Spanning Trees
CV  Cross Validation.

Introduction

Mild Traumatic Brain Injury (mTBI) poses a global health 
problem of alarming importance, affecting most countries 
across all continents. It is estimated that half of the world’s 
population will experience one or more TBIs over their life-
time (Maas et al., 2017). While TBI is a significant cause 
of death among all age groups, it is the most prominent 
cause of mortality among young adults (Maas et al., 2017). 
Although approximately 90% of TBIs are classified as mild 
(Len and Neary, 2011), no consensus has yet been reached 
regarding the prevalence and causes of persistent cognitive 
and emotional sequalae of mild TBI (Iverson et al., 2019; 
Karr, Areshenkoff, and Garcia-Barrera, 2014; Maas et al., 
2017; McInnes et al., 2017; Ruff et al., 2009). Symptoms 
associated with mTBI, especially cognitive complaints, 
often resolve within a three-month period, though it is not 
uncommon for some to become chronic (Levin and Diaz-
Arrastia, 2015). It is estimated that as many as 15–30% of 
patients continue to suffer from mTBI-related symptoms 
long after initial trauma (Haarbauer-Krupa et al,. 2021) 
with higher incidence of post-concussive symptoms in 
clinic-based samples (Vanderploeg, Curtiss, and Belanger, 
2005). Such symptoms include headaches, dizziness, ver-
tigo, depression, fatigue, impulsivity, irritability, as well as 
a wide range, of possibly heterogenous cognitive deficits 
(Bell et al., 1999; Konrad et al., 2011; Vanderploeg, Cur-
tiss, and Belanger, 2005). Emotional difficulties, in particu-
lar, which may in part be attributed to psychological factors 
such as poor coping styles (Marsh and Smith, 1995), have 
also been linked to aberrant connectomic features (Moreno-
López et al., 2016).

Conventional anatomical MRI is sensitive at detecting 
structural traumatic lesions, although the extent of subtle 
structural impairment is typically underestimated by MRI, 
especially in mTBI. Functional imaging approaches are, in 
principle, more sensitive to disturbances in brain function 
at both the regional and network level toward accounting 
for physical, emotional, and cognitive symptoms following 

TBI and aid prognosis of behavioral and cognitive patient 
outcomes. However, the potential contribution of functional 
imaging is thwarted by considerable patient heterogeneity in 
(i) trauma location, type and force, (ii) post-injury symptom 
profiles and, (iii) the broad range and diversity of rehabili-
tation practices across hospitals, rehabilitation centers, and 
geographical regions (Moller, Lexell, and Ramsay, 2021; 
Rytter et al., 2021). These considerations render the need 
for novel approaches that preserve individual variability in 
the indices derived by functional imaging.

The prevalence of studies exploring rs-fMRI-derived 
large-scale functional networks have facilitated our under-
standing of the typical and aberrant functional connectome 
(Luppi et al., 2019; Nathan et al., 2014; Rolls, Cheng, and 
Feng, 2021; Zhang et al., 2016). The body of functional 
neuroimaging research on the consequences of mTBI is 
steadily growing (Sharp, Scott, and Leech, 2014), although 
the majority of resting-state functional connectome studies 
focus on the acute and sub-acute phases. However, there 
is significant variability in the methodological choices 
employed for the study of regional functional roles and 
relationships, leading to results than cannot be compared 
or combined for straightforward interpretations in terms of 
regional effects of mTBI pathology and symptomatology. 
Seed-based FC approaches, which compute activity rela-
tionships between a brain region and the rest of the brain, 
have revealed disturbances in the sensorimotor, visual, 
salience, ventral and dorsal attention, and frontoparietal 
networks, as well as in several regions of the Default Mode 
Network (DMN) (Champagne et al., 2020; Madhavan et 
al., 2019; Sours et al., 2015). Nathan et al. (2014) utilized a 
more data-driven approach based on Independent Compo-
nent Analysis (ICA), examining the DMN and sensorimotor 
networks. Their findings included decreased DMN connect-
edness in the left inferior temporal and right precentral gyri 
as well as left caudate and inferior parietal lobule. Addition-
ally, the same team reported increased DMN connectedness 
in the bilateral posterior cingulate and temporal regions. 
Using a similar methodology, semi-acute mTBI patients 
(N = 50) were effectively distinguished (84% AUC) from 
healthy individuals (N = 50) (Vergara et al., 2016). Elevated 
connectivity was observed between the inferior parietal 
cortex and posterior precuneus (of the DMN) as well as 
between the cerebellum and sensorimotor networks (Ver-
gara et al., 2016). Notably, a re-analysis of the latter dataset 
using a seed-based approach found decreased connectivity 
in mTBI patients within the DMN and increased connectiv-
ity between the DMN and lateral prefrontal cortex (Mayer 
et al., 2011).

Recently, there is a growing consensus that functional 
brain connectivity is not static, but rather it varies from 
moment to moment, exhibiting dynamics that have been 
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shown to play important roles in both healthy and pathologi-
cal cognition and even consciousness (Luppi et al., 2019; 
Luppi et al., 2021; Lurie et al., 2020; Rolls, Cheng, and Feng, 
2021; Shine et al., 2016; Sun et al., 2019; Zhang et al., 2016). 
Dynamic functional connectivity (DFC) principles have 
been applied to the study of mTBI: using dynamic states of 
FC as inputs for a machine learning classifier, Vergara et al. 
(2018), were able to effectively distinguish between semi-
acute stage mTBI patients and healthy controls at an impres-
sive accuracy of 87–92%. Significant findings were reported 
in cerebellum and sensorimotor areas (Vergara et al., 2018) 
(but see Mayer et al., 2014, for conflicting results). How-
ever, it is clinically imperative to assess FC changes that 
persist into the chronic phase, as these are more likely to be 
associated with the long-term functional consequences of 
mTBI. To our knowledge, there is no work on chronic mTBI 
FC disturbances using dynamic, or dynamic combined with 
static, functional connectivity.

The present study integrates multiple functional metrics, 
including static and dynamic FC measures and regional 
activation complexity over time, to assess persisting con-
nectomic disturbances following mTBI through the study 
of individual patient connectomes. The second aim of the 
present analyses was to assess the functional significance of 
aberrant connectomic patterns to account for the lingering 
effects of mild head trauma on emotional status (i.e., anxiety 
and depression symptoms) and cognitive function (perfor-
mance on standardized tests of episodic memory, execu-
tive function, and language). We employ a novel machine 
learning approach followed by statistical thresholding and 
correction to ensure robust and conservative data-driven 
cross-validation.

