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Abstract

Two-dimensional flows around cylinders and spheres (axisymmetric) rising at constant velocity and
crossing a free surface, are analyzed numerically using the Particle Finite Element Method (PFEM).
The overall transient regime is investigated, ranging from the free-surface deformation and the wake
dynamics when the cylinder is below the initial free-surface level, to the interface crossing and the film
drainage when it is above.

The PFEM is well suited to describe these different flow features. First, it is a Lagrangian method and
it therefore naturally captures the surface deformation thanks to the nodal displacements. Moreover,
it can handle topological changes through the combination of the Delaunay triangulation and the α-
shape technique, respectively used to re-triangulate the cloud of fluid particles and to identify the
fluid boundaries. In particular, the interface crossing and the subsequent drainage of the thin film
above the cylinder/sphere can be robustly simulated because of these particular features of the method.
Nonetheless, the method has limitations stemming from the α-shape technique used to identify the
domain boundary. First, the traditional implementation of this α-shape technique in the PFEM is
limited to uniform meshes, such that the use of the PFEM can be very expensive in terms of computing
time when a fine mesh is required. Moreover, it introduces mass conservation errors due to the deletion
of existing, or addition of new, fluid elements.

To overcome the limitations of the PFEM, a novel mesh adaptation algorithm is proposed. A
local target mesh size is prescribed according to geometric and/or physics-based criteria and particles
are added or removed to approximately enforce this target mesh size. Additionally, a new boundary
recognition algorithm relies on the tagging of boundary nodes and a local α-shape criterion that depends
on the target mesh size. The method allows thereby reducing mass conservation errors at free surfaces
and improving the local accuracy through local mesh refinement, and simultaneously offers a new
boundary tracking algorithm. The possible extension of the proposed algorithm to three-dimensional
tetrahedral meshes is then considered theoretically. In particular, the problematic case of slivers, i.e.,
very flat tetrahedra that are not removed by the 3D Delaunay triangulation and that can strongly
deteriorate the local accuracy of the solution, is discussed.

The novel mesh adaptation algorithm is tested on six two-dimensional validation cases. The first
three cases, i.e., the flow around a (static, rotating, or oscillating) cylinder at Reynolds numbers below
or equal to 200, the lid-driven cavity flow at Reynolds numbers of 100 and 400, and the flow around an
impulsively started cylinder at a Reynolds numbers of 9500, do not feature a free surface and mainly
illustrates the mesh refinement capability. The last three test cases consist in the sloshing problem
in a reservoir subjected to forced oscillations, the fall of a 2D liquid drop into a tank filled with the
same viscous fluid, and the rise of an impulsively started cylinder toward the free surface at constant
velocity. These last three cases demonstrate the more accurate representation of the free surface and a
corresponding reduction of the error in mass conservation.

Then, the novel algorithm is applied to the main case of interest: a 2D cylinder or a 3D axisymmetric
sphere pulled out of a liquid bath at constant velocity and crossing the free surface. Different aspects
of the physics are investigated, including the free-surface elevation and the total drag, as well as the
boundary layer, wake, and film drainage dynamics. In particular, the dependencies of these flow features
on the different flow parameters, i.e., the Reynolds and the Froude numbers, and geometrical parameters,
i.e., the pool width and the release depth, are investigated in details. Comparisons with the literature,
as well as with in-house experiments of a rising cylinder in oil, are performed. In particular, the latter
highlights the limitation of the present two-dimensional approach to represent real three-dimensional
cases, despite rather good agreement for sufficiently high cylinder aspect ratios.

Finally, a mathematical model is developed for the description of the drainage dynamics in the thin
film at the cylinder/sphere apex. The model relies on the observation that the film thickness during
interface crossing is almost uniform around the apex. Combining the radially integrated Navier-Stokes
equations and an assumed velocity profile, the film model enables to describe the transition from the
inertia-to-gravity to the viscous-to-gravity dominated regime. The model involves only one calibrated
parameter. It is validated using different PFEM simulations of a cylinder or a sphere crossing the free



surface at constant velocity. In particular, it is found to predict qualitatively very well, despite small
quantitative discrepancies, the variation of the film thickness for a given range of Froude and Reynolds
numbers.

This work concludes with several perspectives for future work.
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Chapter 1

Introduction

The overall goal of this thesis is two-fold: 1) the development and implementation of a two-dimensional
(2D) mesh adaptation algorithm for the particle finite element method (PFEM), and 2) the use of 2D
numerical simulations based on the PFEM to investigate the flow physics of bodies exiting a liquid bath
and crossing a free surface. This work has been performed within the frame of the research project
WOLFLOW, funded by the Belgian FNRS, in collaboration with the teams of Dr. Dorbolo at the
University of Liège and of Prof. Scheid at the Université Libre de Bruxelles. The novel algorithm has
been implemented in an existing in-house 2D PFEM solver that was initially developed by Cerquaglia [1].

1.1 Flow around a body rising toward and crossing a free surface

The crossing of an object through a liquid-air interface and the subsequent drainage of the fluid are
of particular importance, not only from a fundamental point of view, but also for many applications. In
zoology, it could help to understand the physics associated with animals jumping out of the water [2]
(e.g., dolphins, whales, etc.). Similarly, other less peaceful applications can also be thought of. From
an industrial point of view, the problematic of pulling a body out of a liquid bath applies directly to
the coating process. On a lighter note, a better understanding of the underlying physics could also help
choosing the optimal bread size and extraction velocity when eating a good Swiss cheese fondue.

Main physical aspects

The problem of a body crossing a liquid-air interface includes several interesting aspects and can be
divided into two different dynamical phases:

• The first phase consists in the body approaching the free surface. One interesting aspect during
this phase is the surge dynamics of the fluid above the body, and the free-surface deformation
it provokes. If the body is initially at rest, this first phase also includes the development of a
wake behind the body and the associated drag force. Depending on the initial distance to the free
surface and acceleration of the body, the wake might still be developing when the body reaches
the free surface.

• The second phase consists in the actual crossing of the free surface. The start of this phase can
be for instance defined as the moment when the body apex reaches the initial position of the free
surface. During this phase, liquid from the bath is entrained by the body. Subsequently, the film
of liquid around the body thins by drainage. A schematic illustration of these two distinct phases
and the associated physical processes is shown in Fig. 1.1.

If surface tension can be neglected (for instance when the free-surface curvature is not strongly
varying along the free surface, or simply when the surface tension is low), the physics of the problem is
mostly controlled by the Reynolds number (ratio of inertia to viscous forces) and Froude number (ratio
of inertia to gravity). Their respective influence on the aforementioned physical processes is now briefly
discussed.
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Phase 1 :

Surge dynamics and wake formation

Phase 2 : 

Film dynamics and liquid entrainment 

ℎ(𝑡)

0

wake formation 

0

Figure 1.1: Schematic of the two phases of the free-surface crossing of a body (a cylinder here) before (left),
during (middle) and after (right) the interface crossing. The free surface is represented by the blue line above

the body and the shaded blue region indicates the wake.

Surge dynamics above the body

The first feature that can be easily observed during the initial phase is the free-surface deformation.
In the present context, a key question is therefore how the deformation of the free surface is influenced by
different parameters, such as the initial depth of the body, its velocity, gravity, the viscosity of the fluid,
etc. Because of pressure forces, the free surface above a body moving up towards it rises. Intuitively, it
can be expected that the amplitude of the deformation increases with the body velocity, as the pressure
also increases. On the other hand, gravity plays the opposite role, and tends to flatten the free surface.
These competing effects can be quantified by the Froude number

Fr =
U2

gL
, (1.1)

where U is the body velocity, g the gravitational acceleration and L a characteristic length representative
of the body size. As shown later Fr is the main non-dimensional parameter controlling the surge
dynamics. In particular, increasing the Froude number leads to a larger vertical displacement of the
free surface. The influence of the other non-dimensional parameter, i.e., the Reynolds number, on the
surge dynamics, is expected to be less significant and more indirect. It mostly controls the wake which
can be viewed as some extension of the body shape and has thus some limited impact on the amplitude
of the free-surface deformation.

Overall drag and wake dynamics behind the body

The literature on free-surface flows is mainly based on potential flow theory, which assumes an
inviscid fluid. The interactions between viscous boundary layers, or wakes behind submerged bodies,
and a free surface, are not well understood. In particular, one challenge is to identify how the combined
effects of viscosity, the free surface at constant atmospheric pressure, and gravity influence the overall
drag on the rising body. It will be shown that both inviscid and viscous contributions to the drag come
into play, and that the inviscid contribution mainly depends on the Froude number. Moreover, the
largest contribution to the drag results from friction on the body surface (direct viscous effect) and the
depression in its wake (indirect viscous effect). This viscous drag is related to the Reynolds number,

Re =
UL

ν
, (1.2)

where ν is the kinematic viscosity.

Film drainage above the body

When the body is very close to the (deformed) free surface, the liquid between the free surface and
the body surface starts to take the form of a thick film that becomes thinner as the body rises. At
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small Reynolds number, the viscosity combined with the no-slip boundary condition at the body surface
impacts the dynamics of the film, which is expected to thin more slowly (slower drainage) at smaller
Reynolds number. At larger Reynolds number, however, the effect of Re on the film dynamics remains
small until the film becomes very thin. The dependency on the Froude number is more complex. At
some times, the velocity of fluid above the body is expected to be of the same order as that of the body,
such that the velocity difference is mainly due to gravitational drainage, and the local Froude number
(U

2
g

gL where Ug =
√
gL) is one in all cases. However, the Froude number still matters insofar as the fluid

around the body (other than that contained in the film) and the history of the previous surge dynamics
has still an impact on the film dynamics, when the body is crossing the free surface. One key objective
of this work is thus to provide a more quantitative view on how the Reynolds and the Froude numbers
influence the film dynamics above the body.

Liquid entrainment below the body after the interface crossing

Lastly, when the body has crossed the free surface, it is followed by its wake and its associated
momentum. The quantity of fluid entrained is expectedly a function of the Reynolds number, but also
of the release depth, as the wake dynamics evolve during the rise of the body. The Froude number has
an impact on the amount of entrained liquid, insofar as the acceleration of gravity has more or less time
to decrease the momentum gained in the body’s wake.

1.2 Simplified models for free-surface flows

The common characteristic of all free-surface flows is that they involve deformable boundaries or inter-
faces, leading to unsteady nonlinear boundary conditions. The most well-known resulting feature of this
is the propagation of gravity waves, for which several researchers, dating back as far as Newton, Laplace
and Lagrange, have attempted to build a theory [3]. Although an exhaustive review of the developments
in that field is not given here, a few landmark works can briefly be cited. Note that a summary of the
different models and their domain of validity can be found in the book of Bernard Méhauté [4].

• The standard linear theory was proposed by Airy in 1841, as explained in Craik [3]. It is based
on the approximation that the free-surface elevation is negligible with respect to the water depth
H, such that the free-surface boundary condition is imposed at the initial position z = 0 (i.e., the
height of the free surface at rest), eliminating the nonlinearities. The linear approximation gives
accurate results for A

H << 1 and H/λ << 1 (shallow water) or for A
λ << 1 and H/λ >> 1 (deep

water), where A and λ are the amplitude and wavelength of the free-surface motion.

• Later, Stokes introduced a Taylor expansion [5] of the equations around the initial free surface
(i.e., at z = 0) to deal with the nonlinearities inherent to the free-surface motion. Depending on
the order of the expansion, the range of validity of the method can be extended, but the method
is always better suited for deep water waves (H/λ >> 1).

• Finally, Boussinesq also developed nonlinear wave equations to describe shallow water waves,
followed by Korteweg and De vries [5], who have rediscovered an approximation of Boussinesq
equations. The equations are also derived from a Taylor expansion of the nonlinear equations, but
starting from the bottom position z = −H.

These works are limited to water wave propagation and do not enable the description of the inter-
action between a free surface and a body. As discussed in Chapter 5, several works have attempted to
describe this interaction, but they are mostly based on potential flow theory and thus neglect viscous
effects. However, the presence of viscous terms are required to describe phenomena such as the free
surface deformation of a viscous fluid, the interaction between the wake of a moving body and the free
surface, etc. The inclusion of these additional physical flow characteristics renders the derivation of
analytical solutions almost impossible, and the use of simulations is therefore unavoidable to study in
detail such applications.
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1.3 Numerical methods for free-surface flows and moving bodies

From a numerical point of view, simulating this type of flows involves several challenges. First, it
needs to account for the displacement of the deformable interfaces (for instance, the free surface in the
present case). Particularly, the identification of these interfaces is often subjected to mass conservation
errors, which depend on the considered numerical method. Another challenge is the description of
bodies moving within the computational domain and the corresponding fluid-structure interactions. At
the simplest level, this might be a rigid body whose displacement is imposed. Alternatively, there might
be a two-way coupling between the flow and the motion of the rigid body, which is governed in this case
by Newton’s second law. At the other hand of the spectrum, the body might even deform in response to
the stress at its surface, so that a structural model is also needed to determine this deformation. Note
that the present work only considers the first case, i.e., the imposed motion of a rigid body, so that only
the fluid phase needs to be calculated. Finally, the last challenge resides in the potential large range
of scales present in such flows. For instance, the fluid is expected to barely move away from the body
so that the solution is rather smooth in large regions of the domain. On the other hand, the boundary
layers around, the wake below, and the thin film above the rising body involve very small scales that
need to be captured. A continuous mesh adaptation capability is thus required to efficiently simulate
such flows.

Within this context, existing methods can be divided into two groups:

• In Eulerian methods the flow variables are defined at points that are not moving or that are
moving in arbitrary manner. For these methods, the difficulty mostly lies in the fact that moving
physical boundaries do not coincide with the initial mesh boundaries, and special techniques must
be used to take this into account [6].

• In Lagrangian methods the flow variables are defined at moving fluid particles. These methods
have the advantage of naturally taking into account the displacements of the moving boundaries,
as they depend on the solution or the boundary conditions. They are however subjected to other
limitations, as explained hereafter.

