

VTEC Estimation Performance of Real-Time PPP with Galileo High Accuracy Service

caneren.gul@uliege.be | rene.warnant@uliege.be

Performance of Galileo High Accuracy Service

70

60

50

 Days with moderate ionospheric activities: Day of Year 140 to 143

8

6

Performance of Galileo High Accuracy Service

Settings for in-house developed software

Item	Strategy						
Positioning Mode	Static						
Ambiguity	Float						
Signals (GPS/GAL)	L1/E1C + L2/E5b						
Satellite elevation mask	10°						
Data interval	30s						
Troposphere							
Nominal part	Modeled with UNB3						
Residual part	Estimated as a random walk process ($10^{-8}\ m^2/s$)						
lonosphere	Estimated as a random walk process $(3 \times 10^{-4} m^2/s)$						
Phase wind up	Modeled						
Solid earth-tide	Modeled						

Two Septentrio PolaRx5 receivers from the University of Liège, Belgium for DoY 140 & 143 (Disturbed & quiet days)

- Receivers are located inside the building
- 2nd order polynomial model for station-based VTEC modeling.
- Co-located stations can be used for assessing the performance of ionospheric delay estimation.
 - Galileo HAS stream retrieved by BNC v2.12.18.

Results of co-located stations

4/10

Results of co-located stations

25

20

0

5

Single Differenced Ionosphere ULG0-ULG1

GPST(hours)

Results of co-located stations

6/10

Data processing with world-wide IGS Stations

- 13 IGS Stations from **high/mid/low** latitudes were used in Uncombined Precise Point Positioning
- GPS: L1 + L2
- Galileo: E1C + E5b
- The same data processing strategy was applied.
- 2nd order polynomial model for stationbased VTEC modeling.

Results of IGS Stations: Positioning

Performance

Results of IGS Stations: VTEC Performance

• PPP-VTEC RMSs computed w.r.t CODE Final GIM

- 13 IGS stations and two additional co-located stations were processed
- Initial positioning performance of Galileo HAS in general
 - Around 5 to 10 cm RMS for horizontal
 - Around 8 to 20 cm RMS for vertical
- Initial PPP VTEC performance with Galileo HAS is promising
- Closest values to CODE Final GIM were achieved at mid-latitude: ~1 to 4 TECU
- Results for high-latitude stations (from Sweden & Antarctica) → 3 to 5 TECU variations
- VTEC from Low-latitude stations have differences up to 5.7 TECU.

Thank you for listening!..

caneren.gul@uliege.be | rene.warnant@uliege.be

All Results

DoY 140			DoY 141							DoY 143					
		East	North	Up	TEC		East	North	Up	TEC		East	North	Up	TEC
Mid-Latitude	ALBH	6.78	7.19	8.7	4.3	ALBH	3.6	2.28	13.49	3.16	ALBH	7.25	9.75	21.88	3.73
	BRUX	3.04	2.51	7.93	1.26	BRUX	9.05	0.57	5.41	1.6	BRUX	4.74	1.68	7.25	0.79
	DYNG	6.16	3.58	9.36	4.97	DYNG	5.86	2.93	8.38	4.15	DYNG	3.96	1.81	13.6	3.47
	GRAZ	5.31	3.1	10.25	0.93	GRAZ	4.66	2.94	11.53	1.22	GRAZ	6.29	1.42	12.29	1.5
	PTBB	6.75	1.62	7.08	0.83	PTBB	6.77	3.41	9.48	1.38	PTBB	5.18	0.95	14.02	0.53
	VILL	3.44	0.67	11.83	2.29	VILL	1.45	1.48	8.52	3.04	VILL	3.94	0.59	11.21	3.06
	WRST	2.63	2.61	5.19	0.84	WRST	2.8	2.87	6.72	1.12	WRST	5.04	2.82	8.07	0.87
e G															
igh- atituc	DAV1	3.97	1.21	15.39	4.28	DAV1	1.55	2.4	11.73	4.41	DAV1	2.95	1.23	15.67	4.64
	KIRU	7.97	3.62	5.83	3.28	KIRU	13.61	2.83	7.82	2.78	KIRU	9.7	5.76	4.77	2.61
Τ̈́															
latorial	KOUR	4.55	8.25	5.98	4.67	KOUR	3.75	8.91	9.36	5.74	KOUR	5.82	1.14	9.69	5.02
	MAL2	8.27	9.41	16.33	3.6	MAL2	7.5	6.63	22.71	1.9	MAL2	6.86	2.62	24.5	5.04
	NKLG	3.46	0.92	4.61	3.62	NKLG	4.4	2.71	10.06	4.81	NKLG	3.71	3.35	8.57	5.07
Edr	SEYG	4.53	4.25	4.12	4.25	SEYG	5.26	2.84	9.23	3.56	SEYG	5.96	1.02	13.15	5.03