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Abstract: Neuropsychiatric systemic lupus erythematosus (NPSLE) is an autoimmune entity
comprised of heterogenous syndromes affecting both the peripheral and central nervous system.
Research on the pathophysiological substrate of NPSLE manifestations, including functional
neuroimaging studies, is extremely limited. The present study examined person-specific patterns
of whole-brain functional connectivity in NPSLE patients (n = 44) and age-matched healthy control
participants (n = 39). Static functional connectivity graphs were calculated comprised of connection
strengths between 90 brain regions. These connections were subsequently filtered through rigorous
surrogate analysis, a technique borrowed from physics, novel to neuroimaging. Next, global as well
as nodal network metrics were estimated for each individual functional brain network and were
input to a robust machine learning algorithm consisting of a random forest feature selection and
nested cross-validation strategy. The proposed pipeline is data-driven in its entirety, and several
tests were performed in order to ensure model robustness. The best-fitting model utilizing nodal
graph metrics for 11 brain regions was associated with 73.5% accuracy (74.5% sensitivity and 73%
specificity) in discriminating NPSLE from healthy individuals with adequate statistical power. Closer
inspection of graph metric values suggested an increased role within the functional brain network
in NSPLE (indicated by higher nodal degree, local efficiency, betweenness centrality, or eigenvalue
efficiency) as compared to healthy controls for seven brain regions and a reduced role for four areas.
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These findings corroborate earlier work regarding hemodynamic disturbances in these brain regions
in NPSLE. The validity of the results is further supported by significant associations of certain selected
graph metrics with accumulated organ damage incurred by lupus, with visuomotor performance and
mental flexibility scores obtained independently from NPSLE patients.

Keywords: neuropsychiatric systemic lupus erythematosus; rs-fMRI; graph theory; functional
connectivity; surrogate data; machine learning; visuomotor ability; mental flexibility

1. Introduction

Resting-state functional MRI (rs-fMRI) is a non-invasive functional neuroimaging modality
based on the blood-oxygen-level-dependent (BOLD) signal. During data acquisition, subjects are
not performing any specific mental or physical task. Thus, rs-fMRI can capture the intrinsic, innate
or “default” processes, self-referential thought and introspection that are active even while subjects
are at rest. This poses several challenges in experimental design, especially in appropriate analysis
methodology. This is different from task-related functional neuroimaging studies, where several
proposed methodologies attempt to identify patterns that in some form correspond to or correlate
with the task or experiment performed during the examination. In recent years, rs-fMRI has shown
great potential as a useful tool in aiding disease diagnosis. Additionally, useful and possibly novel
biomarkers can emerge from state-of-the-art rs-fMRI analyses, further enhancing the understanding
and interpretation of certain diseases, conditions, pathologies or neural processes.

Systemic lupus erythematosus (SLE) is a chronic, multisystem, autoimmune disease often
accompanied by miscellaneous neuropsychiatric manifestations (neuropsychiatric SLE (NPSLE)).
Despite systematic attempts to establish universally accepted diagnostic protocols [1], diagnosis of
NPSLE as well as attribution of NP manifestations to the pathophysiology of lupus is often challenging.
Brain pathology in NPSLE may include small vessel vasculopathy and vasculitis [2], which may in turn
be responsible for regional hemodynamic disturbances [3]. Two recent studies using different MRI
techniques have documented decreased cerebral blood flow in normal-appearing white matter [4] and
cortex [5] in multiple frontal and parietal areas in NPSLE as compared to healthy individuals. Studies
utilizing rs-MRI to assess functional connectivity disturbances in NPSLE are scarce, with findings
indicating both reduced and increased functional connectivity in NPSLE patients as compared to
healthy controls within several a-priori defined networks [6].

Given the vast number of potentially relevant features that can be derived from rs-fMRI
examinations, there is growing interest in machine learning (ML) or deep learning (DL) algorithms
for feature reduction and patient classification in a wide range of neurological and psychiatric
disorders, including multiple sclerosis [7], schizophrenia [8], Alzheimer’s disease [9], attention deficit
hyperactivity disorder [10] and autism [11]. Functional connectivity (FC)-based measures were utilized
in many such studies as a way of capturing topological neural interconnections and communications
of distinct brain areas during rest. FC can be generally considered as a transformation of the initial
high-dimensional fMRI data, quantified by simple metrics such as correlation, covariance or mutual
information calculated between the recorded time series of different brain regions. Adaptive algorithms
utilizing functional neuroimaging data have not been employed thus far on SLE or NPSLE patients,
with the exception of a preliminary study utilizing connectivity indices derived from conventional,
a-priori defined functional networks [12].

The work presented here builds upon an earlier attempt from our group [12] to tackle the
diagnostic problem related to NPSLE. In the previous study, we presented and evaluated a method
for the effective classification of NPSLE patients from healthy age-matched participants using an ML
classification model. A set of brain networks were selected a-priori based on results of similar studies
and the findings of several studies concerning resting-state networks [13]. The obvious limitation of
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this approach is that it may obscure individual patterns of functional connectivity disturbances in
the population of NPSLE patients and assumes that connectivity within each prespecified network
is consistently impaired in this disorder. To address this issue, we designed and applied a pipeline
that considers and preserves individual differences in the precise outline of functional connectivity
patterns. In the present study, we propose a robust automated machine learning (AutoML) approach
based on individualized static functional connectivity graphs (sFCG) with the goal of defining objective
connectomic biomarkers related to NPSLE. An integral component of the proposed approach entails
the use of statistical topologic filtering of individual sFCGs using appropriate surrogate time series.

1.1. Deriving Individualized Whole-Brain Network Metrics

1.1.1. Initial Network Specification

To ensure that all cortical and subcortical (telencephalic and diencephalic) brain areas were taken
into account in producing a robust model, we computed functional connectivity metrics within an
inclusive set of brain areas as specified in a commonly used brain atlas (automated anatomical labeling
atlas (AAL)) [14].