Volume of fluid method (VOF)

In the Eulerian framework, the method of choice for simulating multiphase and free-surface flows is
the Volume of Fluid (VOF) method, which consists in accounting for the fraction of fluid in interface
cells [7]. This is often coupled with a boundary tracking algorithm, such as the Piecewise linear interface-
capturing (PLIC) method [8] or the level-set method [9], which are used to track the boundary on top of
the background Eulerian mesh. One advantage on this method is that it can easily handle topological
changes. Another advantage is that the mesh does not change, unless some adaptive mesh refinement
is used, such that the mesh quality can be optimized in a way that the space discretization errors due
to mesh irregularities are minimized. However, the use of a boundary tracking algorithm also involves
approximations and, therefore, leads to numerical errors near the free surface, and in particular to errors
related to mass conservation. Furthermore, the regions where there is initially no fluid (e.g., when the
gas phase over the free surface of a liquid is neglected) need also to be meshed if fluid is expected to be
present at later stages of the simulation. Lastly, accounting for moving bodies with large displacements
requires special algorithms, such as the immersed boundary [10] or the overset mesh [11] techniques,
which are not easy to implement in combination with the VOF method and introduce new challenges.

Arbitrary Lagrangian-Eulerian (ALE) method

In the Eulerian context, another approach relies on the arbitrary Lagrangian - Eulerian (ALE) de-
scription [12]. Specifically, the displacement of the domain boundaries, due to a moving body or a
deforming free surface, is accommodated through the deformation of the mesh. The boundary displace-
ment can either be imposed or result from the solution. Based on the boundary displacement, the
internal mesh is then deformed using different possible techniques [13] (e.g., linear spring analogy, linear
elasticity, Laplace smoothing, interpolation techniques). The main advantage of this approach is that
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the mesh remains conformal with the boundaries. However, only relatively small mesh deformations
can be considered to avoid a rapid deterioration of the mesh quality. For larger deformations, a costly
remeshing is required. Furthermore, the method precludes any topological change of the computational
domain, such as merging of fluid regions, fluid detachment, interface folding, etc. The ALE formulation
with mesh deformation is a typically used in FSI problems.

EXtreme Mesh deformation approach (X-MESH)

The extreme mesh deformation approach [14] can be seen as a special case of ALE. It enables the
mesh to follow sharp interfaces of the fluid that are possibly subjected to topological changes (fluid
merging, spitting,...), without changing the mesh topology (i.e., without the need to remesh). This is
possible by allowing some mesh elements to locally reach zero measure at the level of the interfaces.
The main idea is to keep the mesh nodes coincident with the physical interface (using some boundary
tracking algorithm) until some adjacent elements become crushed, in which case other mesh nodes take
over to coincide with the physical interface. The difficulty here is to keep a stable time integration
scheme and a good spatial accuracy while using very distorted elements, which requires some special
treatment.

Smoothed Particle Hydrodynamics (SPH)

Unlike in the Eulerian formulation, in Lagrangian approaches the displacement of boundaries is di-
rectly obtained from the solution. The main challenge stems from the fact that the particle motion is
not arbitrary but depends on the solution everywhere in the domain. If a mesh is used, it can be sub-
jected to strong mesh distortions so that regular time-consuming remeshing might be needed. To avoid
this, Lagrangian mesh-less methods can be considered, such as the Smoothed Particle Hydrodynamics
(SPH). In SPH the equations are locally averaged at position x over a stencil of arbitrary size h based
on the variables defined at the particles. For mathematical details on the method, the reader is referred
to Monaghan et al. [15] and Lucy et al. [16], who pioneered this method initially introduced in the
context of astrophysics. A more exhaustive review of the method and its recent challenges can be found
in Vacondio et al. [17]. A major challenge in SPH is the difficulty to impose boundary conditions, which
arises from the meshless nature of the method. A second challenge concerns the consistency, stability
and convergence behavior of SPH schemes, which are not as robust as in the finite element method.
For instance, stability and convergence depend strongly on the particle distribution [17]. Another chal-
lenge is related to the low adaptivity of the method (i.e., the capacity of the method to use spatial
discretisation of different resolutions at different locations of the computational domain). Most SPH
codes are based on a uniform resolution and are therefore not efficiently applicable to many multi-scale
engineering problems, even if some recent efforts have been devoted to enabling the use of non-uniform
particle distributions [18–21].

The particle Finite Element Method (PFEM)

Unlike the SPH, the PFEM is a Lagrangian method that relies on a mesh. In this case, frequent
remeshing following large mesh distortion is not avoided but efficiently performed through a fast Delau-
nay triangulation [22, 23]. The imposition of boundary conditions is thus much easier than with SPH,
and similar to what is done in a classical finite element approach (with the exception of the free-slip
boundary condition, in particular on curved boundaries [24]). Another strength of the PFEM is that
it takes advantage of the remeshing to allow topology changes so as to accomodate fluid separation
and merging. This feature results from the boundary recognition algorithm, based on the α-shape
technique [25].

The properties of the PFEM, and in particular its natural treatment of changes in the topology and
boundaries of the fluid domain and the robustness of the underlying finite element method, make it an
ideal candidate to simulate the flow around bodies crossing a free surface. Consequently, the numerical
simulations and analysis presented in this work rely on the PFEM (note that other methods could have
also been considered). However, as discussed in Chapter 2 where the method is described in detail, the
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classical PFEM also suffers from several limitations. These shortcomings mostly stem from the α-shape
technique used for boundary recognition. First, and similarly to many other methods for multiphase
flows, the conservation of mass is not strictly enforced. Second, the α-shape technique as classically
used in the PFEM presupposes an approximately uniform mesh size, which makes it inefficient in cases
where some regions of the flow require a higher resolution than others.

1.4 Objectives of the thesis

The overall goal of this work is to investigate numerically the underlying physics of the flow around
a body pulled out of a liquid bath. For the sake of simplicity, the scope is here restricted to a rigid
2D cylinder or an axisymmetric sphere. Because of the deforming free surface and potential changes
in topology, the PFEM is chosen as the method of choice. Nevertheless, in such flows, the mesh size
requirements can greatly vary from one region of the domain to another. For large tanks for instance,
the fluid close to the tank walls moves very little and the solution is smooth so that a coarse mesh
can be used. On the other hand, the viscous boundary layer along the moving body surface, the wake
behind it, the free surface in the crossing region or the thin liquid film around the body after crossing
the interface, are regions characterized by very small scales and require thereby a high mesh resolution.
Using the same grid resolution everywhere, including in a large region of the computational domain
where it is not needed, would induce an excessive computational cost. It is thus necessary to adapt the
classical PFEM for strongly non-uniform meshes.

This leads to the two specific objectives of this work:

1) Develop and implement a 2D mesh adaptation algorithm in an existing in-house PFEM solver to
improve the efficiency of the method for applications of practical use and reduce the error in mass
conservation.

2) Simulate the flow around a cylinder/sphere pulled out of a liquid bath and investigate the un-
derlying physics of the process. In particular, the following key questions should be adressed:

• How is the free-surface deformation influenced by the main flow parameters? How does its
time evolution vary with the Froude number?

• What is the effect of the free surface and gravity forces on the total drag of the rising body,
and how does it compare with similar flows without free surface?

• After the interface crossing, which key flow parameters govern the drainage of the film above
the cylinder/sphere? How can this be predicted based on the main flow parameters?

• What is the overall effect of viscosity on the surface elevation? What are the interactions
between the wake and the free-surface deformations?

The main contributions of this work thus consist in both the further development of the PFEM
method through a new mesh adaptation capability and the better understanding of the flow physics for
bodies crossing a free surface. The main idea behind the novel mesh adaptation algorithm relies on

• the definition of a local target mesh size L∗ based on different geometrical and solution-based
quantities,

• the addition and removal of nodes, so as to locally approximately enforce the target mesh size L∗,

• the boundary tracking and a local version of the α-shape technique.

For the investigation of the underlying physics, numerical simulations leveraging the new mesh
adaptation algorithm are performed in order to identify the different flow features previously discussed
in Section 1.1. In particular, the following results, among others, are shown and discussed in details:
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• The key parameter controlling the surface deformation is the Froude number, and its impact is
quantified.

• The deviation of the total drag from that obtained in similar flows without free surface, is also
found to mainly depend on the Froude number. In particular, the drag with free surface is larger
at small Froude number, but lower at large Froude number.

• The wake is shown to have a secondary impact on the free-surface deformation, suggesting only
an indirect effects of the Reynolds number and release depth.

Finally, a mathematical model, whose derivation is based on radially averaging the flow equations, is
proposed to predict the film thickness during the drainage phase. This model is calibrated and validated
using different PFEM simulations, i.e., using different combinations of the flow parameters Re and Fr.

1.5 Outline of the thesis

This manuscript is divided into seven chapters.

• After this introduction, Chapter 2 first presents in details the Particle Finite Element Method
and its formulation implemented in the in-house code used in the present work [1]. The boundary
recognition algorithm classically used in the PFEM, i.e., the α-shape technique, is then described
and the associated problem of mass conservation inherent to the PFEM is discussed and illustrated.

• The novel 2D mesh adaptation algorithm (definition of the target mesh size, addition and removal
of particles, boundary tagging) is extensively explained in Chapter 3. This chapter also highlights
how the algorithm can both enable the use of a non-uniform mesh and reduce the error in mass
conservation. A new theoretical framework for extending the 2D mesh adaptation and boundary
recognition techniques to three dimensions is then introduced. More specifically, a generalization
of the notion of (target) mesh size to a three-dimensional (target) nodal density for use in three-
dimensional unstructured tetrahedral meshes is proposed.

• The implementation of the new mesh adaptation algorithm is then tested in Chapter 4 through
six different validation cases. The first three cases consist in flows inside a bounded domain, and
mainly address the mesh refinement/coarsening capabilities. These are the flow around a (static,
vertically oscillating or rotating) cylinder at ReD ≤ 200, the flow around an impulsively started
cylinder at ReD = 9500, and the flow in a lid-driven cavity. The last three cases consist in free-
surface flows and assess both the refinement/coarsening capabilities and the improved boundary
recognition algorithm. The main focus of these test cases is the accurate representation of the free
surface and the reduction of mass conservation errors. Specifically, these are the sloshing of water
in a rotating reservoir harmonically excited, the fall of a drop into a bath of the same viscous
fluid, and the rise of a cylinder toward a free surface. For this last case, the performance in terms
of CPU time of the new algorithm is evaluated, demonstrating the applicability of the method to
simulate flows in large domains.

• Chapter 5 focuses on the application of the PFEM and the new mesh adaptation algorithm to the
case of a flow around a rigid cylinder/sphere pulled out of a bath at constant velocity. First, the
literature on free-surface flows interacting with cylinders is briefly summarized. This is followed
by an introduction to the specific case of a 2D cylinder rising toward the free surface. Afterwards,
mesh and time steps convergence analyses are presented to determine the required accuracy of the
space and time discretization. As aforementioned, different aspects of the flow physics are then
addressed, including the influence of the Froude number on the free-surface elevation and overall
drag, the interactions between wake and free surface, the influence of other flow and geometrical
parameters, etc. These features are investigated comparing the PFEM simulations with existing
results from the literature (numerical or experimental), and/or with in-house experiments of a
rising cylinder in oil. Finally, the rise of an axisymmetric sphere is also considered to highlight
the main differences compared to the cylinder.
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• Chapter 6 introduces a low-order model for the estimation of the dynamics of the flow between the
rising body and the free surface. This model assumes a medium to low film thickness above the
body so that the equations can be averaged radially. In a first step, the model is formally derived
for both a cylinder and an axisymmetric sphere. In a second step, the calibration of the single
model parameter is performed using PFEM simulations. Finally, the thin film model is tested to
check its ability to predict the thickness variation at different Reynolds and Froude numbers.

• Finally, Chapter 7 provides a global conclusion and perspectives of the work, structured according
to the two main objectives described above. First, the limitations of the new mesh adaptation
algorithm are discussed, followed by an introduction to potential improvements, in particular
regarding mass conservation, computing efficiency and extension to 3D. At last, avenues for future
research regarding the flow physics of bodies crossing a free surface and potential improvements
for the low-order models are proposed.
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Chapter 2

The Particle Finite Element Method
(PFEM)

The purpose of this chapter is to present the PFEM and discuss the associated challenges, including the
extension to non-uniform meshes and the problematic mass conservation errors inherent to the boundary
recognition algorithm. First, the equations to be solved are introduced and their discretization using
the finite element method (FEM) is formally presented. In this context, the main challenge associated
with the violation of the so-called Ladyzhenskaya–Babuška–Brezzi (LBB), or inf-sup, condition, for the
resolution of saddle point problems and the resulting need for stabilization are highlighted. In a second
step, the boundary recognition algorithm based on the α-shape technique and its underlying assumption
of a regular mesh are discussed. At last, the central role of the α-shape technique in the problem of
mass conservation is explained and illustrated through simple examples.

2.1 The unstable discrete form of the incompressible Navier-Stokes
equations

The PFEM relies on a finite element discretization of the equations of motion. In this work, the
focus is on the incompressible Navier-Stokes equations for a Newtonian viscous liquid with constant
properties given by

ρ
Du

Dt
= −∇ p+ µ∇ · (∇u +∇uT ) + ρb in Ω(t) , (2.1)

∇ · u = 0 in Ω(t) , (2.2)

where p is the pressure scalar field, u the velocity field, ρ the density and µ the dynamic viscosity1 of the
fluid inside the (possibly deforming) domain Ω(t), and b is the vector containing the body forces. These
equations are complemented with some kinematic and dynamic boundary conditions on the boundaries
Γk and Γσ, respectively,

u(x, t) = u(x, t) on Γk , (2.3)
σ · n = t on Γσ , (2.4)

where u and t are imposed velocities and surface tractions, n is the unit outward normal to the boundary,
σ is the stress tensor and t is the vector of surface forces (including in particular surface tension).
Additionally, one has that Γk ∩ Γσ = ∅ and t Γk ∪ Γσ = Γ, the complete boundary of the domain
Ω(t).