Materials and methods

Participants

The dataset of the present study comprises rs-fMRI scans 
from 37 patients with mTBI obtained in the chronic phase, 
as well as healthy controls (HC) (n = 39). Initially, 46 
patients meeting inclusion criteria were identified through 
the registry of the Neurosurgery Clinic, Heraklion Univer-
sity Hospital and invited to return for follow-up MRI and 
neuropsychological assessment. Inclusion criteria were 
the following: (a) age at the time of injury 19–65 years, 
(b) non-penetrating injury that did not require neurosurgi-
cal intervention, (c) mild injury severity as indicated by 
Glasgow Coma Scale (GCS) score ≥ 13 upon admission 
(Russell and Smith, 1961; Teasdale and Jennett, 1974), 
and (d) time elapsed since brain injury ≥ 6 months. Exclu-
sion criteria were: (i) History of neurological or psychiatric 

disease prior to injury, current history of substance abuse, 
or currently receiving psychoactive medications other than 
anticonvulsants, (ii) Posttraumatic multifocal or unifocal 
extensive lesions (i.e., gliotic areas due to contusions > 3 cm 
or multiple (> 3) chronic hemorrhagic foci resulting from 
diffuse axonal injuries (DAIs)) at the time of inclusion. 
Nine patients did not meet the inclusion criteria and were 
not included in the analyses. Detailed social/psychiatric his-
tory at the time of testing revealed that none of the patients 
were involved in litigation concerning their injury or indi-
cated that the results of the study could be used for seeking 
compensation since this practice is not customary in Greece. 
Moreover, they had not received systematic psychiatric or 
psychological interventions post-injury. All participants in 
the HC group underwent a structured interview to record 
basic demographic information and ensure that they did 
not meet the exclusionary criteria (history of neurological 
[including TBI] or psychiatric disease, current history of 
substance abuse, or currently receiving psychoactive medi-
cations, without undergoing comprehensive neuropsycho-
logical testing.

Time post injury at the time of the MRI and neuropsycho-
logical evaluation averaged 26.3 months (SD = 15.5). The 
two groups (patients and HCs) were closely matched on age 
(mTBI mean = 40.33, SD = 17.4 years, HC mean = 41.73, 
SD = 15.6 years), although the former group included a 
higher percentage of men (84% vs. 72%, p = 0.2), and had 
achieved higher formal education (mTBI mean = 11.72, 
SD = 3.8 years, HC mean = 13.9, SD = 4.0 years, p = 0.01). 
The study was approved by the University Hospital Ethics 
Review Board, details of the procedure was explained to all 
participants, who provided written informed consent.

Neuropsychological Assessment

The cognitive and emotional status of all mTBI patients was 
assessed on the same day as the MRI session, using a bat-
tery of standardized tests, available in Greek. Tests covered 
a wide range of cognitive domains in view of the reported 
heterogeneity of patient neurocognitive profiles, especially 
in the chronic phase (see meta-analyses by McInnes et al., 
2017 and Karr, Areshenkoff, and Garcia-Barrera, 2014). 
The following tests were administered: Memory for Digits 
Forward and Reverse subtests of the Greek Memory Scale 
(Constantinidou et al., 2014; Simos et al., 2011) to assess 
short-term and working verbal memory; The Passage Mem-
ory subscale of the Greek Memory Scale and delayed repro-
duction of the modified Taylor Complex Figure test (TCF) 
(Hubley and Tremblay, 2002) to assess secondary episodic 
memory. The Trail Making Test (TMT) Part A and B were 
used to assess visuomotor coordination speed and men-
tal flexibility (Zalonis et al., 2008). Semantic (SVFT) and 
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Imaging Data Acquisition

All participants underwent brain MRI scans at the MRI 
Unit, University Hospital of Heraklion using identical scan-
ning parameters. MRI scans were acquired on a clinical, 
upgraded 1.5T whole-body superconducting imaging sys-
tem (Vision/Sonata, Siemens/Erlangen), equipped with high 
performance gradients (Gradient strength: 40 mT/m, Slew 
rate: 200 mT/m/ms), and a two-element circularly polarized 
head array coil (minimum voxel dimensions: 70 μm × 70 μm 
× 300 μm). The main imaging protocol consisted of a 3D 
T1-w MPRAGE (TR/TE: 1570/1.73 ms, 1 mm/1 NEX/160 
axial sections), a T2wTSE (TR/TE: 5000/98 ms, 4 mm axial 
sections), and a Turbo FLAIR (TR/TE/TI: 9000/120/2320 
ms, 4 mm axial sections) sequence. Axial sections were 
acquired parallel to the plane passing through the ante-
rior and posterior commissures (AC–PC line). Structural 
MR images were interpreted by a senior neuroradiologist 
(Dr E. Papadaki, MD, PhD) with 20 years of experience. 
Rs-fMRI sequences were acquired using a T2*-weighted, 
fat-saturated 2D-FID-EPI sequence with repetition time 
(TR) 2320 ms, echo time (TE) 50 ms, field of view (FOV) 
192 × 192 × 108 (x, y, z). Whole brain 3D images consisted 
of 36 transverse slices with 3.0-mm slice thickness and no 
interslice gap. Voxel BOLD time series consisted of 150 
dynamic volumes, while the voxel size was 3 × 3 × 3 mm. 
Acquisition duration was ~ 6 min.

Data Preparation: Preprocessing, Denoising and 
Parcellation

Initial data preparation steps are in line with several rs-
fMRI studies (Luppi et al., 2019; Luppi, Carhart-Harris et 
al., 2021), including previous work of our team on data from 
the same MRI system (Antypa et al., 2021; Kavroulakis et 
al., 2021; Pentari et al., 2022; Simos et al., 2019; Simos et 
al., 2020). Firstly, the first three volumes were discarded to 
allow for magnetization effects to stabilize. Slice-timing 
correction (corrected for Siemens-interleaved slice acqui-
sition), re-alignment, and co-registration/normalization to 
standard MNI space were subsequently performed. Lastly, 
spatial smoothing with a 6 mm FWHM (Full Width at Half 
Maximum) gaussian kernel was applied to improve SNR. 
These steps were carried out in SPM12 (www.fil.ion.ucl.
ac.uk/spm-statistical-parametric-mapping/) implemented in 
MATLAB version 9.8 (R2020a).

