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Abstract: Sows suffer oxidative stress and inflammation induced by metabolic burden during late
pregnancy, which negatively regulates reproductive and lactating performances. We previously
found that L-malic acid (MA) alleviated oxidative stress and inflammation and improved reproduc-
tive performances in sows. However, the mechanism underlying the MA’s positive effects remains
unexplored. Here, twenty Large White × Landrace sows with similar parity were randomly divided
into two groups and fed with a basal diet or a diet supplemented with 2% L-malic acid complex
from day 85 of gestation to delivery. The gut microbiome, fecal short-chain fatty acids, and un-
targeted serum metabolome were determined. Results showed that Firmicutes, Bacteroidota, and
Spirochaetota were the top abundant phyla identified in late pregnancy for sows. Maternal MA
supplementation modulated the composition but not the richness and diversity of gut microbiota
during late pregnancy. Correlation analysis between gut microbiota and antioxidant capacity (or
inflammation indicators) revealed that unclassified_f_Ruminococcaceae, unclassified_f_Lachnospiraceae,
UCG-002, norank_f_norank_o_RF3, and Lactobacillus might play a role in anti-oxidation, and Lach-
nospiraceae_XPB1014_group, Lachnospiraceae_NK4A136_group, UCG-002, unclassified_f_Ruminococcaceae,
Candidatus_Soleaferrea, norank_f_UCG-010, norank_f_norank_o_RF39, and unclassified_f_Lachnospiraceae
might be involved in the anti-inflammatory effect. The improved antioxidant and inflammation status
induced by MA might be independent of short chain fatty acid changes. In addition, untargeted
metabolomics analysis exhibited different metabolic landscapes of sows in the MA group from in
the control group and revealed the contribution of modified amino acid and lipid metabolism to the
improved antioxidant capacity and inflammation status. Notably, correlation results of gut microbiota
and serum metabolites, as well as serum metabolites and antioxidant capacity (or inflammation
indicators), demonstrated that differential metabolism was highly related to the fecal microorganisms
and antioxidant or inflammation indicators. Collectively, these data demonstrated that a maternal
dietary supply of MA can ameliorate oxidative stress and inflammation in sows through modulating
gut microbiota and host metabolic profiles during late pregnancy.
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1. Introduction

Reproductive performance is highly associated with production efficiency in pig farm-
ing and well-being in humans. Pregnant mothers face consistent stress during the whole
production process, especially the late pregnancy period [1]. Take sows, for example, they
suffer from aggressive oxidative and inflammation stress mainly derived from dramatic
fetal development-induced metabolic burden and maternal metabolic alteration during late
pregnancy, which deteriorates fetal intrauterine growth and reproductive outcomes, such
as farrowing duration, litter size, live litter size and litter weight gain [2–4]. This stress
is not fully uncovered until lactation ends, which will further decrease sows’ feed intake
and aggravate negative energy balance, body weight and milk production loss during
lactation [5,6]. Consequently, the growth performances of offspring from the oxidative-
stress-disturbed sows are adversely affected [7]. Therefore, proposing effective strategies
to mitigate oxidative and inflammation stress during late pregnancy in sows is of vital
significance.

Recent research has enlightened us as to the association between perinatal gut mi-
croflora and maternal oxidative stress and inflammation status [8,9]. Discernible shifts
occur in the gut microbiota of the mothers during the perinatal period in the sow and hu-
mans [10,11]. Highly reproductive mothers had lower microbial richness during late preg-
nancy and higher microbial diversity during the early stages after parturition than their less
reproductive counterparts [8]. Specifically, maternal Bacteroides_f_Bacteroidaceae positively
correlated but Phascolarctobacterium and Streptococcus negatively correlated with the litter per-
formance and the antioxidant capacity of sows [12]. A functional link analysis between gut
bacteria and oxidative indicators and stillbirth rate identified that Lachnospiraceae_UCG-001,
Marvinbryantia, and Ruminococcaceae_UCG-004 were negatively correlated with antioxidant
capacity, but positively correlated with the stillbirth rate in sows [13]. Furthermore, peri-
natal maternal gut microbiota alterations paralleled the anti-inflammation status change
in sows [8]. Changes in gut microbiota responded to the host metabolism and affected
maternal metabolic health status through metabolizing relevant nutrients and then affected
fetal development through breast transmission [14,15]. In the late stages of pregnancy, there
was a disruption in the maternal gut microbiota, characterized by a significant increase in
Proteobacteria and Actinobacteria [10]. Additionally, pregnant and lactating sows exhibited
low-level inflammation and metabolic disturbances [11]. Therefore, intestinal flora changes
and their related metabolic changes may be the underlying mechanism of the induced
antioxidant and anti-inflammatory effects and phenotypes.

