GÉOMÉTRIE ALGÉBRIQUE

Sur les points unis des involutions cycliques d'ordre p² appartenant à une surface algébrique,

par Lucien Godeaux, Membre de l'Académie

(Première note)

Considérons sur une surface algébrique F une involution d'ordre p^2 engendrée par une transformation birationnelle T de la surface en soi, p étant un nombre premier; supposons que cette involution ne possède qu'un nombre fini de points unis. Parmi ceux-ci peuvent se trouver des points unis non parfaits dans le domaine du premier ordre desquels T détermine une involution d'ordre p. Tout point infiniment voisin d'un tel point uni est donc uni pour la transformation T^p , mais non pour la transformation T. Ce sont ces points que nous nous proposons d'étudier. Nous construisons une surface Φ , normale, image de l'involution, sur laquelle les points de diramation sont isolés et nous cherchons à déterminer la singularité de cette surface Φ en un point de diramation homologue d'un point uni de la nature considérée.

Dans le cas p=2, la solution du problème posé est bien connue; nous l'avons donnée dans nos recherches sur les

involutions appartenant à une surface de genres un (1). La surface Φ possède un point double biplanaire auquel est infiniment voisin un point double conique. Ce résultat s'étend sans difficulté aux surfaces quelconques.

L'étude du cas p=3 est plus difficile. Dans ce cas, la question a été résolue par M. Rozet (²); la surface Φ possède un point triple dont le cône tangent se décompose en un plan et un cône du second ordre, et auquel est infiniment voisin un point double biplanaire ordinaire.

Le cas où p est supérieur à trois se complique encore, comme le montrent les exemples suivants, empruntés à la théorie des homographies planes cycliques.

Considérons l'homographie H d'équations

$$x_1': x_2': x_3' = x_1: \varepsilon x_2: \varepsilon^{\alpha} x_3$$
,

où ϵ est une racine primitive d'ordre p^2 de l'unité et α un entier positif tel que $p\alpha$ divisé par p^2 donne pour reste p. Dans ces conditions, H^p est une homologie, de période p, de centre $O_1(1, 0, 0)$. L'involution plane d'ordre p^2 engendrée par H possède en O_1 un point uni de l'espèce considérée plus haut. Il est facile, en partant du système linéaire appartenant à l'involution et dépourvu de points-base, formé par les courbes d'ordre p^2 , de construire une surface normale Φ , image de l'involution, sur laquelle à O_1 correspond un point de diramation O_1' isolé.

Dans le cas p=5, on trouve que le point O_1 est soit quintuple pour la surface Φ , le cône tangent étant formé d'un plan et d'un cône du quatrième ordre, soit quadruple pour la surface Φ , le cône tangent étant formé de deux plans et d'un cône du second ordre.

Lorsque p = 7, trois cas peuvent se présenter : le point O_1 '

⁽¹) Mémoire sur les involutions appartenant à une surface de genres un (Annales de l'École normale supérieure, 1914, pp. 357-439; 1919, pp. 51-70).

⁽²⁾ O. Rozer, Sur les involutions cycliques d'ordre neuf appartenant à une surface algébrique (Bull. de l'Acad. roy. de Belgique, 1937, pp. 861 874; 1938; pp. 51-64).

est multiple d'ordre sept pour la surface Φ , le cône tangent étant formé d'un plan et d'un cône du sixième ordre; ou le point O_1 ' est quintuple pour la surface Φ , le cône tangent étant formé de deux plans et d'un cône du troisième ordre; ou enfin le point O_1 ' est quintuple pour la surface Φ , le cône tangent étant formé d'un plan et de deux cônes du second ordre.

Pour p=11, on trouve également que le cône tangent à la surface Φ en point O_1' peut se scinder en quatre parties.

Nous nous proposons d'étudier le problème qui vient d'être posé dans le cas où p est un nombre premier impair quelconque. Cette première note est consacrée aux généralités.

Les méthodes utilisées sont analogues à celles qui nous ont servi à étudier les points unis des involutions cycliques d'ordre premier appartenant à une surface algébrique (¹).