1The viscous term in Eq. (2.1) could be rewritten in terms of the Laplacian of the velocity. Although analytically
equivalent, the two formulations usually differ in their discretized form. The one in Eq. (2.1) is chosen for consistency
with Cerquaglia [1].
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To formulate the weak forms of the equations, trial functions u and p, representing the velocity and
pressure fields, and some test functions w and q, are considered as being parts of the following spaces,

S = {u ∈ H1(Ω)|u = u on Γk} , (2.5)

S0 = {w ∈ H1(Ω)|w = 0 on Γk}, (2.6)

Q = {p, q ∈ L2(Ω)} , (2.7)

where L2(Ω) is the space of square integrable functions and H1(Ω) is the space of square integrable func-
tions with square integrable first derivative, both over the domain Ω. The weak forms of Eqs. (2.1) and
(2.2) can be obtained by multiplying them by the test functions w and q, respectively, and integrating
over the domain Ω:

∫

Ω
ρ
Du

Dt
·w dΩ =

∫

Ω
−∇ p ·w dΩ +

∫

Ω
µ∇ · (∇u +∇uT ) ·w dΩ +

∫

Ω
ρb ·w dΩ , (2.8)

∫

Ω
q∇ · u dΩ = 0 . (2.9)

Integrating by parts and applying Gauss theorem leads to the final form
∫

Ω
ρ
Du

Dt
·w dΩ =

∫

Ω
p∇ ·w dΩ −

∫

Ω
µ(∇u + ∇uT ) : ∇w dΩ +

∫

Ω
ρb ·w dΩ−

∫

Γ
pw · n dΓ

+

∫

Γ
µw · (∇u + ∇uT ) · n dΓ ,

(2.10)

∫

Ω
q∇ · u dΩ = 0 , (2.11)

where the last two terms of the first equation above are simply the integral of surface traction over the
domain boundary:

−
∫

Γ
pw · n dΓ +

∫

Γ
µw · (∇u + ∇uT ) · n dΓ = −

∫

Γσ

pw · n dΓσ+

∫

Γσ

µw · (∇u + ∇uT ) · n dΓσ =

∫

Γσ

t · n dΓσ . (2.12)

The exact solution of the original system of PDEs, Eqs. (2.1) and (2.2), can be obtained if Eqs. (2.8)
and (2.9) are satisfied for every possible test functions w and q. However, in practice, the finite element
approximation results from the choice of some arbitrary trial and test functions. Their number is based
on the number of degrees of freedom of the system (to close the discrete system of equations) and their
shape depends on other parameters related to both the accuracy of the space discretization and the
stability properties of the time integration. As for the present case, for a linear finite element formulation
of the incompressible Navier-Stokes equations, the degrees of freedom simply correspond to the pressure
and velocity variables defined at the nodes. Therefore, in two dimensions, three test functions wI

x, wI
y

and qI are used respectively to get an equation for the two velocity components and the pressure at
each node I, as illustrated in Fig. 2.1(left). Moreover, linear shape functions N̂J(x) are then introduced
for the velocity and pressure fields, as illustrated in Fig. 2.1(right), such that for each finite element,
one has

ui(x) = N̂ I(x)U Ii , (2.13)

p(x) = N̂ I(x)P I , (2.14)

where i and I are respectively the space direction and the shape function (or node) indices, and U Ii ,
P I are the velocity and pressure variables at the nodes (note that the Einstein summation convention
has been used). In this work, the same shape functions are used for both the velocity and pressure
fields. This choice can cause difficulties with saddle point problems like this one, so that a stabilization
is required, as discussed later. Within a standard Galerkin formulation, the test functions are the same
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𝒘𝑖
𝐼 𝒙 = 𝑤𝐼 𝒙 𝒆𝑖 , i = 1 or 2

𝑤𝐼 = 𝑞𝐼 = 1

𝐼

𝑞𝐼 = 𝑤𝐼𝒆1

𝑁1 = 1

𝑢𝑖 𝒙 = 𝑁𝐼 𝒙 𝑈𝑖
𝐼

𝑝 𝒙 = 𝑁𝐼 𝒙 𝑃𝐼

𝑤𝐼 = 𝑞𝐼 = 0

𝑁1= 0

𝑁2= 1

𝑁2= 0

𝒆2

Figure 2.1: Diagrams of the linear test functions (left) and trial functions (right) used for the standard
Galerkin formulation of the incompressible Navier-Stokes equation. The values of the test and trial functions is

schematically represented using an altitude in the third dimension.

as the trial functions (i.e., they are made of the same shape functions, as illustrated in Fig. 2.1), such
that the equations for an element e become (in index notation):

∫

e
ρN̂ IN̂JdΩe

DUJi
Dt

=

∫

e

∂N̂ I

∂ xi
N̂J dΩe P

J −
∫

e
µ
∂N̂ I

∂ xj

∂N̂J

∂ xj
dΩe U

J
i −

∫

e
µ
∂N̂ I

∂ xj

∂N̂J

∂ xi
dΩe U

J
j

+

∫

e
ρbiN̂

I dΩe + fi −
∫

e
N̂ I ∂N̂

J

∂ xi
dΩe U

J
i = 0 , (2.15)

where fi represents either the element-element interactions or the boundary surface traction. The former
cancels when the global matrices are built (according to the action-reaction principle), while the latter
is simply integrated over the respective boundary line elements.

Using Eq. (2.15), the elementary matrices and elementary vectors are, in two dimensions, defined in
the following way:

(6× 6) M e
3i+I,3j+J =

∫

e
ρN̂ IN̂JdΩe δij , (2.16)

(3× 6) De,T
3i+I,J = −

∫

e

∂N̂ I

∂ xi
N̂JdΩe , (2.17)

(6× 6) Ke
3i+I,3j+J =

∫

e

∂N̂ I

∂ xj

∂N̂J

∂ xi
dΩe(1 + δij) , (2.18)

(6) fe3i+I =

∫

e
ρbiN̂

I dΩe +

∫

Γσ,e

N̂J t
J
i dΓσ,e , (2.19)

where Γσ,e is the part of Γσ that belongs to the element. Global matrices can then be built from these
elementary matrices to obtain the semi-discrete equations:

M
Du

Dt
+ Ku + DTp = fext , (2.20)

D u = 0 , (2.21)

where u is a vector of size 2N (3N in three dimensions) containing velocity components and p a vector
of size N containing the pressure at the N nodes of the mesh. In the above equations, M is the mass
matrix, K the viscous matrix, D the discrete divergence operator, DT the discrete gradient operator,
and fext the vector of external forces. Finally, the time derivative is discretized using in the present work
a backward Euler scheme with time step size ∆t to obtain the final matrix equation for the unknown
nodal values at time step n+ 1,

(
1

∆tM
n+1 + Kn+1 Dn+1,T

Dn+1 0

)(
un+1

pn+1

)
=

(
1

∆tM
nun + fn+1

ext

0

)
. (2.22)
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The Ladyzhenskaya–Babuška–Brezzi (LBB) condition:

The system of equations (2.22) has a saddle point structure, characterized by a square matrix A
in the top left, a zero block matrix in the bottom right and rectangular matrices B and BT in the
remaining quadrants: (

A BT

B 0

) (
u
p

)
=

(
f
g

)
. (2.23)

By identification with Eq. (2.22), it follows that A = 1
∆tM

n+1 + Kn+1, B = Dn+1, etc... The name
"saddle-point" refers to the fact that solving the system (2.22) amounts to finding the saddle-point
(u∗,p∗) of a Lagrangian function L(u,p) [26], i.e. ,

L(u, φ) ≤ L(u∗,p∗) ≤ L(w,p) ∀w ∈ Wh ∀φ ∈ Qh (2.24)

where Wh and Qh are two vector spaces containing the velocity and pressure variables u and p,
respectively. Such problems are challenging to handle because they can lead to instabilities, which
in this case translates into spurious pressure oscillations. In this respect, the LBB condition, also
called "inf-sup" condition, is a sufficient condition to have a stable scheme when inverting the system,
i.e., for the system to have a unique solution that depends continuously on the boundary and initial
conditions [27].

To illustrate this, one can consider spaces of infinite dimensions. LetW and Q be two Hilbert spaces,
let a :W ×W → R and b :W ×Q → R be bilinear forms. Let f ∈ W∗ and g ∈ Q∗ where W∗ and Q∗
are the dual spaces. The saddle-point problem for the pair (a, b) corresponds to finding a pair of fields
u in W, p in Q such that, for all w in W and q in Q,

a(u,w) + b(w, p) = 〈f, w〉 , (2.25)
b(u, q) = 〈g, q〉 , (2.26)

where 〈f, w〉 is the scalar product between f and w (same for 〈g, q〉). The LBB conditions states that
a unique solution to this saddle point problem can be obtained as soon as

∃β > 0 , inf
q∈Q,q 6=0

sup
w∈W,w 6=0

b(w, q)

||w||W ||q||Q
≥ β . (2.27)

If this condition is not satisfied, then the solution may not be unique and may be unstable. The
condition can be rewritten removing the lower bound, being therefore valid for all q, in the form

∃β > 0 , ∀q ∈ Q , q 6= 0 , sup
w∈W,w 6=0

b(w, q)

||w||W
≥ β||q||Q . (2.28)

The mathematics behind the LBB condition is rather complex but explains why spurious pressure
oscillations may happen when the condition is not satisfied. In the particular case here, the discrete
version of the second term of Eq. (2.25), b(w, p), corresponds to DTp in Eq. (2.22) (the superscript n+1
has been dropped to simplify the notation)), where the dependency on W is included in DT (i.e., the
dependency on the shape function2). From this observation, one can show [28] that Eq. (2.28) translates
into the discrete form

∃β > 0 , ||DTp|| > β||p||. (2.29)

If this is violated, or in other words if β becomes arbitrarily small as the mesh is refined, it implies that
some pressure modes p may actually induce very limited changes on ||DTp||, such that large oscillations
involving these modes may occur. Particularly, it is known that using equal-order trial functions for the
velocity and pressure (first order in the present case) leads to the violation of the LBB condition, and
therefore leads to an unstable discretization [27, 29–32]. In this case, methods to stabilize the solution
should be applied.

2As explained above, the exact solution of the original PDE is obtained if the equations are written in the weak form
for all possible values of the functions w and q. Practically speaking, by choosing the shape functions, particular sets of
functions w and q are chosen.

12



2.2 The monolithic pressure stabilizing Petrov Galerkin (PSPG)

To address this issue, a Petrov-Galerkin formulation can be used instead of the classical Galerkin
formulation. As shown by Hughes et al. [33], even when using equal-order velocity-pressure couples, this
formulation does satisfy the LBB condition. The main idea is to use test functions w that are different
from the interpolation functions for the derivation of the weak form of the problem. Specifically,

w = w +
τ ePSPG

ρ
∇q , (2.30)

where τ ePSPG is a characteristic stabilization time and ∇q is the gradient of the test function used for
the continuity equation. It results in the insertion into the continuity equation of a weighted sum of
the residuals of the (vectorial) momentum equation, respectively projected onto the node direction in
each adjacent elements3 (in the expression below, the vector ∇q is of course always pointing toward the
direction of the concerned node):

−
∫

Ω
∇ · u q dΩ +

Nel∑

e=1

τ ePSPG

∫

Ωe

1

ρ
∇q ·

(
ρ
Du

Dt
+∇ p− µ∇(∇u +∇uT )− ρb

)
dΩe . (2.31)

The method is a residual method, as the stabilization term in the continuity equation vanishes at
convergence, which leads to a fully consistent scheme. Note that, while the present work is based on the
monolithic pressure stabilizing Petrov Galerkin (PSPG) method, other stabilization approaches exist,
such as pressure splitting and algebraic splitting schemes [1], finite increment calculus (FIC) [34] and
others.

With this new stabilization term the semi-discrete system of equations becomes (see Cerquaglia [1]
for detailed derivation and implementation),

M
Du

Dt
+ Ku + DTp = f , (2.32)

C
Du

Dt
−D u + Lτp = h , (2.33)

where C is a dynamic stabilization matrix, Lτ is a discretized stabilization Laplacian operator, and h
represents the projected body forces. For a backward Euler time integration, the system writes

(
1

∆tM
n+1 + Kn+1 Dn+1,T

1
∆tC

n+1 −Dn+1 Lτ
n+1

)(
un+1

pn+1

)
=

(
1

∆tM
nun + fn+1

1
∆tC

nun + hn+1

)
. (2.34)

Unlike the formulation without stabilization, Eq. (2.22), there is no more zero block matrix in the
bottom right quadrant, as the matrix Lτ

n+1 multiplies the pressure vector. In particular, this leads to
a stable time integration while keeping the consistency with respect to the original PDEs.

In this work, this implicit system of equations based on the Backward Euler scheme is used together
with a Picard algorithm to iterate over the nonlinearity.4 This combination leads to a very robust scheme
with fast convergence, which motivates its use for the present applications. However, it is not the most
efficient approach, and faster algorithms could be used, such as the pressure splitting scheme or the
algebraic splitting of the monolithic PSPG equations. Nonetheless, they suffer from other limitations
with respect to numerical mass conservation [35], or convergence5 for instance.

3Considering the weak form of the momentum equation, Eq. (2.8), it follows that the additional term should have been
added into the momentum equation. However, as it is supposed to be 0 at convergence, it is placed into the continuity
equation instead, which has the advantage of filling the zero block matrix in the bottom right quadrant of the original
Galerkin formulation of the problem, Eq. (2.22).

4Even if the equations are linear in the unknown variables, the node coordinates vary in time as the method is
Lagrangian. Because the matrices in Eq. (2.22) depend on the coordinates of the moving nodes at time step n+1, the
overall scheme is nonlinear.

5This has been observed in practice by the author.

13



Choice of the characteristic stabilization times τ ePSPG

The mathematics underlying the choice of the stabilization terms τ ePSPG is a very complex topic that
has received very limited considerations in the literature. Most authors (for instance Tezduyar et al. [36])
simply take similar expressions as for the SUPG (Streamline-Upwind Petrov-Galerkin) stabilization for
Eulerian advection-diffusion problems.

The interpretation of these stabilization times for the SUPG scheme, τSUPG, is somehow simpler. It
is for instance well known that for advection problems, central finite discretization with explicit time
integration is unstable, and an upwind scheme is often used to get stable time integration schemes.
In this context, the standard Galerkin formulation on a uniform mesh leads to a spatially centered
discretization, as the shape functions are similar irrespective of the direction. The SUPG stabilization
simply consists in decentralizing the shape function in the direction of the advection speed. As the
viscosity has a stabilizing effect in advection-diffusion problems, one can define a viscous stabilization
time,

τν =
h2

12ν
, (2.35)

where ν is the kinematic viscosity of the fluid, and h is a characteristic element length [36]. This
stabilization time is low when the viscosity is high, leading to a limited stabilization.

The other kind of stabilization time is the advection time, which depends on the norm of the local
velocity field ||u||,

τu =
h

2||u|| . (2.36)

Both τν and τu are usually combined to obtain a smooth transition between the two possible values:

τ eSUPG =
(
τ−1/2
ν + τ−1/2

a

)−1/2
. (2.37)

Based on this, Tezduar et al. [36] have simply considered a similar expression for τ ePSPG,

τ ePSPG ' τ eSUPG , (2.38)

where the local velocity u has been replaced by a global scaling velocity U (based on a characteristic
velocity scale of the application), and the element length h has been replaced by another one, he, defined
as the length of the diameter of the circle which is area-equivalent to the element.