Nutritional manipulation has proven to be a potent strategy to alleviate the oxidative
and inflammation stress of sows [16]. Common antioxidant or anti-inflammation molecules
include plant extracts like phenols, glycosides, aldehydes, alcohols, acids and other active
substances [17] and micronutrients like selenium and vitamin E, as well as some probi-
otics with beneficial effects [16]. Malic acid (MA), an intermediate organic acid in the
tricarboxylic acid cycle, exists widely in fruits and vegetables and can be mass-produced
through microbial fermentation and enzymatic synthesis [18]. MA possesses excellent
antioxidant and immune adjustment properties [19], and promoting-growth effects [20].
It has previously been demonstrated that MA could improve antioxidant capacity and
enhance muscle fiber indices in weaned piglets and finishing pigs [21,22]. More recently, we
found that maternal MA could have anti-inflammation and antioxidant effects on sows and
their offspring and improve metabolic health in offspring, as well as improve reproductive
performances in sows [23]. The modulation of the gut microbiota of the offspring through
the vertical transmission of milk metabolites underlies the positive effects of MA on the off-
spring [23]. However, the mechanism behind the positive effects of MA in sows during late
pregnancy has not been elucidated. We hypothesized that MA might ameliorate oxidative
stress and inflammation in sows through modulating gut microbiota and host metabolic
profiles during late pregnancy. Therefore, this study was to investigate the mechanism
underlying the effects of maternal supplementation with MA during late pregnancy on
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oxidative stress and inflammation from the perspectives of maternal changes in the gut
microbiota and serum metabolome.

2. Materials and Methods
2.1. Experimental Design and Diets

Animal experimentation protocols were kept strictly to the terms of the contract of
the Care and Use of Laboratory Animals established by China Agricultural University
(Protocol ID: SKLAB-2011-04-03) and the Animal Welfare and Ethical Committee of Beijing
Academy of Agriculture and Forestry Sciences (approval number: IHVM11-2202-2). The
experiment involved 20 multiparous sows (about 3.5 years old) with similar parities, backfat
thickness, and expected farrowing dates. These sows were randomly allocated into two
groups, each with ten replicates (n = 10), where each replicate consisted of one sow housed
individually in a pen. The sows were provided with a basal diet (control group) or a basal
diet supplemented with 2% L-malic acid complex during late pregnancy (from 85 days of
gestation to parturition). The basal diet met the nutritional requirements recommended by
the National Research Council for pregnant sows (NRC, 2012). The ingredients’ components
and the nutrition level of the basal diet were shown as presented [23]. L-malic acid complex,
containing 20% MA and 80% carrier (zeolite powder), was provided by Anhui Sealong
Biotechnology Co., Ltd. (Bengbu, Anhui Province, China). During the experiment, each
sow had ad libitum access to water and was fed 3 kg of diet daily (divided into two equal
meals at 8:00 a.m. and 4:00 p.m., respectively). On day 107 of pregnancy, the sows were
transferred to the farrowing rooms, where each sow was provided with an individual
farrowing crate (2.1 × 1.5 m) and remained there until the weaning of the piglets.

2.2. Sample Collection

Blood sample at parturition was collected from ear veins and serum was obtained as
previously [23]. Fresh fecal samples at parturition were collected and stored in sterile 2-mL
centrifuge tubes at −80 ◦C for gut microbiota analysis.

2.3. DNA Extraction, 16S rRNA Sequencing of Gut Microbiota, and Data Analysis

Six fecal samples were randomly selected from each group. Total genomic DNA from
fecal microbiota was extracted using a DNA extraction kit (M5636, Omega, Norcross, GA,
USA). DNA concentration was measured using a spectrophotometer. DNA purity and
quality were assessed by agarose gel electrophoresis.

PCR amplification was performed using universal primers targeting the V3 and V4 re-
gions of bacterial 16S sequences. The upstream primer used was 338F (5′-ACTCCTACGGGA
GGCAGCAG-3′), and the downstream primer was 338R (5′-GGACTACHVGGGTWTCTAAT-
3′), resulting in amplicons of approximately 500 bp. PCR products were extracted from a
2% agarose gel and purified using the AxyPrep DNA Gel Extraction Kit (AP-GX-50, Axy-
gen Biosciences, Union City, CA, USA). Purified amplicons were pooled in equal molars
according to the standard protocol of Majorbio Bio-pharm Technology Co., Ltd. (Shanghai,
China) and subjected to paired-end sequencing on the Illumina MiSeq PE300/NovaSeq
PE250 platform (Illumina, San Diego, CA, USA).

The raw sequences were processed using the DADA2 plugin of QIIME2 software
(https://qiime2.org/, accessed on 23 February 2023), including filtering, de-noising, merg-
ing, and non-chimeric removal processes. At a similarity level of 97%, the sequences were
clustered into operational taxonomic units (OTUs). Representative OTU sequences were
aligned against the Silva Release 138 database to obtain taxonomic annotations. Alpha di-
versity indices, including Shannon and Simpson indices, the Chao1 richness estimator, and
abundance-based coverage estimator (ACE), were calculated using QIIME (version 1.9.1).
Linear discriminant analysis (LDA) effect size (LEfSe, http://huttenhower.sph.harvard.
edu/LEfSe, accessed on 23 February 2023) was performed to determine significant differ-
ences in bacterial taxa (from phylum to genus) between groups (LDA score > 2, p < 0.05).

https://qiime2.org/
http://huttenhower.sph.harvard.edu/LEfSe
http://huttenhower.sph.harvard.edu/LEfSe
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2.4. Untargeted Metabolomics Analysis of Sows’ Serum