1. Soit F une surface algébrique contenant une involution cyclique I_q d'ordre $q=p^2$, où p est un nombre premier impair, n'ayant qu'un nombre fini de points unis. Désignons par T la transformation birationnelle de période q, de F en soi, génératrice de l'involution I_q . Nous avons montré que l'on peut construire sur la surface F un système linéaire simple |C|, transformé en lui-même par T, contenant $q=p^2$ systèmes linéaires partiels appartenant à l'involution I_q , dont l'un est dépourvu de points-base, les dimensions de ces systèmes partiels étant aussi grandes qu'on le veut. Nous prendrons comme modèle projectif de la surface F la surface normale dont le système des sections hyperplanes coïncide avec |C|. La transformation T est alors une

⁽¹⁾ Voir en particulier notre exposé sur Les involutions cycliques appartenant à une surface algébrique (Actualités scient., Paris, Hermann, 1935) et nos mémoires Sur la structure des points unis des involutions cycliques appartenant à une surface algébrique (Mémoires in-8° de l'Acad. roy. de Belgique, 1938); Sur les surfaces multiples ayant un nombre fini de points de diramation (Annales scient. de l'École normale supérieure, 1938, pp. 193-222).

homographie de l'espace ambiant présentant $q=p^2$ axes ponctuels.

La transformation T^p , de période p, engendre sur F une involution I_p , d'ordre p, que nous supposerons n'avoir qu'un nombre fini de points unis. L'homographie T^p possède p axes ponctuels que nous désignerons par S_1 , S_2 , ..., S_p (les indices étant des numéros d'ordre et non les dimensions des espaces). Nous désignerons par Σ_i le système linéaire des hyperplans, unis pour l'homographie T^p , passant par les espaces S_1 , ..., S_{i-1} , S_{i+1} , ..., S_p (i=1, 2, ..., p), par $|C_i|$ le système linéaire partiel découpé sur F par les hyperplans de Σ_i . Le système $|C_i|$ appartient à l'involution I_p , mais non à l'involution I_q ; sa dimension est égale à celle de l'espace S_i .

Chacun des axes ponctuels S_1 , S_2 , ..., S_p de l'homographie T^p contient p axes ponctuels de l'homographie T. Nous désignerons par S_{i1} , S_{i2} , ..., S_{ip} les p axes ponctuels de T appartenant à S_i et par Σ_{ik} le système linéaire formé par les hyperplans, unis pour l'homographie T, passant par les espaces S_1 , ..., S_{i-1} , S_{i1} , ..., S_{ik-1} , S_{ik+1} , ..., S_{ip} , S_{i+1} , ..., S_p . Soit $|C_{ik}|$ le système linéaire partiel découpé sur F par les hyperplans de Σ_{ik} . Ce système appartient à l'involution I_q et a la même dimension que l'espace S_{ik} .

L'un des $q = p^2$ systèmes linéaires $|C_{ik}|$ est dépourvu de points-base; nous supposerons que c'est le système $|C_{11}|$. Cela signifie que seul des espaces S_{ik} , l'espace S_{11} peut rencontrer la surface F; les points de rencontre sont unis pour l'involution I_q et sont par hypothèse en nombre fini.

Le système linéaire $|C_1|$, qui contient $|C_{11}|$, est également dépourvu de points-base et par conséquent les espaces S_2 , S_3 , ..., S_p ne peuvent rencontrer la surface F. Mais l'espace S_1 peut rencontrer la surface F en dehors de l'espace S_{11} . Ces points de rencontre sont unis pour l'involution I_p mais non pour l'involution I_q ; ils sont par hypothèse en nombre fini. Un groupe de l'involution I_q contenant p groupes de l'involution I_p , les points de rencontre de F et

de S_1 , en dehors de S_{11} , se répartissent en groupes de p points formant autant de groupes de I_q .

2. Soient Ψ une surface image de l'involution I_p , $|K_i|$ le système linéaire de courbes homologue de $|C_i|$, $|K_{ik}|$ le système de courbes homologue de $|C_{ik}|$. Les systèmes $|K_1|$, $|K_2|$, ..., $|K_p|$ sont complets.

Nous pouvons prendre comme modèle projectif de la surface Ψ une surface normale dont le système des sections hyperplanes est $|K_i|$; nous désignerons ce modèle projectif par Ψ_i .

Aux groupes de l'involution I_q correspondent, sur la surface Ψ des groupes de p points formant une involution cyclique I_p ' d'ordre p. Soit T' la transformation génératrice de l'involution I_p '. Lorsque l'on prend pour modèle projectif de la surface Ψ l'une des surfaces Ψ_1 , Ψ_2 , ..., Ψ_p , T' est une homographie de période p, possédant p axes ponctuels, puisque chacun des systèmes linéaires $|K_1|$, $|K_2|$, ..., $|K_p|$ contient p systèmes linéaires partiels appartenant à l'involution I_p '.