Next, mean white matter and cerebrospinal fluid (CSF) 
signals (first five principal components and their first order 
derivatives) were regressed out of the voxel time series, 
using CompCor (Behzadi et al., 2007) included in CONN 
(Whitfield-Gabrieli and Nieto-Castanon, 2012). Then, 
voxel timeseries were detrended and bandpass filtered to 

Phonetic (PhVFT) subtests of the verbal fluency test were 
employed for assessment of strategic rule-based access to 
stored lexical representations (Kosmidis et al., 2004). The 
Matrices subtest of the Wechsler Adult Intelligence Scale 
(WAIS-IV) indicated problem solving ability (Wechsler, 
2008). All aforementioned neuropsychological measures 
were converted to z scores based on Greek population 
norms (adjusted for age and education). Furthermore, the 
Greek adaptations of the Center for Epidemiology Studies 
Depression Scale (CESD) (Fountoulakis et al., 2001) and 
Spielberger Trait Anxiety Inventory (STAI-B) (Fountoula-
kis et al., 2006) were used for assessment of depression and 
anxiety symptoms. Demographic, clinical, and neuropsy-
chological data for the mTBI group are presented in Table 1.

Table 1 Clinical, demographic, and neuropsychological informa-
tion of mTBI patients

N(%) / 
Mean ± SD

Range

Age (years) 40.3 ± 17.4 19–65
Education (years) 11.72 ± 3.8 6 to 22
Gender: Men (n/%) 31 (84%) -
Trauma type:
MVA (n/%)
Fall (n/%)

20 (54.1%)
17 (45.9%)

-
-

Months post injury 18.7 ± 11.7 6 to 60
GCS1 14.55 ± 0.9 13 to 15
CESD1 12.30 ± 8.8 0 to 35
CESD > 22 (n/%) 8 (21.6%) -
STAI-B1 46.11 ± 10.5 32 to 75
STAI-B > 49 (n/%) 18 (48.6%) -
Digits Forward2 -0.67 ± 0.8† -2.6 to 1.2
Digits Reverse2 -0.61 ± 0.7† -2.3 to 0.7
PM-Immediate2 -1.10 ± 1.1† -3.7 to 1.0
PM-Delayed2 -1.17 ± 1.0† -3.4 to 0.6
PM-Retention2 -0.25 ± 1.1 -2.5 to 2.1
PM-Recognition2 -0.31 ± 2.0 -2.4 to 1.2
TCF-Copy2 0.38 ± 0.8 -1.9 to 1.3
TCF-Memory2 -0.12 ± 1.1 -2.1 to 2.6
TMT-A2 0.60 ± 0.9 -2.1 to 2.0
TMT-B2 0.38 ± 0.9 -3.0 to 2.4
SVFT2 -0.55 ± 0.9† -2.5 to 1.1
PhVFT2 -1.14 ± 0.7† -3.0 to 0.4
WAIS-IV Matrices2 -1.01 ± 1.1† -2.8 to 2.0
Abbreviations; GCS: Glasgow Coma Scale, CESD: Center for Epi-
demiological Studies Depression scale, STAI-A: State-Trait Anxi-
ety Inventory Form Y (Part B-Trait Anxiety), MVA: Motor Vehicle 
Accident, TCF: Taylor Complex Figure Test. PM: Passage Memory. 
TMT: Trail Making Test (Part A and Part B), SVFT: Semantic Ver-
bal Fluency Test, PhVFT: Phonemic Verbal Fluency Test, WAIS-IV: 
Wechsler Adult Intelligence Scales.
†Significant difference from age- and education-adjusted popula-
tion mean (p ≤ 0.001); 1Raw scores, 2Age- and education-adjusted z 
scores.
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is classifying time-resolved networks as predominately inte-
grated or segregated based on the most prominent functional 
network tendencies. Integrated networks tend to be globally 
well-connected and efficient, while segregated networks 
consist of several separated communities of strongly con-
nected nodes and few connections between communities.

The brain state identification process is depicted in 
Fig. 1. Firstly, modules are identified in each time-resolved 
subject-level network. Functional modules or communi-
ties are groups of nodes strongly connected to each other 
and less so (or anticorrelated) with nodes of other modules. 
The Louvain algorithm was used for community detection, 
which operates in a greedy fashion by repeatedly assigning 
nodes to modules until the modularity value of the network 
is maximized, denoting an ”optimal” split of the network. 
The modularity value quantifies the overall decomposability 
of the network. Two complementary network measures are 
utilized to characterize each node’s inter- and intra- modu-
lar connectivity, participation coefficient and within-module 
degree z-score respectively. Collaboratively, the two metrics 
are theoretically able to encapsulate the network’s tenden-
cies towards global integration or segregation. Their joint 
histogram or ”cartographic profile” (Shine et al., 2016) is 
used to cluster the 125 DFCGs (per participant) into k = 2 
clusters using k-means clustering (see also Supplementary 
Methods). Finally, a representative network for each state is 
computed as the edgewise median of the DFCGs assigned 
to each state. Only positive FCG values were retained from 
this step onward.

Graph Reduction: Optimal Network Structure

Fully-weighted, fully-connected, subject-specific FCGs are 
considered sub-optimal and potentially unable to reveal the 
true characteristics of the underlying network. Furthermore, 
the very large number of initial connections is biologically 
implausible and may include spurious connections driven 
predominately by noise. With this motivation, functional 
networks were reduced to derive the “true” underlying net-
work structure, while at the same time preserving system-
atic variability of the final networks among participants. 
OMST (Dimitriadis, Antonakakis et al., 2017; Dimitriadis 
et al., 2017) was employed for this task. OMST is a tech-
nique capable of generating highly reproducible and overall 
representative FC networks (Luppi and Stamatakis, 2020; 
Luppi et al., 2021; for additional details see Supplementary 
Methods section).

Functional Network Measures

A wide range of global and nodal graph measures were 
utilized to capture and quantify various functional and 

0.008–0.09 Hz to eliminate low frequency drift and high 
frequency noise.

Brain parcellation was implemented into 200 cortical 
(Schaefer et al., 2018) and 32 subcortical regions (Tian et 
al., 2020). This resolution and combination of functional 
atlases was shown to produce the most representative and 
reproducible large-scale functional networks (Luppi and 
Stamatakis, 2020; Luppi, et al., 2021). On average, cortical 
and subcortical regions comprised 660 ± 264 and 247 ± 143 
voxels, respectively. BOLD timeseries of voxels belong-
ing to each region were averaged to obtain representative, 
regional timecources, which were then used to compute 
functional indices.