In the present work, the stabilization implemented by Cerquaglia [1] and based on Tezduyar et al. [36]
has been used. It depends on a local Reynolds number,

ReU =
U he

2ν
, (2.39)

to determine whether the problem is locally dominated by convective or diffusive effects. From there, a
sharp transition between τ ePSPG = τu and τ ePSPG = τν (using a global velocity U and the element size he

in their respective definitions) is performed for regions where ReU ≥ 3 and 0 < ReU < 3, respectively.
In practice, this stabilization has given good results, but it is not known how close it is from optimality.
In particular, the optimal choice of τ ePSPG is usually not clear and has not been widely studied, which
may be partly explained by the fact that other authors prefer to use compatible shape function pairs
(shape functions of different orders for u and p).

Lumped mass matrix and consistent mass matrix

As it is classically done in the finite element method, the integrals involving the shape functions
are evaluated using Gauss-Legendre quadrature, which consists in computing the integral by evaluating
the value of the argument at specific points, with some predetermined weights associated with them.
The advantage is that using n Gauss points, the methods enables to calculate exactly the integral
of polynomials of degree up to 2n − 1. Except for the mass matrix, the integrand of all matrices
in Eqs. (2.16) to (2.19), are constant or linear, which means that a single Gauss point at the center
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of the triangular (tetrahedral in 3D) elements is sufficient to compute these integrals. On the other
hand, the correct computation of the consistent mass matrix, because of the bi-linear form inside the
integral, requires the use of three (four in three dimensions) Gauss points (two points is not sufficient
here because of the symmetry requirement for the position of the Gauss points). Using only one Gauss
point leads to an incorrect value of the integral, and results in a mass matrix with all the components
being equal to ρΩe

9 , Ωe being the element area. This would lead to larger space discretisation errors.
Another possibility, but which unfortunately also leads to larger space discretization errors, is the use of
a lumped mass matrix Ml [37, 38], for which the only non-zero terms are on the diagonal. It is obtained
by summing all the rows of the consistent mass matrix Mc

6. At the element level, one has

M e
l,3i+I,3j+J = δIJ

3∑

K=1

M e
c,3i+I,3j+K = δIJ

3∑

K=1

∫

e
ρ N̂ IN̂KdΩe δij . (2.40)

By definition, the sum of all shape functions is equal to one,

3∑

K=1

N̂K = 1 , (2.41)

and one finally has

M e
l,3i+I,3j+J = δIJ ρ

∫

e
N̂ IdΩe δij = ρ

Ωe

3
δIJδij . (2.42)

The advantage of a lumped mass matrix is that it can be easily inverted when an explicit time integration
is used. Moreover, its computation is immediate and does not require any Gauss point. For this last
reason, it is the default approach here for all test cases considered, even if an implicit time integration
is used. Consequently, the resulting space discretization is at most second order accurate for a uniform
mesh and lower for a non-uniform mesh7 (while it would theoretically be fourth order accurate using a
consistent mass matrix on a uniform mesh [37]). This should be kept in mind as meshes in the classical
PFEM are distorted at each time step so that a perfectly uniform size cannot be ensured.8 Moreover,
the present work aims to develop a new algorithm precisely for non-uniform meshes.

2.3 The α-shape technique

Because the particles move with the flow, the initial mesh is rapidly distorted. In the PFEM, the
mesh used at a previous time step is thus discarded and a new mesh is constructed from the new cloud
of particles, possibly at every time step or at least whenever the mesh becomes too distorted. The
process is illustrated for the two-dimensional case in Fig. 2.2. Given a cloud of particles in the plane
(a), a fast Delaunay triangulation is performed to define the new triangular mesh (b). Nonetheless, the
entire convex hull defined by the particles is triangulated. In order to identify the actual boundary of
the fluid, some elements must be eliminated (c). In the PFEM, this is traditionally achieved through a
geometric criterion based on the α-shape technique.

Originally, the α-shape technique has been developed as a tool to separate subgroups of simplices
contained in the convex hull of a point set [25, 39]. It simply consists in only keeping in the triangulation
the elements having a circumscribed circle whose radius rc is smaller than a threshold α. Because
otherwise the threshold α would be problem-dependent, it is customary in the PFEM to use the non-
dimensional form of the α-shape criterion,

rc
h
< α , (2.43)

6The consistent mass matrix is by definition the one obtained with the original finite element formulation, using the
appropriate number of Gauss points. However here, the results of the "lumping process" would be the same whether the
appropriate number of Gauss points was used or not.

7This can be shown for the advection-diffusion problem on an Eulerian mesh.
8This is further compounded by the fact that the matrix is built from the positions at time n + 1, i.e., using a mesh

slightly more distorted that the one at the current time step n.
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(c)(a) (b)

Figure 2.2: Illustration of the meshing procedure and α-shape technique. (a) Cloud of particles obtained from
the previous time step, (b) mesh over the convex hull of the particle cloud after Delaunay triangulation, (c)
final mesh after elimination of the elements that are too elongated (i.e., with an α-value larger than the

threshold). The deleted triangles are considered as empty space.

where h is a characteristic length scale of the mesh. Typically, h is defined as the average length of the
smallest element edge over the mesh [1, 40]. Choosing a global value α between 1.2 and 1.5 allows to
discard triangles that are too badly shaped or too large.

The drawback of the above method is that it presupposes some uniformity of the mesh size, preventing
thus its direct use with mesh adaptation. More specifically, applying the above α-shape technique to a
non-uniform mesh would eliminate all triangles that are too large even if they are equilateral and part of
the fluid domain, as illustrated in Fig. 2.3. Increasing the value of h would remedy it, but then smaller
badly-shaped elements that should be eliminated would be incorrectly kept.

𝑟 < αℎ 𝑟 > αℎ

Figure 2.3: Non-uniform mesh with a size progression from left to right. Applying the criterion of Eq. (2.43)
using a constant value of h and α would wrongfully eliminate all triangles that are “large” (the grey triangles in

this figure) despite their regular shape.

To circumvent this issue, one could replace the global length scale h by a local value he, e.g., the
shortest length of the corresponding triangle. Although this approach would eliminate badly-shaped
triangles, some larger elements would be wrongly kept, as illustrated in Fig. 2.4. In this case, the large
triangle inside the cylinder is not discarded and the algorithm fails to identify the cylinder immersed in
the fluid as a solid body.

Nonetheless, such an approach could be considered if the local value he is understood as an average
over some local region rather than directly related to the corresponding element, and if only smooth
spatial variations of he are permitted. A related method is proposed in the present work, as described
in Section 3.2.1.

Another option is to rely on a generalization of the α-shape technique, the so-called weighted α-shape
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Figure 2.4: Mesh obtained after Delaunay triangulation for a cylindrical solid body immersed in a fluid. The
use of a local scaling length he instead of a global measure h of the mesh size in the α-shape technique would
correctly eliminate the badly-shaped elements (in red) but fail to discard the large regular triangle inside the

solid body.

method [25, 41, 42], in conjunction with weighted Delaunay triangulation (also referred to as regular
triangulation) [43]. In this case, large triangles or small badly-shaped triangles can be simultaneously
discriminated by introducing user-defined weights at each node. Note that it can be shown that the
aforementioned approach based on a local length scale he is equivalent to the weighted α-shape method
in the limit of a uniform mesh (i.e., with a roughly a constant spacing between the nodes and a unique
weight for all of them). The two approaches are therefore similar for smoothly varying meshes. Nev-
ertheless, the weighted α-shape method is still a geometric criterion and special treatment is required
in the vicinity of the free surface to minimize the mass creation or destruction that is inherent to the
PFEM. The weighted α-shape method is introduced in details in Section 3.1.2.

2.4 The α-shape technique and mass conservation

For incompressible flows, the total mass is directly proportional to the volume of the fluid. In other
words, mass conservation implies volume (surface area in 2D) conservation. Variations of total volume,
∆V , can thus be used to quantify the error in mass conservation. In the PFEM, one can identify two
different sources for variations of in total volume. The first contribution, ∆Vnum, is common to other
numerical methods for free-surface flows and is associated with the time integration and the correspond-
ing displacement of boundary nodes. It can be affected by various aspects of the iterative solvers, such
as the stabilization techniques or the time integration scheme [44]. It is shown in Section 3.3 how, for
an ideal space discretization, a backward Euler time integration can affect the mass conservation.

The second contribution to volume variations, ∆Vrem, is related to the addition and deletion of mesh
elements when applying the α-shape technique during the boundary detection process. It is usually the
dominating contribution in the PFEM. The mesh adaptation algorithm developed in this work aims to
reduce this second kind of mass conservation error.

As an example, volume creation/destruction due to remeshing can take place when two free surfaces,
or two parts of the same free surface, approach each other, as illustrated by the falling droplet merging
with the bulk of the fluid in Fig. 2.5. When the distance between the two boundaries becomes of the
order of the mesh size, the elements between them are not discarded by the boundary identification
algorithm, thus creating mass. On the other hand, mass can be destroyed along a free surface that is
stretched, as also illustrated in Fig. 2.5. In this case, the stretching pulls boundary nodes apart leading
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to obtuse triangles that are eliminated by the α-shape criterion. Similar errors in mass conservation
can also be observed around the contact point of a free surface and a solid wall (see Fig. 2.6), where
mass is created at the front of the moving fluid wetting the surface and destroyed at its back.

Two approaches can be considered to limit mass creation/destruction inherent to the PFEM. On
the one hand, one can locally refine the mesh in the critical regions of the free surface, which provides
another motivation for mesh adaptation. On the other hand, a different treatment can be applied to
the nodes on the free surface during the boundary recognition step. Nevertheless, this requires some
kind of tracking of the free surface, e.g., by tagging the nodes belonging to it. Both approaches are
considered in the present work, as explained in Chapter 3.

Rising 
cylinder

Mass destruction
Surface stretching

Mass creation

Falling droplet

Figure 2.5: Typical examples of error in mass conservation at a
free surface: mass creation due to two free surfaces approaching
each other (falling droplet on the left) and mass destruction due
to the stretching of the free surface (above the rising cylinder in

the middle).

Mass creation

Mass destruction

Falling fluid

Figure 2.6: Typical examples of error in
mass conservation at a solid wall: mass
creation at the fluid front along the

horizontal surface and mass destruction
behind the falling fluid on the vertical

wall.

2.5 Adding and removing nodes in uniform meshes

In the PFEM, the displacement of nodes can be such that some nodes become progressively very
close to each other and others quite far apart. In these cases, and despite a new triangulation, the mesh
quality can significantly deteriorate, with some large elements adjacent to much smaller ones. This can
become problematic as the α-shape algorithm might then incorrectly eliminate elements that should be
kept or conversely. To remedy this issue, the classical PFEM typically relies on the addition of new
nodes or the deletion of old ones to ensure a more or less uniform node density.

Concretely, a node is simply added in the middle of an element of area A when

A >
1

2
k1 h

2 , (2.44)

where h is the average size of the minimal edge over all elements, and k1 is a user-defined parameter.
The new node is then assigned the averaged value (velocity, pressure, etc.) of the three nodes defining
the original element.

When two nodes become too close to each other, one of them is simply eliminated. More precisely,
edges whose length L is smaller than a threshold value, L < k2h, where k2 is another user-defined value,
are identified and one of their two nodes is then discarded. In the following, all simulations based on
the classical PFEM with a uniform mesh rely on the parameter values k1 = 0.5 and k2 = 0.5.

It should be emphasized that, in practice, the addition / removal of nodes in the classical PFEM
remains usually very limited because of the incompressibility condition. The use of an optimal criterion
and a robust algorithm is thus not critical. This is however not the case for mesh adaptation, and more
advanced approaches for adding and removing nodes are proposed in the next chapter.
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Chapter 3

Mesh adaptation algorithm for the
Particle Finite Element Method

As explained in the previous chapter, the classical PFEM, and in particular the α-shape technique,
assume a more or less uniform mesh. This precludes local mesh refinement and limits the computational
efficiency of the method. One of the main objectives of this work is thus to develop and implement
a mesh adaptation algorithm for the PFEM to address this shortcoming and to possibly also improve
the mass conservation property of the method. This chapter first presents a literature review on mesh
adaptation in general and on specific aspects in the context of the PFEM. Based on this, the choice
of the novel mesh adaptation strategy is rationalized and a detailed description of the different steps
of the algorithm is provided in Section 3.2. This is followed by practical guidelines on how to use the
method, including the choice of the space and time discretizations. Finally, the theoretical extension of
the algorithm to three-dimensional tetrahedral meshes is discussed in the last section of the chapter.

3.1 Literature review on mesh adaptation and boundary recognition
algorithms for non-uniform meshes

To choose an appropriate strategy for mesh adaptation and boundary recognition in the context of
the PFEM, an overview of the existing methods in a more general context is first given. Afterwards, an
overview of the two possible paths to extend the α-shape technique to non-uniform meshes is given.

3.1.1 Mesh adaptation

Mesh adaptivity essentially refers to the use of a discretization based on mesh elements of different
sizes, such that high resolution is used in regions where the solution features require it, while coarser
elements are used where the solution is smooth. This strategy has been successfully used for decades
in Eulerian mesh-based methods for either fixed meshes or meshes that evolve during the simulation.
At the most basic level, adaptivity can simply be achieved by defining a priori a fixed but non-uniform
mesh. In this case, the characteristics of the mesh are usually based on user expertise and/or some
mesh convergence study. At a more advanced level, iterative or time dependent solution-based mesh
adaptation relies on the local solution to define the local mesh properties. This is often referred to as
Adaptive Mesh Refinement (AMR) and is typically used with unstructured meshes or octree (quadtree
in 2D) grids [45–48].

The first step of the AMR is the identification of the mesh elements that need to be adapted. In
that regard, Bansch et al. [49] suggest that such mesh adaptation techniques can be divided into two
categories. The error-based methods use an estimate of the interpolation error (see [49–51] for some
examples). The other category encompasses the heuristic methods in which the elements are refined
following physical criteria [52]. These methods are described in Sections 3.1.1.1 and 3.1.1.2, respectively.
Beyond this classification, one can also highlight the metric-based mesh adaptation. Roughly, the
latter approach defines the local mesh size (possibly anisotropically) based on solution-based quantities,
themselves being defined from error estimates or not (heuristic). A more complete description of this
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type of methods is given in Section 3.1.1.3.
Irrespective of the method used to identify the mesh elements to be adapted, the second step of

AMR consists in adapting the mesh, typically through splitting or grouping of mesh cells/nodes. This
is generally done iteratively until the error reaches a given threshold (error-based), or until the local mesh
size reaches the prescribed one (heuristic/metric-based). While splitting or grouping cells is relatively
straightforward in the context of octree grids, refining and coarsening an unstructured mesh without
hanging nodes often requires to modify not only the targeted element itself but also its neighbors.