Nous désignerons par Φ une surface image de l'involution I_q et par $|\Gamma_{ik}|$ le système linéaire, complet, correspondant à $|C_{ik}|$. Nous prendrons en général comme modèle projectif de la surface Φ la surface nomale ayant pour sections hyperplanes les courbes Γ_{11} .

Aux points unis des involutions I_p , I_q correspondent, sur les surfaces Φ et Ψ_1 , des points de diramation isolés.

Si n est l'ordre de la surface Φ et π le genre des courbes Γ_{11} , la surface Ψ_1 est d'ordre pn et les courbes K_1 ont le genre $p(\pi-1)+1$. La surface F est d'ordre p^2n et les courbes C ont le genre $p^2(\pi-1)+1$.

- **3.** Nous nous proposons d'étudier la structure d'un point uni A de l'involution I_q satisfaisant aux conditions suivantes :
 - 1° Le point A est simple pour la surface F et aucune

tangente à cette surface en ce point n'appartient à l'axe S_1 de T^p ;

2° Le point A est uni parfait pour l'involution I,

3° Le point A est uni non parfait pour l'involution I_q.

La seconde condition se traduit par le fait que le plan α , tangent en A à la surface F, n'a que le point A commun avec l'espace S_1 et s'appuie suivant une droite sur un des axes S_2 , S_3 , ..., S_p , par exemple sur S_2 . Dans le plan α , l'homographie T^p détermine une homologie de centre A, dont l'axe appartient à S_2 .

Dans le plan α , T détermine une homographie non homologique dont un point uni A appartient à l'espace S_{11} . Les deux autres points unis doivent appartenir chacun à un des espaces S_{21} , S_{22} , ..., S_{2p} . Pour fixer les idées, nous supposerons que le premier de ces points appartient à S_{21} et nous désignerons par a_1 la droite qui le joint à A, tandis que le second point appartient à S_{2p} ; nous désignerons par a_p la droite qui le joint à A.

Dans le domaine du point A sur la surface F, l'involution I_q détermine donc une involution d'ordre p, ayant comme points unis les points de ce domaine qui appartiennent à a_1 et à a_p . Chaque point du domaine de A est d'autre part uni pour l'involution I_p .

4. Commençons par nous occuper de l'involution Ip.

Nous avons établi que les courbes C₁ passant par A, courbes que nous désignerons par C₁', acquièrent en ce point la multiplicité p et ont des tangentes variables (¹).

Les courbes C₂, découpées par des hyperplans contenant le point A mais non le plan tangent α en A à F, ont un point simple à tangente variable en A.

Les courbes C3, C4, ..., Cp ont des multiplicités diffé-

⁽¹⁾ Recherches sur les involutions douées d'un nombre fini de points de coïncidence, appartenant à une surface algébrique (Bull. de la Soc. math. de France, 1919, pp. 1-16).

rentes en A, comprises entre deux et p-1, les tangentes en ce point étant variables (¹). Pour fixer les idées, nous supposerons que les courbes C_3 ont un point double, les courbes C_4 un point triple, ..., les courbes C_p un point (p-1)-uple en A. Les courbes C_2 , C_3 , ..., C_p passent d'ailleurs par tous les points unis de l'involution I_p .

La surface Ψ_1 , qui est projectivement identique à la surface que l'on obtient en projetant sur S_1 la surface F de l'espace de dimension minimum contenant S_2 , S_3 , ..., S_p , possède au point A', homologue de A, la multiplicité p, le cône tangent étant rationnel et équivalant, au point de vue des transformations birationnelles, à une courbe rationnelle de degré -p. On peut d'ailleurs supposer la dimension de S_1 suffisamment élevée pour que le cône tangent à Ψ_1 en A' soit dépourvu de droites multiples. Nous désignerons par γ la courbe rationnelle de degré -p équivalente au point multiple A'. On peut faire apparaître cette courbe γ en projetant Ψ_1 à partir de A' sur un hyperplan de l'espace ambiant; on obtient alors une surface Ψ_1' , d'ordre p(n-1), sur laquelle γ est une courbe rationnelle normale d'ordre p.