Functional Connectivity Analysis

Static Functional Connectivity (SFC)

Pairwise ROI-ROI FC was computed between all pairs of 
regions using the Pearson correlation coefficient (Prsn) or 
Mutual Information (MI) producing two Static Functional 
Connectivity Graphs (SFCGs) per subject, one for each 
connectivity estimation method, each of size 232 × 232. 
Two complementary connectivity measures were utilized to 
encapsulate synergistic functionality apparent through both 
linear and non-linear patterns of coactivation.

Dynamic Functional Connectivity (DFC)

Dynamic FC metrics were computed to assess time-varying 
features of regional coactivation over shorter timescales 
(compared to SFC that refers to the entire scan). A tapered 
maximum overlapping sliding window approach was uti-
lized for DFC calculation (Supplementary Fig. 5) (Allen et 
al., 2012). A window length of 23 TRs (53 s) was used in 
line with the proposed range of 30–60s (Bijsterbosch et al., 
2017) overlapping on a single TR. Tapered windows were 
used, achieved by convolving them with a Gaussian kernel 
of σ = 3TRs. In this manner, 125 windows were created, of 
23 TRs length each. Pairwise ROI-ROI FC was estimated 
within each temporal window using the Prsn, resulting in 
125 time-resolved networks or DFCGs (of size 232 × 232 
each). The MI metric was not utilized for DFC in view of 
theoretical concerns that its computation is not suitable for 
shorter length timeseries, and results can be potentially 
unreliable.

To uncover the dynamics of predominant recurring con-
nectomic patterns, a brain state identification process based 
on ”cartographic profiling” was utilized (Fukushima, Bet-
zel, He, van den Heuvel et al., 2018; Luppi et al., 2019; 
Luppi, Carhart-Harris et al., 2021; Shine et al., 2016). As 
depicted in Supplementary Fig. 6, the goal of this approach 
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irregularity of regional activation over time and to aid 
interpretation of potential group differences in regional FC. 
Sample entropy has been shown to be a robust and sensitive 
signal complexity measure in previous fMRI experiments, 
with lower entropy values found during task performance 
and anesthesia. In the former case, signal amplitude and 
variability as well as regularity and temporal predictability 
are increased; in the latter case, signal amplitude and vari-
ability may be reduced, although regularity is also high 
(Wang et al., 2014).

Method Evaluation

Machine Learning

Due to the very large number of total features (4(FC 
types) x 930(network metrics) + 232(regional entropy val-
ues) = 3952) as well as additional considerations discussed 
next, a decision-level machine learning fusion approach 
was followed. Apart from alleviating the problem of a high 
dimensional input, i.e., a very large number of features, 
decision-level fusion allows for a “parallel” treatment of 
different types of imaging metrics, producing “expert” 
models for each type, and fusing their decisions toward the 
final prediction. Initially, as shown in Fig. 2, feature sets 
from different methods are reduced individually, then each 
of the five models is trained independently (internal esti-
mators 1–5) and, finally, the meta-estimator is trained only 

topological network characteristics and reveal mTBI-related 
functional disturbances. This specialized feature extraction 
step enables the comparison of networks exhibiting varying 
density and topology. Nodal (region-specific) graph mea-
sures reflect increased communication efficiency among the 
nodes comprising the immediate local community (local 
efficiency), and the node’s ability to act as a go-between, 
facilitating the stability of a broader network (degree, 
betweenness or eigenvector centrality). Conversely, global, 
network-wide measures, reveal the integrative tendencies 
and performance of the entire network (global efficiency), 
as well as indicate the presence of complex topologies, and 
the balance between integration-segregation and informa-
tion capacity (Barttfelda et al., 2015). The latter, is based on 
the notion of small world networks (Bassett and Bullmore, 
2017; Rubinov and Sporns, 2010; Watts and Strogatz, 1998) 
and can be measured by the metric of small world propen-
sity (Muldoon, Bridgeford, and Bassett, 2016). Thus, both 
local and global measures are suitable to identify regions 
displaying either hypo- or hyper-connectivity associated 
with mTBI. Graph metrics were combined/concatenated 
to form a single feature vector (of size 2(global) + 4(nodal) 
x 232(nodes) = 930 features per subject) for each of the 4 
functional networks (derived from Prsn and MI [static con-
nectivity measures] and from the integrated and segregated 
networks [dynamic connectivity measures]).

In addition, sample entropy was calculated for each 
regional time series to quantify the unpredictability or 

Fig. 1 Pipeline used in the identification of Integrated and Segregated dynamic states
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was chosen as the Meta-Estimator, as it is a relatively sim-
ple model able to be trained using the predictions of internal 
estimators and eventually learn the predictive intricacies of 
each feature set (Ho, Hull, and Srihari, 1994).

Statistical Analysis

To support the interpretability and significance of ML 
results, independent sample t-tests were used to assess the 
statistical significance of group differences on each of the 
final features derived by the decision-fusion classification 
model. Control of familywise error rate across multiple 
comparisons was employed using the FDR (Benjamini and 
Hochberg, 1995) method and a false discovery rate q = 0.05. 
All statistical comparisons were performed in MATLAB.

Final features (i.e., FC/entropy indices) derived by the 
selection-classification-validation process and subsequently 
deemed significantly different between the two clinical pop-
ulations were then evaluated for their potential associations 
with neuropsychological measures within the mTBI group. 
Pearson correlation coefficients were calculated between 
the patients’ functional indices (10 (features) x 5 (functional 
index types)) and their neuropsychological measures (12 
in total). Correlation p-values were corrected for multiple 
comparisons with FDR for each feature.

Results

Neuropsychological and Conventional Imaging 
Findings

As shown in Supplementary Tables 1, small posttraumatic 
gliotic areas due to contusions (≤ 3 cm in extent; C) were 
found in 40.5% of the patients (in 7/37 patients in the left 
temporal lobe, in 7/37 patients in the right temporal lobe, in 
7/37 patients in the right frontal lobe, and 8/37 patients in 
the left frontal lobe). Evidence of ≤ 3 chronic hemorrhagic 
DAIs was found in 27% of the patients (in 4/37, 1/37, 6/37, 
and 9/37 patients in the right temporal, left temporal, right 
frontal, or left frontal lobes, respectively).