1.1.2. Statistical Thresholding of Functional Connections

Given the exceedingly high number of potential features (complementary metrics characterizing
each of the 4005 implied functional connections and regions) we designed a rigorous data-driven
protocol for feature reduction. The proposed method comprised statistical filtering applied to the
complete matrix of connectivity weights between all possible pairs of regions using person-specific
statistical thresholds. The first step entails constructing a static functional connectivity graph (FCG),
a single adjacency matrix containing the connectivity weights between all possible pairs of regions.
The dynamic and somewhat unpredictable nature of two resting-state fMRI regional time courses
renders application of a fixed statistical threshold (e.g., Fisher’s z value) untenable. Comparison of
observed connectivity values to the distribution of such indices computed from synthetic (surrogate)
time series is one option employed extensively on electric and magnetic time series [15–17]. Unbiased
statistical testing, however, requires that the surrogate sets share the natural variability of underlying
dynamic systems so that the connectivity weights computed between surrogate time series closely
represent the morphological and spectral characteristics of the original time series. At the same time,
surrogate data should not share features of systematic, underlying neuronal activation. Comparing
a given “true” connection to those computed between multiple surrogate time series (in the form
of a distribution) can reveal whether that connection is significant, i.e., contains useful information
about the underlying neuronal system. The data driven graph thresholding technique utilized in this
study was implemented using iterated amplitude adjusted Fourier transform surrogate time-series
(IAAFT) [18]. IAAFT surrogates were developed by [18] to address the flatness bias problem observed
in the power spectra of conventional AAFT time series. The Fourier amplitudes are iteratively replaced,
and the distributions rescaled in order to best match the original time series on both amplitude
distribution and power spectrum. Alternative, fixed-thresholding schemes (as for instance retaining
only connections with the same node degree [19]) were considered as too arbitrary to capture the
complex pathophysiology of NPSLE. Previously proposed data-driven methods have produced
promising results and were also considered in the preliminary stages of the present work, namely
orthogonal minimum spanning trees [20]. The latter is a variant of minimum spanning trees [21],
where multiple “independent” trees are created from the graph instead of a single tree containing all of
the original graph nodes.

1.1.3. Graph Theory Network Metrics

Computation of a common set of metrics which best characterize each reduced FCG is a crucial step
to ensure that a common set of metrics is fed to the ML/DL classification model for every participant.
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The utilization of person-specific FCG reduction techniques leads to potentially different sparse FCGs
for each participant. As a result, the connectivity values (FCG edges) cannot be used as the feature
vector at this stage. One proposed solution utilized in several studies [22–24] involves graph (or
network) metrics. In [24], graph metrics provided promising results when used on FCGs of SLE
patients. Graph metrics quantify various topological and functional characteristics of a given graph,
resulting in a homogenous set of features. A further advantage of graph metrics is their capacity to
summarize topological network features that may characterize underlying pathophysiology in a group
of patients which would otherwise be obscured by individual differences in the connectivity indices
between specific brain regions. Several studies with clinical populations have reported promising
classification results when using graph metrics as the final features fed to an ML model [25,26]. In the
present study, several complementary graph metrics were computed, namely global efficiency, local
efficiency, node degree, betweenness centrality and eigenvector centrality. Selection of the most
prominent graph metrics to serve as features in discriminating between NPSLE patients and healthy
controls was achieved through a random forest classification algorithm [27], appropriate for the
relatively high feature/subject ratio of the current data set. Finally, we employed a conservative
method of cross-validation to optimize generalizability of results to real-world situations (nested cross
validation). This method was adopted to address an often-overlooked problem in approaches that
combine feature selection with cross-validation algorithms, namely potentially non-representative of
real-world performance due to biased multiple feature sets.

The goal of the present work is to assess the accuracy and robustness of a data-driven approach
to identify connectivity metrics that differentiate resting-state hemodynamic recordings obtained
from lupus patients, manifesting neuropsychiatric symptoms, and recordings obtained from a gender
and age-matched sample of healthy volunteers. It was hypothesized that by preserving individual
differences in functional connectivity patterns and by employing graph metrics on the individualized
sFCGs, our approach would be sensitive to functional brain disturbances that accompany perfusion
impairments noted in previous studies [4,5].

2. Materials and Methods

2.1. Study Participants and Data Acquisition

2.1.1. Participants

Our dataset consisted of 44 neuropsychiatric systemic lupus erythematosus (NPSLE) patients and
39 healthy control (HC) volunteers. NPSLE diagnosis was based on physician judgement, following a
multidisciplinary approach and considering patient age and European League Against Rheumatism
(EULAR) risk factors for NPSLE (antiphospholipid antibodies, prior neuropsychiatric manifestation,
generalized disease activity, findings of conventional MRI imaging and other diagnostic procedures) [4].
Resting state fMRI data were recorded in the MRI Unit, University Hospital of Heraklion. The study
was approved by the hospital review board, and the procedure was thoroughly explained to all
participants, who signed informed consent before undergoing MRI. The demographic and clinical
characteristics of all participants are presented in Table 1.

Table 1. Demographic and clinical characteristics of NPSLE patients and controls.

