Vulnerability of tropical moist forests to projected climate changes in Africa

Introduction

Warming and intensification of the dry season in the Congo Basin

Introduction

Amazon:

AGB loss after drought – stronger with MCWD

= Drought induced mortality

Increase in C losses - decline in C sequestration

Africa: not reported

African tree species less vulnerable to drought?

Objective of study Assess the climatic vulnerability of tropical moist forests across Africa

Gallagher *et al.* (2019) in Scientific Reports Esperon-Rodriguez *et al.* (2022) in Nature Climate Change

Research questions

- (1) What is the **exposure to climate change** in African tropical moist forests?
- (2) What is the **climatic safety margin** of forest species and communities?

(3) What is the **climatic risk** encompassed by forest species and communities to projected climate changes?

Methods Species occurrence data and definition of forest communities

Dauby et al. (2016) Phytokeys Sosef et al. (2017)

Methods Climatic data: **Baseline** and **Future** (2080; 5 RCMs; RCP4.5 & RCP8.5)

Analytical framework: species level

Analytical framework: species level

Analytical framework: **community** level

Species	MAT upper limit
Prioria balsamifera	26
Senna occidentalis	27
Microcos barombiensis	26
Sterculia dawei	25
Median	26

Climatic **safety margin**, **exposure** and **risk** example for MAT

Analytical framework: **community** level

Species	MAT upper limit
Prioria balsamifera	26
Senna occidentalis	27
Microcos barombiensis	26
Sterculia dawei	25
Median	26

Climatic **safety margin**, **exposure** and **risk** example for MAT

Results Exposure to climate changes

Widespread increasing temperature and variable rainfall trends with considerable uncertainty

Results Safety margin and species risk for MAT

Exposure to MAT increase (RCP 4.5 2080)

Mean exposure = 2.4 ± 0.21 °C

Mean species safety margin (°C)

Risk from MAT increase (RCP 4.5 2080)

Take home message

- (1) What is the **exposure to climate change** in African tropical moist forests?
 - Widespread increasing temperature and variable rainfall trends with considerable uncertainty

- (2) What is the **climatic safety margin** of species and forest communities?
 - Some species are currently exceeding their safety margin for temperature
 - Most species have a narrow safety margin for temperature

- (3) What is the **climatic risk** encompassed by forest species and communities to projected climate changes?
 - Most forest species and communities are projected to be potentially at risk from rising temperatures

TROPICAL ECOSYSTEMS IN A FAST-CHANGING PLANET SOCTROPECOL-CONFERENCE.EU

SESSION

Tropical forest conservation and management under a changing climate

CHAIRS:

Meley Mekonen Rannestad, Norwegian University of Life Sciences
Aster Gebrekirstos, World Agroforestry
Yennie Katarina Bredin, NINA - Norwegian Institute for Nature Research
Thomas Luypaert, Norwegian University of Life Sciences

EUROPEAN CONFERENCE OF

TROPICAL ECOLOGY

