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Bose-Einstein condensates in a double-well potential contain the essential ingredients to study
many-body systems within a rich classical phase-space that includes an unstable point and a separa-
trix. Employing a selfconsistent finite difference method, we study some of their quantum properties
and their dependency on the strength of the boson-boson interaction. We observe a deviation in
the critical parameters associated with a behavior change in both the energy distribution and the
eigenstates of the system. We also examine the trends of the nonclassicality via the Wigner function,
the tunneling transmission coefficient, and the nonorthogonality of eigenstates associated with the
nonlinearity aspects of the Gross-Pitaevskii equation.
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I. INTRODUCTION

The double-well potential is one of the favorite con-
finement traps to explore the peculiar properties of the
spectrum and dynamics of a quantum system [1–3]. The
symmetry breaking over the origin caused by the extra
barrier in the double-well potential [4–7] produces two
global minima which served as a model to test tunnel-
ing effects and quantum-classical correspondence [8–13].
Additionally, the presence of a fixed unstable point (local
maximum) and a separatrix in the classical phase-space,
which separates two different classes of solutions in the
classical system, have consequences in its corresponding
quantum system such as a discontinuity in the energy
distribution and a different shape of the wavefunctions of
the eigenstates over a critical energy Ec [14]. Moreover,
the dynamics of quantum states with probability densi-
ties localized near to the separatrix are more susceptible
to tunneling transitions and an exponential growth in the
out-of-time-ordered correlators [15–17]. All the previous
phenomena described above are associated to an Excited
State Quantum Phase Transition (ESQPT) in the dis-
crete spectrum [18]. The theoretical predictions of quan-
tum systems confined in double-well potentials have been
tested and used in experiments with superconducting cir-
cuits [19], periodically driven quantum systems [20–22]
and cold atom systems [23, 24].

The Bose-Einstein condensates (BEC) offer unprece-
dented opportunities to study the underlying physics
mentioned above due to the astonishing precision and
control levels achievable in experiments [25, 26]. One
of the main examples is the Josephson junction imple-
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mented by two linked Bose-Einstein condensates in a
double-well potential, where macroscopic tunneling os-
cillations are observed [27, 28]. Analog BECs systems
in double-well potentials have been also explored, such
as spinor BECs [29–31], or toroidal BECs, also called
atom SQUIDS [32]. On the theoretical side, the spec-
tra, dynamics and tunneling phenomena of BECs con-
fined in double-well potentials have been also studied [33–
41], including double wells generated by Gaussian func-
tions [42] or by a quartic polynomial [43]. Since the
many-body problem is quite challenging in the general
case, simplifications are made such as the use of 1-
Dimensional (1D) condensates, which have been realized
experimentally [44, 45], and the mean-field approxima-
tion that derives the well-known Gross-Pitaevskii (GP)
equation [25, 46, 47]. Another well-known theoretical
approach is the finite multimode model, where it is con-
sidered a truncated Hilbert space for the single quantum
states of the cold atoms [25, 48, 49]. On the numerical
side, the Finite Difference method for the study of 1D-
BEC has no developed [50], and fully studied in a recent
review [51]. In particular, it shows some advantages with
respect to other modern numerical methods [50].

In this work, we exploit the Finite Difference method
to obtain the stationary solutions and their respective
eigenvalues of the 1D-BEC in the mean-field approxima-
tion. Following the compilation in Sec. II of the theoret-
ical elements needed in this work, we expose the numer-
ical method in Sec. III. We then proceed to study sev-
eral physical properties associated to a quantum many-
body system in a double-well potential in Sec. IV. Specif-
ically, we study the relation between the strength of the
boson-boson interaction with the critical energy Ec of the
BEC, which in the non-interacting case coincides with
the local maximum of the double well. We also discuss
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some consequences on the nonclassicality, the tunnelling
transmission coefficient in the static perspective, and the
nonorthogonality of the eigenstates. Section V summa-
rizes our findings and offers some thoughts on future
work.