Healthy Participants (n = 39) NPSLE Patients (n = 44) p-Value

Female 34 (87.2%) 43 (95.6%) 0.07
Age, mean (SD in years) 42.9 (15.4) 44.2 (12.7) 0.7

Disease duration, mean (SD in years) – 6.3 (6.1) –
SLEDAI, mean (SD) – 4.3 (2.8) –

SDI score, mean (SD) – 0.32 (0.56) –

NPSLE: neuropsychiatric systemic lupus erythematosus (SLE); SLEDAI: Systemic Lupus Erythematosus Disease
Activity Index; SDI: Systemic Lupus International Collaborating Clinics index.
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2.1.2. Impact of Disease Assessment

In addition to conventional clinical indexes of disease activity (Systemic Lupus Erythematosus
Disease Activity Index (SLEDAI)) and accumulated organ damage (Systemic Lupus International
Collaborating Clinics index (SDI)), a subgroup of patients (n = 35) were tested on two neuropsychological
tests assessing visuomotor coordination efficiency (Trail Making Test Part A (TMT-A)), and visuomotor
set shifting/mental flexibility (Trail Making Test Part B (TMT-B)). The former entails connecting encircled
numbers, 1–25, placed pseudorandomly on an A4 sheet in ascending order [28], whereas TMT-B entails
connecting encircled numbers and letters in an alternating and ascending fashion. Standardized time
to complete each task adjusted for age and education level according to Greek population norms [29]
served as the dependent variable. Correlational analyses between functional connectivity metrics
that optimally differentiate NPSLE patients from healthy controls and these clinical/neurocognitive
indices computed among NPSLE patients would help establish the functional significance of aberrant
functional connectivity patterns in NPSLE. Self-reported symptoms of depression were recorded from
32 NPSLE patients using the Hospital Anxiety and Depression Scale (HADS) [30].

2.1.3. MRI Acquisition

All brain MRI acquisitions were performed on a clinical, upgraded 1.5T whole-body
superconducting imaging system (Vision/Sonata, Siemens/Erlangen), equipped with high performance
gradients (Gradient strength: 40 mT/m, Slew rate: 200 mT/m/ms) and a two-element circularly
polarized head array coil (minimum voxel dimensions: 70 µm × 70 µm × 300 µm). The basic imaging
protocol consisted of a 3D T1-w MPRAGE (TR/TE: 1570/1.73 ms, 1 mm/1 NEX/160 axial sections),
a T2wTSE (TR/TE: 5000/98 ms, 4 mm axial sections) and a Turbo FLAIR (TR/TE/TI: 9000/120/2320 ms,
4 mm axial sections) sequence. Axial sections were acquired parallel to the plane passing through the
anterior and posterior commissures (AC–PC line). Conventional MR images were interpreted by a
senior neuroradiologist (E.P.) with 20 years of experience, blinded to the clinical and laboratory data,
who reported any incidental findings not related to SLE, or findings related to focal SLE morphological
abnormalities, such as acute or old infarcts, hemorrhages and focal brain atrophy. Patients with
any of the aforementioned MRI findings were excluded. Resting-state functional MRI (rs-fMRI) was
derived from a T2*-weighted, fat-saturated 2D-FID-EPI sequence with repetition time (TR) 2320 ms,
echo time (TE) 50 ms, field of view (FOV) 192 × 192 × 108 (x, y, z). Whole brain scans consisted of
36 transverse slices with 3.0-mm slice thickness and no interslice gap. Each BOLD time series consisted
of 150 dynamic volumes (the first three volumes were discarded for the present analyses). Acquisition
voxel size was 3 × 3 × 3 mm.

2.2. Data Preprocessing and Denoising

The fMRI images were smoothed, normalized and co-registered to the MNI space using SPM8.
In terms of signal denoising, grey matter, white matter and cerebrospinal fluid (CSF) mean signals
were regressed out of all voxel time series in order to mitigate their effects on fMRI BOLD time courses.
The first five principal components of white matter and CSF regions were regressed out of the signal
as well as their first order derivatives. These steps were completed using CompCor implemented
within the CONN [31] preprocessing module and executed in MATLAB. The fMRI time series were
detrended and bandpass filtered in the 0.008–0.09 Hz range in order to eliminate low frequency drift
and high frequency noise. This frequency band is considered “standard” in many rs-fMRI studies [32],
and it contains the low frequency fluctuations that are considered the most crucial part of the signal in
rs-fMRI FC studies.

2.3. Functional Connectivity Graph Calculation and Statistical Filtering

The automated anatomical labeling atlas (AAL) [14] was used in order to parcellate the brain in
90 distinct spatial regions of interest (ROIs). Upon superimposing each region’s mask on the original
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image, voxel time series within each region were averaged, and one representative time series was
obtained. Only these 90 representative ROI time series were utilized in the following analysis steps.

Pearson correlation coefficients were calculated for each pair of ROIs resulting in a functional
connectivity graph (FCG) for each subject containing all the possible connection strengths between
distinct cortical regions. The absolute connectivity values were retained, as the distinction between
positive and negative correlations was not pertinent to this study and did not aid further analysis steps.

One thousand iterated amplitude adjusted Fourier transform surrogate time-series (IAAFT) were
produced for each of the original subject’s 90 representative ROI time series. In the same manner
as described above, an FCG was produced for each “set” or instance of the surrogate time series,
thus resulting in one thousand surrogate connections for each pair of ROIs.

Next, one-sided p-values were obtained that corresponded to the likelihood that the observed
correlation value could belong to the distribution of surrogate correlation values. This was calculated
by estimating the proportion of surrogate connections that were greater than the “true” or actual
connections [33]. The obtained p-values reflected the statistical significance of the respective ROI–ROI
connection strength. FDR [34], with a false discovery rate of 0.05, was utilized in order to control for
multiple comparisons. The connections found insignificant by this statistical filtering scheme were
considered a product of spurious or random connection and therefore discarded.

It should be noted that tests were also conducted using a two-stage graph reduction scheme,
initially filtering with surrogates and then with OMST (Orthogonal Minimum Spanning Trees) [20]
as well with OMST as a standalone topological graph reduction technique. Better results in terms of
model performance as well as the extent of graph reduction were achieved using the surrogate time
series filtering method presented in this work.