En rapportant projectivement les courbes C_2 aux hyperplans d'un espace ayant la même dimension que S_2 , on obtient la surface Ψ_2 , projectivement identique à la projection de F sur S_2 à partir de l'espace de dimension minimum contenant S_1 , S_3 , ..., S_p . Au domaine du point A correspond sur la surface Ψ_2 une droite; dans la transformation birationnelle existant entre les surfaces Ψ_1 et Ψ_2 , cette droite correspond à la courbe rationnelle γ ; nous la désignerons encore par γ . Cette droite γ a le degré -p. Les hyperplans passant par la droite γ coupent Ψ_2 suivant des courbes $K_2 - \gamma$ rencontrant la droite γ en p+1 points.

⁽¹⁾ Sur les points unis parfaits des involutions cycliques appartenant à une surface algébrique (Bull. de la Soc. roy. des Sciences de Liége, 1937, pp. 37-40).

Plus généralement, en rapportant projectivement les courbes C_i (i > 1) aux hyperplans d'un espace ayant la dimension de Si, on obtient la surface Wi. Au domaine du point A correspond sur la surface Ψ_i une courbe rationnelle d'ordre i-1 qui correspond à la courbe γ dans la transformation birationnelle existant entre Ψ_1 et Ψ_i ; nous désignerons encore cette courbe par γ. On peut d'ailleurs supposer la dimension de Si suffisamment élevée pour que la courbe rationnelle γ , d'ordre i-1, soit normale. La courbe γ est de degré -p et les hyperplans contenant cette courbe coupent la surface Ψ_i suivant des courbes $K_i - \gamma$ rencontrant γ en p+i-1 points.

5. Reprenons la surface Ψ₁. Aux groupes de l'involution I_q de F correspondent, sur Ψ_1 des groupes de p points formant une involution Ip' d'ordre p, cyclique, engendrée par une homographie T'. Celle-ci possède p axes ponctuels que nous désignerons par S'11, S'12, ..., S'1p, les courbes K11 étant découpées sur Ψ_1 par les hyperplans passant par S'_{11} , $S'_{12}, \ldots, S'_{1i-1}, S'_{1i+1}, \ldots, S'_{1p}$ et formant un système linéaire que nous désignerons par Σ_{1i} . Le système $|K_{11}|$ étant dépourvu de points-base, seul l'espace S'11 rencontre la surface Ψ1, en un nombre fini de points qui sont les points unis de I,'. En particulier, le point A' appartient à S'11.

Par hypothèse, le point A est uni non parfait pour l'involution Iq, par conséquent l'homographie T', qui transforme la courbe γ en elle-même, détermine sur celle-ci une involution non identique d'ordre p, présentant deux points unis. Il y a donc deux génératrices du cône tangent à Ψ₁ en A', unie pour l'homographie T'; elles correspondent aux tangentes a_1 , a_p à F et nous les désignerons par a_1' , a_p' . Chacune de ces droites s'appuie en un point sur l'un des espaces S'₁₂, S'₁₃, ..., S'_{1p},, ou appartient à S'₁₁.

Coupons le cône tangent à Ψ_1 en A' par un hyperplan de Σ'_{11} ne passant pas par A'; nous obtenons une courbe rationnelle normale d'ordre p, appartenant à un espace linéaire op à p dimensions. Cet espace est, comme la courbe, transformé en lui-même par T'. Dans σ_p , T' détermine donc une homographie de période p et on sait que les points unis de l'involution déterminée sur la courbe par T' appartiennent à un même axe ponctuel de cette homographie. Par suite, les droites a_1' , a_p' ou appartiennent toutes deux à S'_{11} , ou s'appuient toutes deux sur un des p-1 autres axes ponctuels de T', par exemple sur S'_{1p} .

La première hypothèse est inadmissible. Alors, en effet, les courbes K11 passant par A' auraient pour tangentes en ce point p génératrices variables du cône et sur la surface F, les courbes C₁₁ passant par A auraient en ce point la multiplicité p, avec p tangentes variables (formant des groupes de l'involution d'ordre p déterminée par T dans le faisceau des tangentes à F en A). Deux des courbes considérées, que nous désignerons par C'11, auraient p2 points d'intersection confondus en A et le point A" qui correspond à A sur la surface Φ image de I_i , serait simple pour cette surface. Aux courbes C'11 correspondraient, sur Φ, des courbes Γ'₁₁ de genre π. Les courbes C'₁₁ seraient de genre $p^2(\pi-1)+1-\frac{1}{2}p(p-1)$. Les courbes K_{11} qui leur correspondent sur Ψ₁(c'est-à-dire les courbes K₁₁ passant par A') seraient, d'après la formule de Zeuthen, de genre $p(\pi-1)+1-(p-1)$. Entre une courbe Γ_{11} et la courbe K'_{11} homologue, existerait une correspondance (1, p) sans diramation. La formule de Zeuthen appliquée à cette correspondance conduit à p=1.