Clinically significant depression or anxiety symptoms 
(according to the corresponding cutoff scores on the CESD 
and STAI scales) were noted in 21.6% and 48.6% of the 
patients, respectively (see Table 1). Deficits in the domains 
of episodic memory or attention control and executive 
function (as indicated by performance > 1.5 SD below the 
national norms on at least two relevant cognitive tasks) 
were present in 24.3% and 32.4% of the patients. On indi-
vidual tests, patient average performance was below 1 SD 
from the population mean on Immediate (z=-1.10, SD = 1.1, 
p < 0.001) and Delayed Passage recall (z=-1.17, SD = 1.0, 

on lower-level model predictions. Here, internal estimator 
refers to a more traditional ML model (e.g., Random Forest 
or XGBoost), that produces predictions utilized for training 
and testing the meta-estimator. The external level estimator 
(gray background in Fig. 2) that is analyzed and evaluated 
formally, contains all internal estimators, meta-estimator, 
and feature selection models. To produce a final prediction 
on previously unseen data, internal estimators 1–5 each 
make their prediction for that participant and the meta-
estimator having learned each individual model’s strengths 
and weaknesses is able to make a prediction based on class 
probability estimates alone.

In terms of feature selection and method validation, a 
consensus feature importance ranking-based, nested cross-
validation methodology was implemented similar to Par-
vandeh et al. (2020), Zhong, Chalise, and He (2020), and 
our previous work (Simos et al., 2019; 2020). This choice 
was made to avoid overfitting and ensure a robust final 
model with conservative results and highly representative 
features for the comparison of interest. Consensus features 
were selected internally on 200 repeated, stratified 6-fold 
iterations performed on the training data based on highest 
feature importance rankings (produced by an ensemble-type 
classification model). Model performance metrics (accu-
racy, precision, sensitivity, specificity, F1 score, ROC AUC) 
were averaged over 1000 outer cross-validation iterations 
(repeated, stratified 5-fold CV). In each CV split or (exter-
nal) iteration, the model steps enclosed in the gray area of 
Fig. 2 were repeated, including feature selection, internal-
estimator model training, meta-estimator model training 
with internal estimator predictions, and, finally, testing 
on the 20% portion of unseen data. XGBoost (Chen and 
Guestrin, 2016), an implementation of regularized gradient 
boosted trees, was utilized as the base estimator for clas-
sification and feature selection models. Logistic Regression 

Fig. 2 Decision-level machine learning fusion pipeline. The externally 
evaluated steps which were repeated for thousands of times through 
cross validation are enclosed within the gray area. Fixed steps, per-
formed only once are placed on white background
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centrality measures including betweenness, eigenvector and 
degree centrality (34%), and regional sample entropy val-
ues (20%). The regional functionality indices (graph metrics 
and sample entropy) presented in Figs. 3, 4 and 5 illustrate 
these features grouped according to the direction of group 
differences (mTBI > controls, or the opposite).

Associations of imaging and behavior were examined 
through correlations of the aforementioned significant 
regional functionality indices and patients’ neuropsycholog-
ical test scores. Results are presented below and illustrated 
via scatterplots in Figs. 3, 4 and 5.

Temporal lobe limbic regions were among the most nota-
ble areas exhibiting reduced FC in mTBI patients: medial 
temporal pole (bilaterally), left anterior hippocampus, and 
right amygdala. A similar significant trend was noted in 
anterior and medial prefrontal regions (right dorsomedial, 
left ventromedial, and left orbital cortex) as well as in the 
dorsal posterior cingulate cortex (PCC). Evidence for tem-
poral pole and anterior hippocampus hypo-connectivity was 
consistently found on both static (Prsn and MI) and dynamic 
FC measures (state centrality). Hypoconnectivity in mTBI 
was also found in the lateral portion of the temporal pole. 
A significant positive correlation between local efficiency 
in the DFC segregated state and both phonemic (r = 0.46, 
p = 0.004, 1-β = 0.92) and semantic verbal fluency (r = 0.43, 
p = 0.008, FDR-corrected, 1-β = 0.88) indicated that the 
degree of preserved function in this region was important 
to sustain verbal fluency capacity. Finally, dorsal PCC cen-
trality correlated with depression symptom severity (CESD 
score, r = 0.54, p = 0.0006, FDR-corrected, 1-β = 0.98). All 
regions exhibiting reduced FC are shown in Fig. 3.

In addition, localized increases in FC (Fig. 4) were 
observed in several parietal regions in both hemispheres, 
including areas of the DAN, DMN, and somatomotor 
networks. Additional DMN regions that displayed hyper-
connectivity were the left precuneus and dorsal PCC. Hyper-
connectivity of this cluster of regions was supported by 
several complementary indices, such as local efficiency in 
the SFC-derived network and centrality in both DFC states. 
Both DFC states also corroborate the apparent increase in 
centrality of the right precentral gyrus. Importantly, hyper-
connectivity of the right supramarginal gyrus (indexed by 
centrality in the DFC segregated state) correlated negatively 
with semantic verbal fluency (r=-0.47, p = 0. 003, FDR-cor-
rected, 1-β = 0.93).

To ensure that reported increases in the functional 
role of these regions were not spurious due to reduced 
regional activation associated with mTBI, we examined 
regional entropy via the sample entropy values computed 
on regional timecourses. A slight decrease in entropy was 
detected as compared to the healthy control group in some 
region’s cases, which did not reach significance (p > 0.02 

p < 0.001), Phonemic Verbal Fluency (z=-1.14, SD = 0.7, 
p < 0.001), and WAIS-IV Matrices (z=-1.01, SD = 1.1, 
p < 0.001). However, the presence of any of the aforemen-
tioned neuropsychiatric manifestations did not correlate 
with evidence of contusion or DAI in either frontal or tem-
poral lobes (all Spearman ρ’s < 0.2, p = 0.2).

Validation of DFC Brain State Identification

Initially, to examine the soundness of the DFC state identi-
fication process based on unsupervised learning (k-means 
clustering), as well as the validity of the integrated/segre-
gated representative networks produced for each subject, a 
number of basic indices were evaluated. Mean participation 
coefficient was found significantly greater in the integrated 
state (p < 2×10− 10) and elevated modularity was found in the 
segregated state (p < 6×10− 6) as expected. The more pro-
nounced modular structure is evident in the DFC networks 
from a representative participant in Supplementary Fig. 8. 
Again, as expected, small world propensity was found to 
be significantly greater in the segregated compared to the 
integrated state (p < 2×10− 4). Finally, silhouette values, a 
goodness of fit measure designed for clustering algorithms, 
indicated the optimal number of clusters to be 2 when a 
range of 2 to 7 clusters was tested (supplementary data). 
These measures are in line with previous adaptations of the 
DFC temporal state identification framework.