The relative concentration of metabolites in serum was quantified using the UHPLC-
MS/MS system in both positive and negative ion modes. Briefly, a total of 400 µL of
extraction solution (acetonitrile: methanol, 1:1, v/v) containing 0.02 mg/mL internal
standard (L-2-chlorophenylalanine) was added to 100 µL of serum. After thorough mixing,
the samples underwent a 30 min low-temperature ultrasonic extraction. After that, samples
were kept at −20 ◦C for 30 min. Then, they were centrifuged at 13,000× g for 15 min
at 4 ◦C. The supernatant was discarded, and the residue was dried with nitrogen gas.
Subsequently, 100 µL of resuspension solution (acetonitrile:water, 1:1, v:v) was added.
The samples underwent a second round of low-temperature ultrasonication, followed by
centrifugation. The resulting supernatant was transferred to sample vials for subsequent
analysis. The metabolites underwent separation on an HSS T3 column (100 × 2.1 mm;
i.d., 1.8 µm) and were detected using mass spectrometry in both positive and negative ion
scanning modes. An equal volume of all samples was mixed to prepare a quality control
(QC) sample. During the analysis process, a QC sample was inserted every 5 samples
to test the repeatability of the entire analysis process. The obtained raw data were then
imported into the Progenesis QI software (Waters Corporation, Milford, MA, USA) for
data preprocessing and annotated using HMDB (http://www.hmdb.ca/, accessed on
23 February 2023), Metlin (https://metlin.scripps.edu/, accessed on 23 February 2023),
and Majorbio databases, as described previously [24]. Then, the data were analyzed using
principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA),
or orthogonal partial least squares discriminant analysis (OPLS-DA). Metabolites exhibiting
Variable Importance in Projection (VIP) > 1 and p < 0.05 were identified as significantly
different. Differential metabolites were annotated and enriched using the KEGG database
for metabolic pathway analysis.

2.5. Fecal Short-Chain Fatty Acid (SCFA) Analysis

HPLC-grade SCFA standards (>99% pure), including acetic acid, propionic acid,
butyric acid, isobutyric acid, valeric acid, isovaleric acid, hexanoic acid, isohexanoic acid,
and 1,3-butanediol (the internal standard), were purchased from Sigma-Aldrich (St. Louis,
MO, USA). The SCFAs in feces were determined using a gas chromatograph with some
modification. Briefly, 0.5 g of feces was placed in a 10 mL centrifuge tube and mixed with
10 mL of ultrapure water. After homogenization and centrifugation, the fecal supernatant
was diluted with ultrapure water and filtered through a 0.22 µm filter. Filtrates were
placed in headspace vials and injected into the Agilent 8890B gas chromatography system
coupled to an Agilent 5977B/7000D mass selective detector with an inert electron impact
(EI) ionization source at Majorbio Bio-Pharm Technology Co., Ltd. (Shanghai, China). The
Dionex ICS-3000 ion chromatography system with an auto-sampler was used. The column
used was the HP-FFAP (30 m × 0.25 mm × 0.25 µm) capillary column. The injector was
split at 1:10. The carrier gas was nitrogen at a flow rate of 1.0 mL/min. Peaks corresponding
to each SCFA were quantified using standard curves.

2.6. Statistical Analysis

Results were presented as means ± SEM and analyzed using the unpaired two-tailed
Student’s t-test in SAS (v.9.1, SAS Institute, Cary, NC, USA). Relationships among key
parameters were evaluated using Spearman’s correlation analysis. Procrustes function
analysis within the R vegan package was used for Procrustes analysis of microbiome and
metabolome data. Statistical significance was set at p < 0.05, while 0.05 ≤ p ≤ 0.10 was
considered suggestive of a trend.

http://www.hmdb.ca/
https://metlin.scripps.edu/
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3. Results
3.1. Maternal MA Supplementation Modulated the Composition but Not the Richness or Diversity
of Gut Microbiota during Late Pregnancy