Les droites a_1' , a_p' s'appuient donc toutes deux sur l'espace S'_{1p} . Les hyperplans de Σ'_{11} passant par A' contiennent ces droites et les courbes K'_{11} qu'ils découpent sur Ψ_1 ont en A' un point multiple d'ordre p avec ν tangentes confondues avec a_1' , $p-\nu$ avec a_p' . Les courbes C'_{11} de la surface F ont en A la multiplicité p, ν tangentes étant confondues avec a_1 et $p-\nu$ avec a_p $(0 < \nu < p)$.

Les hyperplans de Σ'_{12} , Σ'_{13} , ..., Σ'_{1p-1} contiennent les droites a_1' , a_p' et coupent Ψ_1 suivant des courbes K_{12} , K_{13} ,

..., K_{1p-1} ayant la multiplicité p en A', les p tangentes en ce point étant confondues avec a_1' et a_p' . Comme les systèmes linéaires formés par ces courbes doivent être distincts et distincts de $|K'_{11}|$, les nombres des tangentes en A' aux courbes K_{12} , K_{13} , ..., K_{1p-1} confondus avec a_1' sont, dans un certain ordre, égaux à 1, 2, ..., $\nu-1$, $\nu+1$, ..., p-1.

Les hyperplans de Σ'_{1p} ne contiennent pas les droites a_1' , a_{r}' ; ils coupent par suite Ψ_1 suivant des courbes K_{1p} ayant en A' la multiplicité p et p tangentes variables. Sur la surface F, les courbes C_{1p} ont donc un point multiple d'ordre p en A, les p tangentes étant variables. Les p points d'une courbe C_{1p} infiniment voisins de A forment évidemment un groupe de l'involution d'ordre p déterminé par T dans le domaine du premier ordre de A sur F.

6. Désignons par C''_{11} les courbes C'_{11} assujetties à avoir en A une tangente distincte de a_1 , a_p . Il leur correspond, sur Ψ_1 , des courbes K''_{11} qui sont les courbes de K'_{11} assujetties à toucher en A' une tangente à Ψ_1 distincte de a_1' , a_p' .

Les hyperplans de Σ'_{11} découpant sur Ψ_1 les courbes K''_{11} contiennent entièrement le cône tangent à cette surface en A'. Projetons la surface Ψ_1 de A' sur un hyperplan de Σ'_{11} ne passant pas par A' et soit Ψ_1' la surface obtenue. Sur cette surface, la courbe γ est une courbe normale d'ordre p; soient A_1' , A_p' les points de rencontre de cette courbe γ avec les droites a_1' , a_p' . Les courbes K'_{11} , sur la surface Ψ_1' , rencontrant γ en p points dont ν sont confondus avec A_1' et $p-\nu$ avec A_p' . Les courbes K''_{11} doivent passer par un point de γ distinct de A_1' , A_p' et par conséquent, elles coïncident avec les courbes $K'_{11}-\gamma$. Comme la courbe γ est de degré -p, les courbes K''_{11} coupent γ en 2 p points.

Considérons le système linéaire complet $|2 K_1|$ découpé sur Ψ_1 par les hyperquadriques; il est transformé en luimême par T' et contient p systèmes linéaires partiels appartenant à l'involution I_p et dont les courbes ont le même comportement en A' que les courbes K_{11} , K_{12} , ..., K_{1p} res-

pectivement. Ces p systèmes peuvent être caractérisés par les courbes $2 K_{11}, K_{11} + K_{12}, ..., K_{11} + K_{1p}$.

Les courbes du système linéaire (partiel) appartenant à l'involution $I_{p'}$ |2 K_{11} |, passant par A' appartiennent au système linéaire partiel $|K_{11}+K'_{11}|$. Celles de ces courbes touchant en A' une tangente à Ψ_1 distincte de a_1' , a_p' , appartiennent au système $|K_{11}+K''_{11}|$.