At last, beyond the geometric aspects of defining new, coarser or finer, elements, the main challenge is
to assign them a solution value. In particular, interpolation of new values should ensure that conservation
principles are satisfied and that no large error is introduced.

3.1.1.1 Error-based mesh adaptation

A classical way to do mesh adaptation is to use error estimates (see [49–51] for some examples). To
illustrate the approach, one can consider the incompressible Navier-Stokes equations in the following
compact form:

C(u, p) = 0 . (3.1)

In order to perform numerical simulations, this set of continuous equations must be transformed into
a set of discrete equations. More precisely, the objective is to find the discrete solution (u∗,p∗) of a
discretized version of C(u,p):

D(u∗,p∗) = 0 . (3.2)

In other words, the discrete system of equations D(u∗,p∗) = 0 tries to approximate the system of
differential (i.e., continuous) equations C(u,p) = 0. With a finite mesh size, the exact solution of the
discrete equations does not satisfy exactly its continuous form and one has

C(u∗,p∗) = D(u∗,p∗) + εT ⇐⇒ C(u∗,p∗) = εT , (3.3)

where εT is called the truncation error and depends on higher-order derivatives of the variables than
those present in C(u,p), and on the vector of local mesh size L (the side of the squares in a Cartesian
mesh for instance).

For a consistent and stable system of finite difference equations, D(u∗,p∗) = 0, i.e., a discretization
whose solution converges towards the continuous solution as the mesh is refined, the truncation error
can be expressed as a power series of the mesh size L with coefficients that depend on the derivatives
of the variables. The leading order term of this series (i.e., the term with the lowest power of L) mainly
determines the convergence of the approximate solution to the exact solution when the mesh is refined.
The calculation (or estimation) of this leading-order term can thus be used to guide the mesh adaptation.
In error-based mesh techniques, the mesh is locally and iteratively adapted to ensure that the leading-
order term of the truncation error remains within a given threshold range. This has the advantage to
provide, for a given number of nodes, an optimal distribution of the space discretization errors, provided
that sufficiently good error estimates are used, which is unfortunately not always possible. In particular,
the estimation of the truncation error can be difficult and/or expensive to compute, especially if the
problem is highly nonlinear and/or if complex discretization schemes are used, such as in CFD and
FSI problems [53]. Additionally, it usually requires the evaluation of higher-order derivatives. If linear
finite elements are used, these derivatives cannot be evaluated at the element level and adjacent cells
must be considered, which considerably increases the complexity of the approach with unstructured
meshes (as shown in Appendix B, estimating higher order derivatives is possible but rather inaccurate
and expensive when using linear finite elements on an unstructured mesh).

3.1.1.2 Heuristic mesh adaptation

When good error estimates cannot be computed in a cost-efficient way, a more attractive approach may
be to identify flow features qualitatively related to the space discretization errors, but without knowing
the exact quantitative link between them. Such flow features can be identified through quantities
derived from the flow variables. As the truncation error of the discretized scheme is large when the
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derivatives of the variables are large, it is therefore relevant to use quantities that are related to the
variable derivatives of different orders, but avoiding to compute those. In this regard, it is advantageous
to use reference quantities that can be computed at the element level. This is for instance the case
for the first order derivatives, or gradients ( [54, 55]), either on a regular or on a non-regular mesh, as
first-order derivatives are generally large when the higher-order derivatives are themselves large.

Such reference quantity φ can for instance be the norm of the velocity gradient or the Hessian matrix1

(i.e., the matrix of second-order derivatives), or the norms of their determinants. In any case, once φ
has been chosen, one can define a pseudo-error Ẽ(φ,L) related to it. For instance,

Ẽ = F(φ)Lp , (3.4)

where F(φ) is some function of φ and p ≥ 1. The mesh is locally refined when this pseudo-error is too
large and locally coarsened when it is too low2, which implies that it should remain in a given range:

Ẽ1 < Ẽ < Ẽ2 . (3.5)

In Eq. (3.4), the expression is invertible and one can obtain the mesh size as a function of the pseudo-
error and φ, which gives the following inequality,

(
Ẽ1

F(φ)

) 1
p

< L <

(
Ẽ2

F(φ)

) 1
p

. (3.6)

In other words, the mesh size is enforced to remain in some user-defined range. Furthermore, Eq. (3.6)
can be rewritten as

k1 L
∗(φ) < L < k2 L

∗(φ) , (3.7)

where k1 and k2 are user-defined thresholds and L∗(φ) is a local target mesh size that depends on φ.
The heuristic approach is therefore equivalent (provided that the pseudo-error Ẽ(φ,L) can be inverted)
to imposing a local target mesh size L∗ based on the reference quantity φ, and by enforcing the local
mesh size L to remain within a given range around L∗.

Note that the “heuristic” nature of the method lies in the arbitrariness of the definition of Ẽ. Indeed,
if Ẽ was an accurate representation of the error, the method would therefore be considered as an "error-
based" method. However, the errors often consist of more complex expressions that are difficult to
invert, such that within error-based methods, the mesh is rather iteratively refined to control the errors,
as explained above.

3.1.1.3 Metric-based mesh adaptation

A generalization of the idea of imposing a local target mesh size consists in the metric-based mesh
adaptation [56]. The formalism of the method is based on a one-to-one mapping between the real
physical space X and another abstract space X̃ . The length scales in one space are connected to those
in the other one by the metric defined at each point:

µ
∆
=
dx̃

dx
. (3.8)

The method is such that the mesh elements expressed in the abstract space X̃ should always remain
uniform, with non-dimensional element sizes of the order of unity. Note that the dimensionless nature
of the space X̃ immediately imposes that the dimension of the metric µ is the inverse of a length scale3.
As soon as the mesh in the abstract space X̃ deviates from a mesh of approximate uniform size, the
problematic elements are adapted by adding or removing nodes in the space X̃ . The resulting mesh
in the real space X is then evidently non-uniform, exhibiting large elements where ||µ|| is small and

1Note that there is one Hessian matrix associated with each variable, such that this choice requires to build some
combination of them.

2Some caution should be exercised to ensure that the local mesh size remains inside a given threshold, in case the
errors cannot be decreased down/increased up to the user-defined upper and lower thresholds.

3This implies that, irrespective of the quantities involved to build the metric, they should be normalized accordingly.
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conversely. Within this framework, the mesh refinement can also be anisotropic (i.e., enabling the use
of different cell dimensions depending on the direction), which is the case as soon as the metric deviates
from a multiple of the identity matrix.

The key question is therefore to know how to build the metric. Here again, the building procedure
can either be error-based or heuristic. A particular case of metric-based mesh adaptation based on error
estimators relies on a combination of the Hessian matrices associated with the different flow variables [56–
58]. Without going into the mathematical details, this approach ensures that the interpolation error
remains under the same bound everywhere in the mesh [56].

For heuristic approaches, the arbitrariness of the choice of the metric makes it more suited for
isotropic refinement, as only one scalar is required to define the isotropic metric. In this case, the metric
is proportional to the identity matrix I, i.e.,

µ =
1

L∗(φ)
I , (3.9)

where the coefficient of proportionality is the inverse of the target mesh size L∗ already introduced in
Section 3.1.1.2. Using Eq. (3.8), it follows that the element sizes dx in the real space scale as L∗ while
those in the abstract space, dx̃, scale as unity.

The advantage of such a definition is that it introduces more flexibility in the way the mesh refinement
is performed. The target mesh size L∗ can be computed based on multiple criteria, either solution-based
or geometry-based, depending on the application. This feature, as shown in the next section, makes the
use of an isotropic metric a method of choice for the present application. In particular, it is preferred
over the choice of an anisotropic metric, because this last choice would lead to several difficulties. In the
specific context of triangular (tetrahedral in three-dimensions) unstructured meshes, the main difficulties
come from the fact that the metric should be integrated at all the steps involving the mesh, from the
remeshing procedure (Delaunay or regular triangulation), to the boundary recognition algorithm (α-
shape technique) and the mesh adaptation. All these steps would have to be performed in the abstract
space X̃ while solving the discrete system of equations would be done in the real physical space X .
Since these steps are usually performed using existing libraries, these libraries would have to allow the
incorporation of customized metrics, which is not always the case.

After the metric, either isotropic or anisotropic, is defined, the second step of the metric-based mesh
refinement consists in adding or removing nodes so that the actual element size (in the physical space
X ) actually corresponds to the imposed metric. The main challenge is to make sure that conservation
principles are satisfied and that no large error is introduced when adding/deleting nodes. It is even more
challenging when the nodes are subjected to displacements (within a Lagrangian formalism as in the
present case), because the mesh should be permanently adapted, even for a case that would be steady
in the Eulerian frame of reference. The advected elements may be permanently coarsened or refined
depending on, among other things, where they are going. In this context, anisotropic mesh adaptation
may be an issue, such that isotropic mesh adaptation is preferred here.

At last, it should be emphasized that there are several ways to add and remove nodes depending on
the type of mesh used. Introducing them would bring us too far for this short introduction about mesh
refinement methods.

3.1.2 Boundary recognition for non-uniform meshes in the PFEM

In the context of the PFEM, as a new mesh is frequently rebuilt, mesh adaptivity also includes the
way the new elements are created or removed from the new triangulation, i.e., how the domain boundary
is determined. The main challenge here consists in devising a boundary recognition method adapted to
non-uniform meshes. The two main methods that are presented below differ by the kind of triangulation
used. To understand both of them, the Delaunay [59–61] and the regular [43] triangulations are thus
first briefly exposed.

3.1.2.1 Delaunay and regular triangulations

The best approach to explain the difference between both triangulations consists in first introducing
the concept of Voronoï diagram and power cells. For a set of points xI in the plane (space in 3D)), the
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Voronoï diagram is the partition of the entire plane (space) into small regions around each point xI ,
called Voronoï cells and defined as [62]

VI ∆
= {x ∈ R2|d(x,xI) ≤ d(x,xJ) ∀J 6= I} , (3.10)

where d(xA,xB) is the Euclidean distance between points xA and xB. Alternatively, the Voronoï cell
associated with point xI can be defined as the intersection of all half planes HIJ containing the point
xI , where

HIJ ∆
= {x ∈ R2|d(x,xI) ≤ d(x,xJ)} . (3.11)

The dual of the Voronoï diagram is called the Delaunay triangulation and is obtained by connecting
the points xI and xJ of adjacent Voronoï cells VI and VJ , as illustrated in Fig. 3.1. It has been
shown that among all possible two-dimensional triangulations, the Delaunay is optimal regarding several
aspects [61]:

• it maximizes the minimum angle;

• it minimizes the maximum circumradius;

• any triangulation exempt of obtuse triangle is a Delaunay triangulation;

• several algorithms exist to transform any triangulation into a Delaunay triangulation, with a
complexity down to O(N logN), where N is the number of points.

x
I

x
J

VI

VJ

Figure 3.1: Schematic illustration of the Voronoï diagram (red lines) of a 2D cloud of points (blue dots),
together with its dual set corresponding to the Delaunay triangulation (blue lines).

The regular triangulation is defined in an analogous manner to the Delaunay triangulation. The
difference comes from the fact that the Euclidean distance d between points xI is replaced by another
distance dp between weighted points (xI , wI), where wI is the weight of point xI . Specifically, the new
distance between an arbitrary point x of the plane (space) and the weighted point (xI , wI) is called the
power distance and is defined as

dp
(
x, (xI , wI)

) ∆
= d(x,xI)2 − wI . (3.12)

The power cells PI are then obtained similarly to the Voronoï cells VI by replacing the Euclidean
distance d by the new power distance dp in its definition (3.10), i.e., they are also the intersections of
half-planes given by Eq. (3.11) (with d replaced by dp). A noticeable difference is that, with this new
definition, the half planes might not be located between the two corresponding points. As a consequence,
their common intersections may be empty. The ensemble of all power cells is called the power diagram,
and its dual set is the regular triangulation and is obtained by connecting the points xI and xJ of
adjacent power cells Pi and Pj . As some power cells are empty, their associated nodes do not belong to
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d(x, xJ)

xJ
xI

𝑤𝐼

𝑤𝐽

x

d(x, xI)

d(xI, xJ)

Figure 3.2: Limiting case when the squared Euclidian distance between two weighted points (xI , wI) and
(xJ , wJ) is equal to the difference of their weight. In this case, the line delimiting the half plane HIJ (vertical
dashed line), i.e., the locus of equal power distance between (xI , wI) and (xJ , wJ), contains the point xI . Note
that the nodal weights corresponds to the squared radius of the circles (in red) centered on the mesh nodes.

the regular triangulation and are thus ignored. This event can happen if there is a too large mismatch
between the weights and the real distance between nodes. For instance, the half planes equidistant
(using the distance dp) to two weighted nodes (xI , wI) and (xJ , wJ) can be outside the segment joining
these nodes if the absolute value of the difference of their weights is greater than the squared Euclidian
distance between them:

|wI − wJ | > d(xI ,xJ)2 . (3.13)

This can be checked by visualizing the limiting case in which the half plane boundary contains the
node with the smallest weight, as illustrated in Fig. 3.2. In this case, by equalizing the power distances
dp(x,x

I) and dp(x,xJ), one has

dp(x, (x
I , wI)) = dp(x, (x

J , wJ)) (3.14)
⇐⇒

d(x,xI)2 − wI = d(x,xJ)2 − wJ (3.15)
⇐⇒

wJ − wI = d(xI ,xJ)2 , (3.16)

which corresponds to the bound of Eq. (3.13) for the case wJ > wI , and where the last equivalence is
simply obtained by using the relation of Pythagoras:

d(x,xJ)2 = d(x,xI)2 + d(xI ,xJ)2 . (3.17)

At last, it should be emphasized that a weighted node (xI , wI) satisfying Eq. (3.13) with all its
neighbours (xJ , wJ) does not belong to the regular triangulation, as no power cell is associated with it.