Previously, we showed that MA supplementation during late pregnancy improved
antioxidant and inflammation status, and reproductive performances [23]; here, we tried
to dissect the mechanism behind the MA’s positive effects on sows. Fecal microbiota
from control and MA-treated sows were evaluated. Results showed that the α–diversity
was not significantly changed, as indicated by the unaltered Shannon, Simpson, ACE,
and Chao1 indices (Figure 1A–D), suggesting that maternal MA supplementation had
no significant impact on gut microbiota species richness and diversity. Next, β–diversity
was evaluated by unweighted principal coordinate analysis (PCoA) at the OTU level. A
discernible separation of the MA group from the control group indicated that MA signifi-
cantly modulated the composition of the gut microbiota (Figure 1E). At the phylum level,
Firmicutes, Bacteroidota, and Spirochaetota were the top abundant phyla identified in late
pregnancy for sows (Figure 2A). Among them, the abundance of Spirochaetota was sig-
nificantly decreased with MA intervention. At the genus level, UCG-005, NK4A214_group,
norank_f__p-251-o5, norank_f__Muribaculaceae, Christensenellaceae_R-7_group, Terrisporobac-
ter, Clostridium_sensu_stricto_1, Treponema, Lachnospiraceae_XPB1014_group, Prevotella, and
Lactobacillus were the top abundant microorganisms identified in late pregnancy for sows
(Figure 2B). Specifically, the abundances of Oscillospira, Ruminococcaceae, and Sarcina were
lower but UCG-002 and norank_o_RF39 were higher in the MA group compared to the
control group (Figure 2C). There was also some microbiota with a significant difference
in the two groups, such as Mogibacterium, Dielma, Tuzzerella, UCG-007, Fusobaterium, Lach-
nospiraceae, and Staphylococcus, although they did not occupy a high proportion (Figure 2C).
Therefore, the aforementioned data suggest that dietary supplementation with MA during
late pregnancy exerts a certain influence on the microbiota composition of sows.
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Figure 1. Influence of L–malic acid on gut microbiota diversity in sows during late pregnancy. (A–D)
The α–diversity and (E) β–diversity of the gut microbiota in sows by 16S rRNA sequencing. (A–D)
Comparison of Shannon index (A), Simpson index (B), Ace index (C), and Chao 1 index (D) between
CON and MA groups. (E) Unweighted principal coordinate analysis (PCoA) at the OTU level. CON,
basal diet; MA, basal diet containing 2% malic acid complex. Data were shown as means ± SEM
(n = 6).
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Figure 2. Modulation of L–malic acid on the constitution of gut microbiota in sows during late
pregnancy by 16S rRNA sequencing: (A,B) shows the relative abundance of the bacteria community
at the phylum and genus level, respectively; (B) displays the top 20 abundant genera; and (C) shows
the communities with significant differences in relative abundance at genus level. CON, basal diet;
MA, basal diet containing 2% L–malic acid complex. Data are presented as mean ± SEM (n = 6).
Statistics were performed with Student’s t-test. * p < 0.05.

3.2. Gut Microbiota Alteration May Mechanically Contribute to the MA-Enhanced Antioxidant
and Anti-Inflammation Capacity

Given that the gut microbiota plays a crucial role in the antioxidant and anti-inflammatory
capabilities of sows and reproduction modulation, to assess the significance of the modulated
gut microbiota underlying the MA’s positive effects, Spearman analysis between levels of the
top 50 abundant microbes and our previously reported antioxidant enzymes and inflamma-
tory factors [23] in the serum were analyzed (Figure 3). From the antioxidant perspective,
the results revealed that the activity of the total antioxidant enzyme (T-AOC) was negatively
correlated with the abundance of norank_f_Ruminococcaceae and positively correlated with unclas-
sified_f_Ruminococcaceae and unclassified_f_Lachnospiraceae. The activity of superoxide dismutase
(SOD) was positively correlated with UCG-002 and norank_f_norank_o_RF39 but negatively corre-
lated with Oscillospira, Sarcina, and Monoglobus. Glutathione peroxidase (GSH-PX) was negatively
linked to Sarcina and Monoglobus. Catalase (CAT) activity exhibited a negative correlation with Os-
cillospira, Sarcina, and Monoglobus, and a positive relationship with Lactobacillus. Malondialdehyde
(MDA) content was positively correlated with norank_f_Ruminococcaceae, Sarcina, and Turicibacter.
These data implied that unclassified_f_Ruminococcaceae, unclassified_f_Lachnospiraceae, UCG-002, no-
rank_f_norank_o_RF39, and Lactobacillus play roles in antioxidation, while norank_f_Ruminococcaceae,
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Oscillospira, Sarcina, Monoglobus, and Turicibacter may promote oxidative stress. From the anti-
inflammation perspective, we analyzed the correlations between levels of microbiota genera
and anti-inflammation-related factors. The results indicated that TNF-α was positively re-
lated to Turicibacter, Treponema, and norank_f__p-2534-18B5_gut_group. IFN-γ exhibited a nega-
tive correlation with Lachnospiraceae_XPB1014_group, Lachnospiraceae_NK4A136_group, UCG-002,
and unclassified_f_Ruminococcaceae, but a positive correlation with Sarcina, Treponema, Rikenel-
laceae_RC9_gut_group, Prevotella, and unclassified_f_Prevotellaceae. The IL6 level was negative with
Candidatus_Soleaferrea and norank_f_UCG-010. IL-10 levels had positive correlations with the
norank_f_Ruminococcaceae, Oscillospira, Sarcina, and Monoglobus, while had a negative correlation
with the abundance of norank_f_norank_o_RF39 and unclassified_f_Lachnospiraceae. These data
implied that Turicibacter, Treponema, norank_f__p-2534-18B5_gut_group, Sarcina, Treponema, Rikenel-
laceae_RC9_gut_group, Prevotella, unclassified_f_Prevotellaceae, norank_f_Ruminococcaceae, Oscillospira,
Sarcina, and Monoglobus are involved in inflammation, while Lachnospiraceae_XPB1014_group,
Lachnospiraceae_NK4A136_group, UCG-002, unclassified_f_Ruminococcaceae, Candidatus_Soleaferrea,
norank_f_UCG-010, norank_f_norank_o_RF39, and unclassified_f_Lachnospiraceae play an important
role in the anti-inflammatory effect. Collectively, these data demonstrated that MA-induced
gut microbiota alteration may mechanically contribute to the MA-enhanced antioxidant and
anti-inflammation capacity.
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3.3. MA Reshaped the Functions of Gut Microbiota