D'autre part, les courbes $K_{1p} + K_{11}$, $K_{1p} + K_{12}$, ..., $2 K_{1p}$ appartiennent chacune à un des systèmes précédents. On trouvera donc des courbes $K_{1p} + K_{1i}$ (1 < i < p) appartenant au système $|2 K_{11}|$. Ces courbes ont un point multiple d'ordre 2 p en A' et par suite elle se comportent en ce point comme les courbes K''_{11} . Celles-ci ont donc en A' un point multiple d'ordre 2 p avec, en ce point, p tangentes variables, p' tangentes confondues avec a_1' $(p' \neq p)$ et p - p' tangentes confondues avec a_1' .

Sur la surface F, les courbes C''_{11} ont la multiplicité 2p en A, p tangentes étant variables (et formant un groupe de l'involution d'ordre p déterminée par T dans le faisceau des tangentes à F en A), \vee tangentes étant confondues avec a_1 et $p-\vee$ avec ap.

On peut d'ailleurs remarquer que si l'on écrit les équations de l'homographie T' en prenant comme figure de référence un polyèdre dont tous les sommets appartiennent aux axes de cette homographie, on est conduit à attacher aux axes S'_{11} , S'_{12} , ..., S'_{1p} de T' les p racines distinctes d'ordre p de l'unité. Par exemple, si ε est une racine primitive d'ordre p de l'unité, on peut attacher la racine 1 à S'_{11} , ε à S'_{12} , ..., ε^{p-1} à S'_{1p} . Les courbes K''_{11} se comporteront, en A', comme les courbes $K_{1p} + K_{12}$.

7. À l'involution I_q de F correspond, sur la surface Ψ_2 , une involution I'_p d'ordre p engendrée par une homographie T' possédant p axes ponctuels que nous désignerons par S'_{21} , S'_{22} , ..., S'_{2p} . Les courbes K_{2i} seront découpées,

sur Ψ_2 , par les hyperplans d'un système linéaire Σ'_{2i} ayant comme base les espaces S'_{21} , ..., S'_{2i-1} , S'_{2i+1} , ..., S'_{2p} .

La droite γ tracée sur la surface Ψ_2 est unie pour l'homographie T' qui détermine sur cette droite une involution d'ordre p ayant deux points, qui appartiennent chacun à un des espaces S'_{21} , S'_{22} , ..., S'_{2p} . Nous avons supposé que la tangente a_1 à la surface F au point A s'appuyait sur l'espace S_{21} ; par conséquent les courbes C_{21} ne peuvent toucher cette droite en A et les courbes K_{21} de la surface Ψ_2 ne peuvent passer par le point de la droite γ qui correspond au point infiniment voisin de A sur a_1 . Il en résulte que la droite γ s'appuie en un point A_1' sur l'espace S'_{21} . Par un raisonnement analogue, on voit que la droite γ s'appuie en un point A_p' sur l'espace S'_{2p} .

Les courbes K_{21} sont unies pour l'homographie T et rencontrent la droite γ en un point uni A'_p , par conséquent les courbes C_{21} ont un point simple en A et y touchent la droite a_p . De même, les courbes K_{2p} passent par A_1' et les courbes C_{2p} passent simplement par A en y touchant la droite a_1 .

Les courbes K_{22} , K_{23} , ..., K_{2p-1} contiennent la droite γ comme partie.

Considérons maintenant la surface Ψ_n obtenue en rapportant projectivement les courbes $C_n(n > 2)$ aux hyperplans d'un espace linéaire ayant la dimension de S_n . Sur cette surface, il correspond à l'involution I_q une involution $I_{r'}$ engendrée par une homographie T' ayant p axes ponctuels S'_{n1} , S'_{n2} , ..., S'_{np} . Nous désignerons par Σ'_{ni} le système des hyperplans passant par les espaces S'_{n1} , ..., S'_{ni-1} , S'_{ni+1} , ..., S'_{np} et nous supposerons qu'il découpe sur Ψ le système $|K_{ni}|$.

Sur la surface Ψ_n , la courbe γ est une courbe rationnelle normale d'ordre n-1, transformée en elle-même par T' et possédant deux points unis A_1' , A_p' , que nous supposerons appartenir le premier à S'_{n1} , le second à S'_{np} . Si les hyperplans du système Σ'_{ni} ne contiennent pas la courbe γ tout entière, ils doivent avoir un contact d'un certain ordre

n'-1 avec γ en A_1' et un contact d'ordre n-n'-1 avec γ en A_p' . En particulier, les hyperplans de Σ'_{n_1} ont avec γ un contact d'ordre n-2 en A_p' et ceux de Σ'_{n_p} un contact du même ordre en A_1' .