3.1.2.2 The non-uniform and the weighted α-shape techniques

In its simplest form, the α-shape technique consists in eliminating from the triangulation all the
triangles (tetrahedra in three dimensions) whose circumscribed circle (sphere) violates the α-shape
criterion,

rc < α , (3.18)

which is similar to Eq. (2.43) without the global variable h used for non-dimensionalization. As
aforementioned, this is a non-local criterion disabling the use of a non-uniform mesh. However, the
criterion can become local if the global length scale h is replaced by the local target mesh size L∗elem of
the element (this target mesh size is rigorously defined in Section 3.2.1):

rc < αL∗elem . (3.19)
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The other approach relies on the regular triangulation and is called the weighted α-shape tech-
nique [25, 41, 42]. The weighted points (xI , wI) of the triangulation can be seen as small circles
(spheres in 3D) centered on xI with a radius

√
wI , as illustrated in Fig. 3.3. The method first consists

in finding the circle (sphere) simultaneously orthogonal to the three circles (four spheres) associated to
the three (four) weighted points of the triangular (tetrahedral) elements of the regular triangulation.
In other words, the center xC and radius r of this circle (sphere) are sought. They are obtained by
solving the system of three (four) equations associated with the weighted nodes (xI , wI) of the triangle
(tetrahedron):

d(xIi , x
C
i )2 = r2 + wI . (3.20)

In a second step, the radius of the circumscribed radius rc is replaced by the new radius4 r in Eq. (3.18),
keeping a global value for α. With this new definition, this technique enables to deal with non-uniform
meshes by adapting the nodal weights to some local characteristic element size L:

w ≈ L2 . (3.21)

The method is elegant but introduces new challenges. The first difficulty lies in defining a convenient
relation between node weights and the (target) element sizes. But the major challenge stems from the
regular triangulation underlying the weighted alpha-shape technique. First, the regular triangulation
must be implemented in the solver. Then, and more importantly, nodes could be automatically elimi-
nated if the condition in Eq. (3.13) were satisfied. The information associated with these nodes would
then be discarded in an uncontrolled manner.

r

𝑤𝑖

Figure 3.3: Illustration of the reference radius used for the weighted α-shape technique (in two dimensions).
Unlike the classical α-shape technique, the radius is not that of the curcumscribed circle, but that of the circle

simultaneously orthogonal to the three weighted points of weights wi.

3.2 Choice and description of the novel method for two-dimensional
triangular meshes

Following the discussion of the different possible approaches, the choices for the novel mesh adaptation
are now rationalized, taking into account the specific aspects of the existing PFEM solver. In particular,
following points should be considered:

• The use of linear shape functions, together with non-uniform meshes, limits the order of
the derivatives that can be accurately computed at the element level. For instance, the first
order derivative is trivially obtained using the slopes of the shape functions, and the second order
derivatives can also be computed considering multiple finite elements, as shown in Appendix B.
The estimation of higher order derivatives would unavoidably involve adjacent elements and lead
to inaccuracies. A simple and fast solution-based mesh adaptation should therefore be based on
first-order, and potentially second-order derivatives.

4Note that if all the weights are set to zero, the circumscribed circle is recovered.
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• The simulated flows are always unsteady because of the Lagrangian formulation. Even for
a flow that would be at steady state in the Eulerian frame of reference, the particles, elements
and nodal variables constantly change. Therefore, it is not suited to use an optimal (in terms of
accuracy) and time consuming mesh-refinement strategy such as the error-based mesh refinement,
because the refinement criteria is evaluated at almost each time step. The use of a simpler and
faster criterion seems more adequate, even if it is not optimal regarding the error distribution.

• The boundary recognition algorithm leads to volume variations ∆Vrem that are not related
to the truncation error coming from the spatial discretization. This feature requires alternative
criteria in order to decrease this other source of errors. Therefore, as multiple criteria should be
used in the present case, a combination of them through an heuristic and isotropic metric-based
formalism seems to be the most appropriate path.

• The presence of (moving) boundaries calls for the use of dynamics geometry-based mesh
refinement near the no-slip boundaries (moving or not), which further motivates the use of a
metric-based formalism.

Regarding the fundamentally unsteady nature of the flows within a Lagrangian formalism, combined
with the need for different criteria that encompass the different sources of errors, an heuristic and
isotropic metric-based formalism has been chosen. It has the advantage of being flexible regarding the
different types of errors to mitigate, while being fast to compute at the element level (as it will be
shown, at most first-order derivatives are used). As the chosen metric is isotropic, it is characterized by
a local target mesh size L∗ (see Eq. (3.9)). The method thus consists first in prescribing a target mesh
size L∗ based on several heuristic criteria, and then approximately enforcing it by adding or removing
nodes in elements whose size differs too much from their target value.

The addition and removal of nodes should remain under the control of the mesh refinement algorithm
rather than that of the boundary recognition algorithm. As discussed in Section 3.1.2, the use of the
weighted α-shape technique together with regular triangulation may remove nodes from the triangulation
in an uncontrolled manner. Moreover, enabling the regular triangulation in the existing PFEM solver
would require a major implementation effort. For these reasons, a boundary detection algorithm based
on a local α-shape technique is here favored.

A last point has to be mentioned about the boundary recognition algorithm. As previously illustrated,
it leads to mass conservation errors in the vicinity of free surfaces, as triangles are created or removed.
This effect is mitigated by increasing locally the spatial resolution where the surface gets more deformed.
However, this is not sufficient as it does not fundamentally change how the boundary recognition works,
which is where the problem of mass conservation originates. The fundamental problem is that each time
the mesh is rebuilt, the boundary recognition proceeds on the cloud of points without any additional
information, and the boundary known at a previous time step is not leveraged to identify the boundary at
the next time step. Quite logically, reusing the information of the boundary location in an appropriate
way should enable to decrease mass conservation errors. Therefore, the tracking of boundary nodes
constitutes, with the non-uniform α-shape technique, the last key ingredient of the method.

To summarize, the method mainly consists of the following four aspects that are described in detail
in Falla et. al [63] and in the next sections:

• The definition of a target mesh size L∗ attached to the nodes that prescribes how the
mesh resolution should be adapted by the addition and removal of nodes. This target value is
calculated based on different heuristic criteria.

• The addition and removal of nodes to approximately enforce the target mesh size.

• The use of a non-uniform α-shape criterion where the parameter h used to obtain the
non-dimensional Eq. (2.43) is replaced by L∗ to get Eq. (3.19).

• The tagging of boundary nodes for locally customizing the boundary detection and the mesh
adaptation algorithms, so as to limit the mass conservation errors.
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3.2.1 Definition of the target mesh size

The local target mesh size L∗ =
√
A∗ is a measure of the desired surface area A∗ of the mesh elements.

Two approaches are combined to define it. First, geometric mesh refinement is based on the absolute
position of the particles in the computational domain and/or on their relative position with respect to
solid surfaces. While this type of criterion is adequate in many cases, the actual location of viscous
layers is not always known a priori. For instance, the trajectory of a buoyant object is a result of the
simulation, so that the position of its wake cannot be easily defined purely geometrically. Therefore,
a solution-based mesh refinement is also considered, which relies on a measure of the local velocity
gradients. In practice, different criteria (geometric or solution-based) can be considered simultaneously.
The actual target mesh size L∗ is thus obtained by combining the target mesh sizes L∗(k) from each
individual criterion k. Unless specified otherwise, a global minimum is used in this work:

L∗ = min
k
L∗(k) . (3.22)

Note that, because the information about elements is lost at each time step when the mesh is discarded,
the local target mesh size L∗ is calculated and stored at each node n. It is also recomputed at each
time step to accommodate for the displacement of the nodes.

3.2.1.1 Geometry-based target mesh size

Viscous layers adjacent to walls are characterized by large velocity gradients. A finer mesh is thus
required close to solid boundaries to accurately capture these gradients. The target mesh size at a
given location can thus be defined as a continuous function L∗(d) of the shortest distance d to solid
walls, whether fixed boundaries or moving bodies. Different analytical functions can be considered.
For instance, L∗(d) could correspond to the smallest mesh size L∗min in some region adjacent to a wall,
then increase linearly with d to the maximum mesh size L∗max over some prescribed distance and finally
remain constant at L∗max further away. The wake region behind a body also typically requires a finer
mesh. If the location of the wake is known beforehand, the target mesh size can be prescribed through
pseudo geometrical entities defined in either an absolute frame of reference or relative to the body, for
instance. Such pseudo-entities could be a rectangular zone or a center line behind the body. Another
option could be to define the target mesh size as an analytical function of both the distance and angle
with respect to the body.

For complex geometries the calculation of the exact minimal distance to a wall is not trivial and
potentially expensive from a computational point of view. In practice it is therefore more convenient
to consider each (pseudo-) geometric entity k separately. This leads to several criteria L∗(k). Note that
each criterion can use different values for L∗min and L∗max. The actual target size can then be defined as
the minimum over the different criteria, according to Eq. (3.22). An example is shown in the top image
of Fig. 3.4 for the simulation of the flow around a fixed cylinder. In this case, the target mesh size is
set based on the distance to the cylinder and a rectangular zone downstream of it.

Additionally, complex boundaries or bodies can be approximated through simpler geometric shapes
(e.g., line, circle, rectangle) to further simplify the definition of the target mesh size. This also provides
the opportunity to implement generic criteria that can be used for different configurations. Nevertheless,
an adaptation for each specific case is usually still required. The complexity also increases with the
number of geometrical elements considered. An additional drawback is that regions of large gradients
sometimes result from the flow dynamics and are thus unknown before the computation.

3.2.1.2 Solution-based target mesh size

To avoid the need for an a priori knowledge of the flow features, it is helpful to combine geometric
criteria with solution-based mesh refinement. While different metrics can be considered, the present
work relies on the Froebenius norm of the local velocity gradient tensor, ||∇u||. The goal is to prescribe
a small mesh size in regions with large velocity gradients, and vice versa.

In the proposed approach, the target mesh size is based on a linear interpolation of a negative power
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Figure 3.4: Non-uniform meshes for the simulation of the flow around a fixed cylinder at ReD = 200. Only
the nodes are shown, and each image corresponds to a specific instant in time after a limit cycle oscillation has
been reached. The first mesh (top) uses only geometrical mesh refinement based on the distances from the
cylinder and from the center line. The second mesh (bottom) also uses this refinement but, in addition,

includes a solution−based refinement where the target mesh size is given by Eq. (3.23) with the parameter
β = 1

3 . The dashed blue lines represent the rectangular area for geometric refinement. Note that for better
visualization of the most refined regions, the point size is twice smaller in the bottom image.

of ||∇u||,

L∗ =L∗min + (L∗max − L∗min)

×max

(
min

(
||∇u||−β − ||∇u||−βmax

||∇u||−βmin − ||∇u||−βmax

, 1

)
, 0

)
(3.23)

where β, ||∇u||min and ||∇u||max are user-defined parameters. The parameter β, usually between zero
and one, controls the rate of increase of the mesh size, while the two other parameters are threshold
values that can be estimated beforehand based on characteristic length and velocity scales of the problem
considered or known solutions of similar problems. The rationale behind Eq. (3.23) is to retrieve a
classical grid stretching for a wall boundary layer, but other functional forms could also be considered.

An example of this technique is shown in the bottom image of Fig. 3.4, where, in addition to the
previously mentioned geometrical refinement, a solution-based refinement is used. In this case, a small
target mesh size is imposed, in accordance with Eq. (3.23), in regions of large gradients such as in the
wake of the cylinder. In particular, a high grid resolution can be seen in and around the von Karman
vortices and shear layers. Such grid refinement allows a more accurate prediction of drag, lift and
Strouhal number, as discussed in more detail in Chapter 4.

In flows where features of interest have widely different levels of velocity gradient magnitude, Eq. (3.23)
might not provide an adequate target mesh size. For instance corner vortices might be much weaker
than other flow features but still important to capture. In this case, it is better to replace ||∇u|| in the
above expression by a normalized measure of the velocity gradient magnitude, e.g.,

||∇̃u|| = ||∇u||
||u−U∞||+ Uε

, (3.24)
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where Uε is a small user-chosen velocity to avoid division by 0, and U∞ is the constant free-stream
velocity. Note that other options can be considered depending on the case of interest.

For problems involving free-surface deformations, a finer mesh is also needed to accurately capture
the dynamics and location of free surfaces. Therefore, we also rely on a solution-based measure related
to the free-surface deformation. In particular, the local target mesh size is prescribed as a linear function
of the free-surface radius of curvature rs to ensure an approximately constant angular mesh size:

L∗ = min
(

max
(πrs
m
,L∗min

)
, L∗max

)
, (3.25)

where m is a user-defined parameter that controls the angular mesh resolution, i.e., the number of
edges over a half-circle. The radius of curvature itself is obtained as the radius of the circle passing
through the corresponding boundary node and its two direct neighbors on the free surface. The target
mesh size of neighbor nodes in the fluid bulk can be prescribed in a second step using the smoothing
algorithm introduced in the next subsection.

Finally, it should be mentioned that such solution-based approaches, or similar ones, can partly
replace and/or complement some of the aforementioned geometric criteria. Equation (3.22) is then
used to prescribe the actual local target mesh size. This is illustrated in Fig. 3.4, where the geometric
criteria are combined with the solution-based refinement approach of Eq. (3.23) to better resolve the
von Karman vortices.

3.2.1.3 Smoothing of the target mesh size

For numerical accuracy of the discretization, but also for applying the α-shape technique locally, it
is important to ensure a certain smoothness of the mesh size. In particular, small and large elements
should not be directly adjacent to each other. This implies that the target mesh size should also be
sufficiently smooth. While rapid variations of L∗ can be easily avoided for geometric criteria, this is less
trivial for solution-based approaches. If variations in space and/or time of velocity gradients are too
rapid, discontinuities in the target mesh size can occur. The refinement of the free surface is another
example because the curvature-based target mesh size can only be prescribed for the boundary nodes,
and not for their direct and more distant neighbors.

A smoothing algorithm is thus subsequently applied to the target mesh size, so as to enforce a
maximum target mesh size ratio pr between two neighbors. More specifically, if the condition

1

pr
≤ L∗m
L∗n
≤ pr (3.26)

is not satisfied for a node n and its neighbor node m, then the larger target mesh size is reduced to
satisfy Eq. (3.26). Starting from nodes with the smallest target mesh size, the neighbors are, if needed,
gradually updated. The process is repeated recursively for all nodes that have been themselves updated.
Note that the complexity of the algorithm is of order N , as the above condition is tested for each mesh
node a finite number of times that depends only on the number of direct neighbour nodes.