To investigate how MA-modulated gut microbiota work, we predicted the functional
differences in gut microbiota using the PICRUST2 analysis. Analysis based on the Meta-
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Cyc revealed that fermentation and biosynthesis processes were enhanced with maternal
MA supply during late pregnancy. The main biological pathways included O-antigen
building block biosynthesis (E. coli), mono-trans, poly-cis decaprenyl phosphate biosyn-
thesis, the super-pathway of 2,3-butanediol biosynthesis, peptidoglycan biosynthesis IV
(Enterococcus faecium), and guanosine ribonucleotides de novo biosynthesis (Figure 4A).
To further elucidate the roles of differential microorganisms, the enrichment of functional
pathways was performed based on the KEGG Orthology database. Results showed that
MA-regulated microorganisms mainly participated in the amino acid, lipid, and carbo-
hydrate metabolic pathways, including D-alanine metabolism, glycerolipid metabolism,
pentose phosphate pathway, phosphonate and phosphinate metabolism, platinum drug
resistance, and tryptophan metabolism pathways (Figure 4B). Above all, these data sug-
gested that maternal MA supply reshaped gut microbiota functions, by impacting their
fermentation and biosynthesis functions, and improved substance metabolism.
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Figure 4. Functional prediction of fecal microbiota and the impact of L-malic acid on short-chain
fatty acid content in feces. (A) Functional prediction of differential microbiota based on the MetaCyc
database. (B) Differential functional analysis of metabolic pathways based on the KEGG Orthology
database. (C) Levels of acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric
acid, hexanoic acid, and isohexanoic acid in feces in the CON and MA groups. CON, basal diet; MA,
basal diet containing 2% L-malic acid complex. Data are presented as mean ± SEM (n = 6). Statistics
were performed with Student’s t-test. * p < 0.05, ** p < 0.01.

3.4. MA Diminished SCFAs in Feces

One way in which the microbes work is through their metabolites, and one of their
functions is to ferment carbohydrates to supply SCFAs for the host. Based on the facts that
the fermentation and metabolic-related pathways of gut microbiota were influenced by
MA, we next analyzed the SCFAS levels in feces. Results showed that, compared to the
control group, the MA group exhibited a significant reduction in the levels of propionic acid,
isobutyric acid, butyric acid, and isovaleric acid in feces. Acetic acid showed a decreasing
trend (p = 0.08), while isocaproic acid, valeric acid, and caproic acid did not differ between
the two groups.



Antioxidants 2024, 13, 253 9 of 18

3.5. MA Mediated the Metabolic Profile in Serum

Gut microbes influence host metabolism; given that gut microbiota was modulated by
the MA supplementation, we further evaluated the changes in serum metabolic profiles using
untargeted LC/MS analysis. A total of 1801 serum compounds were detected from the positive
ion mode (809) and negative ion mode (992). The PLS-DA analysis was conducted to visualize
the differences in all the samples among the two groups. The results showed a significant
separation between the two groups (Figure 5A,B). In total, 155 metabolites were identified as
differentially changed, including 116 upregulated and 39 downregulated (Figure 5C). They were
annotated as presented in Supplemental Table S1. They mainly belonged to the groups of lipids
and lipid-like molecules, organic acids and derivatives, organoheterocyclic compounds, ben-
zenoids, and organic oxygen compounds. The top 30 metabolites responsible for the separation
between groups were presented using their relative abundance and VIP scores (Figure 5D).
The relative concentrations of vicine, 2,3,4,5-tetrahydroxy-6-(1,2,3,4-tetrahydroxybutyl)-oxane-2-
carbaldehyde, N,N-Diallyl-tyrosyl-aminoisobutyryl-aminoisobutyryl-phenylalanyl-leucine, PA
(6 keto-PGF1alpha/20:0), sulfamethazine, N-(3-(3-Hydroxy-4-methoxyphenyl)propyl)-L-alpha-
aspartyl-L-phenylalanine, 4-ethoxy-4-oxobutanoylcarnitine, silenoside C, Protocrocin, compstatin,
and Oc-tanoylcarnitine were decreased in the MA group compared to the CON group. Apc,
lyso-phosphatidylcholine, ganetespib, N7-(2-Carbamoyl-2-hydroxyethyl)-guanine, tetradeca-
6,8,10-trienoylcarnitine, minocycline, leucylhydroxyproline, DG (18:3(9Z,12Z,15Z)/15:0/0:0),
DL-4-hydroxyphenyllactic acid, 7-methylxanthosine, ethyl-4-hydroxymethyl-3(2H)-furanone,
anisatin, indan-1-ol, 9(S)-hpode, 4-hydroxy-2-nonenal-[L-Cys] conjugate, PC(17:0/0:0), riddelli-
ine, morphinone, and Enantio-PAF C-16 were elevated by MA treatment. Pathway enrichment
based on the KEGG database revealed that they are mainly involved in human diseases, ge-
netic information processing, organismal systems, metabolism, and environmental information
processing. Among them, metabolic pathways were mostly enriched, including amino acid,
lipids, and the pyrimidine metabolism (Figure 5E). Interestingly, lysine degradation, linoleic acid
metabolism, tryptophan metabolism, alanine, aspartate and glutamate metabolism, arginine
biosynthesis, histidine metabolism, arginine and proline metabolism, choline metabolism in
cancer, and serotonergic synapse were enriched. They accounted for a large proportion of the
enriched metabolic pathways, highlighting the significance of amino acids behind the beneficial
effects of MA during late pregnancy. In addition, arachidonic acid metabolism, a lipid metabolic
pathway that functions in reproduction and metabolic health, was also enriched.
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3.6. Correlation between Serum Metabolites and Fecal Microbiota/Antioxidant or
Inflammation Indices