On en conclut que parmi les p systèmes $|K_{n1}|$, $|K_{n2}|$, ..., $|K_{np}|$ appartenant à l'involution I_p' sur Ψ_n , il y en a n qui ne possèdent pas la courbe γ comme composante fixe. Les courbes de ces n systèmes rencontrent la courbe γ en n' points confondus en A_1' et en n-n'-1 points confondus en A_p' , le nombre n' variant d'un système à l'autre. En particulier, pour le système $|K_{n1}|$, on a n'=0 et pour le système $|K_{np}|$, n'=n-1.

Sur la surface F, les courbes C_{n1} ont en A la multiplicité n-1, toutes les tangentes étant confondues avec a_p ; les courbes C_{np} ont la même multiplicité, toutes les tangentes étant confondues avec a_1 . Parmi les systèmes $|C_{n2}|$, ..., $|C_{np-1}|$, il y en a n-2 dont les courbes ont la multiplicité n-1 en A, les tangentes étant confondues avec a_1 et a_p . Les courbes des autres systèmes ont en A une multiplicité supérieure à p.

8. Nous avons vu que les courbes C'_{11} , c'est-à-dire les courbes C_{11} passant par A, ont en ce point la multiplicité p, ν de leurs tangentes étant confondues avec a_1 et $p-\nu$ avec a_p . Soit A" le point de diramation de la surface Φ homologue du point A. Aux courbes C'_{11} correspondent les sections Γ'_{11} de Φ par les hyperplans passant par A". Il en résulte que le nombre de points d'intersection de deux courbes C'_{11} absorbés en A est un multiple de p^2 .

Sur une courbe C'_{11} , le point A est l'origine d'un certain nombre de branches tangentes à a_1 ou à a_n . Considérons une de ces branches et soient P, P₁, ..., P_n les points de cette branche infiniment voisins successifs de A. Les premiers de ces points appartiennent à toutes les courbes C'_{11} et sont donc unis pour l'involution I_q ; soit P_n le dernier point de la suite appartenant à toutes les courbes C'_{11} . La multiplicité

de P_n pour les courbes C'_{11} est nécessairement inférieure à celle de A, c'est-à-dire à p.

Effectuons sur la surface F n transformations birationnelles successives de manière à obtenir une surface F sur laquelle le point P_n est un point effectif. Soient $\overline{I_q}$, \overline{T} , et $\overline{C'_{11}}$ l'involution, la transformation et les courbes qui correspondent sur \overline{F} respectivement à l'involution I_q , à la transformation T et aux courbes C'11. Le point Pn est uni pour l'involution \overline{I}_q et les courbes \overline{C}'_{11} ont en ce point des tangentes variables, en nombre inférieur à p. Il en résulte que les points infiniment voisins de P_n sur \overline{F} sont unis pour \overline{I}_q , c'est-à-dire que P_n est un point uni parfait. Si nous rapportons projectivement les courbes C'_{11} (ou $\overline{C'_{11}}$) aux hyperplans d'un espace de même dimension que |C'₁₁|, nous obtenons une surface Φ' projectivement identique à la projection de Φ à partir de A'' sur un hyperplan ne passant pas par ce point. Aux points infiniment voisins de P_n (sur F ou sur F), correspondent les points d'une courbe rationnelle de la surface Φ' , dont l'ordre est égal à la multiplicité de P_n pour les courbes C'_{11} .

Les courbes C'_{11} ont en commun un certain nombre de points fixes, situés dans les domaines des différents ordres de A, chaque suite formée par ces points étant terminée par un point uni parfait pour l'involution I_q . Il y a au moins deux de ces points, puisque A est l'origine d'au moins deux branches d'une courbe C'_{11} . Soient A_{11} , A_{12} , ..., A_{1m} les points unis parfaits de I_q situés sur des branches tangentes en A à a_1 ; ν_{11} , ν_{12} , ..., ν_{1m} leurs multiplicités pour les courbes C'_{11} ; A_{21} , A_{22} , ..., A_{2n} les points unis parfaits de I_q situés sur des branches tangentes à a_p en A; ν_{21} , ν_{22} , ..., ν_{2n} leurs multiplicités pour les courbes C'_{11} . Sur la surface Φ' , on aura donc m+n courbes rationnelles γ_{11} , γ_{12} , ..., γ_{1m} , γ_{21} , γ_{22} , ..., γ_{2n} qui représenteront le domaine du point A'' sur la surface Φ . En d'autres termes, le point A'' sera multiple d'ordre $\nu_{11} + \ldots + \nu_{1m} + \nu_{21} + \ldots + \nu_{2n}$ pour la surface Φ et le cône tan-

gent à cette surface en ce point sera décomposé en m+n cônes rationnels d'ordres $\nu_{11}, \ldots, \nu_{2n}$.

