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ABSTRACT

Context. Stellar deformations play a significant role in the dynamical evolution of stars in binary systems, impacting the tidal dis-
sipation and the outcomes of mass transfer processes. The prevalent method for modelling the deformations and tidal interactions
of celestial bodies solely relies on the perturbative approach, which assumes that stellar deformations are minor perturbations to the
spherical symmetry. An observable consequence of stellar deformations is the apsidal motion in eccentric systems, which has be
observationally determined across numerous binary systems.
Aims. Our objective is to assert the reliability of the perturbative approach when applied to close and strongly deformed binary
systems.
Methods. We have developed a non-perturbative 3D modelling method designed to account for high stellar deformations. We
focus on comparing the properties of perturbatively deformed stellar models with our 3D models, particularly in terms of apsidal
motion.
Results. Our research highlights that the perturbative model becomes imprecise and underestimates the tidal force and rate of apsidal
motion at a short orbital separation. This discrepancy primarily results from the first-order treatment in the perturbative approach,
and cannot be rectified using straightforward mathematical corrections due to the strong non-linearity and numerous parameters
of the problem. We have determined that our methodology affects the modelling of approximately 42% of observed binary sys-
tems with measured apsidal motion, introducing a discrepancy greater than 2% when the normalised orbital separation verifies
q−1/5a(1−e2)/R1 . 6.5 (q is the mass ratio of the system, a is its semi-major axis, e is its orbital eccentricity and R1 is the radius of the
primary star).
Conclusions. The perturbative approach underestimates tidal interactions between bodies up to ∼40% for close low-mass binaries.
All the subsequent modelling is impacted by our findings, in particular, the tidal dissipation is significantly underestimated. As a
result, all binary stellar models are imprecise when applied to systems with a low orbital separation, and the outcomes of these models
are also affected by these inaccuracies.

Key words. celestial mechanics – binaries: close – binaries: general – stars: evolution – stars: interiors

1. Introduction

Tidal forces in binary systems result from the gravitational inter-
action between non-point-like bodies and can be categorised into
two components: the equilibrium tides, corresponding to large-
scale circulations resulting from a hydrostatic readjustment (i.e.
stellar deformations) and the dynamical tides corresponding to
the excitation of eigenmodes of oscillations from the periodic
perturbations from a companion (Zahn 1975). These tidal
forces and the subsequent stellar deformations lead to various
phenomena such as orbital synchronisation, mass transfer, and
tidal dissipation (Jeans 1929), the latter corresponding to the
dissipation of orbital energy within the stellar bodies. A direct
consequence of the tidal interactions is the apsidal motion in
eccentric binaries (Sterne 1939). It represents the time variation
of the argument of periastron ω or, in other words, the motion
of the apsidal line with time. Apsidal motion originates from
equilibrium tides, dynamical tides (Gimenez & Margrave
1985; Willems & Claret 2002), and general relativistic

corrections1 (Gimenez & Margrave 1985). It serves as a
valuable observational constraint to understand the structure
of deformed stars, providing insights into the microphysics of
stellar models (Rosu et al. 2020a, 2022a,b, 2023). Accurate
modelling of tidal and centrifugal deformations is essential to
determine the precise stellar structure of each component in
binary systems and, consequently, to predict the apsidal motion.

When modelling the structure and deformations of binary
stars, the perturbative approach is one of the most sophisticated
and widely used methods in the literature. The principle of this
methodology is to consider that stellar deformations are small
perturbations to the spherical symmetry of stars, only account-
ing for the leading orders terms in the developments (Sterne
1939; Kopal 1959, 1978). This approach allows one to obtain

1 In the case of a hierarchical triple system, a contribution to the apsidal
motion arises from the third body orbiting the inner binary (Naoz et al.
2013). In the present study, we do not account for such an effect as we
focus on binary systems.
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simplified structural deformations from the unperturbed spheri-
cally symmetric structure through the well-known stellar struc-
ture constant, the k2 coefficient that is obtained from solving
the Clairaut-Radau equation (Kopal 1959). With the perturbative
formalism, the dipolar components of the tidal and centrifugal
forces cancel out (Kopal 1959; Fitzpatrick 2012), implying that
no asymmetry exists in the stellar models, in contradiction with
the fundamental Roche geometry. Moreover, our previous work
(Fellay & Dupret 2023) already demonstrated that the perturba-
tive approach underestimates the deformations when compared
to our non-perturbative models. Therefore, it becomes crucial
to verify the consequences of the assumptions inherent to the
perturbative approach. Finally, it is worth mentioning that the
tidal distortion and dissipation formalism (Zahn 1977; Hut 1981)
employed by widely recognised and publicly available codes
such as MESA (Paxton et al. 2011, 2013, 2015, 2018, 2019) are
based on the perturbative approach.

In this study, we expand on the work done in
Fellay & Dupret (2023) by further investigating the limita-
tions imposed by the assumptions of the perturbative approach,
using our non-perturbative method. Our tool, called Modelling
Binary Deformations Induced by the Centrifugal and Tidal
forces (MoBiDICT), allows us to determine the deformed struc-
ture of close binaries in a non-perturbative manner, accounting
for the redistribution of mass in the bodies. By utilising the
deformed structure obtained from MoBiDICT, we could cal-
culate the instantaneous tidal acceleration perturbation and its
consequence on the apsidal motion of binary systems. Finally,
MoBiDICT’s formalism enabled us to locate and identify the
specific spherical order responsible for the discrepancies seen.

In this article, we start, in Sect. 2, by introducing the physics
behind MoBiDICT and the methodology developed to compute
the apsidal motion of binaries in a non-perturbative way. In
Sect. 3, we explain how we developed the perturbative approach
formalism usually used to model the apsidal motion of binaries.
Sect. 4 is dedicated to exploring the discrepancies in models for
different types of theoretical stars. In Sect. 5 we study binary
systems for which the apsidal motion has been measured and
provided in the literature. In Sect. 6, we discuss the implication
of our findings on the stellar modelling methods used for binary
stars. Finally, in the Appendices, we develop all the equations
of the perturbative approach starting from a single star’s gravita-
tional potential to arrive at the apsidal motion in binaries.

2. Non-perturbative modelling

2.1. Set-up of the problem and first models

In this article, we investigate the deformations in binary systems
resulting from three primary sources: the gravitational force, the
tidal force arising from a companion, and the centrifugal force
originating from the orbital rotation of the system and the indi-
vidual stellar rotations. Accurate modelling of these phenom-
ena necessitates a non-perturbative treatment of deformations in
three dimensions (3D).

We considered a binary system consisting of two distinct
stars separated by a distance r and with an orbital rotation rate
n. Assuming the stars (i = 1, 2) within the system are in hydro-
static equilibrium, their structures are governed by the equation
of hydrostatic equilibrium:

∇P
ρ

= −∇ (Ψ1 + Ψ2 + Ψc) = geff , (1)
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Fig. 1. View of a 1.0 M� MS primary star in a binary system, cut in
the plane including all the rotations axes of the system. The companion
to this star is a 0.2 M� MS secondary star with an orbital separation of
r = 2R1. The black curve corresponds to the Roche lobe of the primary
star. The black lines respectively correspond to the reference direction
for θ and to the reference direction in witch our model is given by the 1D
spherical symmetric model (θ = µcrit). The blue lines are equipotentials
inside the star with the colourbar representing the total potential. On
each equipotential the pressure, density, and temperature, are constant.
L1 is the Lagrangian point and R1 is the radius of the initial 1D model
in the reference direction.

and the Poisson equation,

∆Ψi = 4πGρi, (2)

linking the gravitational potential Ψi(ri, µ, φ) of a body to its den-
sity distribution ρi(ri, µ, φ) in 3D. In Eq. (1), P is the pressure,
geff is the effective gravity, Ψc(ri, µ, φ) is the centrifugal potential
on a 3D grid, where ri denotes the radial coordinate of the star
i, µ = cos(θ) its colatitude, and φ its azimuthal angle. The cen-
trifugal force can be solely derived from a potential if the rota-
tions exhibit cylindrical symmetry, with the solid body rotation
being a specific case. Throughout this entire article, we made the
assumption of solid body rotations to simplify the problem (see
Sect. 6 for a discussion on the validity of this assumption).

In our recent work (Fellay & Dupret 2023), we introduced
a new tool called MoBiDICT, specifically designed to precisely
model close binaries using a non-perturbative approach to treat
the deformations. Our method iteratively solves the Poisson
equation on a 3D structure, allowing to obtain the gravitational
and tidal potential accounting for the redistribution of mass
within the bodies. MoBiDICT takes advantage of the conserva-
tive nature of all the forces considered, resulting in a barotropic
model structure (i.e. the densities are constant on equipotentials).
By assuming that in a given direction (µcrit, φcrit) each star is
described by a 1D spherically symmetric input model, we can
recompose the entire 3D density profile from the total potential
(Ψtot = Ψ1 + Ψ2 + Ψc) of each star. This method is thoroughly
explained in Fellay & Dupret (2023).

Figure 1 illustrates the equipotential lines within a deformed
primary star, that were obtained using our non-perturbative mod-
elling method. In this case, we applied our tool to a binary sys-
tem composed of a primary 1 M� main-sequence (MS) star and a
0.2 M� MS companion separated by r = 2R1, R1 being the radius
of the primary given by the 1D spherically symmetric model.

In the scenario depicted in Fig. 1, we assumed that the rota-
tional velocities of both stars are identical and equal to the orbital
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rotation rate, in other terms the system is tidally locked. How-
ever, when studying eccentric binaries, pseudo-synchronisation
becomes the end result of tidal interactions, making impossi-
ble to model the system as entirely synchronised. Furthermore,
mass transfers between binary components often result in signif-
icant transfer of angular momentum (Packet 1981), leaving the
accretor star close to its critical rotation while the donor slowly
rotates. Generalising our model to non-synchronised binary sys-
tems is necessary to model eccentric binaries and binary evolu-
tion.

2.2. Non-perturbative modelling of non-synchronised binary
systems

We considered a scenario where each star i composing a system
has its individual rotation rate Ω?,i, independent from the orbital
rotation rate n. In this situation, assuming alignment of all rota-
tional axes, two planes of symmetry emerge and are exploited
by our method. The first plane of symmetry is the orbital plane,
the second is the plane including all the rotation axes. A 3D rep-
resentation of this configuration is shown in Fig. 2 for the same
system as in Fig. 1.

With our non-perturbative method, unsynchronised binary
systems can be directly modelled by modifying, and generalis-
ing the centrifugal potential. The previous expression of the cen-
trifugal potential, which relied on the assumption of solid body
synchronised rotation and the circular orbit was

Ψc(x, y) = −
n2

2

[
(xCM − x)2 + y2

]
(3)

and becomes in the non-synchronised cylindrical symetric rota-
tion and circular orbit case:

Ψc(x, y) = n2xCMx −
∫ √x2+y2

0
Ω2
?,i(s)sds, (4)

where s is the distance from the stellar rotation axis. In Eqs. (3)
and (4), we used Cartesian coordinates centred on the star con-
sidered. Here, x represents the coordinate along the apsidal line
(i.e. the major-axis of the orbit) pointing towards the companion,
xCM denotes the distance between the system’s centre of mass
and the star’s centre, and y is the coordinate along the perpen-
dicular axis to x included in the orbital plane.

As expected from the comparison of Eqs. (3) and (4), for a
synchronised system (Ω?,i = n), these expressions are equivalent
up to a constant factor. The effective gravity resulting from the
centrifugal force can be obtained by differentiating Eq. (4).