II. THEORY

Let us considered a 1D-BEC gas of N atoms, with
mass m, and at low energies such that the predominant
boson-boson interactions are produced by point-contact
collisions [25]. We also adopt the mean-field approxima-
tion that assumes the fully condensed wavefunction Φ as
the product of normalized single-particle wavefunctions

Φ(r1, . . . , rN ) =

N∏
i=1

Ψ(ri) , (1)

with ∫
|Ψ(r)|2 dr = 1 . (2)

The GP equation of the 1D-BEC reads [25, 46, 47](
− ℏ2

2m

d2

dx2
+ V (x) + β|Ψn(x)|2

)
Ψn(x) = µnΨn(x) ,

(3)
where m is the mass of the identical bosons, µn = µ′

n/N
the chemical potential per particle and Ψn(x) the wave
function of the nth-eigenstate of the condensate. The
coupling factor β of the nonlinear term in the GP equa-
tion is proportional to the s-wave scattering length of the
boson-boson interaction as, β = 4πNℏ2as/m. The trap
considered in this work is the quartic potential in the
form of a symmetric double well (Mexican hat)

V (x) = −ax2 + bx4 (4)

where a is a positive parameter. Since the potential is
symmetric with respect to the transformations (x → −x),
the eigenstates of the Schrodinger equation (β = 0) with
eigenvalues below the local maximum of the double well
are organized in quasidegenerated pairs and the energy
gap is proportional to the square root of the transmis-
sion coefficient [14]. The parameter b of the double-well
potential (4) can be absorbed in the other variables by
the Szymanzik rescaling [52](

x̃, ã , b̃ , β̃ , µ̃
)
=

(
b1/6x ,

a

b2/3
, 1 ,

β

b1/3
,

µ

b1/3

)
, (5)

and

Ψ̃(x̃) = Ψ(x) . (6)

In the following, we will work with the scaled variables
and suppress the tilde symbol in each term. Once the

eigenfunctions Ψn are known, the energy of the conden-
sate per particle is given by the expectation value [25, 53]

En =

∫ (
1

2m

∣∣∣∣dΨn(x)

dx

∣∣∣∣2 + V (x)|Ψn(x)|2 +
β

2
|Ψn(x)|4

)
dx .

(7)
As a measure of nonclassicality, one can use the volume

of the integrated negative part of the Wigner function
WΨn

(x, p) [54]

δ(Ψn) =

∫ ∫
|WΨn

(x, p)|dxdp− 1 , (8)

with [55]

WΨn(x, p) =

∫
Ψ∗

n(x− y)Ψn(x+ y)e
2ipy
ℏ dy . (9)

This phase-space representation of the BEC in a double
well by the Wigner function is complementary to that
given by the Husimi function [56] which admits only pos-
itive values.
Lastly, following the WKB approximation for BEC

condensates with small β [57, 58], the transmission coef-
ficient from one well to the other reads

Tn = exp

(
−2

ℏ
γn

)
,

γn =

∫ x2

x1

√
2m (V (x) + β|Ψn(x)|2 − µn) dx ,

(10)

where x1,2 are the classical turning points in the effective
potential of the GP equation (3). Throughout the rest of
the paper, we consider m = ℏ = 1.

III. THE METHOD

In this work, we employ the method of Finite-
Difference discretization of the Schrödinger equation [51]
and a selfconsistent algorithm to incorporate the non-
linear term [50]. In the Finite-Difference method, the
configuration space x ∈ [−L,L] is divided in D subin-
tervals of length ∆ = 2L/D such that xα = −L + α∆,
where α = 0, 1, .., D. We take a sufficiently large D such
that the first derivative of the wavefunction dΨn

dx at each
xα is well approximated by

dΨn(xα)

dx
≈ Ψn(xα+1)−Ψn(xα)

∆
. (11)

Repeating this argument, we find the formula to calculate
the second derivative appearing in the kinetic energy,

d2Ψn(xα)

dx2
≈ Ψn(xα+1)− 2Ψ(xα) + Ψn(xα−1)

∆2
. (12)

By using the approximation above, the GP equation (3)
takes the form of an eigenvalue problem

A(k)
n Ψ(k)

n = µ(k)
n Ψ(k)

n , (13)
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where A
(k)
n = − ℏ2

2mA1+A2+βA
(k)
3,n is a (D+1)× (D+1)

matrix composed by the tridiagonal matrix

A1 =


−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2

 ,

corresponding to the kinetic energy, and the diagonal
matrices associated to the potential trap and the boson-
boson interactions, respectively, with entries

(A2)rs = V (xr−1)δrs ,
(
A

(k)
3,n

)
rs

= |Ψ(k−1)
n (xr−1)|2δrs .