2.4. Network Metric Calculation

Using the reduced FCG of each participant, we calculated the following graph measures: node
degree, local efficiency, betweenness centrality and eigenvector centrality, computed for each node;
global efficiency was also computed to characterize the entire FCG.

Local efficiency is closely related to the clustering coefficient, and it is analogous to the measure of
global efficiency computed on the neighborhood of a given node. It can reveal whether a system is
tolerant or immune to faults. In other words, it shows how efficient the communication is between
the node in question and its immediate neighbors if it were removed from the graph. It is calculated
as the inverse of the average of the shortest paths of a given node with all other nodes in the graph.
The shortest path in a graph is defined as the path between two nodes that minimizes the sum of
weights of its constituent edges. The characteristic path length or average shortest path is roughly the
average distance between a pair of nodes in a graph. It is calculated as the average of shortest paths
between all pairs of nodes/vertices in a graph.

Centrality in general characterizes the relative importance of a node/vertex in a network.
Node degree can be considered a simple measure of centrality. Node degree of a graph is quantified by
the number of vertices or links connected to a given node. Degree is a relatively simple measure, but it
can reveal useful information about the immediate connectedness of each node; edge weights are not
used in the calculation of degree.

More sophisticated measures of node centrality are betweenness and eigenvector centrality.
Betweenness centrality (BC) can be used to estimate the amount of a given node’s influence on the
overall flow of information in a graph. It can be used to identify a node that bridges two or more
parts of a graph. Betweenness centrality of a node is calculated as the fraction of all shortest paths in a
network containing that node. As a result, a high BC value would imply a node that participates in a
large number of shortest paths.

Similarly, as a measure of centrality, eigenvector centrality (EC) is theoretically able to distinguish
important hubs in a network, crucial to the overall connectedness of the graph. EC addresses the
problem of quantifying centrality in a self-referential manner, meaning that for a node to have a high
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EC value, it must be connected to other nodes with high EC. A node’s EC value is derived as an
eigenvector element, equivalent to the largest eigenvalue of the adjacency matrix.

Global efficiency is defined as the inverse of the average shortest path length. As the name implies,
it is a global measure, referring to the communication efficiency of the entire graph.

For the calculation of betweenness centrality, and local and global efficiency, a simple
transformation of the matrices is necessary, translating FCG values from weights to lengths, the simplest
way being 1/FCG as the input matrix. This may be done internally in some cases by the chosen
algorithm or package. Brain Connectivity Toolbox (BCT) [35] implemented in MATLAB was used
for the calculation of all graph metrics. As suggested by BCT, betweenness centrality values were
normalized by dividing them with (number of ROIs − 1) × (number of ROIs − 2). All the above
network/graph metrics were combined in order to create the feature vector. The number of features
in the initial feature vector were 361 (i.e., 4 metrics × 90 nodes plus a single global efficiency value)
per subject.

2.5. Machine Learning

2.5.1. Classification: Random Forest

The entire set of features were fed into a random forest (RF) classification model embedded in
a nested cross validation (CV) scheme utilizing an RF feature importance based selection algorithm.
Among available classification algorithms, RF [26] is noted for its simplicity, interpretability and
ability to handle high dimensional data obtained from relatively small samples, demonstrating good
generalizability. Additionally, the RF model handles the combination of different types of variables
quite well (continuous or categorical) and has been successfully employed in several rs-fMRI FC
studies [36,37]. RF belongs to the family of averaging, ensemble methods, based on randomized
decision trees. It entails several “simpler” estimators or “weak learners”, which are built independently,
and their predictions are averaged in order to produce the final prediction [26]. Averaging helps
to increase predictive accuracy and control over-fitting. Randomness is introduced in the classifier
construction process at two levels. Firstly, each learner uses a bootstrapped version of the training
data; this is generally called bagging. The second level of randomness is introduced in the form of
the randomly selected subset of variables split when a decision tree is growing. These two sources of
randomness aim to decrease the variance of the final estimator, as individual decision trees typically
exhibit high variance and a tendency to overfit. The main parameters of an RF classifier are the number
of trees in the forest/ensemble, and the number of variables selected at each node.

A crucial function of the RF algorithm is to produce estimates of feature importance in order to
evaluate individual feature contribution in the classification task and support feature selection—a
necessary step in the present work given the large number of initial, computed features. Ideally, for the
classification model to perform optimally, the initial number of features fed to the model should be
substantially lower than the number of subjects in the data set [38]. The method used for estimating
feature importance is mean decrease impurity (i.e., average decrease in node impurity over all trees for
each individual feature).

Scikit-learn’s [39] implementation of the RF classifier in python was utilized in the classification
and feature selection models. The parameters changed from their default values were those controlling
the number of trees/estimators used, as well as the number of features that were considered when
looking for the best split. These were changed according to the general instructions presented in the
documentation and other similar studies, such as [37]. The values used were 300 trees/estimators in
the forest, and all features were considered at each split. Higher numbers of trees were not deemed
necessary and would also increase model runtime greatly with no significant benefit.
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2.5.2. Machine Learning Validation and Feature Selection

CV is typically employed in machine learning classification applications as an effective method of
estimating the prediction accuracy and error of a given model. Besides providing vital information
about a model’s real-world classification performance, CV is also an essential tool in the stage of model
selection. The most often implemented CV methods in classification problems, including biomedical
studies, are leave-one-out cross validation (LOOCV) [11] and k-fold cross-validation [7]. These methods
have several drawbacks, especially when employed in combination with feature selection, the most
crucial being that the classification results produced are possibly overoptimistic and not indicative of
what can be expected in real world testing. Model overfitting is another potentially serious problem
especially with relatively small sample sizes. Additional to these issues that can be avoided, the final
models produced are often not generalizable, meaning the results are only valid for the dataset on
which they were trained and do not indicate the model’s real-world performance with new data.