Machine Learning Classification

The decision fusion approach combining several types 
of FC measures within a single robust Machine Learning 
model was modestly accurate in discriminating between 
mTBI and HC participants with balanced sensitivity (74%) 
and specificity (76%; Table 2).

Statistical Testing and Association of Imaging with 
Behavior

As detailed in previous sections, regional functional indices 
that emerged as essential in differentiating the mTBI and 
HC clinical groups using the proposed machine learning 
pipeline, were subsequently statistically compared between 
the two groups. Out of a total of 50 highest-ranking fea-
tures (10 from each feature set), the two groups differed sig-
nificantly on 48 (q < 0.05, FDR-corrected). These included 
local efficiency values (46% of the selected features), 

Table 2 Machine Learning fusion classification performance 
(mean ± SD)
Accuracy Precision Sensitivity Specificity F1 ROC AUC
75 ± 9 77 ± 12 74 ± 14 76 ± 14 74 ± 10 75 ± 9
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post injury (p > 0.05 FDR-corrected). In view of the higher 
average educational attainment of the control group (by 
2.2 years), we performed additional analyses to assess the 
potential effect of education level on the FC metrics within 
each group, without revealing significant correlations (FDR-
corrected p > 0.05).

uncorrected). A few other regions, however, contributed 
through entropy indices to the machine learning classifi-
cation between mTBI and healthy control groups (Fig. 5: 
all displaying reduced sample entropy in the mTBI group; 
p < 0.05, FDR-corrected). Among these regions, relatively 
lower sample entropy in the right anterior hippocampus 
was positively related to phonemic verbal fluency among 
mTBI patients (r = 0.42, p = 0.009, uncorrected, 1-β = 0.88). 
There were no significant correlations between connectiv-
ity or entropy indices and demographic variables or time 

Fig. 3 (A) Areas displaying 
reduced functional connectivity 
in mTBI patients as compared 
to healthy controls: 164: right 
temporal pole (on Prsn and MI 
SFC). 217: left anterior hip-
pocampus (on centrality in both 
DFC states). 59: left temporal 
pole (LE-DFC), 157: right dorsal 
PCC (BC-DFC), 7: left second-
ary visual cortex (LE-SFC-MI), 
57: left parahippocampal gyrus 
(LE-SFC-MI), 58: left inferior 
temporal gyrus (LE-SFC-MI), 72: 
left PCC (EC-DFC), 65/83/85: 
left ventrolateral prefrontal 
cortex (LE-SFC-MI), 134: right 
primary motor cortex (BC-SFC-
Prsn), 193: right dorsal anterior 
cingulate cortex (LE-SFC-MI), 
195: right dorsolateral prefrontal 
cortex (EC-DFC), 203: right 
lateral amygdala (EC-DFC), 225: 
left nucleus accumbens shell 
(EC-DFC), 229: left anterior 
putamen (DC-SFC-MI). Areas 
that featured in multiple FC 
indices are shown in red and 
areas where significant positive 
correlations were found with 
neuropsychological measures are 
shown in blue. (B-D) Associa-
tions between FC metrics and 
cognitive/emotional status 
among mTBI patients (FDR-
corrected). (B) Left temporal 
pole LE with phonemic (r = 0.46, 
p < 0.004) and semantic (r = 0.43, 
p < 0.008) verbal fluency. (C) 
Right dorsal PCC BC with 
depression symptom severity 
(r = 0.54, p < 0.0006). Abbrevia-
tions; LE: local efficiency, BC: 
betweenness centrality, EC: 
eigenvector centrality, DC: 
degree centrality, MI: Mutual 
Information, Prsn: Pearson cor-
relation, S/DFC: Static/Dynamic 
functional connectivity.
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dynamic FC indices with lingering cognitive and emotional 
difficulties.

Functional Deficiencies in Chronic mTBI

Given the very limited previous research integrating indices 
of static and dynamic FC obtained in the chronic phase post-
mTBI, only indirect comparisons with previous findings can 
be attempted. Hypoconnectivity of the temporal poles con-
stitutes one of the most notable findings of the present study. 
Multiple measures (five features in total) from several very 
closely neighboring temporal pole subregions contributed to 

Discussion

The present study set out to identify aberrant connectomic 
and dynamic features persisting into the chronic phase fol-
lowing injury in a clinical sample of mTBI patients. The 
novelty of the present work is threefold: (a) In using data-
driven machine learning on static and dynamic FC features 
derived from person-specific analyses instead of a priori-
defined or group-representative networks, (b) In examining 
the dynamic behavior of FC patterns to characterize pat-
terns of reorganization in individual patient connectomes, 
and (c) In establishing associations of regional, static and 

Fig. 4 (A) Areas displaying increased functional connectivity in 
mTBI patients as compared to healthy controls: 133: right precen-
tral gyrus (LE in both DFC states), 141/144: right superior parietal 
gyrus (centrality in both DFC states and SFC LE), 138: right supramar-
ginal gyrus (BC-DFC), 25/37: left superior parietal (LE-SFC-Prsn), 
82: left angular gyrus (LE-SFC-Prsn), 97/98/99: left ventral and dorsal 
PCC (LE-DFC), 110: right ventral PCC (LE-SFC-Prsn), 124: right pri-
mary somatosensory cortex (LE-SFC-MI), 129: right supplementary 

motor area (LE-DFC), 148/167: right angular gyrus (LE-DFC). Areas 
that featured in multiple FC indices are shown in red. (B) Between-
ness centrality of the right supramarginal gyrus (138, shown in yel-
low in [A]) correlated negatively with semantic verbal fluency (r=-
0.47, p < 0.003 FDR-corrected). Abbreviations; LE: local efficiency, 
BC: betweenness centrality, MI: Mutual Information, Prsn: Pearson 
correla tion, S/DFC: Static/Dynamic functional connectivity.
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also reported by a study correlating voxel intensities in the 
temporal pole, extending more posteriorly into the inferior 
temporal region, with cross-modal integration performance 
in brain damaged patients (Taylor, Stamatakis, and Tyler, 
2009). Taken together, these findings suggest that preserved 
functional connectivity of the left temporopolar cortex is 
crucial for the maintenance (or recovery) of lexical/seman-
tic storage and retrieval capacity even in mTBI. The role of 
temporopolar cortex, especially in the left hemisphere, in 
the organization and storage of lexical/semantic representa-
tions is supported by several lines of evidence (for reviews 
see Binder et al., 2009; Hickok and Poeppel, 2007; Patter-
son, Nestor, and Rogers, 2007; Price, 2012). This accumu-
lating evidence is consistent with a recent notion that the 
temporopolar neocortex functions as a multimodal conver-
gence hub that plays a key role in semantic control which 
is in turn crucial for efficient performance on category and 
phonemic verbal fluency tasks (Ralph et al., 2016).