The links between the abundance of the top 20 abundant serum metabolites with
the 12 different fecal microbes (at the genus level, p value < 0.05) and the antioxidant or
inflammation indices were evaluated using Spearman’s correlation analysis. It is evident
that there was a strong correlation between differential fecal microbiota and differential
serum metabolites, as well as between serum metabolites and antioxidant (or inflam-
mation) indices. As shown in Figure 6A, on the one hand, the positive correlation was
between microbiota saecina, Mogibacterium, Lachnospiraceae, Staphylococcus, Ruminococcaceae,
Oscillospira, Dielma, and metabolites DG (8:0/15:0/0:0), LysoPE (20:4(5Z,8Z,11Z,14Z)/0:0),
and atenolol. And the other five microbes, Fusobacterium, UCG-002, RF39, Tuzzerella, and
UCG-007, were positive with the majority of different metabolites, such as 1-arachidonoyl-
2-hydroxy-sn-glycero-3-phosphate, vindoline, and androsterone glucuronide. On the other
hand, the relative abundances of saecina, Mogibacterium, Lachnospiraceae, Staphylococcus,
Ruminococcaceae, Oscillospira, and Dielma were negatively correlated with the concentration
of the above majority of different metabolites. And the metabolites DG (8:0/15:0/0:0),
LysoPE (20:4(5Z,8Z,11Z,14Z)/0:0), and atenolol, and microbiota Fusobacterium, UCG-002,
RF39, Tuzzerella, and UCG-007, were negatively correlated. On the other hand, these dif-
ferential metabolites with higher abundance have a close relationship with anti-oxidative
enzymes and inflammatory factors. To be specific, the activity of GSH-PX, SOD, CAT,
and T-AOC were negatively related to atenolol, LysoPE (20:4(5Z,8Z,11Z,14Z)/0:0), and
DG (8:0/15:0/0:0). And the levels of IFN-γ, IL10, and MDA were positively related to
atenolol, LysoPE (20:4 (5Z,8Z,11Z,14Z)/0:0), and DG (8:0/15:0/0:0). Furthermore, indole-3-
carboxaldehyde, indoleacrylic acid, bethanechol, cropropamide, 3-O-methylniveusin A,
N-myristoyl arginine, androsterone glucuronide, vindoline, PC(P-18:0/0:0), 1-arachidonoyl-
2-hydroxy-sn-glycero-3-phosphate, PC (17:0/0:0), PC (16:0/0:0), LysoPC (16:1(9Z)/0:0),
LysoPC (14:0/0:0), 1-Palmitoylphosphatidylcholine, and LysoPC (18:0/0:0) might have anti-
oxidative and anti-inflammatory properties because they were positively connected with
anti-oxidative enzymes and negative correlated to pro-inflammatory factor. Collectively,
the changes in serum metabolites are closely associated with alterations in gut microbiota.
Furthermore, the variations in metabolites are linked to enhancements in host antioxidant
and anti-inflammatory capabilities.
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4. Discussion

During late pregnancy, the fetus undergoes rapid growth and the metabolic inten-
sity of the mother’s body increases [25,26]. Consequently, the mother may experience
low-level inflammation and significant oxidative stress, which adversely affect pregnancy
outcomes [27,28]. Due to the specificity and sensitivity of the pregnancy stage, the explo-
ration of safe and healthy nutritional antioxidants is crucial for mitigating the adverse
consequences of various stress issues in late pregnancy. Our preliminary findings have
revealed that the increased litter size in sows with MA intervention is attributed to the
enhancement of the sow’s anti-inflammatory and antioxidant capabilities [23] because
supplementing the maternal diet with MA during the late gestation period significantly
enhances the antioxidant enzyme and decreases pro-inflammatory factors in the serum
of sows at farrowing [23]. In this study, we further elucidate the mechanism of MA’s
anti-inflammatory and antioxidant effects from the perspectives of microbial metabolism
and maternal metabolism.