Our model can be generalised to eccentric systems by
decomposing the motion of each element as a Keplerian motion
around the system’s centre of mass plus a cylindrical rotation of
the star. To obtain the centrifugal potential at a given point of the
orbit where the instantaneous distance between the centre of the
two binary components is r, n2 has to be replaced, in Eq. (4), by
ñ2 defined as

ñ2 =
GMtot

r3 , (5)

so that ñ2r is the norm of the Keplerian instantaneous relative
acceleration of the bodies in the system. In Eq. (5), Mtot is
the total mass of the system. With this decomposition and our
assumption of the cylindrical rotation, the acceleration of an ele-
ment in a star is entirely given by the gradient of a potential. The
acceleration induced from our decomposition of the mouvement

Fig. 2. Illustration of a binary system configuration with non-
synchronised rotations. The system is composed of 1 M� MS primary
star and a 0.2 M� MS companion separated by r = 2R1. The two grey
planes are the planes of symmetry, each rotation axis is marked with
a black line. The orbital rotation is originating from the system centre
of mass, located inside the primary. The black curve is the secondary
orbital path, a black axis is joining the centre of each star with and
emphasis on the Lagrangian point L1. Finally, the colour code corre-
sponds to the surface effective gravity, the local flux emitted by a star
being a function of this quantity.

is the gradient of the centrifugal potential that is expressed for
the primary star as

r̈1 = −ñ2xCM,1ex1 + Ω2
?,1(s1)s1es1 , (6)

where the bold symbols denote vectorial quantities, êx1 is the
unit vector linked to the x-axis of the primary and ês1 is the unit
vector linked to the gradient of s. In all this article, we symplify
further the problem by only consiering solid body rotations.

2.3. Force perturbation

In classical celestial mechanics theory, the relative acceleration
of two bodies in a binary system is entirely given by its radial
component expressed as

r̈ = r̈2 − r̈1 =

[
F21

M1
−

F12

M2

]
êr =

F21

mµ
êr, (7)

where the bold symbols denote vectorial quantities, F21 is the
force exerted by the secondary star on the primary (noting
F2→1 ≡ F21), F12 its opposite, êr is the radial unit vector cen-
tred on the secondary and pointing towards the primary, Mi are
the individual masses of the bodies and mµ is the reduced mass
of the system defined as

mµ =
M1M2

M1 + M2
. (8)

The last step of Eq. (7) was deduced from the third Newton Law
(F12 = −F21). The total force per unit of mass exerted by the
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secondary on its primary can be decomposed as

F21

mµ
= −

GMtot

r2 + FR. (9)

In Eq. (9), FR is the radial perturbed acceleration resulting from
considering stars as non-spherical extended interacting bodies.
This perturbation is responsible for all the equilibrium tidal-
induced dynamical effects of binary evolution, including orbital
migration (i.e. variation of systems semi-major axis), eccentric-
ity dissipation (i.e. reduction of orbital eccentricty), and apsidal
motion (i.e. time variation of the argument of the periastron).

In the framework of our modelling, the force exerted by the
secondary on the primary can be expressed as

F21 = −

∫
ρ1F2dV1 = −

∫
ρ1
∂Ψ2

∂x
dV1, (10)

where F2 is the gravitational force from the secondary inside the
primary. By decomposing the densities and the forces in unper-
turbed spherical symmetric terms, respectively ρ10 and F20, and
non-spherical perturbations, respectively ρ′1 and F′2, the force
exerted by the secondary on the primary can be rewritten as

F21 = −

∫
(ρ10 + ρ′1)(F20 + F′2) dV1. (11)

The spherically symmetric component of the force can be simply
identified as being

−
1

mµ

∫
ρ10F20dV1 = −

GMtot

r2 . (12)

Therefore, the perturbed acceleration is expressed as

FR = −
1

mµ

∫ (
ρ10F′2 + ρ′1F20 + ρ′1F′2

)
dV1. (13)

In MoBiDICT, all quantities are projected on spherical harmon-
ics to facilitate the solving of the Poisson equation (Eq. (2)), for
example the densities and potentials are decomposed as

ρi(ri, µ, φ) =

L∑
`=0

(`−p)/2∑
k=0

ρm
i,`(ri)Y`,m(µ, φ), (14)

and

Ψi(ri, µ, φ) =

L∑
`=0

(`−p)/2∑
k=0

Ψm
i,`(ri)Y`,m(µ, φ), (15)

where L is the free parameter of our modelling defining the max-
imum degree of the spherical harmonics to be accounted for,
p = 0 if ` is even, p = 1 otherwise, and m = 2k + p. In this
formalism, the decomposition in spherically symmetric and non-
symmetric terms is straightforward. The ` = 0, m = 0 term is
the spherically symmetric component of each quantity while all
other spherical orders are non-symmetric terms. In our formal-
ism the perturbed acceleration can thus be obtained with

FR = −
1

mµ

∫
ρ0

1,0Y0,0

 L∑
`=1

(`−p)/2∑
k=0

Fm
2,`

 dV1 (16)

−
1

mµ

∫  L∑
`=1

(`−p)/2∑
k=0

ρm
1,`Y`,m

 F0
2,0dV1

−
1

mµ

∫  L∑
`=1

(`−p)/2∑
k=0

ρm
1,`Y`,m


 L∑
`=1

(`−p)/2∑
k=0

Fm
2,`

 dV1.

Finally, each force term projected on the spherical harmonic
basis Fm

2,` can be decomposed and re-expressed in a spherical
coordinate frame (to be integrated) with

Fm
2,` =

∂r1

∂x1

∂Ψm
2,`Y`,m
∂r1

+
∂θ1

∂x1

∂Ψm
2,`Y`,m
∂θ1

+
∂φ1

∂x1

∂Ψm
2,`Y`,m
∂φ1

. (17)

The spherical harmonics Y`,m in Eq. (17) are functions of µ2
and φ2. The expressions of the ∂Ψm

2,`Y`,m/∂r1, ∂Ψm
2,`Y`,m/∂θ1, and

∂Ψm
2,`Y`,m/∂φ1 terms can be found in Fellay & Dupret (2023).

More than having a non-perturbative description of the result-
ing force, the main advantage of our formalism is the possibility
of naturally compare the contributions of the different spherical
harmonic orders by selecting the desired orders in the sums.

2.4. Non-perturbative apsidal motion computation

In this section, we developed the formalism used to model the
apsidal motion with our non-perturbative method. Figure 3 illus-
trates the setup of an eccentric binary system, the apsidal motion
of a system corresponding to dω/dt. In eccentric binary systems,
aspidal motion is a direct observational constraint on the defor-
mations of distorted bodies. Recent investigations (Rosu et al.
2020a, 2022a,b) highlight its utility in constraining physical pro-
cesses occurring during stellar evolution, such as internal mix-
ing.

The apsidal motion is induced by the equilibrium tidal per-
turbed acceleration FR, the general relativity and dynamical tidal
perturbed acceleration. The general relativistic component of the
apsidal motion can be expressed as

dωrel

dt
=

2π
Porb

3GMtot

c2a(1 − e2)
, (18)

where a is the system’s semi-major axis, e its eccentricity, Porb its
orbital period, c is the celerity, and G the gravitational constant.
In this article, we studied the equilibrium tides component of the
apsidal motion and neglected the dynamical tides component,
the latter will be the focus of a forthcoming article.

From the Gauss planetary equations for a perturbed accel-
eration along the apsidal line (see e.g. Kopal 1959), the apsidal
motion of a binary system is classically given by

ω̇N ≡
dωN

dt
= −

√
1 − e2

e

√
a

GMtot
〈FR cosϕ〉, (19)

where ϕ is the true anomaly and 〈FR cosϕ〉 denotes the time
average of the perturbed acceleration expressed as

〈FR cosϕ〉 =

∫
FR cosϕdt∫

dt
. (20)

To obtain the apsidal motion of a system through a non-
perturbative approach, the sole quantity to be computed by
our non-perturbative modelling is the time average perturbed
acceleration. To achieve this, we took advantage of the fast com-
puting capabilities of our method, we captured snapshots of stel-
lar deformations at various points along the binary orbits, as
depicted in Fig. 3. Using these snapshots, we can derive the time-
averaged perturbed acceleration by reformulating its expression
with the second Kepler’s law:

dt
dϕ

=
r2

na2
√

1 − e2
, (21)

A210, page 4 of 20



Fellay, L., et al.: A&A, 683, A210 (2024)

Fig. 3. Orbital trajectory of a star in a binary system with an eccentricity
of 0.2. The orbital plane is in red, the grey plane is a the reference plane
(i.e. the plane of the sky), i is the inclination of the system compared to
the reference plane, Ω is the longitude of the ascending node, Ω0 is the
ascending node, ω is the argument of the periastron, and ϕ is the true
anomaly. The reds dots on the trajectory represent the different points at
which the snapshots are taken to compute the apsidal motion.

where r is the separation between the stars expressed, following
the first Kepler’s Law, as

r =
a(1 − e2)

1 + e cos(ϕ + ω)
. (22)

By combining Eqs. (19)–(22), the apsidal motion obtained with
our non-perturbative modelling is given by

dωN

dt
=

1
π

(
1 − e2

)2

e

√
a

GMtot

∫ π

0

FR cosϕ
(1 + e cos(ϕ))2 dϕ, (23)

where the integrals are only taken over half of an orbit by sym-
metry. In practice, with our method’s implementation, merely
fifteen equally spaced values of ϕ over half of an orbit are suf-
ficient to reach a relative precision of 10−3−10−4 on the apsidal
motion in the vast majority of close binaries.

3. Perturbative model

3.1. The Clairaut-Radau equation

Perturbative models are obtained by assuming that the defor-
mations of the stellar models are small (more precisely, it is
assumed that |rm

` | � 1 in Eq. (A.1)), retaining only first order
terms in derivations. Similar to our modelling approach, the
gravitational potential of each star i is obtained through the solu-
tion of the Poisson equation projected on a spherical harmonics
basis,

Ψm
i,`(ri) = −

4πG
(2` + 1)r`+1

i

∫ ri

0
ρm

i,`(r
′
i )r
′`+2
i dr′i (24)

−
4πGr`i
2` + 1

∫ ∞

ri

ρm
i,`(r

′
i )r
′1−`
i dr′i .

The main distinction in this modelling is to treat stars as lightly
perturbed spherically symmetric bodies. This assumption greatly
simplifies the problem and allows us to relate the deformations
of a body directly to its unperturbed structure and system prop-
erties. In this framework, the deformations of each body are
linked to its structural coefficients η` (see Eqs. (A.1) and (A.20)).
These coefficients can be obtained by solving the Clairaut-Radau

first-order differential equation (Kopal (1959), and derived in
Appendix A) expressed as

r
dη`
dr

+ 6
ρ(r)
ρ(r)

(η` + 1) + η`(η` − 1) = `(` + 1), (25)

using the boundary conditions

η`(0) = ` − 2. (26)

In the Clairaut-Radau equation, r is the average radius of a cho-
sen isobar while ρ is the average density under the chosen isobar.
The relationship between the deformed structure and the η` coef-
ficients is explained and derived in Appendix A.

3.2. Perturbation of the gravitational potential and force by a
companion

We considered the perturbation induced by a point-mass sec-
ondary on the primary. As developed in Appendix B, the poten-
tial perturbation caused by the secondary at the surface of the
primary is given by

Ψm
1`(R1) =

1 + ` − ηm
1`(R1)

ηm
1`(R1) + `

(
Ψm

2,`(R1) + Ψm
c,`(R1)

)
(27)

= 2k`,1
(
Ψm

2,`(R1) + Ψm
c,`(R1)

)
,

where Ψm
2,`(R1) is the (`,m) component of the gravitational

potential generated by the secondary evaluated at the surface
of the primary, and the centrifugal components of the poten-
tial are noted Ψm

c,`. The first terms of each of these quantities
can be found in Appendix C. The coefficients k`,1 also known
as Love numbers, characterise the surface non-spheroidal defor-
mation response of a body subjected to a perturbative potential.
Mathematically, these coefficients are defined as:

k`,1 =
1 + ` − ηm

1`(R1)
2(ηm

1`(R1) + `)
. (28)

Equation (27) provides a direct comparison between the mod-
els, where the quantity Ψm

1,`(R1) is equivalent to Ψm
1,`(R1) of our

non-perturbative iterative method. One particular application to
Eq. (27) concerns the dominant contribution to deformations and
perturbations, the quadrupolar terms (` = 2 terms). For those
terms, the sum of the centrifugal and tidal potentials generated
at the surface of the primary by the secondary treated as a point-
mass body is expressed, in the non-synchronised case, as

Ψ0
c,2(R1) + Ψ0

2,2(R1) =

(R1

r

)2
Ω2

?,1

3
r2 +

1
2

GM2

r

 , (29)

and

Ψ2
c,2(R1) + Ψ2

2,2(R1) = −
1
4

GM2

R1

(R1

r

)3

. (30)

In both synchronised and non-synchronised systems, the dipo-
lar component of the total potential is null (Ψ1

c,1(R1) + Ψ1
2,1(R1))

when the secondary is treated as a point-mass, as gravitational
and centrifugal forces cancel out according to the third Kepler
law. As highlighted earlier, when computing the apsidal motion
of a system, it is imperative to account for the tidally induced
acceleration perturbation FR. By only considering the spherical
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order lower than ` = 3, the perturbed acceleration can be decom-
posed as follows:

FR = −
1

mµ

[
F2′10 + F201′ +���F2′1′

]
, (31)

where F2′10 is the force exerted by the quadrupolar deformation
of the secondary on the unperturbed primary, F201′ is the force
exerted by the unperturbed secondary on the already perturbed
primary, and F2′1′ is the force exerted by the perturbed sec-
ondary on the already perturbed primary. The last term, F2′1′ , is
a second order term, thus neglected in the pertubative approach.
In accordance with Newton’s third law, the force exerted by
the unperturbed primary on the already perturbed secondary is
the opposite of the force exerted by the perturbed secondary
on the unperturbed primary, mathematically F201′ = −F1′20. As
shown in Appendix D, the force exerted by the perturbed sec-
ondary on the unperturbed primary is given by

F2′10 = 2
GM2

1

r2 k2,2

(R2

r

)5
3 +

1
2

Mtot

M1

(
Ω?,1

ñ

)2 , (32)

similarly, F1′20 can be obtained by permuting the primary and
secondary in Eq. (32). Finally, combining Eqs. (31) and (32) the
perturbed acceleration is expressed as

FR = −2
GMtot

r2

k2,2
1
q

(R2

r

)5
3 +

q + 1
2

(
Ω?,2

ñ

)2 (33)

+ k2,1q
(R1

r

)5
3 +

1
2

q + 1
q

(
Ω?,1

ñ

)2 ,
with q = M2/M1.