A proposed improvement to these CV methods is a variant of nested CV, which was chosen over
LOOCV or k-fold CV in the present work for two main reasons: firstly, to ensure reliable identification
of a minimum set of features that best characterize aberrant functional connectivity patterns in NPSLE;
and secondly, to ensure high degree of generalizability in future studies through unbiased evaluation
of the final model on previously untouched data.

Externally, an 80/20 train–test split is applied to the data that randomly shuffles the data in each
iteration. The internal CV operates only on the training portion of the data (80%). Feature selection
in the traditional sense is performed in the internal iteration loop, on many different reshufflings
of the 80% of the dataset (training subset of the external split). In each iteration of the internal CV,
different combinations of the initial features are potentially selected by the RF algorithm, and features
are ranked in order of importance. This information is saved across each iteration in the form of
indices/names of the selected features. Next, the overall most frequently selected features throughout
all internal iterations, i.e., appeared the most times, in the top ranked feature set are used in the external
model. In this manner, the feature set on which the external model is tested is not derived from a
single run (on a single random subset of data) of the feature selection algorithm, as is the case in most
ML methodologies. Subsequently, the external classification model is trained with the entire 80%
of the data, using the features selected as described above, and tested on the remaining 20% of the
data that has been left completely untouched. The final prediction performance is indicated by the
mean and standard deviation of the performance metrics obtained during the external testing. This is
in turn repeated many times in order to eliminate the possibility of particularly favorable splits or
cherry-picked evaluation subsets. Features used in the final classification model are also saved in order
to report the overall most selected features across the external model iterations. The methodology
analyzed above is visually depicted in Figure 1.
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2.5.3. Classification Performance Metrics

Next, a brief description of the classification performance metrics is given. The accuracy score
shows the overall accuracy of the model and is calculated as the ratio of the correctly classified samples
by the total number of samples. Precision (or positive predictive value) reveals the ability of the
classifier to not label a negative sample as positive, and it is calculated as the ratio of true positive
samples by true positive plus false positive samples. Sensitivity/recall (true positive rate) shows the
model’s ability to classify the patient (negative) cases correctly (as negative). It is calculated as 1 minus
the false negative rate or as the ratio of true positives to true positives plus false negatives. The F1
score is essentially a combination of precision and recall, as its formula contains only these two metrics.
As the harmonic average of two crucial model performance measures, F1 score is often used as a single
metric in machine learning studies. The ROC (receiver operating characteristic) curve is computed by
plotting the true positive rate against the false positive rate. Finally, computing the AUC (area under
the curve) reveals the probability that the classifier will “favor” one of the two classes (HC or NPSLE).
ROC-AUC is mostly used in the model comparison and selection stages of a study in order to ensure
that the model does not classify (to an extreme extent) one of the classes with greater probability than
the other. We estimated the required sample size needed to support the significance of an identified
ROC curve compared to a null hypothesis value (0.5 or 50%) [40]. The probability of rejecting the null
hypothesis (Type I error—alpha) was set to 0.05, Type II error (beta) was set to 0.10 corresponding to a
power of 0.90 and the ratio of group sample sizes was 0.886. Sample size estimation calculations were
performed using MedCalc for Windows, version 15.0 (MedCalc Software, Ostend, Belgium).

2.5.4. Robustness of the Automated Preprocessing and Machine Learning Approach: AutoML

An important step towards the validation of the robustness of an automated preprocessing and
machine learning pipeline is to produce stable findings across multiple executions. The pipeline
proposed could potentially introduce bias due to the incorporation of statistical filtering of functional
connections via surrogate analysis. Running the IAAFT algorithm, producing one thousand surrogates
for every BOLD time series, twice, will create surrogates varying in amplitude. As a result,
the distribution of connectivity strengths for every pair of ROI BOLD time series used as reference
to retrieve statistically significant connections might differ. In order to control for these parameters,
the entire pipeline was executed (and the results obtained) twice in order to compare the outcome in
terms of performance metrics and the extracted important topological features.

2.6. Statistical Analyses

The clinical validity of the set of computed graph metrics following feature selection was assessed
through Pearson correlation coefficients with TMT-A and TMT-B performance (time to complete each
test). In addition, we compared the subgroup of patients displaying a higher degree of accumulated
damage since the onset of the disease (as indexed by a score >0 on the SDI) with the remaining
patients on each of the 12 graph metrics using one-way ANOVAs. All tests were evaluated at
Bonferroni-adjusted a = 0.05/12 = 0.004.

3. Results

As shown in Table 2, optimal classification performance was characterized by balanced sensitivity
(74.5%) and specificity (73.0%) in discriminating between NPSLE patients and healthy volunteers.
These results were achieved using a nested cross validation scheme entailing an 80/20 train–test
split, performed both internally and externally on the dataset, stratified using class labels in order to
maintain equal ratios of the two groups. Performance reached a plateau after roughly 400 external and
40 internal iterations with negligible changes in performance at larger numbers of iterations (up to
1000 outer and 100 inner iterations were tested). The number of iterations, given the relatively limited
size of the entire dataset, was considered able to examine a perfectly acceptable number of instances of
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train–test combinations for validation of the model to produce reliable results. The required sample
size for supporting the area under the ROC curve compared to a random null classifier with a 0.5
or 50% by chance value was 57 subjects. Based on the adopted Type I and II error levels (0.05–0.10),
our findings are significant with 30 positive cases (NPSLE subjects) and 27 negative cases (healthy
controls) in a total sample size of 57 subjects compared to 83 subjects in both groups.

Table 2. Mean and standard deviation of classification metrics.