On doit d'ailleurs avoir

 $\nu_{11} + \nu_{12} + \dots + \nu_{1m} \leqslant \nu, \quad \nu_{21} + \nu_{22} + \dots + \nu_{2n} \leqslant p - \nu,$ de sorte que A'' sera au plus multiple d'ordre p pour la surface Φ .

9. Nous avons vu que les courbes C_{21} et C_{2p} passent simplement par le point A en y touchant les premières la droite a_p , les secondes la droite a_1 . Les courbes K_{21} , K_{2p} qui leur correspondent sur la surface Φ passent simplement par le point A". Les courbes K_{21} , sur la surface Φ ou sur la surface Φ' , doivent rencontrer en un point la courbe $\gamma_{21} + \gamma_{22} + \dots + \gamma_{2n}$ et les courbes K_{2p} en un point la courbe $\gamma_{11} + \gamma_{12} + \dots + \gamma_{1m}$.

Le nombre de points d'intersection d'une courbe C'_{11} et d'une courbe C_{21} absorbés en A doit être multiple de p^2 . Il en est de même du nombre de points d'intersection des courbes C'_{11} et C_{2p} absorbés en A.

10. Les hyperplans passant par un point commun aux courbes $\gamma_{11} + ... + \gamma_{1m}$ et $\gamma_{21} + ... + \gamma_{2n}$ découpent sur la surface Φ' les courbes Γ''_{11} qui correspondent aux courbes C''_{11} (courbes C'_{11} touchant en A une droite distincte de a_1 , a_p); par conséquent, les deux courbes envisagées ne peuvent avoir qu'un point commun. Supposons que ce point appartienne aux composantes y11, y21 des courbes envisagées. Les courbes K''_{11} rencontrent γ_{11} en $\nu_{11}-1$ points variables, γ_{21} en $\nu_{21} - 1$ points variables, γ_{12} en ν_{12} points variables, ..., γ_{2n} en v_{2n} points variables. Il en résulte que les courbes C"11 ont en A₁₁ la multiplicité v₁₁ - 1, en A₂₁ la multiplicité v₂₁ - 1 et aux points A₁₂, ..., A_{1m}, A₂₂, ..., A_{2n} la même multiplicité que les courbes C'11. Mais les courbes C"11 peuvent avoir en commun, dans le domaine du point A, d'autres points unis parfaits de l'involution Iq que ceux qui viennent d'être mentionnés.

Les nombres de points d'intersection absorbés en A d'une courbe C''_{11} et d'une courbe C_{21} , ou d'une courbe C_{2p} , ou d'une courbe C'_{11} , doivent être multiples de p^2 .

Observons que, sur la surface Φ' , le point A_1'' commun aux courbes γ11, γ21, peut être multiple pour cette surface; il est alors équivalent à une courbe, réductible ou non, rencontrant chacune des courbes γ_{11} , γ_{21} en un point. Si l'on projette la surface Φ' du point A₁" sur un hyperplan, on obtient une surface Φ'' dont les sections hyperplanes sont les courbes Γ''_{11} . Les courbes γ_{11} , γ_{21} se projettent sur Φ'' suivant des courbes d'ordres $v_{11}-1$, $v_{21}-1$ respectivement, les courbes $\gamma_{12}, \ldots, \gamma_{2n}$ suivant des courbes d'ordres $\nu_{12}, \ldots,$ ν_{2n}. Les composantes infinitésimales du point A₁" sur la surface Φ' apparaissent sur Φ'' suivant des courbes ordinaires. Parmi celles-ci, se trouve une droite qui représente les groupes de I_q (formés de p points distincts) appartenant au domaine du premier ordre de A. Sur chaque courbe C"11, il existe, en effet, un de ces groupes, situé sur les p tangentes à la courbe distincte de a_1 , a_p .

Liége, le 17 janvier 1940.