3.3. Perturbative apsidal motion computation

In the case of an eccentric orbit, the mean orbital rotation rate n
is distinct from the instantaneous orbital rotation rate ñ experi-
enced by each individual binary component. Using this formal-
ism, the perturbed acceleration can be rewritten by grouping the
tidal and centrifugal terms as

FR = −2
GMtot

a2

[(
3k2,2

1
q

(R2

a

)5

+ 3k2,1q
(R1

a

)5) (a
r

)7
(34)

+

k2,2
q + 1

2q

(R2

a

)5 (
Porb

P?,2

)2

+ k2,1
q + 1

2

(R1

a

)5 (
Porb

P?,1

)2 (a
r

)4


= −2
GMtot

a2

[
Rtides

(a
r

)7
+ Rc

(a
r

)4
]
,

where P?,1 and P?,2 are respectively the rotation period of
the primary and secondary, and Rtides and Rc can be identi-
fied in Eq. (34). The apsidal motion of a system is dependent
on the time average of the perturbed acceleration over an orbit
〈FR cosϕ〉. Using Eq. (20), the perturbed acceleration averaged
over an orbit is given by

〈FR cosϕ〉 = −
2

Porb

GMtot

a2

[
Rtides

∫ Porb

0

(a
r

)7
cosϕ dt (35)

+ Rc

∫ Porb

0

(a
r

)4
cosϕ dt

]
.

The integrals in Eq. (35) can be re-expressed with the zero-order
Hansen coefficients Xn,m

0 (e) defined for every positive m as

Xn,m
0 (e) ≡

1
Porb

∫ Porb

0

( r
a

)n
cos(mϕ) dt. (36)

Without entering into the detailed expressions of these coeffi-
cients, the two orders that are of interest in our case are the
n = −4,m = 1 and n = −7,m = 1 that are given by

X−4,1
0 (e) = e(1 − e2)−5/2, (37)

and,

X−7,1
0 (e) =

5
2

e(1 − e2)−11/2
(
1 +

3
2

e2 +
1
8

e4
)
. (38)

The average perturbed acceleration is finally given by

〈FR cosϕ〉 = −2
GMtot

a2

[
RtidesX

−4,1
0 (e) + RcX−7,1

0 (e)
]
, (39)

and can be inserted in Eq. (19) to obtain the apsidal motion of a
binary system with the perturbative approach:

dωN

dt
=

2π
Porb

[
15 f (e)

((R1

a

)5

qk2,1 +

(R2

a

)5 k2,2

q

)
(40)

+ g(e)
k2,1(q + 1)

(
Porb

P?,1

)2 (R1

a

)5

+ k2,2
q + 1

q

(
Porb

P?,2

)2 (R2

a

)5  ,
with,

f (e) =

1 +
3
2

e2 +
1
8

e4

(1 − e2)5 , (41)

and,

g(e) =
1

(1 − e2)2 . (42)

4. General model comparisons

This section is dedicated to a theoretical comparison of different
types of stars encompassing a range of potential binary systems
across different mass regimes. Here, we present the input stellar
models used to compare the perturbative and non-perturbative
modelling approaches. We chose four models to represent a
broad spectrum of stars and structural characteristics. The phys-
ical ingredients of the chosen models are detailed in Table 1,
those models are the same models compared in Fellay & Dupret
(2023).

Table 1 in Fellay & Dupret (2023) has only been extended
to include the k2 value of each model. As shown by Eq. (27), to
a higher k2 corresponds a greater surface response from a body
when subjected to a potential perturbation to its surface. More-
over, k2 can be used as an indicator of a body’s deformability. In
addition, our results from Fellay & Dupret (2023), showed that
the low-mass and red giant branch (RGB) stars are the most dis-
torted by a companion while the massive and solar type stars
are expected to be less deformed and impacted by our non-
perturbative method for a given a/R1 ratio. In the following sec-
tions, we compared the surface deformations and apsidal motion
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Table 1. Summary of the stellar properties of the 1D input models used
in this work.

Stellar parameters 0.2 M� 1.0 M� 1.5 M� 20 M�
Mass [M�] 0.2 1.0 1.5 20.0
Radius [R�] 0.22 1.03 11.1 6.01
Age [Gyr] 2.0 2.0 2.0 0.002
Evolutionary stage MS MS RGB MS
Effective temperature [K] 3342 6080 4621 35 859
Luminosity [L�] 0.005 1.31 51.1 53 921
Initial hydrogen X0 0.72 0.72 0.72 0.72
Initial metallicity Z0 0.010 0.010 0.010 0.010
Core hydrogen Xc 0.693 0.469 0 0.582
k2 0.151 0.0104 0.0593 0.0127
Ω?,i/n 1.0 1.0 1.0 1.0

obtained with our non-perturbative modelling method and the
perturbative modelling for twin binary systems (q = 1) com-
posed of the stars presented in Table 1. Twin binary systems
being systems composed of two identical stars (i.e. stars hav-
ing the same mass, radius, effective temperature, and rotational
period).

4.1. Potential and forces discrepancy

The perturbation of the surface potential is a reliable indicator of
the deformations undergone by a star. Within either our formal-
ism or the perturbative formalism, the perturbation of the surface
potential is given by all spectral terms of the surface potential
Ψm

i`(Ri) with ` > 0. In the perturbative method, this quantity
is given by Eq. (27), which is applied to the ` = 2 terms in
Eqs. (29) and (30). Within our non-perturbative method, Ψm

i`(Ri)
are obtained in an iterative process, solving Poisson’s equation at
each step and for each spherical order. Consequently, there is no
analytical expressions available for this quantity in our method.
To compare the surface deformations with different modelling
procedures we introduce the discrepancy of surface potential,
denoted∆Ψm

` (R1) and defined as:

∆Ψm
` (R1) = Ψm

`,MoBi(R1) − Ψm
`,pert(R), (43)

where Ψm
`,MoBi is the spectral surface potential obtained with

our non-perturbative method and Ψm
`,pert is the same quantity

obtained with the perturbative approach. In Fig. 4, we show this
surface potential discrepancy as a function of the orbital separa-
tion for twin binary systems composed of the stars presented in
Table 1. Our focus in this analysis is on the dominant terms, the
` = 2 terms.

The surface potential discrepancy, varies significantly
depending on the stellar type and the orbital separation. For both
` = 2 components, stars with the higher k2 exhibit more pro-
nounced effects from our non-perturbative treatment, resulting
in differences of up to ∼40% in the ` = 2,m = 2 term for
low mass stars. This implies that the higher the deformations,
the more substantial the underestimation of the surface deforma-
tions by the perturbative approach. Furthermore, orbital separa-
tion plays a critical role, with closer star configurations yielding
stronger deformations and more notable disparities in the surface
potential.

By comparing the two panels in Fig. 4, we observe a sig-
nificantly smaller difference in surface potential for the ` = 2,
m = 0 term, regardless of the model. The ` = 2, m = 0 compo-
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Fig. 4. Surface potential discrepancy between perturbative and non-
perturbative modelling approaches as a function of the orbital separa-
tion normalised by the stellar radii for the different binary components
presented in Table 1. The upper panel corresponds to the ` = 2, m = 0
component of the potential while the lower panel is the ` = 2, m = 2
term.

nent arises from both centrifugal and tidal deformations, while
the ` = 2, m = 2 term is solely originating from the tidal defor-
mation. Both our modelling and perturbative modelling are shar-
ing the same assumptions on the centrifugal potential, therefore,
the difference originating from tidal contribution in the ` = 2,
m = 0 term is diluted by the centrifugal contribution. The major
difference between the perturbative and non-perturbative mod-
elling approaches is thus appearing in the treatment of the tidal
deformation.

4.2. Apsidal motion

In Sect. 2.4 we showed that the apsidal motion of an eccentric
binary system is proportional to the time average of the perturbed
acceleration. As detailed in Sect. 4.1, the perturbed acceleration
denotes the tidal acceleration originating from a nearby compan-
ion. A modification of the surface ` = 2 potential as illustrated in
Fig. 4 introduces variations in the perturbed acceleration. In this
section, we investigated the perturbed acceleration discrepancy
resulting from the potential differences seen and the consequent
impact on the apsidal motion of eccentric binaries.

In the classical perturbative model, the perturbed accelera-
tion FR is solely originating from the quadrupolar component
of the deformation. The detailed expression of FR is given in
Eq. (33) and derived in Appendix D. In opposition, our method-
ology incorporates a non-perturbative treatment of all spherical
orders spanning ` = 1, 2, ...L. The exact expression of FR is
given by Eq. (16). To quantify the disparities between pertur-
bative and non-perturbative perturbed accelerations, we define
their difference ∆FR as follows:

∆FR = FR,MoBi − FR,pert. (44)

The difference of perturbed accelerations as a function of the
separation between the twin binary systems components pre-
sented in Table 1 is illustrated in Fig. 5.

The perturbed acceleration discrepancy observed in Fig. 5
is in agreement with the results showed in Fig. 4. Models
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Fig. 5. Perturbed acceleration discrepancy as a function of the separa-
tion normalised by the stellar radii for the twin binary systems com-
posed of the stars presented in Table 1. The colour code denotes the
different twin binary systems.
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Fig. 6. Evolution of the apsidal motion relative difference as a function
of the orbital separation normalised by the stellar radii. The eccentricity
of the orbits were set to e = 0.1 and the colour code denotes the different
twin binary systems.

exhibiting the greatest surface potential discrepancies are also
exhibiting notable perturbed acceleration differences. Moreover,
models with higher k2, namely the low mass and RGB stars, are
the most impacted by our modelling. Solar-like stars and massive
stars are comparatively less affected, even if in close orbit FR
discrepancies can still reach up to, respectively, 20% and 12%.

To assess the discrepancy of apsidal motion resulting from
the perturbed acceleration differences, we need to consider bina-
ries with eccentric orbits. To limit the free parameters of the sys-
tem we compare binary systems with synchronised rotations and
a fixed eccentricity, e = 0.1. The impact of the eccentricity on the
apsidal motion is explored for systems in Sect. 4.3. We introduce
the apsidal motion difference:

∆ω̇ = ω̇MoBi − ω̇pert, (45)

to compare the apsidal motion originating from the non-
perturbative and perturbative approaches. In the perturbative
approach, the apsidal motion is given by Eq. (40). With our
non-perturbative method we required to capture snapshots of
the binary system along half of an orbit to estimate the per-
turbed acceleration time average and hence the apsidal motion
(see Sect. 2.4). For each binary system composed of the stars
presented in Table 1, Fig. 6 illustrates ∆ω̇ as the function of the
binaries orbital separation normalised by the stellar radii.