The superindex (k) indicates the corresponding iteration

step of each element. In particular, the matrix A
(k)
3,n is

built with the nth-eigenfunction of the previous iteration,
with initial eigenvectors assumed by normalized constant

functions Ψ
(0)
n (xα) =

√
N/2L. The Eq. (13) is solved

self-consistently until reaching convergence of both the
eigenvalues and eigenfunctions up to the orders∣∣∣µ(k)

n − µ(k−1)
n

∣∣∣ < 10−9 , 1− |⟨Ψ(k)|Ψ(k−1)⟩| < 10−4 .

(14)
The value of L is considered large enough that the solu-
tion fulfills |Ψ(±L)| ≈ 10−3 and, consequently, its prob-
ability density outside the interval [−L,L] is negligible.
Once we have calculated the respective discretized eigen-
function, any integral can be calculated approximately
by ∫

f(x) dx ≈ ∆

D∑
α=1

f(xα) .

IV. RESULTS

A. Critical Parameter

The local maximum of the double well (6) at x = 0
represents a critical energy Ec = 0 for the Schrödinger
equation (β = 0) [14] since the properties of the spectrum
and the quantum dynamics change if the energy a certain
state lies below or above the local maximum. In partic-
ular, when the energy is less than the local maximum of
the potential, the central barrier represents a classically
forbidden region that can be penetrated only via quan-
tum tunneling. It is well known that the energy of the
ground state might be either positive or negative depend-
ing on the depth of the double well [59]. As the parameter
a increases, there is a particular value for which the en-
ergy of the ground state passes from positive to negative,
i.e., the energy becomes less than the local maximum.
This transition is accompanied by a qualitative change

Figure 1. Energy (left) and second derivative of the ground
state evaluated at the center of coordinates (right) as a func-
tion of the parameter a. The parameter β is set to zero to co-
incide with the Schrödinger equation with the quartic double-
well potential. The vertical gray line indicates the transition
at the critical parameter, both at ac = 1.7616, associated with
the change of sign of the respective quantity.

in the wave function which goes from one single peak,
with maximum at x = 0, to a double peak and being
now the origin x = 0 a minimum. The critical parameter
ac can be estimated either by analysing the sign of the
ground state energy or the sign of the second derivative
of the wave function evaluated at x = 0. By the nu-
merical calculations plotted in Fig. 1 of both quantities
as functions of a, we conclude that both criteria match
and the critical parameter is located at ac ∼ 1.7616. By
a direction calculation, we corroborate that the corre-
sponding critical energy Ec matches with the energy of
the local maximum of the double well Ec = 0. Since the
critical energy corresponds to an unstable equilibrium
point in the classical picture, with positive Lyapunov ex-
ponent [14], it has some interesting implications on the
quantum dynamics [16] which are summarized in Fig. 2
(top-left plot). The consequences of an unstable point in
the phase space are illustrated in Fig. 2 (bottom plot) by
the time evolution of a coherent state initially centered
in the middle point of the separatrix corresponding to
(x0, p0) = (0, 0). We observe that its density probability
starts to spread over the whole separatrix. Addition-
aly, initial quantum states close to the separatrix shows
an exponential growth of the Fidelity Out-of-time order
Correlator (FOTOC) Fotoc(t) = σx(t) + σp(t) which is
equal to the addition of the variance of x and p. We can



4

t = 0 t = 0.1 t = 0.2 t = 0.3

Figure 2. (Top-left plot) Classical trajectories of the double well (a , β) = (10, 0). The solid red line indicates the separatrix at
the critical energy Ec = 0, the solid blue lines are trajectories with energies below the critical and the green lines corresponds
to energies above the critical. (Top-right plot) Fidelity Out-Of-Order Correlator Fotoc(t) in Logarithmic scaled of an initial
coherent state |α(x0, p0)⟩ lying along the separatrix. The slope of the exponential growth can be compared against the positive
Lyapunov exponent λ =

√
2a of the fixed point (x0, p0) = (0, 0). (Bottom plot) Time evolution of an initial coherent state

initially centered at the origin.