Metric Mean ± Standard Deviation

Accuracy (%) 73.5 ± 10
Precision (%) 76.5 ± 12

Sensitivity (Recall) (%) 74.5 ± 15.5
Specificity (%) 73 ± 16.5
F1 Score (%) 74.5 ± 11

ROC-AUC (%) 73.5 ± 10.5

Best classification tests were achieved with cross-validation models (internal and external) limited
in the feature selection phase to 12 features, which are listed in Table 3 and illustrated anatomically
in Figure 2 (created using BrainNet Viewer [41]). Inspection of average metric values revealed that
the NPSLE group displayed higher graph metrics in the left angular gyrus (node degree and local
efficiency), left anterior cingulate gyrus, right caudate, left inferior parietal lobule, and left superior
temporal gyrus (betweenness centrality), right middle frontal gyrus (eigenvalue centrality), and right
precentral gyrus (local efficiency). Conversely, higher values were noted among healthy participants in
the left pars orbitalis and right parahippocampal gyrus (betweenness centrality) and the left superior
frontal gyrus and left temporal pole (Eigenvalue centrality).

Table 3. Most significant features associated with the best-performing classification model differentiating
NPSLE patients from healthy controls (HC).

Metric x, y, z Coordinates
in MNI Space ROI Hemi-Sphere Region Code in

AAL Map

NPSLE < HC

BC −35.98 30.71 −12.11 Inferior frontal gyrus, pars orbitalis L ORBinf.L
BC 25.38 −15.1 −20.47 Parahippocampal gyrus R PHG.R
EC −4.8 49.17 30.89 Superior frontal gyrus, medial L SFGmed.L
EC −39.88 15.14 −20.18 Temporal pole L TPOsup.L

NPSLE > HC

ND −44.14 −60.82 35.59 Angular gyrus L ANG.L
LE » » L »
BC −4.04 35.4 13.95 Anterior cingulate gyrus L ACG.L
BC 14.84 12.07 9.42 Caudate nucleus R CAU.R
BC −42.8 −45.82 46.74 Inferior parietal lobule * L IPL.L
EC 33.18 52.59 −10.73 Middle frontal gyrus, orbital part R ORBmid.R
LE 41.37 −8.21 52.09 Precental gyrus R PreCG.R
BC −23.45 −59.56 58.96 Superior parietal gyrus L SPG.L

Abbreviations; EC: eigenvector centrality, BC: betweenness centrality, LE: local efficiency, ND: node degree; L/R:
left/right. * Excluding, supramarginal and angular gyri.

Although the model comprising 12 features outperformed all other models, classification accuracy
for models retaining 9–18 features was only moderately inferior, while significant performance
reduction was noted for models including fewer than 9 or more than 18 features. Considering the
size of the dataset, this number of features is considered appropriate. Including a much greater
number of features, problems related to the so called “curse of dimensionality” become pronounced
(especially when the initial number of features is much greater than the number of subjects). On the
other hand, using fewer features entails the risk of highly inflated performance due to random weak
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patterns present in one or two features alone, as well as overfitting the model and thus leading to a
non-generalizable final model.
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The proposed pipeline, including the preprocessing steps, construction of individualized
whole-brain sFCG, extraction of important topological features and finally, its performance estimation
in discriminating NPSLE from HCs was executed twice in its entirety. This was completed in order to
ensure overall model robustness and stability. Quantitative classification performance metrics as well
as the final selected features remained unchanged between tests.

In exploratory analyses, a higher local efficiency score in the left angular gyrus (p = 0.04) and a
higher eigenvector centrality score in the temporal pole (p = 0.02) were associated with higher degree
of accumulated damage, since the onset of the disease is indexed by a score > 0 on the SDI (although
these differences did not reach significance). Among graph metrics that were found to be higher among
NPSLE patients as compared to healthy controls, local efficiency in the angular gyrus was associated
with worse performance on TMT-B (r = −0.48, p = 0.003), and betweenness centrality in the caudate was
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associated with worse performance on TMT-A (r = −0.53, p = 0.001). Conversely, higher local efficiency
in the precentral gyrus was associated with better performance on TMT-A (r = 0.57, p < 0.001).

Finally, to assess whether individual differences among NPSLE patients (and potentially the
observed differences from controls) could be attributed to comorbid depression symptoms, we computed
Pearson correlations between each of the 12 network metrics and HADS depression score. Results
failed to identify substantial associations in the NPSLE group (r < |0.2|, p > 0.2).

4. Discussion

In the present work, we designed a pipeline suitable for deriving sparser static functional
connectivity graphs from rs-fMRI time series without a-priori assumptions regarding prominent
patterns of connectivity. The proposed algorithm was applied to the full connectivity graph from each
participant consisting of 90 sections of neocortex, basal ganglia, cerebellum, thalamus and medial
temporal regions (as specified in a standard anatomical map). Initially, connection weights were
statistically thresholded using surrogate data to ensure that each connectivity weight was evaluated
for significance by considering person- and region-specific dynamic characteristics of the recorded
time series. In this manner individual differences in the precise outline of thresholded FCGs were
preserved and summarized by a set of graph metrics. Next, feature selection was conducted using
a technique that is not prone to overfitting (random forests), while the classification performance of
selected metrics was evaluated using a conservative nested cross validation scheme.

Feature selection and classification results revealed that optimal differentiation between the two
groups could be achieved based on 12 graph network metrics involving 11 ROIs. The metrics specified
in the final model (node degree, betweenness/eigenvector centrality, local efficiency) may be considered
as positive indices of the degree of importance of a particular node (ROI) in the sparse network of brain
regions characteristic of each participant. Several ROIs identified in the best-performing model closely
correspond to the regions identified in two recent studies as displaying hypoperfusion in NPSLE
as compared to healthy controls, namely the superior frontal gyrus [4,5] and the superior parietal
gyrus [4]; and the temporal pole, cingulate gyrus, precentral gyrus, middle frontal gyrus and inferior
frontal gyrus [5]. Moreover, the present results complement the work of [6], who reported increased
connectivity strength both within and between standard resting-state FC networks [13] by highlighting
the role of specific brain regions for global connectedness.