The apsidal motion discrepancy is a direct result of the per-
turbed acceleration illustrated in Fig. 5. Binary systems with
greater FR discrepancis exhibit the highest apsidal motion dif-
ferences. For the low mass and RGB stars, the apsidal motion

3 4 5 6 7 8
a(1 e2)/R1

0.05

0.10

0.15

0.20

/
pe

rt

e = 0.03
e = 0.1
e = 0.2
e = 0.3
e = 0.4
e = 0.5

Fig. 7. Apsidal motion relative different for a twin binary system com-
posed of two 20 M� stars presented in Table 1. Each colour correspond
to the variation of discrepancy as a function of the orbital separation
scaled by the eccentricity and stellar radii for different values of the
orbital eccentricity. The black lines are lines of constant model relative
difference, corresponding to 5% and 2% discrepancy.

discrepancy can reach up to respectively 70% and 45% when the
stars are close to contact, in their periastron. Similarly, for the
solar type and massive stars we found an apsidal motion discrep-
ancy up to respectively 30% and 15%. These discrepancies vary
depending on the exact structure of the stars or the architecture
and the orbital parameters of the system.

4.3. Dependency on the orbital eccentricticty

In the previous section, we fixed the eccentricity of the systems
to infer the modelled apsidal motion discrepancy. In this section,
we study the impact of varying the orbital eccentricity on the
apsidal motion discrepancy. We expect that binaries with higher
eccentricities are closer in their periastron, consequently more
deformed and more impacted by our methodology. We focussed
on the twin binary system composed of 20 M� stars as this sys-
tem is less impacted by our modelling and will consequently give
a lower limit to the modelling discrepancies for a given semi-
major axis. We computed a grid of models with different eccen-
tricities and orbital separations, looking at the apsidal motion
relative difference. The results from this computation are illus-
trated in Fig. 72. The eccentricity is indeed a crucial parame-
ter directly impacting the modelling discrepancies. As expected,
binary systems with higher eccentricities are more significantly
impacted by our modelling method for a given orbital separation.
For our least deformed model, we found that the modelling dis-
crepancy reaches at least 5% when a(1 − e2)/R1 . 4.5 and 2%
when a(1 − e2)/R1 . 6.5. For all our other theoretical models
these thresholds are higher, by applying the same methodology
to the twin system composed of 0.2 M� stars, we found that the
modelling discrepancy thresholds of 5% and 2% are respectively
located at a(1 − e2)/R1 . 6.5 and a(1 − e2)/R1 . 4.5.

In addition to this work, we verified the precision of our
method at higher orbital separation and found that for a(1 −
e2)/R1 = 20 the discrepancies between the models reach 0.1%
indicating a slow decrease of the apsidal motion discrepancy at
high orbital separation and a sufficient precision to impose the
thresholds given in this section.

2 In Fig. 7, we have chosen the empirical parameter a(1 − e2)/R1 for
the x-axis such as the curves are the most superposed at high orbital
separation.
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Fig. 8. Mapping of the acceleration perturbation discrepancy for our
grid of low-mass stars and intermediate-high mass stars. The colour
code denotes the difference of perturbed acceleration between the per-
turbative and our non-peturbative approach as a function of the models
k2 and orbital separation.

4.4. Dependency on k2 and the orbital separation

In the previous sections, we saw that a hierarchy exists between
the perturbed acceleration of different stellar models and the
resulting apsidal motion discrepancy. We observed that stel-
lar models with higher k2 values were more affected by our
modelling approach. Another crucial quantity impacting the
discrepancies is the separation of the binary components. In
this section, we aim to comprehensively assess modelling dis-
crepancies across a diverse range of stellar models and orbital
separation.

To explore this, we constructed a grid of models of MS stars
with masses ranging from 0.2 M� to 30 M� using the Code Lié-
geois d’Evolution Stellaire (CLES, Scuflaire et al. 2008). For
each mass in our grid we took several models along the MS
to have diverse models and stellar structures with similar k2 to
explore whether discrepancies are solely dependent on k2 and
the orbital separation.

Figure 8, illustrates the evolution of the acceleration per-
turbation relative difference ∆FR/FR,pert between our modelling
and the perturbative approach. The top panel of the figure rep-
resents a group of stars that are either fully convective or com-
posed of a radiative core and convective envelope, specifically
stars with masses below 1.25 M�. The lower panel corresponds
to stars with a convective core, which includes stars with masses
greater than 1.5 M�.

Figure 8 reveals a distinct behaviour between the two groups
of stars. While the lower k2 limit of the low mass stars and the
upper limit of the intermediate-high mass stars have similar k2,
their acceleration perturbation discrepancy is not similar. This
result indicates that discrepancies between the models are not
only a function of k2 but also involve a component related to

the intrinsic stellar structure. From our model grid, we observed
that stars with different structures, particularly those with radia-
tive or convective cores, displayed significant variations in dis-
crepancy despite similar k2 values. This phenomenon is probably
related to the differences in density profiles between stars hav-
ing or not a convective core. If looking for a possible parametri-
sation solely dependent on k2 and orbital separation to correct
the modelling discrepancies in the perturbative approach, the
non-linear behaviours of the models greatly reduces its feasi-
bility. We attempted an MCMC analysis using linear combi-
nations of power laws of the orbital separation, for both the
intermediate-high mass stars and low-mass stars. However, the
results were unsatisfactory to propose an empirical parametrisa-
tion. As detailed in Sect. 5.2, the modelling discrepancies indeed
arise from a combination of discrepancies in the ` = 1, 2, 3
terms. Non-perturbative modelling is necessary to recover the
discrepancies seen in this section. However, Fig. 8 can be used to
get an order of magnitude of the underestimation of tidal forces
introduced by the perturbative modelling. The updated grid of k2
values provided by Claret (2023) could for example be used to
easily locate observed stellar systems in this diagram.

4.5. Dependency on the mass ratio q

Our analysis so far focussed on the dependency on
R1/a as this latter parameter has the most important
impact on the results. However, the perturbative apsi-
dal motion has a direct dependency on 8 parameters:
(n, (n/Ω1)2, (n/Ω2)2, (R1/a)5, (R2/a)5, q, e, k21, k22), see Eq. (40).
With our non-pertubative modelling the dependencies on k21, k22
become dependencies on the entire density profile of each star.
Characterising the dependency of our result on mass ratio q is
useful as this quantity can strongly impact the results and is
a direct sub-product of the observations of binaries. To study
and modify the q parameter in our modelling, different stellar
models with the same age and initial chemical properties have to
be used for the secondary star, impacting 4 of the parameters of
our modelling for a given orbital separation: (n, (R2/a)5, q, k22
or ρ2(r)). Consequently the effect of a change of q will be
seen indirectly, through, in particular (R2/a)5. For a given
q parameter different than one, the behaviour of the apsidal
motion discrepancy as a function of the orbital separation is
dependent on the regime of (R2/R1)5, as discussed hereafter.

4.5.1. R5
1 � R5

2

This regime describes the case of a system composed of either
a star plus a compact object or an evolved star plus a MS star.
To simulate this situation, we chose to model the primary star
as being the 1.5 M� RGB star described in Table 1. The sec-
ondary is a MS star with a lower mass, ranging between 0.2 and
1.25 M�, the same age (2 Byr) and initial chemical composition
(X0 = 0.72, Z0 = 0.010). In Fig. 9, we show the evolution of the
apsidal motion discrepancy for the different systems considered.
Based on Eq. (40), we chose the x-axis of Fig. 9 to be q−1/5R1/a
to maintain the scale between (R1/a)5 and q.

We can see that all the systems are superposed in Fig. 9
which indicates a clear proportionality of the apsidal motion dis-
crepancy on q. When R5

1 � R5
2, as seen in Eq. (40), the terms

with (R1/a)5 are dominating for a given orbital separation, and
the contribution from the secondary is negligible. In this situ-
ation, only the deformations of the primary impact the apsidal
motion. As both the deformations and the apsidal motion are
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Fig. 9. Apsidal motion discrepancy as a function of the orbital separa-
tion scaled with the q parameter. Each system is composed of a primary
1.5 M� RGB star presented in Table 1, and a secondary star with a lower
mass. The stars composing the systems have the same age (2 Byr) and
initial chemical composition (X0 = 0.72, Z0 = 0.010). Each colour cor-
responds to a secondary with a different mass.
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Fig. 10. Apsidal motion discrepancy as a function of the orbital separa-
tion scaled with the q parameter. Each system is composed of a primary
1.5 M� MS star, and a secondary star with a lower or equal mass. The
stars composing the systems have the same age (1.5 Byr) and initial
chemical composition (X0 = 0.72, Z0 = 0.010). Each colour corre-
sponds to a secondary with a different mass.

proportional to q for a given orbital separation, the apsidal
motion discrepancy is also proportional to q.

4.5.2. R5
1 ' R5

2

This regime describes systems composed of stars in similar evo-
lutionary stages and structural properties. To simulate this situ-
ation we combined a primary MS star with a mass of 1.5 M�,
an age of 1.5 Byr, an initial chemical composition of X0 = 0.72,
Z0 = 0.010, with a secondary star with the same properties but
a lower or equal mass. In Fig. 10, we explore the apsidal motion
discrepancy as a function of q−1/5R1/a for these binary systems.

In the case where the primary and secondary have similar
radii despite different q, the properties of the secondary have an
impact on the apsidal motion discrepancy, as illustrated by com-
paring Figs. 9 and 10. The apsidal motion discrepancy is still
dominated by the contribution from the primary, consequently
a partial proportionality to q can be seen. However, additional
contributions from the other parameters of the secondary, in par-
ticular its density profile, have to be accounted for.

In our determination of the limit after which the modelling
discrepancy reaches 2% and 5% (see Sect. 4.3), we assumed
that q = 1. In practice, observed systems often have q < 1,
and, to include the dependency of these limits on q we mod-

ified them. As for both cases presented above the dependency
on q dominates the apsidal motion discrepancy, we need that
q−1/5a(1 − e2)/R1 . 4.5 to have at least 5% modelling discrep-
ancy and q−1/5a(1 − e2)/R1 . 6.5 to have at least 2% modelling
discrepancy. By adopting these modifications we introduced a
little bias in the regime where R5

1 ' R5
2 however, as showed

before, the dependency on q still dominates.

5. Application to observed systems

5.1. Modelling of observed binaries and quantification of the
extra mixing

In this section, we apply our non-perturbative modelling tech-
nique to existing twin binary systems, comparing the stellar
parameters obtained with our approach to those from the per-
turbative theory. As we study twin binary systems, modelling
one star is sufficient to describe the entire system. We integrated
MoBiDICT to a minimisation method following a Levenberg-
Marquardt algorithm to compute on the fly the non-perturbative
apsidal motion resulting from twin binaries which unperturbed
structure are given by our 1D single star stellar evolution code,
CLES. By using this methodology we followed the procedure of
Rosu et al. (2020a, 2022a,b, 2023), neglecting the interactions
of the binaries during their evolution. To avoid such assump-
tions, our modelling method would have to be directly coupled
to binary stellar evolution codes, this work will be conducted in
the future with the code BINSTAR (Siess et al. 2013) and will
be presented in a forthcoming article.

We selected four well-known close observed twin binary sys-
tems from the literature: PV Cas (Torres et al. 2010; Claret et al.
2021; Marcussen & Albrecht 2022), IM Per (Lacy et al. 2015;
Claret et al. 2021), Y Cyg (Gimenez et al. 1987; Harmanec et al.
2014; Claret et al. 2021; Marcussen & Albrecht 2022), and
HD152248 (Rosu et al. 2020a,b). The first binary system is com-
posed of MS intermediate mass stars, the second one of sub-giant
stars, and the last two ones of massive stars. The properties of
these systems are given in the second and fifth line blocks of
Table 2. For each of these binary systems, an apsidal motion was
determined in the literature and is used in this section as a con-
straint on the stellar structure. The systems were selected to be
twin systems with accurate determination of the orbital and stel-
lar parameters, and an apsidal motion primarily driven by tidal
forces.