The intestinal microbiota undergoes changes during pregnancy to adapt to the evolv-
ing needs of both the mother and fetal development [29]. We observed that, although the
intervention of MA in the late stages of pregnancy did not alter the richness and diversity
of the microbial community, it did reshape the composition of the intestinal microbiota,
leading to significant changes in the abundance of specific bacterial species. We found that
Firmicutes, Bacteroidota, and Spirochaetota were the top abundant phyla in late pregnancy
for sows. Consistent with our study, Shao et al. reported that Firmicutes, Bacteroidetes,
Proteobacteria, and Spirochaetes were the top four predominant flora [8]. Zhou et al. re-
ported that Firmicutes, Bacteroidetes, and Spirochaetes were the top three predominant
flora [30], and Kong et al. reported that Firmicutes and Bacteroidetes were the top two
predominant flora in pregnant sows. More specifically, the relative abundance of Firmicutes
accounted for over 50%, and Bacteroidetes, Proteobacteria, and Spirochactes followed [8].
Analogously, Firmicutes, Bacteroidetes, and Euryarchaeota were found to be the top three
abundant phyla in pregnant cows, accounting for 48.68%, 34.45%, and 15.42% of the total
microbiota, respectively [29]. Although there was some inconformity for the Treponema,
Clostridium, Ruminococcus, Proteobacteria, and Euryarchaeota, these data suggest that
Firmicutes and Bacteroidetes are the abundant phyla for the pregnant sows. It has been
reported that the dominant taxa belonging to Firmicutes in the digestion are associated
with the distal colon and likely exhibit an important function in starch and fiber degrada-
tion [31]. Bacteroidetes can degrade indigestible dietary polysaccharides into short-chain
fatty acids [32]. Their abundance is associated with the energy metabolism of the host [33].
Therefore, these findings indicate that host–microbial interactions promote adaptations to
pregnancy and will support the development of the metabolic changes to the fetus and the
mother for energetic demands to achieve optimal pregnancy outcomes.

The intestinal microbiota is closely associated with oxidative stress and inflammation
and many exogenous additives regulate oxidative stress and inflammation levels in the
body by modulating the structure of the intestinal microbiota [34,35]. Dietary fiber composi-
tion in the gestational diet of sows can modulate the antioxidant capacity and inflammatory
responses of both the mother and offspring by regulating the composition of the intesti-
nal microbiota [36]. A study showed that reduced oxidative stress and inflammation are
probably related to the adjusted Ruminococcaceae UCG-008 and the Christensensllaceae R-7
group in sows supplemented with resveratrol [37]. Based on the correlation analysis be-
tween microbiota and antioxidants, our study suggests that UCG-002, RF39, Lactobacillus,
unclassified_f_Ruminococcaceae, norank_f_UCG-010, and unclassified_f_Lachnospiraceae may
play a role in antioxidant and anti-inflammation effects. It has been shown that UCG-002
(family Oscillospiraceae) is typically associated with higher growth performance in grow-
ing pigs [38,39]. A low level of inflammatory response and a high level of antioxidant
ability leads to higher performance. A study showed that a high-fiber diet can increase
the abundance of RF39, which may play a role in inhibiting the overgrowth of E.coli and
negatively relate to LPS biosynthesis [40]. Lactobacilllus is generally regarded as a safe
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and beneficial probiotic in animals [41]. Ruminococcaceae and Lachnospiraceae constitute
the main families in the mammalian gut and link to the preservation of gut health [42].
Moreover, the abundance of these UCG-002 and RF39 was significantly higher in the MA
group compared to the control group, suggesting that the enhancement of antioxidant and
anti-inflammatory capacity may be caused by UCG-002 and RF39 in pregnant sows supple-
mented with MA. The genera norank_f_Ruminococcaceae, Oscillospira, Sarcina, Monoglobus,
Osillibacter, and Turicibacter may contribute to oxidative stress and inflammation. There
are also some species of Ruminococcaceae related to lipopolysaccharide (LPS) biosynthe-
sis [43]. Furthermore, the genus Sarcina (Family Clostridiaceae) was a pathogen that related
to gastric dilation and emphysematous gastritis in humans and animals [44]. Treponema,
Rikenellaceae_RC9_gut_group, Prevotella, unclissified_f_Prevotellaceae, and norank_f_p-2534-
18B5_gut_group also demonstrated significant positive correlations with pro-inflammatory
factors, which may contribute to the inflammatory reaction in the CON group. Treponema
was one of the main pathogens in Spirochaetes, and is related to colon inflammation [45,46].
The relative abundance of Rikenellaceae_RC9_gut_group will increase deeply after LPS expo-
sure and its surge will exacerbate intestinal inflammation so that it will serve as a biomarker
of intestinal damage [47]. Furthermore, the increase in the Rikenellaceae_RC9_gut_group is
related to abnormal glucose and lipid metabolism [48]. Moreover, the relative abundances
of norank_f_Ruminococcaceae, Oscillospira, and Sarcina were significantly higher in the control
group than in the MA group, indicating that their increase might lead to inflammatory and
oxidative stress in pregnant sows. In the broilers fed with bio-fermented MA, some bacteria
such as norank_f_norank_o_RF39, Tuzzerella, and Oscillospira also show a significant change
in the cecum [49]. These findings suggest the reshaped intestinal microbiota composition
modulates the MA’s oxidative stress and inflammation modulation effects during late
pregnancy in sows.