There are, therefore, indications of uncoupling between functional connectivity and regional
perfusion; we found evidence that certain regions previously noted for reduced perfusion may have
a more prominent role within the functional connectivity network in NPSLE patients as compared
to healthy controls (i.e., superior parietal gyrus, precentral gyrus, orbital middle frontal gyrus and
cingulate gyrus). In the case of the right precentral gyrus, its apparently enhanced role within the
functional network of brain areas appears to serve a compensatory function, in view of the positive
association of local efficiency and visuomotor performance. Further, the cingulate gyrus is part of the
limbic circuit; evidence of enhanced engagement of this region (indexed by higher BC in the NPSLE as
compared to the HC group) may relate to the higher frequency of potentially significant depressive
and anxious symptomatology among NPSLE patients noted in the present sample, in accordance with
the clinical literature [42,43]. This hypothesis, however, was not corroborated by correlational analyses
between BC values (or graph metrics in the remaining 10 ROIs for that matter) and self-reported
depression symptoms among NPSLE patients.

Finally, the increased role within the functional connectivity network of NPSLE patients was found
for three areas not previously noted to show perfusion disturbances (caudate nucleus, left inferior
parietal lobule and adjacent angular gyrus). Associations with neurocognitive measures suggested that
the apparent enhancement in functional connectivity in the caudate and angular gyrus was detrimental
for visuomotor performance and mental flexibility, respectively.
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4.1. Topologically Filtering of the Fully-Weighted sFCG with Surrogates

An important step before estimation of functional connectivity graphs is the adaptation of a
functional atlas that divides the human brain into regions of interest. Then, we obtained a BOLD time
series from each of these regions of interest to characterize the hemodynamic activity of each brain
area. In our study, we adopted the famous AAL atlas with a total of 90 brain areas (45 per hemisphere).
From these 90 BOLD time series, we estimated functional connectivity strength in every pair of time
series employing Pearson’s correlation coefficients, resulting in 4005 independent pairwise functional
connectivity values. The majority of functional neuroimaging studies either used the full-weighted
functional connectivity graph for identifying disease-specific patterns of connectivity disturbances
(e.g., [44,45]), or focused on a-priori defined networks involving relatively small sets of brain areas
(e.g., [6]). In both studies as well as others, an assumption was made that the large set of pairwise
functional connectivity strengths exists or is significant compared to a reference. Due to lack of
an individual reference, we borrowed techniques designed by physicists, namely surrogate data
analysis [15–17]. To address this problem, we constructed one thousand surrogate time series per
ROI BOLD time series using the iterated amplitude adjusted Fourier transform surrogate time-series
(IAAFT) [18]. IAAFT corrected the flatness bias problem observed in the power spectra of conventional
AAFT time series. This statistical filtering approach revealed person-specific, non-random network
topology without relying on group averaging.

4.2. Feature Selection and Classification Algorithm

In contrast to several other methodologies, the combination of feature selection, classification and
nested CV scheme used in the present study helped to identify a limited set of connectivity features
ensuring moderate diagnostic accuracy. This is ensured by including in the final subset of the feature
vector only the features which were beneficial in highlighting crucial patterns present in a large portion
of the data. This method provides a more robust approach for extracting potential biomarkers related
to the disease and its diagnosis. It should be noted than in preliminary analyses, tests were also
conducted using a two-stage graph reduction scheme, initially filtering with surrogates and then with
OMST [46] and with OMST as a standalone topological graph reduction technique. Better results in
terms of model performance as well as the extent of graph reduction were achieved using the surrogate
time series filtering method presented in this work.

Results from the various tests performed with a wide range of feature set sizes as well as train–test
set sizes are suggestive of adequate model stability to ensure generalization of results. These changes
include the number of inner and outer iterations, changes in the two model parameters mentioned
(number of trees and features considered at splits), as well as the number of features selected in each
iteration. The specific features derived from the final model, across all outer iterations, remained
relatively the same with changes mostly limited to the ranking position in terms of overall importance.
Additionally, the entire pipeline was run twice to assess possible bias in the surrogate generation
process. This implies quite strongly that the set of topological brain connectivity measures presented
here could prove effective in the detection of NPSLE in a similar experimental setup. This conclusion
is supported by (a) significant convergence between the final set of discriminating features identified
in the present study and regions identified as hypoperfused in previous studies with NPSLE patients,
using diverse methodologies, and (b) significant associations between several of these connectivity
metrics and disease severity or neurocognitive capacity.

While building upon an earlier report [12], where a robust machine learning model was developed
for the classification of NPSLE patients and HCs using prespecified resting-state functional connectivity
networks, two new goals were set. The first improvement was to tackle this diagnostic and exploratory
problem using a fully data-driven method. This was of paramount importance given the manual
selection of networks and regions performed in the previous study as well as in several others on
similar datasets and diseases. This goal was met, as all cortical regions were included using the
AAL atlas and the reduction of FCGs on a subject level was performed in a data-driven fashion,
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comparing the connectivity strengths to the distribution of those obtained using 1000 surrogate time
series. Graph metrics offered an elegant solution as they allow the comparison of the greatly different
functional connectivity networks (due to subject-level FCG reduction) by deriving several topological
network measures.

In addition, graph metrics can provide useful insights into important and differentiating network
characteristics. With the exception of global efficiency, all graph metrics utilized in the present study
are calculated per node, i.e., per ROI. Thus, the final derived features represent indices of the relative
importance of a given ROI. In this manner, brain regions of great importance within the global
functional connectivity networks characterizing each group can be the subject of further investigation.
The second, more indirect goal of the study, was to identify a parsimonious set of connectivity features
which could be independently validated in future samples as biomarkers for the diagnosis of NPSLE.
This is in reference to a relatively small set of regions most significantly affected (or not affected) by the
disease as well as more complex network characteristics of the diseased brain’s connectedness.