For this modelling we were inspired by the findings of
Rosu et al. (2020a, 2022a,b, 2023), who demonstrated that mod-
elling twin binary systems using 1D stellar evolution codes with
apsidal motion as a constraint necessitates significant additional
mixing during stellar evolution. In our modelling, we used the
same constraints for all observed systems: the masses, radii,
effective temperatures, and apsidal motions. The constraints for
each system are listed in the second line block of Table 2. The
objective of our modelling technique is to generate an evolu-
tionary track such as the end model is fitting all the observed
constraints of the system. As we have four constraints, we used
four free parameters for our stars, their initial mass M0, initial
hydrogen mass fraction X0, and age, as well as the overshooting
parameter αover. In our modelling, we used the overshooting
to control the additional mixing necessary to reproduce the
observed constraints as a strong degeneracy is existing between
the overshooting and the mixing (see e.g. Rosu et al. 2020a,
2022a). For all the models, we used the AGSS09 abundances
(Asplund et al. 2009), the FreeEOS equation of state (Irwin
2012), the OPAL opacities (Iglesias & Rogers 1996), the T (τ)
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relation from Model-C of Vernazza et al. (1981) for the atmo-
sphere, the mixing length theory of convection implemented
as in Cox & Giuli (1968), and the nuclear reaction rates of
Adelberger et al. (2011). For the massive stars, the mass loss rate
was computed, accounting for the metallicity of the models, with
the prescription of Vink et al. (2001) assuming that the scaling
factor for the mass loss rate equals ξ = 1. The equivalent aver-
aged mass loss along the entire evolution is given in the fourth
line block of Table 2.

In our modelling procedure, we started by finding models
reproducing the observations with the perturbative approach. We
then fixed the initial mass and hydrogen mass fraction, only
using the constraints on the radii and apsidal motion to model the
systems with MoBiDICT. This approach aims to directly evalu-
ate the impact of our non-perturbative modelling on the required
additional mixing and age. The objective of our modelling is not
to provide an accurate estimation of the stellar properties of each
system but rather to compare the stellar properties obtained when
modelling the apsidal motion with the perturbative and non-
perturbative approaches. The results from our modelling pro-
cedure are given both for the non-perturbative and perturbative
modelling approaches in the third line block of Table 2.

For the modelling of each system, the parameters presented
in the fourth line block of Table 2 were empirically selected to
facilitate the convergence of our Levenberg-Marquardt method.
For the first system, Z0 was chosen from a model grid to min-
imise the χ2 and be able to reproduce the observations as we
could not achieve a coherent fit with a solar metallicity. For the
other systems, a solar metallicity was adopted as no constraints
were given from the observations.

Table 2 shows that both the perturbative and non-perturbative
approaches can accurately reproduce all observed system con-
straints. For the four systems, we find that extremely large
extra-mixing is required to reproduce the observational prop-
erties of stars. Comparing the stellar parameters obtained with
MoBiDICT and the perturbative approach, our non-perturbative
technique necessitates even more extra mixing for the first three
systems. While for the three first systems, the leading contribu-
tion to the χ2 is the reproduction of the apsidal motion and the
radius of the stars, for HD152248, the major difficulty was to
reproduce the observed effective temperature. This can partly
explain the smaller impact of the non-perturbative treatment
on the overshooting parameter found in this system. Nonethe-
less, our approach does not reduce the extremely high extra-
mixing required to reproduce the apsidal motion motion inferred
by Rosu et al. (2020a) but rather exacerbate it. This additional
mixing could stem from various sources, including rotation or
dynamical tides. We do not think that it should be concluded
from our study that such large overshooting is present in these
stars. Other physical processes neglected in our study such as
dynamical tides are known to significantly affect the apsidal
motion (Willems & Claret 2002).

5.2. Apsidal motion contribution from the different sources

In this section, we focus on exploring the origin of the apsidal
motion discrepancy seen for the observed targets presented in
Sect. 5. We reused the structures from the modelling done in
Table 2 and looked at the different contributions to the apsidal
motion for each binary system. Table 3 provides a decomposi-
tion of the apsidal motion for each observed binary system using
the models obtained with our non-perturbative method. In the
right part of Table 3, we also decomposed the difference between
the perturbative and non-perturbative approaches based on the
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Fig. 11. Decomposition of the perturbed acceleration for the IM-Per
system with the perturbative and non-perturbative models as a function
of the system orbital separation normalised by the stellar radii. Each
colour represents one spherical order: the lighter curves correspond to
the perturbative model while the darker curves correspond to the with
non-perturbative approach. The red curves are the total of all the spher-
ical orders.

considered spherical orders, revealing the key contributors to the
apsidal motion discrepancies.

The analysis of Table 3 reveals that, for all chosen targets, the
contributions from our non-perturbative modelling approach sur-
pass the uncertainties in the observational apsidal motion deter-
minations. Generally, the corrections provided by MoBiDICT
are comparable in magnitude to the general relativistic correc-
tions. Then, going into more details, the perturbed accelera-
tion discrepancy between the non-perturbative and perturbative
methods can be attributed to several main components:

– ` = 1: Constituting ∼23% of the modelling discrepancy, this
component cannot be recovered by the perturbative model
due to its inherent formalism and assumptions;

– ` = 2: Representing ∼40% of the modelling discrepancy,
this component cannot either be recovered by the pertur-
bative approach. The differences arise from the first-order
assumption of the perturbative approach. We tried taking into
account the effect from the quadrupolar deformation of the
primary star on the quadrupolar component of its companion
and the reverse impact of this modification on the quadrupo-
lar deformation of the primary star. However this effect is
negligible as each of such additional effect considered has
an increase dependency to (R/a)3 of a power three;

– ` = 3: Accounting for ∼35% of the modelling discrepancy,
this component can be at least partially recovered by the per-
turbative model by going at higher spherical orders than usu-
ally considered. In Sect. 5.3, we expand the computation of
the pertubative apsidal motion to the ` = 3 assessing the
extent to which these discrepancies can be rectified;

– ` > 3: The contribution of these components only represents
2% of the discrepancies. Our analysis suggests that comput-
ing spherical orders higher than three is unnecessary, in par-
ticular when comparing these discrepancies with the contri-
butions from other spherical orders;

– F′ρ′: This term corresponds to the assumption made to
neglect the third contribution to the apsidal motion in
Eq. (31). With our modelling method we see that this
assumption is totally valid even in the most distorted cases.

For the case of IM Per, we examine the individual contribu-
tions to this discrepancy. Figure 11 illustrates the evolution of
the components of the perturbed acceleration with orbital sep-
aration normalised by the stellar radii for the perturbative and
non-perturbative models.
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Table 2. Observed and model properties of the systems studied.

Targets PV Cas(1,2,3) IM Per(2,4) Y Cyg(5,2,3) HD152248(6,7)

Pert. Non-Pert. Pert. Non-Pert. Pert. Non-Pert. Pert. Non-Pert.

M [M�] 2.78(8) 1.78(1) 17.72(30) 29.5(5)
Obs. R [R�] 2.28(4) 2.38(4) 5.8(1) 15.07(12)
Const. Teff [K] 10 200(250) 7570(160) 33 200(500) 34 000(1000)

ω̇ [◦cycle−1] 0.0212(2) 0.0146(4) 0.06186(30) 0.0293(13)
M0 [M�] 2.780 2.780 1.78 1.78 20.4 20.4 33.16 33.16

Free X0 0.750 0.750 0.730 0.730 0.743 0.743 0.726 0.726
Param. αover 0.923 0.951 0.306 0.333 1.01 1.05 1.29 1.28

Age [Gyr] 3.07 3.09 1.33 1.35 0.00347 0.00353 0.00521 0.00520
Models Z0 0.0245 0.012 0.012 0.017
Fixed αMLT 1.95 1.95 1.80 1.80
Param. Ṁ [M� yr−1] 0 0 0.8·10−6 1.18·10−6

Porb [days] 1.75047 2.25422 2.996321 5.816498
Obs. i [◦] 85.8 84.4 86.47 67.6
Param. e 0.0325 0.0491 0.145 0.13

P?/Porb 0.998 0.933 0.688 0.88
χ2 0.11 0.18 0.11 0.20 0.04 0.23 0.05 0.03

Notes. The first line block corresponds to the observational constraints used in our modelling, the second line block gives the values of the free
parameters obtained, the third line block gives the assumed parameters of the models, and the fourth, provides the assumed parameters of the
system originating from observations. All the models were compared using χ2 defined as the sum of the squared relatives differences between the
observed constraints and the models.
References. (1) Torres et al. (2010); (2) Claret et al. (2021); (3) Marcussen & Albrecht (2022); (4) Lacy et al. (2015); (5) Harmanec et al. (2014); (6)

Rosu et al. (2020a); (7) Rosu et al. (2020b).

Table 3. Decomposition of the apsidal motion of the modelled observed systems.

ω̇N,non−pert. contributions [%]

Targets a/R1 e ω̇obs ω̇rel. ω̇N,pert. ω̇N,non−pert. ` = 1 ` = 2 ` = 3 ` > 3 F′ρ′

[◦cycle−1] [◦cycle−1] [◦cycle−1] [◦cycle−1]

PV Cas(1,2,3) 4.80 0.0325 0.0212(2) 0.0012 0.0192 0.0008 23 38 38 2 ∼0
IM Per(2,4) 4.60 0.0491 0.0146(4) 0.0007 0.0131 0.0008 25 37 37 2 ∼0
Y Cyg(5,2,3) 4.95 0.145 0.0618(3) 0.0029 0.0565 0.0025 22 45 32 2 ∼0
HD152248(6,7) 3.47 0.13 0.0293(13) 0.0026 0.0250 0.0018 23 42 32 2 ∼0

Notes. The relativistic component of the apsidal motion is noted ω̇rel., ω̇pert. is the contribution from the pertubative approach and ω̇non−pert. is the
correction induced by the non-perturbative approach. The latest contribution in then decomposed as spherical harmonics in the right region of the
table noted ω̇non−pert. contributions.
References. (1) Torres et al. (2010); (2) Claret et al. (2021); (3) Marcussen & Albrecht (2022); (4) Lacy et al. (2015); (5) Harmanec et al. (2014); (6)

Rosu et al. (2020a); (7) Rosu et al. (2020b).

For the ` = 2 terms, Fig. 11 shows that most of the discrep-
ancies are originating from the ` = 2,m = 2 term. This aspect
is explained by the fact that in the ` = 2,m = 0 term both tidal
force and centrifugal force are included while in ` = 2,m = 2
only tidal force in present. This indicates that the perturbative
approach lacks precision when modelling tidal forces at low
orbital separations, corroborating findings from Sect. 4.2 and
Fig. 4.

5.3. Higher order perturbative method

An advantage of the perturbative approach lies in the possibil-
ity to extend the modelling to higher spherical orders. In the
previous section we showed that the ` = 3 component of the
acceleration perturbation represents ∼35% of the discrepancies
seen between our non-perturbative and the perturbative models.
In Appendix E, we developed the equations necessary to extend

the perturbative approach to the ` = 3 term. In this section, we
verify the relevance of adding the ` = 3 term in the computation
of the apsidal motion in the perturbative approach. As shown in
Appendix E, the apsidal motion arising from the ` = 3 compo-
nent of the perturbed acceleration is given by

dω
dt

=
56π
Porb

v(e)
(
k2,3

1
q

(R2

a

)7

+ k1,3q
(R1

a

)7)
, (46)

with

v(e) =

1 +
15
4

e2 +
15
8

e4 +
5

64
e6

(1 − e2)7 . (47)

We took back the model of observed stars extensively presented
in Sect. 5.1 and computed the apsidal motion using our method
and the perturbative approach including the ` = 3 term. The
results from this modelling are presented in Table 4.
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Table 4. Decomposition of the apsidal motion of the modelled observed systems including the ` = 3 term of the perturbative approach.

ω̇N,non−pert. contributions [%]

Targets ω̇obs ω̇rel. ω̇N,pert. ω̇N,non−pert. ` = 1 ` = 2 ` = 3 ` > 3
[◦cycle−1] [◦cycle−1] [◦cycle−1] [◦cycle−1]

PV Cas(1,2,3) 0.0212(2) 0.0012 0.0194 0.0006 31 53 14 2
IM Per(2,4) 0.0146(4) 0.0007 0.0133 0.0005 33 50 14 3
Y Cyg(5,2,3) 0.0618(3) 0.0029 0.0570 0.0020 29 59 11 2
HD152248(6,7) 0.0293(13) 0.0026 0.0255 0.0013 30 55 12 3

Notes. The relativistic component of the apsidal motion is noted ω̇rel., ω̇pert. is the contribution from the pertubative approach and ω̇non−pert. is the
correction induced by the non-perturbative approach. The latest contribution in then decomposed as spherical harmonics in the right region of the
table noted ω̇non−pert. contributions.
References. (1) Torres et al. (2010); (2) Claret et al. (2021); (3) Marcussen & Albrecht (2022); (4) Lacy et al. (2015); (5) Harmanec et al. (2014); (6)

Rosu et al. (2020a); (7) Rosu et al. (2020b).