Figure 3. Second derivative of the ground-state wavefunction
evaluated at the origin as a function of the parameter a for
different values of β.

observe in Fig. 2 (top-right plot) that its slope matches
with the positive Lyapunov exponent associated to the
unstable point. The Density of States (DOS) will exhibit
a singularity at the critical energy [14] which is the sig-
nature of an Excited State Quantum Phase Transition
(ESQPT) [18]. It is known that ESQPTs play an essen-
tial role in the quantum tunneling of initial states [2, 60].

We now consider the GP equation of a condensate gas
(3) with finite atom-atom interaction β > 0. Here, the
critical parameter ac can only be estimated by the cri-
terion of the second derivative because the effective po-
tential of the atoms contains the additional positive in-
teraction β|Ψ|2, and hence the critical energy Ec may
be different than its value in the Schrödinger scenario

Figure 4. Critical parameter ac (left) and energy Ec (right)
as a function of the nonlinearity parameter β. The dashed
lines are the quadratic fits ac(β) ≈ 1.7616−0.1513β+0.0061β2

and Ec(β) ≈ 0.2662β + 0.0034β2, respectively.

Ec = 0. In Fig. 3, we show how the critical parameter
is shifted for different values of β. One can associate a
critical energy in the GP scenario by evaluating Eq. (7)
at the critical parameter ac and its respective wavefunc-
tion. We plot in Fig. 4 the behavior of the ac and Ec as
functions of β. As we expected, such transitions occur in
general at critical energies greater than zero Ec > 0.
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a = 2

a = 5

Figure 5. Wigner functions (left column) of the ground state of the BEC in a double well trap and its density (right column)
for the case β = 0 at a = 2 (top row) and 5 (bottom row), respectively. The black stars represent the classical turning points,
and the green ones the bottom of the degenerated wells.

Figure 6. Volume of the negative part of the Wigner function δ(Ψ0), energy splitting ∆E of the ground and first excited
states, and transmission coefficient T0 as a function of the parameter β. The rows correspond to a = 2 (top) and 5 (bottom),
respectively.

B. Nonclassicality and Tunneling

Fig. 5 shows the Wigner function (9) of the ground
state of the BEC in the double-well trap for different

depths (controlled by the parameter a) in the case of
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Figure 7. First four eigenenergies of the BEC condensate for
(a , β) = (5, 0.1). The eigenstates with even(odd) parity are
denoted in red (green).

Figure 8. β-dependency of the overlaps among the four eigen-
functions with the lowest energies Cij = |⟨Ψi|Ψj⟩|2 where
i = 1, 2, 3, 4. The parameter of the double well is fixed at
a = 5.

noninteracting bosons (β = 0). One can appreciate that
the negative regions of the Wigner function lies along
the coordinate axis. For small values of a (see top row of
Fig. 5 for a = 2), the Wigner function contains only one
peak with shoulders centered at the local minima which
eventually becomes in separated peaks if the double well
is deep enough (bottom row for a = 5). We now calculate
the dependence of the nonclassicality of the ground state
δ(Ψ0) (8) with respect to β (see Fig. 6). It is worth to
mention that, even in the absence of boson-boson inter-
actions (β = 0), the nonlinear forces of the double-well
potential produce negative regions of the Wigner func-
tion [61]. We observe in Fig. 6 that the volume of the
integrated negative part of the Wigner function changes
as a function of the parameter β, i.e., the nonclassical
behavior of the BEC is affected with the interaction be-
tween bosons. However, the monotonous deviation of
δ(Ψ0) with respect to β depends on the parameter a.