This smoothing step also allows refining the mesh around solid boundaries with a complex shape, in
a similar manner as it is done with the curvature-based refinement of the free surface. In this case, the
target mesh size can be imposed on the boundary itself and the smoothing algorithm can be leveraged
to “propagate”, with some progression factor, the target mesh size into the fluid domain.

3.2.1.4 Delaying of the mesh coarsening

After a mesh refinement, it might be sometimes advantageous to delay any potential subsequent
coarsening. This could be to avoid a repeating cycle of node creation and destruction that would
introduce unnecessary numerical dissipation.

Another situation in which delaying mesh coarsening might be required is when the need for a fine
mesh is anticipated but the local target mesh size provided by the refinement criteria is larger than
required. This is for instance the case during the merging of two fluid regions, as illustrated by the
falling drop in Fig. 2.5. In such a case, one of the regions (e.g., the droplet) might be much more
refined than the other (e.g., the liquid bath). As predicted by the α-shape criterion, merging typically
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occurs when the distance between the two regions is of the same order as the mesh size of the coarser
fluid region. Therefore, an anticipatory local mesh refinement around the liquid bath free surface, when
the droplet approaches, allows reducing mass creation. To ensure that the mesh resolution remains
sufficient before the actual merging, despite a larger calculated target mesh size, the coarsening that
would otherwise take place should be delayed for a duration ∆tdelay until the merging process has
started.

This is achieved by assigning to each node a time counter t∗ that is incremented at each time step,
but reset to zero every time the new calculated target mesh size is smaller than the current one. If the
new calculated target mesh size is larger and if t∗ < ∆tdelay, then the current target mesh size at the
node is not updated and its old value is kept, thus preventing a potential coarsening during the time
step. More detail on how the delay time ∆tdelay is actually computed are given later in Section 3.2.3.2.

3.2.2 Addition and removal of nodes

Once a smooth target mesh size has been defined everywhere, it must be enforced up to some tolerance
by adapting the actual mesh. In practice, this is achieved by creating/destroying nodes wherever the
actual mesh size L is outside a user-defined range around its target value.

As explained in the following section, the comparison between target and actual mesh size is usually
performed at the edge or, for boundary elements, at the element level. Because the target mesh size L∗n
is initially defined at the nodes n, we also define a target mesh size L∗elem associated with an element
and L∗edge with an edge using a simple arithmetic average over the corresponding nodal values,

L∗elem =
1

3

∑

nelem

L∗nelem
, (3.27)

L∗edge =
1

2

∑

nedge

L∗nedge
. (3.28)

where nelem and nedge indicate the corresponding nodes of the element and edge, respectively.

3.2.2.1 Adding nodes

In general, new nodes can be added either within elements (Fig. 3.5(a)) or on their edges (Fig. 3.5(b,c)).
In the present algorithm, nodes are only added at the mid-point of selected edges to avoid new elements
that are too obtuse [64] and a too agressive mesh refinement, i.e., a too large increase in nodal density5,
from one time step to the next. Nonetheless, the addition of nodes in the center of elements could in
principle also be considered.

The main idea is to divide elements in the bulk that are too large by a factor of two through the
addition of a new node on only one of their two largest edges (Fig. 3.5(b)), and elements at the boundary

5In 2D, the nodal density equals 1/(2Aelem), where Aelem is the surface area of the element. This notion is explained
in more detail in Section 3.4.1

(a) × 3 (b) × 2 (c) × 4

Figure 3.5: Different strategies to add nodes and corresponding increase of the nodal density: one node added
at the center of the element (left), one node added at the mid-point of a single edge (middle), nodes added at
the mid-point of each edge of an element (right). The new nodes are indicated by red circles and the new

virtual edges by red dashed lines.
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by a factor of four through the addition of new nodes on each of their edges (Fig. 3.5(c)). The special
treatment of boundary elements is dictated by the boundary recognition step. In order to correctly
identify the boundary using the α-shape technique, and thus reduce the mass conservation error, it is
crucial to ensure high-quality boundary elements. This is discussed in more detail in section 3.2.3. It is
also important to emphasize that the new edges (red dashed lines in Fig. 3.5) are only virtual because
the mesh is discarded and a new triangulation is performed right after the node creation/destruction
step).

Concretely, an edge in the bulk is refined by adding a node at its mid-point if the three following
conditions are all satisfied:

• the average area of the two elements sharing this edge is larger than the threshold value:

1

2
(Aelem1 +Aelem2) >

4

3
L∗2edge , (3.29)

• the edge is not the shortest edge of any of the two elements sharing this edge, and

• the edge has not been previously tagged to prevent its refinement.

The addition of a node on an edge impacts the two adjacent elements sharing this edge. To avoid the
further division of these elements through the potential addition of new nodes on their other edges,
these other edges are then tagged. This tag prevents their refinement, thereby ensuring that elements
in the bulk are at most divided by two. Additionally, if the edge that is refined belongs to a boundary
element (i.e., an element with an edge on the boundary), this boundary element is automatically refined
by adding nodes on all its edges irrespective of its size (Fig. 3.5(c)). The rationale is to ensure that
the shape of the boundary elements is as optimal as possible to improve the boundary detection in the
subsequent step, as is illustrated and explained in Fig. 3.6 (see also Section 3.2.3)

On the other hand, if the edge is on the boundary and if the area of the associated boundary element
is larger than the threshold value,

Aelem >
4

3
L∗2elem , (3.30)

then this boundary element is divided by four. This is achieved by adding a new node on each of the
edges of that element (Fig. 3.5(c)). Furthermore, if this boundary element has a direct neighbor (i.e.,
sharing a common edge) that is also a boundary element (i.e., with an edge on the boundary), this
neighbor element is also refined irrespective of its size.

The algorithm is illustrated in Fig. 3.7. It should be noted that, with this algorithm, the refinement
has some dependence on the order in which the edges are considered. This is however not deemed to be
a problem, especially since there are anyway many different strategies to refine the mesh. The threshold
coefficient 4/3 in Eqs. (3.29) and (3.30) is chosen so that, on average, the elements that are refined have
afterwards an area larger than 2

3L
∗2 in the bulk and 1

3L
∗2 at the boundaries, and the unrefined elements

an area smaller than 4
3L
∗2. Increasing this coefficient reduces the number of nodes added but induces

a larger discrepancy between actual and target mesh size, and conversely.
Once nodes have been added, the associated nodal values of physical quantities (e.g., velocity, pres-

sure, etc.) must be prescribed. This initialization uses the interpolation shape function of the finite
element discretization. In practice, it implies that each variable is simply obtained using the mean value
of the corresponding variable at the nodes of the refined edge. This ensures that the local fields remain
unchanged during the process.
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Figure 3.6: Motivation for the special treatment of boundary elements when a non-boundary node (node E) is
added in the middle of an immersed edges ([AC]). If nodes are not added on the other edges of the element

[ABC] (diagrams a and b), the triangulation may keep spurious triangles [AED] and [EBD] because of the new
interior node E (as explained in Section 3.2.3, the criteria to remove triangles containing a non-boundary nodes
are not all easily satisfied). Therefore, the algorithm also adds nodes F and G, where F is on the boundary

(diagram c and d). This avoids spurious creation of mass by correctly removing triangles [AFD] and [FBD], as
they have all their nodes on a boundary (as also explained in Section 3.2.3, the criteria to remove triangles

containing only boundary nodes are more easily satisfied). The original boundary of the fluid is represented by
the thick green line.
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Figure 3.7: Algorithm for node addition. The edge considered is indicated by the bold dark blue line. The
dark blue dots represent boundary nodes while the red dots and the red dashed lines are respectively the new

nodes and the new virtual edges if the edge is refined.
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3.2.2.2 Removing nodes

For the same reason as mentioned above, node removal is implemented at boundaries differently than
in the bulk. In the bulk, the main idea is to “collapse” an element that is too small into a single node
at its center. In other words, the nodes of a triangle whose area is smaller than the threshold,

Aelem < γL∗2elem , (3.31)

are deleted and a new node at the element center is created. The new (virtual) elements have thus all
more or less the same size and are larger than the original elements, which ensures a smoother transition
between coarse and fine mesh.

This new node is assigned nodal values corresponding to the average over the three deleted nodes.
Deleting the nodes of the element has a direct impact on its neighbors that share these nodes. More
specifically, it is important to realize that collapsing all elements of a mesh region would increase the
nodal density rather than decrease it6. Therefore, the direct neighbor elements and their own direct
neighbors are prevented to be themselves collapsed, irrespective of their size. An example is shown in
Fig. 3.8 where the direct neighbors of the collapsed element 10 and their respective neighbors, indicated
by green circles, cannot be collapsed. It can be shown that, for a uniform mesh of equilateral triangles,
this coarsening process corresponds to increasing the area of the elements by a factor 4/3.
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Figure 3.8: Illustration of the coarsening process of a mesh region in the bulk, i.e., without boundary
elements, where the triangular elements are numbered from 1 to 15. (Left) If element 10 is collapsed, then all
its neighbors and their respective neighbors (green circles) are tagged to prevent them from being collapsed. On
the other hand, elements 2, 6 and 14 can be collapsed. Note that collapsing all elements would not decrease the
nodal density. (Right) Resulting nodes and virtual mesh after coarsening where the red dots indicate the new
nodes, the black crosses the nodes that have been deleted and the red dashed lines the corresponding new

virtual triangulation.

The special coarsening algorithm at the boundary is applied to all elements with at least one node
(and not only an edge as for node addition) on the boundary. First, the actual element area Aelem used
in the criterion for coarsening, Eq. (3.31), is replaced by 1

2h
2
min,

1

2
h2

min < γL∗2elem , (3.32)

where hmin is the length of the smallest edge of the element. This is to avoid too skewed boundary
elements, as illustrated in Fig. 3.9. Then, the smallest edge of the element rather than the element itself
is collapsed. More specifically, if either both nodes of the smallest edge are on the boundary or none of
them is, then the two nodes are deleted and replaced by a single node at their mid-point. The average
value of the physical quantities at the two deleted nodes is assigned to the new node. If the shortest
edge involves a boundary node and an interior node, then this interior node is simply deleted. This
minimizes the impact of the coarsening on the shape of the boundary.

6discussed in Section 3.4.1, a triangular mesh has more or less twice more elements than nodes so that collapsing each
element into a node at its center would approximately double the number of nodes, and thus the nodal density.
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Figure 3.9: Illustration of a squeezed boundary (e.g., free-slip boundary) where the boundary nodes are
represented by the dark blue dots and the boundary edges by the thick dark blue lines. If the free surface is
squeezed, boundary elements are compressed along, and extended perpendicularly to, the free surface, as

indicated by the red arrows. This would lead to highly skewed elements with a surface area Aelem sufficiently
large that the coarsening criterion, Eq. (3.31), is not satisfied. The modified criterion, Eq. (3.32), reduces the

threshold for coarsening and thus avoids that boundary elements become too skewed.

The choice of the threshold coefficient γ in Eq. (3.31) is important to avoid a continuously alternating
mesh refinement and coarsening in the same region. In particular, if γ is too large, new nodes created at
the previous iteration might be deleted because their associated element is now too small, or conversely,
elements that have been coarsened might be refined at the next time step. Moreover, as the coarsening
step averages locally the solution, it introduces unwanted numerical diffusion that should be minimized.
It is thus suggested to impose an upper bound, γ < 1/2, such that the coarsened mesh in the bulk is, on
average, smaller than 2

3L
∗2 to avoid overlapping of refined and coarsened elements in the same region.

In practice the parameter γ is chosen between 1/3 and 1/2 in the bulk. Reducing its value leads to more
variability in the element size, potentially slightly more deformed elements but fewer node eliminations,
and conversely. At boundaries the increase of nodal density, if particles are added, is twice that in the
bulk. Therefore, the parameter γ in Eq. (3.31) is there divided by two and a smooth transition between
γ/2 at the boundary and γ in the bulk is imposed over a few cells.

The impact of the threshold value γ on mesh quality and possible numerical dissipation is further
illustrated through a specific example. Mesh quality is quantified by the triangle distortion parameter
λ [1],

λ =
√

3
rc
hmin

, (3.33)

where rc is the radius of the circumscribed circle of the element considered and hmin its shortest edge.
With this definition, λ is equal to one for an equilateral triangle and becomes large for badly-shaped
elements (high aspect ratio). On the other hand, because numerical dissipation induced by node deletion
is challenging to calculate, it is here assessed by monitoring the number of nodes added and deleted.

The example considered is that of a cylinder of diameter D rising towards and crossing a free surface
at constant velocity U . This case is analyzed in depth in Chapter 5. The computational domain is
kept relatively small to focus on the region where mesh adaptation takes place (see Fig. 3.10). The
main parameters are summarized in Table 3.1. Mesh adaptation is performed using the novel algorithm
based on two geometrical and one solution-based criteria. The first criterion prescribes L∗(1) to increase
from L∗min at the cylinder surface to L∗max/5 one diameter or more away. The second criterion imposes
L∗(2) = L∗max/5 within a distance D/2 of the vertical centerline, L∗(2) = L∗max for nodes further than
5D away from this centerline and a linear increase in-between. Finally, the third criterion is based on
Eq. (3.23) with β = 1/3, ||∇u||min = 0.15 and ||∇u||max = 4. The actual target mesh size is finally
obtained as the minimum over all three criteria, as given by Eq. (3.22). Examples of the mesh at
t = 0.08 (the initial mesh is not shown because the effect of the geometrical refinement slightly modifies
the mesh within a few time steps) and t = 2.5 (during the interface crossing) are shown in Fig. 3.11.
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Figure 3.10: Geometrical setup for the evaluation of the
influence of the threshold value γ used for node deletion. The

value of the different parameters is given in Table 3.1.

H 8
W 5.5
d 2.5
r = g−1 1
Re = ν−1 50
L∗min 0.02
L∗max 0.66
∆t 0.02
β 1/3
||∇u||min 0.15
||∇u||max 4

Table 3.1: Simulation parameters for the
evaluation of the influence of the threshold

value γ used for node deletion. All
quantities are non-dimensionalized using
the cylinder velocity U and diameter D.
The geometrical parameters are defined in

Fig. 3.10.

Figure 3.11: Illustration of the mesh at t=0.08 (left) and at t=2.5 (right) for the case where γ = 7/18. The
geometrical refinement is always visible around the center line and around the cylinder (left and right) while

the effect of the solution-based refinement is later visible in the wake of the cylinder (right).