By comparing Tables 3 and 4 we conclude that by includ-
ing the ` = 3 component of the apsidal motion we corrected
∼20% of the discrepancies seen in Sect. 5.2. However, the ` = 3
term is only partially corrected when included in the perturbative
approach. Indeed, we found that for all the systems modelled this
term stills represent ∼10% of the observed model discrepancies.
Due to the reduction of the contribution from the ` = 3 term,
the quadrupolar term now represents ∼50% of the observed dis-
crepancies while the dipolar term contributes to ∼30% of the
differences. The exact repartition of these contributions can vary
depending on the orbital separation and the stellar type, in par-
ticular, we saw a highly non-linear comportment of the dipolar
term. Nonetheless, in the future, the ` = 3 contribution to the
apsidal motion have to be included when modelling the apsidal
motion of close binaries with the perturbative approach.

6. Discussion

In the previous sections, we showed that non-pertubative mod-
elling is necessary for a precise interpretation of observations in
close binary systems. Aside from the orbital evolution consid-
erations, the detection of tight systems with apsidal motion is
favoured due to the (R/a)5 dependency of the tidal component.
The combination of high-precision observations and strong tidal
effects on apsidal motion motivates their investigation as stellar
laboratories and, consequently, the need to model them compre-
hensively. Our modelling has conclusively shown that, for close
binary systems, a non-perturbative treatment of deformations is
necessary for accurately characterising stellar global properties
and stellar structure.

To assess the impact of our modelling method on observed
binary systems with apsidal motion, we constructed a com-
prehensive catalogue of such systems. In total, our catalogue
includes 61 systems, encompassing all systems with constraints
on their stellar parameters and observed apsidal motion found in
the literature. These systems were obtained by combining two
recent catalogues of observed binary systems with apsidal motion
(Claret et al. 2021; Marcussen & Albrecht 2022) to systems from
various literature sources where stellar parameter determina-
tions were available (Gimenez et al. 1987; Benvenuto et al. 2002;
Wolf et al. 2006, 2008, 2010; Torres et al. 2010; Pablo et al. 2015;
Baroch et al. 2021, 2022; Rosu et al. 2020b, 2022a,b, 2023). With
this catalogue, Fig. 12 illustrates the fraction of observed apsidal
motion arising from relativistic corrections against the parameter
q−1/5a(1 − e2)/R1 of each observed system.

The observed binary systems in our catalogue can be broadly
categorised into two equal-sized groups: close binaries with most

of the apsidal motion driven by tidal effects and wider bina-
ries where apsidal motion is mostly due to relativistic correc-
tions. The boundary between these two groups is located around
q−1/5a(1 − e2)/R1 = 8 − 9. Because of their low tidal contri-
bution to the apsidal motion, the group of systems with high
relativistic contribution is not favoured when wanting to con-
strain the stellar structure with apsidal motion. For such systems,
as shown in Sect. 4, no significant correction is expected from
our non-perturbative method. On the other hand, for binary sys-
tems where apsidal motion is dominated by tidal effects (close
systems), which is the group preferred for drawing constraints
on stellar structure with apsidal motion, our non-perturbative
models show discrepancies compared to perturbative models.
In Sect. 4.4 we showed that, for a given orbital separation,
intermediate-high mass stars are the least impacted by our non-
perturbative method, independently from the k2 value. In Fig. 7
we also showed that for a theoretical massive star the apsidal
motion relative difference reaches 5% when q−1/5a(1− e2)/R1 .
4.5 and 2% when q−1/5a(1−e2)/R1 . 6.5. Therefore, we can esti-
mate that in general when q−1/5a(1 − e2)/R1 . 4.5 the relative
difference of tidally induced apsidal motion reaches at least 5%
which corresponds to about 10% of the stars in the catalogue
presented in Fig. 12. Similarly, for 42% of the catalogue we
expect at least a 2% apsidal motion correction from our method-
ology, corresponding to almost all the systems with the apsi-
dal motion highly dominated by the tidal component. Among
the binaries impacted by our methodology, a majority are high-
mass or intermediate-mass binaries. In these catalogues and in
general, low-mass binaries are under-represented, and not com-
monly observed with apsidal motion probably due to observa-
tional biases.

The discrepancies observed in the apsidal motion are a conse-
quence of the underlying tidal force discrepancy. However, var-
ious aspects and phenomena of binary systems’ evolutions are
impacted by an underestimation of the tidal force. One key quan-
tity affected by this underestimation is tidal dissipation, which
plays a crucial role in the evolution of binary systems through
orbital circularisation, transfer of angular momentum between
bodies, and orbital migrations. Current models of the tidal dis-
sipation rely on the perturbative approach (Hut 1981) combined
to a free parameter that can be adjusted to control the dissipa-
tion. Even if this parameter can be tuned to reproduce the dissipa-
tion obtained by our non-pertrubative models with enhanced tidal
interactions at a given point of the evolution, it cannot capture
the non-linearities that arise during the evolution of binary sys-
tems. Consequently, our methodology predicts that tidal dissipa-
tion models used by the majority of binary stellar evolution codes
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Fig. 12. Repartition of observed binary systems from our catalogue
affected by our methodology. Each point correspond to an observed
system with a given orbital separation and a relativistic contribution to
the apsidal motion. The blue dots correspond to massive binaries, the
yellow points are intermediate mass binary stars, and the red dots are
low-mass stars. For this diagram, the primary was chosen as the most
massive star in the system.

underestimate the dissipation at low orbital separation. This leads
to imprecise predictions regarding the evolution of global orbital
parameters, stellar rotation, and the overall outcomes of these
models for systems with close orbits. One specific area impacted
by these findings is population synthesis, where the modelled pop-
ulation strongly depends on stellar interactions. Therefore, pop-
ulation models focused on the outcomes of close massive binary
systems and the remnants of these systems face significant uncer-
tainties, even before considering mass exchange and processes
that rely on imprecise models with free parameters. These find-
ings highlight the need for improved models that better account
for the complex interplay of tidal forces in close binary systems.

The discrepancies revealed by our modelling have wide-
ranging implications that extend beyond the effects on global
stellar and orbital parameters, given that the entire structures of
these distorted bodies are affected. The enhanced stellar interac-
tion obtained with our modelling drastically increases the stel-
lar surface deformations, as shown in Fellay & Dupret (2023).
Furthermore, the internal structure of stars, which is typically
modelled using the perturbative approach, is deeply influenced
by our non-perturbative methodology. To precisely capture the
interior deformations, mass redistributions, and structural prop-
erties of deformed stars, a transition to 3D modelling becomes
imperative. Having highly accurate structural models is crucial
for the precise study and modelling of the pulsation properties of
deformed celestial bodies. Among the oscillations propagating
in deformed stars, gravito-inertial waves, called dynamical tides,
significantly contribute to the orbital evolution of binary sys-
tems. However, the current dynamical tides models rely on struc-
tural modelling techniques based on the perturbative approach
combined with 1D non-adiabatic spherically symmetric oscil-
lations codes to treat this highly sensitive and non-linear prob-
lem. As such, the dynamical tide models, as obtained in
Ma & Fuller (2023), for example, are only estimations of the
impact of dynamical tides on close binary systems. Without
having appropriate 3D non-perturbative deformed structures

and the associated 3D non-perturbative non-adiabatic oscillation
codes this problem cannot be precisely solved.

Our methodology, similar to the perturbative approach, does
have a notable limitation: it assumes solid body rotation within
stars. For single stars, this assumption is not fully justified
because they often exhibit strong differential rotation, which
varies over the course of stellar evolution. However, as we showed
in Sect. 5.1, interactions between binary components induce
significant extra mixing within deformed stars. This additional
mixing reduces the differential rotation in interacting bodies, sat-
isfying our assumption. The subject of angular momentum trans-
port processes in binary systems is a complex and extensive area
of research that warrants further investigation. MoBiDICT repre-
sents an important initial step in this direction. It allows for the
first precise 3D computation of stellar interactions and the result-
ing forces at each point within the deformed stellar structure.

Finally, the modelling of mass transfer and phases of common
envelopes in binary systems is still associated with significant
uncertainties and often relies on the use of multiple free parame-
ters. In theory, MoBiDICT has the potential to be adapted for the
static modelling of common envelope phases or, at the very least,
to provide initial 3D deformed structures that can be used in con-
junction with more sophisticated codes to simulate common enve-
lope evolution. Furthermore, our 3D non-perturbative models can
be valuable in modelling mass transfer processes in binaries or
providing initial 3D deformed structures for further studies. In the
near future, it would be useful to investigate the oscilation prop-
erties of binaries before they fill their Roche lobes as determining
their configurations and properties before these phases play a cru-
cial role in determining their ultimate fate.

7. Conclusion

In this work, we investigated the impact of non-perturbative
modelling on the theoretical computation of the apsidal motion
and tidal force in eccentric binaries. We developed formalisms
for apsidal motion in our non-perturbative approach and the
perturbative approach in respectively Sects. 2 and 3. Then, we
compared the perturbed acceleration and apsidal motion for the-
oretical models, in Sect. 4, and observed binary systems, in
Sect. 5. Finally, we discussed the implications of our results, in
Sect. 6, on the observed population of binaries and the general
problem of binary modelling.

All theoretical stellar models were significantly impacted at
low orbital separation by our methodology. For instance, we
observed a maximum increase in tidal force of about 40% for our
low-mass stars, 28% for the RGB, 20% for the solar types, and
12% for massive stars. Consequently, the apsidal motion of these
systems is impacted. For an orbital eccentricity of e = 0.1, these
discrepancies led to a respectively increase in apsidal motion
of 70%, 45%, 30%, and 15% for the low-mass, RGB, solar
type, and massive twin binary systems. The discrepancies seen
may vary depending on the exact structure of the stars or the
architecture and the orbital parameters of the system. These
results are consistent with Fellay & Dupret (2023): the models
with higher envelope mass experience greater impacts from our
methodology. From this study we noted that models with higher
k2 are more impacted by our methodology. We attempted to
establish an empirical relationship between tidal force discrep-
ancy, the orbital separation, and k2. However, due to high non-
linearities and the numerous free parameters of the problem we
were not able to identify such a relationship. We also explored
the dependency of the apsidal motion modelling discrepancy on
q and found that this difference is proportional to q except when
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stars have similar radii. In the latter case, the properties of the
secondary are modifying this relationship and the exact proper-
ties of the system have to be accounted for.

In our analysis of observed systems, we explored in more
details the origins of these discrepancies. Specifically, we mod-
elled four observed twin binary systems, PV Cas, IM Per, Y Cyg,
and HD152248, composed of respectively, intermediate mass,
sub-giants, and massive stars for the two latests. We started by
modelling these systems using the pertubative model to repro-
duce the observed values of the constraints parameters. When
best fitting models were found, we started from this solution
to model stars using our non-perturbative method to obtain the
theoretical apsidal motion. In agreement with the results of
Rosu et al. (2020a, 2022a,b, 2023), our results highlighted the
necessity for significant extra mixing in the 1D stellar models to
accurately reproduce the observational properties of these sys-
tems. Moreover, our methodology induced an additional increase
of extra mixing due to the modification of apsidal motion, rein-
forcing the results of Rosu et al. (2020a, 2022a,b, 2023).

For the systems we examined, the discrepancies in apsidal
motion exceeded the observed uncertainties, indicating their non-
negligible impact. Our investigation into the origins of these dis-
crepancies revealed that the ` = 1 term is responsible for ∼23%
of the discrepancies,∼40% for the ` = 2,∼35% for the ` = 3, and
less than 2% for the ` > 3 components. The exact distribution of
these discrepancies may vary based on the model. For the ` = 1
and ` = 2 terms the discrepancies cannot be recovered by the per-
turbative approach due to its formalism and approximations. We
were able to correct ∼20% of the ` = 3 discrepancies by employ-
ing a higher spherical order perturbative approach. In opposition
to the results of Rosu et al. (2020b), the ` = 3 contribution to the
apsidal motion cannot be neglected in close binaires.