There was also hypoconnectivity (indexed by reduced 
centrality in the DFC integrated state) of the dorsal PCC, 
in agreement with Vergara et al. (2016). Although the pre-
cise role of the PCC for depression symptoms is unclear, 

the final classification model. The importance of this region 
in mTBI is highlighted by static and dynamic connectivity 
(segregated state) and by connectivity networks derived by 
Prsn and MI. Nodal degree, a measure of centrality, and 
local efficiency, revealed similar trends reflecting an overall 
reduced functional role of this region as a functional hub in 
varying network scales. While this region is known to be 
susceptible to contusion injury following mTBI caused by 
direct impact on the cranium, and may present evidence of 
structural connectivity changes following mTBI (Van Der 
Horn et al., 2017), there is very limited evidence of tempo-
ral pole FC abnormalities using rs-fMRI in the literature. 
Further highlighting the region’s importance in mTBI, asso-
ciations were detected between hypoconnectivity of the 
left temporal pole and verbal fluency (semantic and pho-
nemic). Importantly, average verbal fluency scores of the 
present sample of mTBI patients were significantly below 
age- and education-adjusted population norms (Table 1). 
This finding is in agreement with the moderate-to-large 
effect size for persisting verbal fluency impairment in the 
semi-acute/chronic phase post mTBI reported by Belanger 
and colleagues (2005). Corroborating results have been 

Fig. 5 (A) Decreased regional entropy in mTBI 
patients compared to healthy controls: 201: 
right anterior hippocampus, 8: left cuneus, 23: 
primary somatosensory cortex, 78: left middle 
temporal gyrus, 176: pre-supplementary motor 
area, 182: right angular gyrus, 188: right middle 
temporal gyrus, 212: right anterior globus pallidus 
(B) Regional sample entropy of the right anterior 
hippocampus (shown in blue in [A]) correlated 
positively with phonemic verbal fluency (r = 0.42, 
p < 0.009 uncorrected)
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precentral gyrus (SMA) which is extended by our results of 
hyperconnectivity (as indicated by both SFC and DFC indi-
ces). The heightened functional role of visual and ventral 
attention network regions is in line with increased (static) 
connectivity reported in chronic mTBI patients (Champagne 
et al., 2020), and the elevated connectivity of visual cortex 
in sub-acute patients through DFC (Mayer et al., 2014). 
Although not directly addressed by our data, we speculate 
that hyperconnectivity of the DAN may reflect a state of 
hypervigilance in an attempt to compensate for persistently 
reduced limbic and frontolimbic connectivity.

It should be noted that hyperconnectivity in these 
regions was indexed mainly by centrality, reflecting the 
extent to which the regions operate as important connecting 
hubs within the large underlying networks. In spite of the 
expected individual variability across patients, these dorsal 
and medial parietal regions are likely higher order network 
hub regions which had been recruited to preserve function 
after TBI. However, the effectiveness of this putative net-
work reorganization is not particularly effective, given the 
negative associations we found between FC indices and ver-
bal fluency scores.

Significance of Findings

Due to substantial inter-patient variability in trauma loca-
tion/direction, type and force, regions that show aberrant FC 
are expected to vary across patients. To address this issue in 
the classification problem we computed indices of connec-
tivity that preserved individual differences in connectome 
profiles. Even though key regions of significance derived 
for the current clinical group are potentially higher-order 
major network hubs of regional signaling, their value as 
potential biomarkers is supported by their contribution to 
classification performance and significant associations with 
cognitive and emotional measures.

Delving deeper into mTBI-specific connectomic charac-
teristics, most of the functional measures that were increased 
in the mTBI group were measures of local efficiency indi-
cating functional segregation, a finding corroborated by the 
predominance of segregated state features in mTBI patients. 
Thus, several indices point to an overall more segregated 
network in this group. Conversely, the set of FC features 
that were found to be increased in the control group include 
both local efficiency and centrality measures, with a pre-
dominance of integrated state measures.

Another aspect of the present study with potential clinical 
implications concerns aberrant FC patterns involving ante-
rior temporal regions, which mapped consistently onto ver-
bal fluency performance. Language functions have received 
less attention in previous studies on cognitive recovery fol-
lowing mTBI, focussing mainly on verbal fluency (Bell et 

there have been reports of reduced FC in patients with major 
depressive disorder in this region (Yang et al., 2016). Fur-
thermore, in a large-scale rs-fMRI FC study focusing on 
depression-related biomarkers, Drysdale and colleagues 
(2017) identified the PCC as one of the key regions with 
common aberrant FC characteristics across the four patient 
clusters they studied, as defined on the basis of connectomic 
features.

Hypoconnectivity of key limbic (amygdala and anterior 
hippocampus) and frontolimbic structures (vmPFC, ventral 
OFC) were also noted in the present study, although the 
degree of aberrant FC in these regions did not correlate sig-
nificantly with emotional manifestations (anxiety/depres-
sion symptoms). Alterations in limbic and frontolimbic 
connectivity may indicate subtler changes in emotion regu-
lation, but they could be linked to impulsivity and irritabil-
ity symptoms, and potential future psychological difficulties 
(which were not measured in the present study).

Finally, reduced complexity of the BOLD timecourses 
in the left anterior hippocampus was tentatively associated 
to lower phonemic verbal fluency capacity among mTBI 
patients. This finding highlights the central role of hip-
pocampal functional integrity to enable verbal fluency, in 
agreement with literature describing its role for simple and 
complex memory, also a prerequisite for effective coping 
mechanisms. Although medial temporal structures are tradi-
tionally linked to episodic memory, there have been reports 
of impaired semantic and/or phonemic fluency impair-
ment in medial temporal amnesia (Greenberg et al., 2009) 
and fMRI data suggest that medial temporal involvement 
in these tasks is related to the autobiographic component 
of certain lexical/semantic representations (Sheldon and 
Moscovitch, 2012).