A final note concerns the metrics used for model evaluation—primarily recall and F1 score (as a
harmonic average of precision and recall). Given the potential clinical implications of classification
results, reducing the possibility of false negative predictions is of paramount importance. The main
classification performance metric indicating such behavior is recall (sensitivity = 1 − false negative
rate). Recall scores as well as those of the other performance metrics are considered perfectly acceptable
considering the more conservative performance estimation afforded by nested CV. Avoiding model
overfitting and using a conservative method for estimating classification performance are the two
factors contributing to the results being indicative of real-world performance with new subjects.

In sum, automated machine learning (AutoML) is a rapidly growing field mainly involving
computer scientists with a medical background working as a bridge between clinicians and computer
scientists with expertise in software engineering and data analysis able to harness machine and deep
learning tools [47]. We hope that our study will be helpful to non-experts to learn about good practices
in fMRI analysis and the construction of robust connectomic biomarkers by adopting suitable machine
learning algorithms. Compared to similar attempts to develop “automated” disease diagnosis tools
such as in the present [8,9,11], the level of complexity of the proposed methodology is comparable.
The steps of the entirely data-driven analysis and classification pipeline (as shown in Figure 3) are not
few but are characterized by relative simplicity, interpretability and independence from the designer
with minimal tuning.

Brain Sci. 2020, 10, x FOR PEER REVIEW 14 of 18 

diagnostic and exploratory problem using a fully data-driven method. This was of paramount 

importance given the manual selection of networks and regions performed in the previous study as 

well as in several others on similar datasets and diseases. This goal was met, as all cortical regions 

were included using the AAL atlas and the reduction of FCGs on a subject level was performed in a 

data-driven fashion, comparing the connectivity strengths to the distribution of those obtained using 

1000 surrogate time series. Graph metrics offered an elegant solution as they allow the comparison 

of the greatly different functional connectivity networks (due to subject-level FCG reduction) by 

deriving several topological network measures. 

In addition, graph metrics can provide useful insights into important and differentiating 

network characteristics. With the exception of global efficiency, all graph metrics utilized in the 

present study are calculated per node, i.e., per ROI. Thus, the final derived features represent indices 

of the relative importance of a given ROI. In this manner, brain regions of great importance within 

the global functional connectivity networks characterizing each group can be the subject of further 

investigation. The second, more indirect goal of the study, was to identify a parsimonious set of 

connectivity features which could be independently validated in future samples as biomarkers for 

the diagnosis of NPSLE. This is in reference to a relatively small set of regions most significantly 

affected (or not affected) by the disease as well as more complex network characteristics of the 

diseased brain’s connectedness. 

A final note concerns the metrics used for model evaluation—primarily recall and F1 score (as a 

harmonic average of precision and recall). Given the potential clinical implications of classification 

results, reducing the possibility of false negative predictions is of paramount importance. The main 

classification performance metric indicating such behavior is recall (sensitivity = 1 – false negative 

rate). Recall scores as well as those of the other performance metrics are considered perfectly 

acceptable considering the more conservative performance estimation afforded by nested CV. 

Avoiding model overfitting and using a conservative method for estimating classification 

performance are the two factors contributing to the results being indicative of real-world 

performance with new subjects. 

In sum, automated machine learning (AutoML) is a rapidly growing field mainly involving 

computer scientists with a medical background working as a bridge between clinicians and computer 

scientists with expertise in software engineering and data analysis able to harness machine and deep 

learning tools [47]. We hope that our study will be helpful to non-experts to learn about good 

practices in fMRI analysis and the construction of robust connectomic biomarkers by adopting 

suitable machine learning algorithms. Compared to similar attempts to develop “automated” disease 

diagnosis tools such as in the present [8,9,11], the level of complexity of the proposed methodology 

is comparable. The steps of the entirely data-driven analysis and classification pipeline (as shown in 

Figure 3) are not few but are characterized by relative simplicity, interpretability and independence 

from the designer with minimal tuning. 

 
Figure 3. Outline of the 11 ROIs as specified in the automated anatomical labeling atlas (AAL) map,
which provided the 12 graph metrics in the best-performing classification model discriminating between
NPSLE patients and healthy controls. ROI abbreviations are explained in Table 3.
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5. Conclusions

Limitations—Future Work

One of the limitations of this study concerns the relatively high standard deviation of the
classification performance metrics, especially specificity. Increasing the number of subjects, should
they become available, would probably help reduce the standard deviation of these results and provide
further assurance of model robustness. Furthermore, the CV methodology would benefit greatly
from a larger number of subjects, given that in nested CV, the data is being split twice, internally and
externally, reducing the number of subjects in the internal train and test subsets.

In order to extend the work presented here and test whether the conservative and unbiased model
developed stands up to the design’s expectations, testing on a new external dataset of NPSLE patients
and healthy controls should be performed. Firstly, the proposed model could be used in its final form,
with the measures derived as significant on the present dataset. Testing could be conducted on a new,
independent validation cohort to test model real-world generalization ability. Additionally, the regions
and network characteristics implied by the final network measures should be studied further as
biomarkers of NPSLE by taking into account individual variability in clinical patient characteristics
(such as disease duration, types of neuropsychiatric manifestations, etc.) to better understand their
significance for the pathophysiology of the disease. Future work could focus on potentially systematic
patterns of temporal variability functional network connectivity that may characterize aberrant brain
function in NPSLE [48]. Finally, methods borrowed from biology and genetics–genomics could be
evaluated for their ability to provide helpful results [49].
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