Through microbial functional prediction, we identified that MA induced microbiota-
related functional alterations. Fermentation and biosynthesis functions of microbes and
substance metabolism, such as amino acids, lipids, and carbohydrates metabolism, were
enriched. Correspondingly, SCFAs, one series of metabolites of microorganisms fermented
based on intestinal nutrients [50], were decreased in the MA group. To the best of my
knowledge, this study is the first to investigate the impact of MA supplementation on
fecal SCFAs. According to reports, microbes that produce SCFAs are mainly comprised
of Bacteroides, Bifidobacterium, Eubacteria, Streptococcus, and Lactobacillus [51]. In our study,
Oscillospira, one potent risk factor for constipation [52,53], which can produce SCFAs, such
as butyrate and propionate [54], was decreased in the MA group, which may partially
explain the decrease in SCFAs induced by MA. But it should be noted that SCFAs are
commonly associated with better host redox status and inflammation levels [55]; therefore,
this finding suggests that the beneficial effects of MA might be independent of the decreased
SCFAs. In addition, methylamines generated from choline and indoles derived from dietary
tryptophan metabolism were also important gut microbial metabolites to modulate host–
microbe interactions [56,57]. As a tryptophan metabolite, indoleacrylic acid has been
proven to have the function of suppressing inflammation and promoting gut health [58],
and was significantly upregulated in the MA group. Another increased Trp metabolite
in our study, indole-3-carboxaldehyde, is reported to activate aryl hydrocarbon receptor
receptors and inhibit intestinal inflammation [59]. Collectively, this finding demonstrated
that MA enhanced microbiota metabolism, contributing to the improved inflammation
status.

The gut microbiome and host interact with each other. By deepening evidence of
the mechanisms underlying the interactions between the microbiota and its host [60], we
further explored the changes in the host’s metabolic profile after MA treatment. We iden-
tified differential metabolites between the two groups and revealed that the changes in
the gut microbiome were correlated with the alterations in serum metabolites. We found
that MA significantly reshaped the host metabolism, primarily involving the amino acid,
lipid, and pyrimidine metabolisms. The two main pathways of metabolite enrichment were
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choline metabolism in cancer and glycerophospholipid metabolism. Glycerophospholipids,
which mainly include PE, PS, PC, and others, are fundamental components of biofilm
systems, and they play a role in transcription, energy metabolism, and signal transduc-
tion [61,62]. A study showed that dietary MA supplementation in tilapia can improve
hepatic lipid accumulation [63]. These data suggest a high association between MA and
host lipid metabolism. The enrichment of metabolites associated with lipid metabolism
before farrowing in our study is likely advantageous for the host in terms of milk synthesis
and lactation. This is attributed to the substantial energy requirements associated with milk
production.

More interestingly, we found that amino acid metabolism plays an important role
in the beneficial role of MA, as indicated by the fact that many amino-acid-metabolism-
related pathways were enriched by MA treatment. Among them, tryptophan is one of the
essential amino acids in animals, and research indicates that tryptophan and its metabolites
are effective in scavenging free radicals, and functioning as robust antioxidants [64,65].
Tryptophan metabolism is closely linked to gut health, and tryptophan deficiency can
promote the development of inflammatory bowel disease (IBD) [66]. Research indicates
a significant increase in the biosynthesis processes of tryptophan, tyrosine, and pheny-
lalanine as pregnancy progresses in sows [67]. This might be associated with promoting
vascular development in sows, meeting the demands for the rapid growth of the fetus. In
addition, histidine metabolism was also enriched in the MA group. As an essential amino
acid, histidine was documented to improve antioxidant capacity in the liver through the
endogenous synthesis of glutathione and NO [68]. Although a high level of histidine load
(5 g/g BW) in pregnant rats could impair energy homeostasis in the cerebral cortex and hip-
pocampus, and induce oxidative stress in the offspring [69], appropriate maternal histidine
supply was related to enhanced antioxidant capacity and anti-inflammation status [70].
Of note, arginine and proline metabolism are importantly implicated in pregnancy and in
protecting the host from damage [71]. They possess ROS scavenging properties, helping to
maintain stable glutathione levels [72], and proline is inhibitory for liver inflammation [73].
In addition, we have observed that the changes in host metabolic products induced by MA
are significantly correlated with alterations in gut microbiota as well as anti-inflammatory
and antioxidant responses. Therefore, we proposed that the beneficial effects of MA were
also related to metabolic modulation, especially lipid and amino acid metabolism.

5. Conclusions

We previously found that MA alleviated oxidative stress and inflammation, and im-
proved reproductive performance in sows. However, the probable mechanism behind these
positive effects remains unexplored. Here, we investigated the mechanism underlying the
MA’s positive effects from the gut microbiota and host metabolic perspectives. Maternal
MA supplementation modulated the composition but not the richness and diversity of gut
microbiota during late pregnancy. Correlation analysis revealed a high correlation between
gut microbiota and antioxidant capacity (or inflammation indicators). The metabolic land-
scape was modulated by MA and highly related to MA-induced changes in gut microbiota
and antioxidant capacity (or inflammation indicators). Overall, our data demonstrated that
a maternal dietary supply of MA could ameliorate oxidative stress and inflammation in
sows, possibly through modulating gut microbiota and host metabolic profiles during late
pregnancy.
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