Finally, we constructed a catalogue of observed binary sys-
tems with apsidal motion from the literature to assess the frac-
tion of the observed binaries with apsidal motion effectively
impacted by our modelling method. Our analysis indicated that
differences in tidal force, and consequently apsidal motion, are
non-negligible for systems where q−1/5a(1 − e2)/R1 . 6.5. As a
result, a significant fraction of the observed binaries (42%) with
apsidal motion are indeed affected by our modelling approach.

When modelling the dynamics and deformations of bina-
ries the perturbative approach is the most sophisticated method
employed. In this article, we demonstrated that this approach
loses precision for binaries with q−1/5a(1 − e2)/R1 . 6.5.
The most immediate observable quantity affected is the apsidal
motion. While, in this work, we only considered the contribution
from the equilibrium tides and the general relativistic contribu-
tions, additional phenomenon could impact the determination of
the apsidal motion. Furthermore, including the dynamical tides
can highly modify the theoretical determination of the apsidal
motion. However, a proper non-perturbative non-addiabatic 3D
astreroseimic modelling is required to study the propagation of
gravito-inertial waves in the stellar interior and their impact on
the dynamics of binary systems. In the future, our aim is to
develop such a tool. In addition, in the future, the inclination of
binary systems have to be considered when modelling the tidal
contribution to the apsidal motion to account for all the param-
eters of the orbits. An extension of MoBiDICT for non-aligned
systems can be developed; however, all the system’s symmetries
exploited in this work will disappear, consequently our method-
ology will require significantly more resources to run.

Importantly, the underestimations seen extends beyond the
apsidal motion to encompass tidal interactions between the
binary components, thereby impacting tidal dissipation pro-

cesses. Notably, a vast majority of binary stellar evolution codes
are also subject to these imprecisions at low orbital period, which
directly influences the predictive accuracy of binary system out-
comes. Given the significant tidal force discrepancies of our mod-
els at low orbital separations, it is reasonable to anticipate an
underestimation of tidal dissipations in such conditions. There-
fore, with our methodology, we expect to amplify the interactions
and exchanges of angular momentum in close binary systems,
ultimately leading to shorter dynamical evolution timescales. To
solidify these observations, the next step is to integrate our method
into existing stellar binary evolution codes. This implementation
will offer a more comprehensive and accurate understanding of
the dynamics and evolution of close binary systems.
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Appendix A: The Clairaut-Radau equation

A partial derivation of the Clairaut-Radau equation can already
be found in Sterne (1939), Kopal (1959), Fitzpatrick (2012).
In this section we provide a detailed proper derivation of this
equation and focus on the implication of the assumptions of the
perturbative approach. Let us express the radial coordinate of
a given equipotential in the direction r1(θ, φ) with its spherical
expansion:

r1(r, θ, φ) = r

1 +

L∑
`=1

∑̀
m=−`

rm
` (r)Y`m(θ, φ)

 , (A.1)

where r denotes the averaged radial coordinate of the considered
equipotential and rm

` (r) the spectral terms of the equipotential
radii that can be obtained with

rm
` (r1) =

1
r

∫ 1

0

∫ π

0
r1(r, µ, φ)Y`m(θ, φ)dφdµ, (A.2)

where the spherical harmonics were appropriately normalised.
Throughout this entire section, Fig. A.1 illustrates the different
variables and orbital quantities used to describe the deformations
of a binary system.

r 1
r

r 1
(

1,
1)

r 2

r

Fig. A.1. Scheme of a binary system separated by a distance r. The
different quantities used to model the deformations in the perturbative
framework are detailed and illustrated here. The blue curve is the sur-
face of the deformed star while the red curves are the spheres of equiv-
alent averaged radii. As the surface is represented here, ri(µi, φi) = Ri,
Ri being the radial coordinate of the stellar surface in the spherically
symmetric case.

In the perturbative approach, r can be obtained by expanding
Eq. A.1 to the first order (rm

` (r1) � 1):

r(r1, θ, φ) =
r1

1 +
∑L
`=1

∑`
m=−` rm

`
(r1)Y`m(θ, φ)

(A.3)

' r1

1 − L∑
`=1

∑̀
m=−`

rm
` (r1)Y`m(θ, φ)

 .
The density of an equipotential passing by (r1, θ, φ), denoted
ρ(r(r1, θ, φ)), can be approximated to the first order using a Tay-
lor expansion of r around r1:

ρ(r(r1, θ, φ)) = ρ(r1) +
dρ
dr1

(r − r1) (A.4)

= ρ(r1) − r1
dρ
dr1

(r1)
L∑
`=1

∑̀
m=−`

rm
` (r1)Y`m(θ, φ),

where ρ(r1) is the density of the equipotential with r = r1. The
densities of a sphere of radius r1 projected on the spherical har-
monics basis is obtained through

ρm
` (r1) =

∫ π

0

∫ 2π

0
ρ(r1, θ, φ)Y`m(θ, φ) sin(θ)dφdθ (A.5)

that can be rewritten with

ρm
` (r1) =

∫ π

0

∫ 2π

0

ρ(r1) − r1
dρ
dr1

(r1)
L′∑
`′=1

(A.6)

`′∑
m′=−`′

rm′
`′ (r1)Y`′m′ (θ, φ)

 Y`m(θ, φ) sin(θ)dφdθ.

Using the orthogonality properties of the spherical harmonics, at
the first order the projected densities are

ρm
` (r1) =


ρ(r1) `,m = 0

−r1
dρ
dr1

(r1)rm
` (r1) ` > 0

. (A.7)

The spectral development of the gravitational potential on a
sphere of radius r1 is given by Eq. 24. The gravitational potential
on a sphere of radius r1 will be noted in the future Ψr(r1, θ, φ)
while the gravitational potential on an equipotential is noted
Ψr(r, θ, φ) and can be expressed as

Ψr(r, θ, φ) = Ψ′0(r) +

L∑
`=1

∑̀
m=−`

Ψ′m` (r)Y`m(θ, φ) (A.8)

= Ψr(r1(r, θ, φ), θ, φ)

that can be developed to the first order using the Taylor approxi-
mation around r1 = r:

Ψr(r1(r, θ, φ), θ, φ) = (A.9)

Ψ0(r1(r, θ, φ)) +

L∑
`=1

∑̀
m=−`

Ψm
` (r1(r))Y`m(θ, φ)

= Ψ0(r) +
dΨ0

dr1
(r − r1) +

L∑
`=1

∑̀
m=−`

Ψm
` (r)Y`m(θ, φ)

= Ψ0(r) +

L∑
`=1

∑̀
m=−`

(
Ψm
` (r) + r

dΨ0

dr
rm
` (r)

)
Y`m(θ, φ),

and thereforeΨ′0(r) = Ψ0(r)

Ψ′m` (r) = Ψm
` (r) + r

dΨ0

dr
rm
` (r)

. (A.10)

The spectral components of the gravitational potential (Eq. 24)
on an equipotential can be rewritten using Eq. A.7 before inte-
grating by parts:

Ψm
` (r) = −

4πG

(2` + 1)r`+1

(
−

∫ r

0
r′`+3 dρ

dr′
(r′)rm

` (r′)dr′
)

−
4πGr`

2` + 1

(
−

∫ ∞

r
r′2−`

dρ
dr′

(r′)rm
` (r′)dr′

)
(A.11)

= −
4πG

(2` + 1)r`+1

(
−����[

r′`+3rm
` ρ

]r

0
+

∫ r

0
ρ(r′)d(rm

` r′`+3)
)

−
4πGr`

2` + 1

(
−�����[

r′2−`rm
` ρ

]Rs

r
+

∫ Rs

r
ρ(r′)d(rm

` r′2−`)
)

(A.12)

= −
4πG

(2` + 1)r`+1

∫ r

0
ρ(r′)d(rm

` r′`+3) −
4πGr`

2` + 1

∫ R

r
ρ(r′)d(rm

` r′2−`),

(A.13)
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where at the second step the two crossed terms are cancelling
each others out.

As the total potential is constant on an equipotential, one can
write that:

Ψtot = Ψ1 + Ψ2 + Ψc = const, (A.14)

implying that for all the ` and m different from 0,

Ψ′m1` + Ψ′m2,` + Ψ′mc,` = 0. (A.15)

Eq. A.13 can be developed and multiplied by r`+1/4πG:

−1
(2` + 1)

∫ r

0
ρ(r′)d(rm

` r′`+3) −
r2`+1

2` + 1

∫ R

r
ρ(r′)d(rm

` r′2−`)

+
rm(r)

4π
rm
` (r) +

r`+1

4πG

(
Ψ′2`m + Ψ′c,`m

)
= 0. (A.16)

At first order Ψ
′,m
2,l = Ψm

2,l and Ψ
′,m
c,l = Ψm

c,l, By differentiating
Eq. A.16, we obtain

− r2`
∫ R

r
ρ(r′)d(rm

` r′2−`) +
m(r)
4π

r`−1
(
r

drm
`

dr
+ `rm

`

)
+

1
4πG

d
dr

(
(Ψm

2,` + Ψm
c,`)r

`+1
)

= 0. (A.17)

This expression can then be divided by r2` and again differenti-
ated by r to obtain

r2 d2rm
`

dr2 +
6ρ(r)
ρ(r)

(
r

drm
`

dr
+ rm

` (r)
)
− `(` + 1)rm

` (r)

+
3r`−1

4πGρ(r)
d
dr

(
1

r2`

d
dr

(
(Ψm

2,` + Ψm
c,`)r

`+1
))

= 0, (A.18)

where we used the definition of the mean density under an iso-
bar:

ρ =
m(r)
4
3
πr3

. (A.19)

To the first order (Ψm
2,` + Ψm

c,`) ∝ r` meaning that
d
dr

(
(Ψm

2,` + Ψm
c,`)r

`+1
)
∝ r2` therefore the last term of the previ-

ous equation is cancelling out during the differentiation. Finally
by defining

ηm
` ≡

r
rm
`

drm
`

dr
, (A.20)

and developing the second derivative of rm
` :

d2rm
`

dr2 =
d
dr

(
rm
` η

m
`

r

)
= ηm

`

(
1
r

dηm
`

dr
+
ηm
` (ηm

` − 1)

r2

)
, (A.21)

we obtain the well known Clairaut-Radau equation expressed as

r
dη`
dr

+ 6
ρ(r)
ρ(r)

(η` + 1) + η`(η` − 1) = `(` + 1). (A.22)

Appendix B: Perturbation of the surface total
potential

In this section our aim is to look at how the perturbative model
is modifying the surface gravitational potential of each star com-
posing the system. Let us go back to Eq. A.16 and divide it by
r2`+1 and next differentiate it to make

∫ Rs

r ... fall:

1

r2`+2

∫ r

0
ρ(r′)d(rm

` r′`+3) +
1

4πG
d
dr

(
Ψm

2,` + Ψm
c,`

r`

)
+

rm
` (r)

r`+2

∫ r

0
ρ(r′)r′2dr′

(
ηm
` − 1 − `

)
= 0. (B.1)

The previous equation is then multiplied by
r`+14πG
2` + 1

before

being injected in Eq. A.13 to eliminate
∫ r

0 ρ(r′)d(rm
` r′`+3) and

obtain the spectral projections of the gravitational potentials
expressed as

Ψm
1`(r) =

4πG
2` + 1

(
rm
` (r)m(r)

4πr

(
ηm

1` − 1 − `
)

− r`
∫ Rs

r
ρ(r′)d(rm

` r′2−`)
)

+
r`+1

2` + 1
d
dr

(
Ψm

2,` + Ψm
c,`

r`

)
. (B.2)

The integral term
∫ Rs

r ... is negligible at the surface. For an arbi-
trary chosen primary with a radius R1 the surface gravitational
potential is now expressed as

Ψm
1`(R1) '

rm
` (R1)GM

(2` + 1)R1

(
ηm

1`(R1) − 1 − `
)
. (B.3)

Eq. A.17 is then evaluated at the stellar surface and to the first
order to obtain

rm
` (R1)GM = −R1(2` + 1)

Ψm
2,`(R1) + Ψm

c,`(R1)

ηm
1`(R1) + `

, (B.4)

that we inject in Eq. B.3 to express the perturbation of the spec-
tral surface gravitational potential

Ψm
1`(R1) =

1 + ` − ηm
1`(R1)

ηm
1`(R1) + `

(
Ψm

2,`(R1) + Ψm
c,`(R1)

)
. (B.5)

With the definition of the Love numbers given in Eq. 28, we have
finally:

Ψm
1`(R1) = 2k`,1

(
Ψm

2,`(R1) + Ψm
c,`(R1)

)
. (B.6)

Appendix C: First terms of the centrifugal,
gravitational, and tidal potentials

C.1. Centrifugal potential in unsynchronised systems

In a non-synchronised system, the centrifugal potential
expressed with the Cartesian coordinates centred on the primary
is given by

Ψc(x, y, z) = −ñ2xCMx −
Ω2
?