Increased FC in Chronic mTBI

Several posterior regions of the Dorsal Attention Network 
(DAN) exhibited elevated local efficiency and centrality 
(node degree or eigenvector centrality), indicated by static 
and dynamic measures (Prsn and MI connectivity metrics). 
Our observations consolidate previous findings of increased 
(static) connectivity of the DAN (Champagne et al., 2020) 
in chronic mTBI. The putative enhanced functional role 
(as indexed by local efficiency and node degree) of several 
regions of the somatomotor network is also in line with the 
reported increase in connectivity in somatomotor and DAN 
regions including the precentral gyrus and inferior parietal 
lobule in semi-acute mTBI patients (Mayer et al., 2014). 
Similarly, hyperconnectivity of the posterior precuneus 
noted in the present study was also reporter by Vergara et 
al. in semi-acute mTBI patients using SFC (Vergara et al., 
2016). They also found increased DFC in the paracentral/
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such as other scales of everyday behavioral changes, would 
help complete the clinical picture of mTBI patients, and 
potentially reveal further associations with FC metrics.

A further notable limitation of the current study is that 
neuropsychological and emotional symptom scores were not 
available on HC participants as they would facilitate inter-
pretation of the correlational analysis results performed in 
the mTBI group (provided that sufficient variability in these 
scores were present among healthy adult volunteers). There-
fore, the specificity of the significant associations between 
FC indices and test scores for mTBI is not conclusive.

Inevitably, trade-offs exist between different methods to 
identify time-resolved functional connectivity patterns, and 
a large variety of alternatives have been developed in recent 
years (Fukushima, Betzel, He, de Reus et al., 2018; Lurie et 
al., 2020). The “cartographic profile” approach of Shine and 
colleagues (2016), which we adopted here, has been used 
in multiple previous studies, including studies with patients 
suffering from severe brain injury (Luppi et al., 2019). A 
potential alternative would be adding predominately small-
world and rich-club states, as the notion of easily distin-
guishable integrated-segregated network states, although 
relatively straightforward, may not be truly representative 
of the resting functional brain organization of every individ-
ual and population. Additionally, the decision-level machine 
learning fusion approach utilized in the present work can be 
complemented by additional sets of data to improve predic-
tion accuracy, including behavioral measures (which were 
not presently available in the control group), structural con-
nectivity indices (diffusion MRI combined with rs-fMRI as 
suggested by Sharp and Leech, 2014), metrics of regional 
perfusion dynamics (cerebral blood flow indices) (Cham-
pagne et al., 2020; Wang et al., 2019) or blood-based bio-
markers (Posti and Tenovuo, 2022). Finally, the potential 
benefits from increased temporal and spatial resolution 
by using longer BOLD time series obtained in a 3T scan-
ner are worth mentioning. We attempted to mitigate these 
limitations by implementing an ROI-based approach, which 
does not make claims of fine-grained connectivity maps. 
However, increased SNR and especially longer timeseries 
achieved by lower TR values could potentially benefit the 
analysis, especially due to the dynamic nature of some of 
the methods applied.

Conclusion

The present study advances previous reports on aberrant FC 
in chronic mTBI patients by employing a robust machine 
learning approach toward feature selection and cross-
validation complemented by conventional assessment of 
group differences and associations with neuropsychological 

al., 1999; Konrad et al., 2011; Vanderploeg, Curtiss, and 
Belanger, 2005). The latter is commonly assessed through 
word generation tasks based on semantic or phonemic crite-
ria, performance on which relies on the availability of intact 
lexical and phonological representations as well as pro-
cessing speed and various executive processes (Henry and 
Crawford, 2004). In view of the purported predictive value 
of verbal fluency in the prognosis of recovery from TBI 
(across severity types; Ponsford, Draper, and Schönberger, 
2008), it remains to be seen if these functional connectivity 
indices would also emerge as significant prognostic factors 
for successful cognitive recovery following mTBI.

Additional relevant characteristics of the present patient 
sample further support the validity of results. Firstly, none 
of the patients were involved in litigation concerning the 
injury or seeking compensation for incurred damages, thus 
malingering as a factor contributing to their test scores was 
not likely. Secondly, their neurocognitive status largely 
reflected the “natural” course of illness recovery, not affected 
by systematic neuropsychiatric interventions. These char-
acteristics render the present sample suitable to assess the 
chronic impact of mTBI given the, at least modest, effect of 
suspected malingering (Ross, Putnam, and Adams, 2006), 
and the documented impact of cognitive (Mahncke et al., 
2021) and physical rehabilitation (Snyder et al., 2021) upon 
cognitive recovery.

Study Limitations and Future Work

A key limitation of the current study pertains to the num-
ber of participants. Apart from allowing increased general-
izability and more robust statistical results, the nested CV 
scheme implemented, which splits the dataset twice (exter-
nally and internally), would certainly benefit from a larger 
sample size. The observed sample standard deviation of 
the classification performance metrics is also expected to 
improve with a larger sample size.

Moreover, interpretation of our findings should take into 
account that the present patient sample was recruited from 
the registry of a neurosurgery clinic. This may account for 
the high frequency of even small posttraumatic structural 
lesions visible on conventional MRI (present in 40% of 
cases) and the presence of post-acute cognitive deficits in a 
substantial proportion of patients, whereas the presence of 
reliably documented deficits in non-clinical, civilian sam-
ples in the chronic phase post mTBI has been questioned 
(Dikmen et al., 2009). It should be noted, however, that 
the frequency of significant depressive symptomatology in 
our sample is comparable to that reported by other studies 
(22%) compared to depression rates of 10–20% in other 
mTBI samples (Rapoport, 2012; Shoumitro et al., 1999). 
Additional assessments, not included in the present study, 
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measures. Furthermore, analyses on the entropy of the 
regional hemodynamic signals confirmed that FC changes 
were not associated with reduced activation complexity, 
contributing to elucidate the links between brain dynam-
ics and connectomics in mTBI. The machine learning clas-
sification results reported here can be built upon toward 
forming an effective diagnostic model. Notably, these clas-
sification metrics were obtained via a very conservative 
consensus-based feature selection in a nested cross vali-
dation scheme, ensuring, as much as possible, real-world 
model performance. Such model designs are not yet com-
monplace in neuroimaging studies, making direct compari-
sons challenging. Due to the utilized evaluation scheme, the 
reported results should be indicative of model performance 
if tested with new patient data, and we auspicate that future 
work will follow our example to make this robust approach 
more widespread.
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