The β-dependency of the nonclassicality reveals some
information of the tunneling rate of the BEC [62]. To

scrutinize this, we analyse the energy gap between the
ground and the first excited states ∆E = E1 − E0, and
the transmission coefficient in Fig. 6 as a function of β
for the values of a = 2 and 5. For the case of smaller well
depth a ∼ 2, ∆E increases roughly linearly with respect
to β while the coefficient of transmission decrease. One
can comprehend this by considering the enlargement of
the effective barrier width encountered by the eigenstate,
thereby impeding its ability to penetrate it. On the other
hand, for a ∼ 5, while ∆E increases again roughly lin-
early, the transmission coefficient increase with respect to
β too. A potential explanation is that the width of the
effective potential is barely modified at the bottom of the
well, and then its penetration is enhanced with the in-
teraction between bosons. Contrary to the Schrödinger
scenario (β = 0), the energy gap and the transmission
coefficient are not proportional quantities for β > 0.
For a = 5, the double well is deep enough to contain

four eigenstates below the critical. The energy levels are
presented schematically in Fig. 6. It is observed that
the first pair of energy states are quasidegenerated and
close to the bottom of the double well. The energy gap
increases for the second pair of energy levels since they
are closer to the local maximum. A similar behavior was
observed in the case of Gaussian wells [42].

C. Nonorthogonality of eigenstates

Nonlinear quantum mechanics, such as the GP equa-
tion, might have nonorthogonal eigenstates [63]. This
can be understood by the fact that the extra nonlinear
terms in the corresponding nonlinear Schrödinger equa-
tion act as an extra effective potential. In the case of the
GP equation (3), the effective potential includes β|Ψ|2.
Consequently, the eigenstates come from different effec-
tive potentials. We plot in Fig. 8 the overlap between the
first eigenstates Cij = |⟨Ψi|Ψj⟩|2 for a = 5 as a function
of β. We observe the unchanged orthogonality of states
with different parity. On the contrary, states with the
same parity become less orthogonal as β increases. The
nonorthogonality of the eigenstates is a signature of a
nonlinear unitary evolution, which are been used in algo-
rithms to distinguish nonorthogonal states, to solve the
unstructured search problem [64], and to devise nonuni-
tary quantum gates such as feasible nonlinear Hadamard
gates [65].

V. CONCLUSIONS AND PERSPECTIVES

In this work, we fully exploit the Finite Difference
method to calculate the eigenstates and study the un-
derlying physics of the 1D BECs confined in a double-
well potential. The method is easily generalized for other
confinement potentials. In particular, we have used it to
study the deviation of the critical parameter ac and criti-
cal energy Ec with respect to the strength of the interpar-
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ticle interaction β. We conclude that the corresponding
critical energy in general does not match with the local
maximum of the double well. This shift may have some
consequences on the dynamics since the local maximum
of the effective barrier is higher than that of the double-
well trap, and the corresponding separatrix of the classi-
cal phase-space corresponds to the shifted critical energy.
Additionally, we scrutinize the tendency, as β increases,
of the nonclassicality, the energy gap between consecu-
tive energy levels, the tunneling transmission coefficient
through the energy barrier, and the nonorthogonality of
the eigenstates.

It is worth pointing out that for greater well depth
a and boson-boson interactions β, the eigenvalues con-
verge to a particular value despite that the wavefunction

not (14). Moreover, the wavefunction Ψ
(k)
n jumps be-

tween the localized solutions over the two minima of the
double-well potential in each iteration step of the selfcon-
sistent method. An analog difficulty can be found in the

Iterative Hartree—Fock Procedure which involves recal-
culation of the one-electron density matrix [66]. We pur-
sue the implementation of the techniques to fix these is-
sues or establish an upper bound for the non-linearity [67]
in a forthcoming publication.

VI. DATA AVAILABILITY

All codes, scripts, supplemental formu-
las and data needed to reproduce the re-
sults in this manuscript are available online
https://github.com/djuliannader/GrossPitaevskiiSCF.
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