2
(x2 + y2), (C.1)

where (x, y, z) are the Cartesian coordinates centred on the star
studied, x pointing towards the centre of mass of the system, ñ is
the orbital rotation rate of the binary system with a separation r
and Ω? is the rotation rate of this star. The quantity x2 + y2 can
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be written when passing in spherical coordinates as r2
1 − z2 with

z = r1 cos θ that can be expressed with the spherical harmonics

x2 + y2 =
2
3

r2
1 − Y0

2 (cos θ). (C.2)

The centrifugal potential can therefore be expressed as

Ψc(x, y, z) =ñ2xCMr1Y1
1 (µ) −

Ω2
?

3
r2

1

(
1 − Y0

2 (µ)
)
,

and decomposed as

Ψ0
c,0 = −

Ω2
?

3
r2

1, (C.3)

Ψ1
c,1 = −ñ2xCMr1, (C.4)

Ψ0
c,2 =

Ω2
?

3
r2

1, (C.5)

Ψm
c,` = 0 for all other combinaisons of`andm.

C.2. Gravitational and tidal potential

Treating the secondary as a point source, the spectral component
of the gravitational potential exerted by the secondary star at the
surface of the primary can be expressed as

Ψ2(R1, θ1, φ1) = −
GM2

R1

L∑
`

(R1

r

)`+1

P`(sin θ1 cos φ1), (C.6)

where r is the instantaneous orbital separation of the stars and
P`(sin θ1 cos φ1) is the classical Legendre polynomial that can
be decomposed using spherical harmonics as

P`(sin θ1 cos φ1) =
∑̀

m=−`

Ym
` (θ1, φ1)dm

` , (C.7)

where dm
` are constant coefficients linked to the normalisation of

the spherical harmonics. In the following we define and use

λ1 ≡ sin θ1 cos φ1. (C.8)

Using this notation:

P1(λ1) = λ1 = sin θ1 cos φ1 =
x
r1

= −Y1
1 (θ1, φ1), (C.9)

yield d0
1 = 0, d1

1 = −1. Similarly,

P2(λ1) =
1
4

Y2
2 (θ1, φ1) −

1
2

Y0
2 (θ1, φ1), (C.10)

yields d0
2 = −

1
2

and d2
2 =

1
4

.Therefore,

Ψ1
2,1(R1) =

GM2

R1

(R1

r

)2

, (C.11)

Ψ0
2,2(R1) =

1
2

GM2

R1

(R1

r

)3

, (C.12)

Ψ2
2,2(R1) = −

1
4

GM2

R1

(R1

r

)3

. (C.13)

Summing Eqs. (C.3), (C.11) and using the definition of ñ (Eq. 5),
we have:

Ψ1
c,1(R1) + Ψ1

2,1(R1) =
GM2

R1

(R1

r

)2

−
GM2

R1

(R1

r

)2

= 0. (C.14)

Substituting this result in the right hand side of Eq. (B.6), we
see that the perturbative theory predicts that the dipolar compo-
nent of the gravitational potential generated by a star is equal
to zero when its companion is treated as a point source. This is
an important result explaining why the dipolar component was
systematically neglected in previous studies.

The sums of the quadrupolar terms of the centrifugal and
secondary tidal forces at the surface of the primary are finally
given by

Ψ0
c,2(R1) + Ψ0

2,2(R1) =

(R1

r

)2 (
Ω2
?

3
r2 +

1
2

GM2

r

)
(C.15)

and

Ψ2
c,2(R1) + Ψ2

2,2(R1) = −
1
4

GM2

R1

(R1

r

)3

. (C.16)

Appendix D: Perturbation of the force

In this section, we develop the expression of the tidal force
exerted by a deformed body on its companion, specifically F2′10
as introduced in Sect. 3.2. We limit ourselves to the dominant
term, which arises from the quadrupolar deformation of the
secondary. The system of coordinates used in this Section is
described in Fig. A.1. Let us consider the secondary, which is
deformed due to the presence of an unperturbed primary. In the
section, ri denotes the radial coordinate of the spherical coordi-
nate frame centred on each star. With this formalism the potential
perturbation at the surface of the secondary is given by Eq. B.5
applied to the ` = 2 terms:

Ψ2,2(R2) = Ψ0
2,2(R2)Y2

0 (θ2, φ2) + Ψ2
2,2(R2)Y2

2 (θ2, φ2) (D.1)

that can be rewritten, using Eq. C.6 as

Ψ2,2(R2, θ2, φ2) = 2k2,2

(R2

r

)2
−GM1

r
P2(λ2) +

Ω2
?,2

3
r2P2(µ2)

 ,
(D.2)

where P2 is the Legendre polynomial of order two and λi ≡

sin θi cos φi and µi = cos θi. To study the impact of this potential
perturbation on the primary, we can express the ` = 2 component
of the potential outside of the secondary as

Ψ2,2(r2, λ2, µ2) = Ψ2,2(R2, λ2, µ2)
(

R2

r2

)3

(D.3)

= 2k2,2

(R2

r

)5 (
r
r2

)3 −GM1

r
P2(λ2) +

Ω2
?,2

3
r2P2(µ2)

 .
Following Kopal (1959), different coordinates related quantities
from the secondary star can be approximated with series devel-
opments in the coordinates of the primary star:(

r
r2

)3

= 1 + 3
r1

r
P1(λ1) +

( r1

r

)2
(5P2(λ1) + 1) + ... (D.4)

P2(λ2)
(

r
r2

)3

'

(
1 +

( r1

r

)2
(P2(λ1) − 1)

) (
1 + 3

r1

r
P1(λ1) + ...

)
(D.5)

' 1 + 3
r1

r
P1(λ1) + 6

( r1

r

)2
P2(λ1),
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P2(µ2) =
1
2

3 z2
1

r2
2

− 1
 =

1
2

3 z2
1

r2 − 1
 + O

(( r1

r

)3
)

'
3
2

( r1

r

)2
µ2

1 −
1
2

+ O

(( r1

r

)3
)

(D.6)

=

( r1

r

)2
P2(µ1) +

1
2

( r1

r

)2
−

1
2

+ O

(( r1

r

)3
)
,

and

P2(µ2)
(

r
r2

)3

= −
1
2
−

3
2

r1

r
P1(λ1) (D.7)

+

( r1

r

)2
[
P2(µ1) −

5
2

P2(λ1)
]

+ O

(( r1

r

)3
)
.

All those approximations can be inserted back in Eq. D.3 to
obtain the perturbation of the secondary gravitational potential
in the coordinates of the primary:

Ψ2,2(r1, λ1, µ1) = Ψ2,0(r2
1) (D.8)

− 2k2,2

(R2

r

)5 r1

r

3GM1

r
+

Ω2
?,2

2
r2

 P1(λ1)

− 2k2,2

(R2

r

)5 ( r1

r

)2
(6GM1

r
+

5
6

Ω2
?,2r2

)
P2(λ1) −

Ω2
?,2

3
r2P2(µ1)

 ,
(D.9)

that can be rewritten using the third Kepler law including the
periods of the system as follows

Ψ2,2(r1, λ1, µ1) = Ψ2,0(r2
1) − 2k2,2

GM1

r

(R2

r

)5

(D.10) r1

r

3 +
1
2

Mtot

M1

(
Ω?,2

ñ

)2 P1(λ) +

( r1

r

)2
6 +

5
6

Mtot

M1

(
Ω?,2

ñ

)2

P2(λ)

−
1
3

Mtot

M1

(
Ω?,2

ñ

)2

P2(µ)
 .

We can note that all the constants appearing in the expressions
have been included in the Ψ2,0 as they are not depending on r1/r.

Let us now compute the force exerted by the perturbation of
the secondary on the unperturbed primary, F2′10, that is given by

F2′10 = −

∫
ρ10

∂Ψ2,2

∂x1
dV1 ' −M1

∂Ψ2,2

∂x1
(r1 = 0), (D.11)

when treating the primary as point like (r1 = 0). In this case, only
the gradient of the ` = 1 component is non-null at the centre of
the star (r1 = 0) as

r1

r
P1(λ) =

x1

r
. (D.12)

Therefore, by only taking the ` = 1 component, the force can be
expressed as

F2′10 = −M1
∂Ψ2,2

∂x1
(r1 = 0)

= 2k2,2
GM2

1

r2

(R2

r

)5
3 +

1
2

Mtot

M1

(
Ω?,2

ñ

)2 . (D.13)

Appendix E: Higher order perturbations

In this section, we apply the developments done in Appendix D
and Sect. 3.3 to obtain the apsidal motion resulting from the
` = 3 perturbation of the potential. By combining Eq. (B.6) and
Eq. C.6, the surface potential perturbation ` of the secondary
originating from the presence of the primary is given by

Ψ2,3(R2, θ2, φ2) = −2k2,3
GM1

r

(R2

r

)3

P3(λ2). (E.1)

Beyond the surface of the secondary, at a distance r2 from its
centre, the potential perturbation from the ` = 3 perturbed poten-
tial of the secondary is expressed as

Ψ2,3(r2, θ2, φ2) = −2k2,3
GM1

r

(R2

r

)3

P3(λ2)
(

R2

r2

)4

(E.2)

= −2k2,3
GM1

r

(R2

r

)7

P3(λ2)
(

r
r2

)4

. (E.3)

Based on Kopal (1959), λ2 can be expended as

λ2 = 1 +
1
3

(P2(λ1) + 1)
( r1

r

)2
+ ..., (E.4)

meaning that

P3(λ2) =
1
2

(
5λ2

2 − 3λ2

)
= 1 −

1
2

(P2(λ1) + 1)
( r1

r

)2
+ ..., (E.5)

and

P3(λ2)
(

r
r2

)4

' 1 + 4
r1

r
P1(λ1) + ..., (E.6)

which can be inserted back in Eq. (E.3) to obtain the perturbation
originating from the ` = 3 perturbation of the secondary in the
coordinate frame of the primary:

Ψ2,3(r1, λ1) = Ψ2,0(r1) − 8k2,3
GM1

r

(R2

r

)7 r1

r
P1(λ1) + ... . (E.7)

By using the same methodology as in the Appendix D, the force
perturbation originating from the ` = 3 deformation of the sec-
ondary on the primary is expressed as

F2′10 = −8k2,3
GM2

1

r2

(R2

r

)7

(E.8)

Following the Sect. 3.2, the acceleration perturbation undergone
by the system due to the tidal perturbation is expressed as

FR = −8
GMtot

a2

(
k2,3

1
q

(R2

a

)7

+ k1,3q
(R1

a

)7) (a
r

)9
(E.9)

≡ FR,tides,`=3

(a
r

)9
, (E.10)

when defining a as the semi-major axis of the system. Following
the same approach as in Sect. 3.3, the time orbital average of the
perturbation is formally expressed as

〈FR cosϕ〉 =
1

Porb
FR,tides,`=3

∫ Porb

0

(a
r

)9
cosϕ dt, (E.11)

which can be developed into polynomial functions of the eccen-
tricity using Hansen’s functions:
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〈FR cosϕ〉 = FR,tides,`=3X−9,1
0 (e), (E.12)

with

X−9,1
0 (e) =

7
2

e(1 − e2)−15/2
(
1 +

15
4

e2 +
15
8

e4 +
5
64

e6
)
. (E.13)

The apsidal motion caused by the ` = 3 acceleration perturbation
can finally be obtained by inserting Eq. (E.12) in Eq. 19 and

simplifying:

dω
dt

=
56π
Porb

v(e)
(
k2,3

1
q

(R2

a

)7

+ k1,3q
(R1

a

)7)
, (E.14)

with,

v(e) =

1 +
15
4

e2 +
15
8

e4 +
5

64
e6

(1 − e2)7 . (E.15)
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