

ROYAL OBSERVATORY OF BELGIUM

Effect of the inclination angle of solar rotation axis on Ca II K structures using direct solar observations

Grégory VANDEN BROECK

TESS, Dallas April 9, 2024

<u>1.1. Dataset</u>

Exploitation of Ca II K images taken with USET (« Uccle Solar Equatorial Table »)

<u>1. USET index</u>

1.2. Image processing

• Image recentering

1. USET index

1.2. Image processing

3000

2500

Intensity [dn]

500

0

- Image recentering
- Limb darkening correction
- \rightarrow Brighter at the center
- \rightarrow Darker at the limb

1. USET index

1.2. Image processing

- Image recentering
- Limb darkening correction
- Chromospheric structures segmentation
- \rightarrow Algorithm based on an intensity threshold
- \rightarrow Structures segmented :
 - Plages (bright extended structures)
 - Enhanced network (small regions of decaying plages)

Vanden Broeck et al. 2024 (submitted)

6

1. USET index

1.2. Image processing

- Image recentering
- Limb darkening correction
- Chromospheric structures segr

Temporal evolution

- Following the solar cycle
- Uncertainties depending linearly on the area
- Short-term variations associated to solar rotation (see further)

Fourier analysis

- $\rightarrow\,$ Search for presence of **rotation modulation** in the area fraction time series
- Fourier method : Existence of a periodic signal ⇒ peak in the power spectrum
- Highest peak at ~ 0.0367 d^{-1} (green line) : \Rightarrow Carrington rotation period (27.27 d)
- **Conclusion :** Solar rotation is present in area fraction time series

<u>Question</u>: Variation with the solar cycle ? Link with magnetic structures distribution ?

Vanden Broeck et al. 2024 (submitted)

Time-frequency diagram

Rotational modulation

Absent during the solar minimum

No modulation because :

- Plage absent
- If plage present \Rightarrow it lasts for less than a rotation

Vanden Broeck et al. 2024 (submitted)

Time-frequency diagram

Rotational modulation

Absent during the solar minimum

Very prominent

near the solar maxima

Vanden Broeck et al. 2024 (submitted)

Succession of episodes with compact groups of plages and episodes with less activity.

→ Possible reason : some longitudes seem more favourable for emergence of magnetic flux, called "active longitudes"

Vanden Broeck et al. 2024 (submitted)

 \star \star \star

Time-frequency diagram

Rotational modulation

Absent during the solar minimum

Very prominent near the solar maxima

Not clearly detected

even near the solar maxima

Vanden Broeck et al. 2024 (submitted)

 \star \star \star

No clear detection because distribution nearly uniform in longitude

13

3.1. Construction of inclinated solar images

-90

3.1. Construction of inclinated solar images

3.2. Effect of inclination on area fraction

Temporal evolution of area fraction for solar Equator's view (0°) to North Pole view (90°)

 $\star \star \star$

3.3. Effect of inclination on solar modulation

North hemisphere

South hemisphere

3.3. Effect of inclination on solar modulation

North hemisphere

South hemisphere

⇒ Rotational modulation detected until an inclination of 70°

 \Rightarrow Assomption : Solar-type stars with rotation axis inclinated by > 70° \rightarrow rotation period not visible

4. Summary

• Detection of rotation period related to asymmetry in longitudinal distribution of bright structures

• Solar images reconstructed from every angles of view

Solar rotation period detected until 70° of inclination
→ application for solar-type stars

 $\star \star \star \star \star$

4. Summary

• Detection of rotation period related to asymmetry in longitudinal distribution of bright structures

• Solar images reconstructed from every angle of view

Solar rotation period detected until 70° of inclination
→ application for solar-type stars

 \star \star \star \star

4. Summary

- Detection of rotation period related to asymmetry in longitudinal distribution of bright structures
- Solar images reconstructed from every angles of view
- Solar rotation period detected until 70° of inclination \rightarrow application for solar-type stars

 \star \star \star \star

Thank you for your attention !

Limb darkening correction

<u>Method :</u>

- 1. Fit the intensity profile
- 2. Create a mask based on the fit
- 3. Divide the matrix by the mask
- 4. Remove the bright plages
- 5. Repeat the steps 1. 2. & 3.

* ***** ****

Limb darkening correction

Segmentation method

Quiet Sun doesn't vary in time \Rightarrow Threshold non affected by the solar activity

• Compute the **QS intensity** : *I*_{QS}

Plages intensity :

 $I_{Plages} \ge I_{QS} + m_f \cdot \sigma$

• Compute the standard deviation σ with an empirical multiplicative factor m_f

Quiet Sun intensity (I_{OS}) Plages intensity (*I*_{Plages}) 80000 Number of pixel $m_f. \sigma$ Plages 20000 0 0.8 0.6 1.0 1.2 1.4 1.6 Intensity of pixel

• Non-gaussian contribution to the wings (sunspots and plages)

Assumptions : • Gaussian background brightness distribution

Segmentation method

- 1. Compute the mean intensity \overline{I} and the standard deviation σ_I over the disk
- 2. Identify pixels with intensity within $\overline{I} \pm k\sigma_I$ (for k in the range 0.5 3.0)
- 3. Recalculate mean intensity and standard deviation for those intervals
- 4. The minimum of the calculated mean intensity \overline{I}_{min} best represents the QS regions, I_{QS}
- 5. Intensity threshold to identify the plages is : $I_{plages} \ge I_{QS} + m_f \cdot \sigma_{min}$ (m_f is an empirical multiplicative factor)

Uncertainty calculations

How ? Using the full dataset of \sim 23.000 images in the USET database

- Compute the area fraction for each image
- Compute the standard deviation for each day
- Remove the outliers
- Fit the data (red curve)
- Bin data by step of 0.25 (black dots)
- Fit the data (green curve)
- \Rightarrow Error proportional to the area