The evolution of the average and standard deviation of the triangle distortion parameter λ along the
simulation is shown for different values of the node deletion threshold parameter γ in Fig. 3.12. In the
figure, y∗ is the vertical position of the cylinder center and y∗ = 0 corresponds to the initial free-surface
vertical position. One can observe that the mesh element quality is on average good. Additionally, after
an initial rapid increase of λ following the impulsive start of the cylinder, the distortion parameter seems
to slowly and non-monotoneously increase until the cylinder has fully emerged, and then to decrease.
More importantly, and as expected, the mesh distortion is found to be larger for smaller values of γ, as
nodes are less often eliminated (and thus also new nodes are less frequently added). This latter point
is clearly demonstrated in Fig. 3.13, which shows the percentage of nodes that are deleted (left) and
added (right) along the simulation. Overall, one can thus expect more numerical dissipation (more nodes
deleted) but a slightly better mesh quality (lower mesh distortion) with a large value of the threshold
γ, and conversely, such that a trade-off has to be made.
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Figure 3.12: Average (left) and standard deviation (right) of the mesh distortion parameter as a function of
the position y∗ of the cylinder center (y∗ = 0 corresponds to the initial free-surface position) for different values
of the node deletion threshold γ. The statistics are computed over all mesh elements and are filtered with a

running average over ten time steps to reduce the noise.
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Figure 3.13: Fraction of nodes deleted (left) and added (right) as a function of the position y∗ of the cylinder
center (y∗ = 0 corresponds to the initial free-surface position) for different values of the node deletion threshold
γ. The statistics are computed over all mesh elements and are filtered with a running average over ten time

steps to reduce the noise.

3.2.3 Boundary detection algorithm

Once the node addition/destruction step has been completed, the old mesh can be discarded and a
new Delaunay triangulation is performed. Because the full convex hull of the domain is triangulated,
mesh elements that do not belong to the fluid must be discarded.

This boundary recognition step relies both on boundary tracking and a local α-shape technique.
Concretely, nodes belonging to the boundary at the previous time step are tagged and the global
characteristic length scale h in Eq. (2.43) is replaced by the local target mesh size. In particular, the
α-criterion is modified to

rc < αL∗elem , (3.34)

where the user-defined constant α should take a value between 1.2 and 1.8 depending on the case. Note
that, because of the difference in the definition of h and L∗elem, the typical value α = 1.2 in Eq. (2.43)
corresponds approximately to α = 1.8 in Eq. (3.34) for an equilateral triangle. However, the boundary
tracking allows using a much lower value of α, so that in practice α = 1.2 in Eq. (3.34) provides good
results. The influence of α is further discussed in Chapter 4.
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As already illustrated in Figs. 2.5 and 2.6, the mass conservation error is directly linked to the
boundary identification algorithm. To minimize this error, three important aspects must be ensured:
1) a sufficiently refined mesh in the boundary vicinity, 2) well-shaped elements, and 3) the knowledge
of which nodes belonged to the boundary prior to remeshing (boundary tracking). These requirements
explain the aforementioned special treatment of boundary elements during node addition/destruction.

Because elements with at most one node on the boundary can be safely considered as being part
of the fluid domain, the α-shape criterion is only applied to elements with two or three nodes tagged
during the previous time step as belonging to the boundary. This reduces the computational cost and
simultaneously prevents the unphysical destruction of fluid elements in the fluid domain.

3.2.3.1 Keeping or discarding boundary elements

An element with two nodes on the boundary is only eliminated if the following three conditions are
all met:

• the local α-criterion, Eq. (3.34), is violated,

• the element edge on the boundary is the longest edge of its element (lb.e. = lmax), and

• the element area is smaller than a minimum value imposed by the global minimal target mesh
size: Aelem < 1

2L
∗2
min.

The third requirement ensures that the element is removed from the triangulation only if the associated
error on mass conservation is of the order of the finest mesh resolution. On the other hand, if only the
first two conditions are satisfied, the boundary is likely locally stretched. In this case, the node that is
not on the boundary is tagged to be removed and the boundary edge is tagged to be refined at the next
time step, as illustrated in Fig. 3.14a. The motivation for this refinement of the boundary is explained
and illustrated in Fig. 3.15.

𝑟𝑐 > α𝐿elem
∗

(a) (b)

Figure 3.14: Illustration of two different situations encountered during the application of the boundary
recognition algorithm. (a) Addition of a new node (red dot) at the mid-point of the longest edge of an obtuse

element when this edge (thick dark blue line) is located on the boundary and the corresponding element
violates the α-shape criterion, Eq. (3.34). The black cross indicates the node that is tagged for removal. (b)

Illustration of mass creation when a free surface folds on itself. At the previous time iteration, the blue shaded
triangle had been discarded by the boundary recognition algorithm and has thus three nodes on the boundary
(dark blue dots). After remeshing, this element would be kept if it satisfies the α-shape criterion. To minimize

the resulting mass creation, the element is only kept if, additionally, it is of the same size as its direct
neighbors. The dark blue dashed line indicates in this case the new boundary edge.

Elements with three nodes on the boundary should a priori be empty elements and thus discarded.
Notable exceptions are elements at domain “corners” (see Fig. 2.6) and elements in a thin film whose
thickness corresponds to the element size (i.e., only one element thick). Such elements also play a key
role during the merging phase of two fluid regions, as already shown in Fig. 2.5. They are thus discarded
of the mesh as soon as one of the following two conditions is satisfied:

• the local α-criterion, Eq. (3.34), is violated, or
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Figure 3.15: Motivation for the refinement of boundary edges when a non-boundary node (node C) closely
approaches the free surface. If nothing is done (diagrams a and b), the triangulation finally leads to the creation
of triangles [ACD] and [CBD]. To avoid the associated spurious mass creation (diagrams c and d), at earlier

time when the triangulation still includes triangle [ABC], the interior node C is replaced by the boundary node
C’, which enables to correctly remove triangles [AC’D] and [C’BD], as both have all their nodes on a boundary.

The original boundary of the fluid is represented by the thick green line.

• their area is significantly larger than that of one of their direct neighbors. In practice, this condition
is expressed as

Aelem > 2
(

min
n

(L∗n)
)2

, (3.35)

where the index n corresponds to the three nodes of the element and the factor 2 has been chosen
arbitrarily to ensure that the element size is sufficiently different from that of the neighbors.

The purpose of this second condition is to minimize the spurious creation of mass, as illustrated in
Fig. 3.14b for a free surface folding on itself. A new fluid element is only created if its size is comparable
to that of its smallest neighbor. Note that, in practice, the curvature-based refinement of the free surface
ensures that this new element has a size of the order of the global minimum mesh size.

The merging of two boundaries with a significant difference in their corresponding mesh resolution
is another example to illustrate the use for this second condition, as shown in Fig. 3.16. If a significant
difference is identified among the target mesh sizes L∗n at the nodes of the element connecting the
two boundaries, this element is discarded and marked as potential "collision element”. Additionally,
the surface with the coarser mesh is imposed a new target mesh size that matches the resolution of
the surface with the finer mesh, and this new target mesh size is propagated into the bulk through
smoothing, as explained in more detail in the next section.

Once all the elements that are considered non-fluid elements have been removed, the new boundary
can be identified. In particular, all the nodes that define edges belonging to a single element are tagged as
boundary nodes for the next time iteration. The overall algorithm for boundary detection is summarized
in Fig. 3.17

39



3.2.3.2 Collision anticipation algorithm and local delaying of mesh coarsening

Once all “collision elements” have been identified, the new target mesh size of these elements, corre-
sponding to the mesh size of the more resolved of the two merging surfaces, is propagated gradually from
node to node through smoothing (see Section 3.2.1.3) in two steps: a first smoothing is only applied to
free-surface nodes while another smoothing is subsequently applied to propagate the new free-surface
target mesh size through the bulk. As already mentioned in Section 3.2.1.4, this way of imposing the
target mesh size possibly conflicts with the minimum target mesh size prescribed by the geometry and
solution-based criteria (see Eq. (3.22)). To avoid a direct coarsening of the newly refined surface region
at the next time step, any possible mesh coarsening in this region is delayed until collision occurs, as
described in Section 3.2.1.4. The delay time ∆Tdelay is thus defined as the time until collision.

The time until collision, ∆Tc, is estimated from the relative position and velocity of the two surfaces
about to merge. For instance, consider a potential “collision element” with one node s on the finer
surface and two nodes S1 and S2 on the coarser surface. The relative position, xrel,s, and velocity, vrel,s,
of node s with respect to the edge defined by nodes S1 and S2 are given by

xrel,s = xs −
1

2
(xS1 + xS2) , (3.36)

vrel,s = vs −
1

2
(vS1 + vS2) , (3.37)

(3.38)

and the collision angle is

θ = arccos

( |vrel,s · L|
||vrel|| ||L||

)
, (3.39)

where L is the vector connecting the two nodes S1 and S2, i.e., along the surface edge (see Fig. 3.18a).
Two cases can be considered. If the collision angle θ > 15◦, then the collision takes place at relatively

high incidence, and the time until collision can be estimated as

∆tc ≈ −
xrel,s · xrel,s

vrel,s · xrel,s
. (3.40)

This time is imposed as coarsening time delay, ∆tdelay, for all surface nodes whose target mesh size
has been decreased because of this potential collision.

In case of a low incidence collision (see Fig. 3.18b), the collision is likely to take place at surface
elements further away (more left in Fig. 3.18b) from the “collision element” considered. A varying time
to collision is thus used for the different surface nodes i marked for refinement,

∆tc,i =
xrel,i · xrel,i

vrel,s · xrel,i
, (3.41)

where
xrel,i = xi −

1

2
(xS1 + xS2) , (3.42)

such that coarsening is delayed longer for nodes closer to the expected collision point.
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Without contact detection algorithm

With contact detection algorithm

Figure 3.16: Merging of two fluid regions without (a,b) and with (c,d) merging detection algorithm. (a)
When the more refined region is sufficiently close to the other boundary, the connecting element (red dashed
lines) is not discarded by the α-shape criterion, leading to significant mass creation. Considering the second
condition based on Eq. (3.35) eliminates this connecting element from the fluid region and, thus, prevents this
artificial mass creation. (b) However, when the more refined region becomes closer to the coarse boundary,

Delaunay triangulation might yield a mesh with a different topology, e.g., with two elements (red dashed lines)
connecting the two fluid regions. In this case, it is unclear whether these two elements should be kept or

discarded. Moreover, in both cases the error in mass conservation is of the same order as the size of the coarser
mesh. (c) Refining the coarser boundary and its neighborhood after discarding the connecting element (red
dashed lines) delays the merging of the two fluid regions. (d) Finally, delaying the coarsening of the newly
refined boundary region ensures that the merging takes only place when the two boundaries are within a

distance of the order of the minimum mesh size and, thereby, significantly reduces the mass conservation error.
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Figure 3.17: Algorithm for boundary recognition combining a local α-shape criterion and boundary tracking.
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Figure 3.18: Definition of the key quantities for the estimation of the time until collision in the collision
anticipation algorithm. Expected collision at (a) low and (b) high incidence between a surface with a fine mesh

(top) and one with an initially coarser mesh (bottom).
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3.3 Main guidelines for CFD simulations with the PFEM

In order to minimize the different sources of numerical errors, some guidelines for the use of the
PFEM in the context of CFD simulations are given. Numerical errors mainly stem from the space and
time discretization, and thus directly depend on the mesh, and in particular its resolution, and on the
time step size. More importantly, the fact that the mesh is subjected to distortion because of nodal
displacements has repercussions on both the choice of the spatial resolution and time step size, and is
probably the most determinant aspect for these choices.

Choice of the mesh resolution

For CFD simulations, the resolution should be high in regions of high gradients such that the nodal
values do not vary too much from one node to another. Intuitively, there should be enough linear finite
elements in a region of fluid such that the exact local velocity and pressure fields are well captured
by adjacent linear regions. In that regard, the critical part of a fluid flow consists in boundary layers
next to walls, which are known to be thin for usual value of the viscosity, such that the velocity is
rapidly varying from 0 (or the wall velocity for a moving body) to U (the value of the velocity outside
the boundary layer, of the order of some characteristic velocity scale of the problem). Moreover, the
velocity profile is not linear in that region, and the element resolution should therefore be smaller than
the boundary layer thickness, such that several mesh elements are used to represent the boundary layer.

It is well known that for a laminar boundary layer at a distance x from the stagnation point, the
boundary layer thickness δ(x) scales as

δ(x) ∼ x√
Rex

with Rex =
Ux

ν
, (3.43)

ν being the fluid kinematic viscosity. For an estimation of a characteristic size of the boundary layer
around a cylinder of radius a, the following scaling is simply obtained by replacing x by a in Eq. (3.43)7:

δ

a
=

1√
ReD/2

. (3.44)

In practice, the required resolution at the cylinder surface should be determined rigorously using a
mesh convergence analysis, but the proposed scaling helps defining a range of element sizes on which
this analysis should be performed. Moreover, several elements are required along the boundary layer
thickness in order to get accurate results, such that the minimal mesh size should be smaller than the
scaling of Eq. (3.44). As an initial guess, the following minimal mesh size at the cylinder surface is
proposed:

L∗min

a
=

1

4
√
ReD/2

. (3.45)

Based on this initial guess, a mesh convergence analysis for the case of a cylinder rising toward a free
surface at constant velocity is given in Chapter 5.

Choice of the time step
Two main issues should be considered for the choice of the time step. First, the magnitude of the mesh
distortion directly depends on the time step. Secondly, the latter has also an impact on the accuracy of
the time integration.

Maximum time step ∆tmax

The advantage of a Lagrangian formalism over an Eulerian one is the absence of convective terms,
well known to be responsible for a time step limitation, called the CFL (Courant–Friedrichs–Lewy)
condition, for stable explicit time integration. The condition can be understood as a limit on the travel

7In the literature, the Reynolds number definition for a cylinder commonly involves its diameter D. Therefore Rea is
simply rewritten ReD/2.
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speed of information across the mesh, which cannot exceed the physical convective times, and can be
written in a simplified way as

∆t < min
x

(
L(x)

u(x)

)
, (3.46)

where L(x) and u(x) are respectively a measure of the cell size and magnitude of the velocity at location
x.

Within a Lagrangian formalism, such a limitation also exists because the mesh deformation occurring
during a single time step should remain limited. On the one hand, the symmetric part of the velocity
gradient tensor is a measure of the rate of element deformation (even for a perfect time integration).
On the other hand, the anti-symmetric part of the velocity gradient tensor is a measure of the element
rotation speed. Such rotation also results in some indirect elements distortion inherent to the finite
accuracy of the time integration (first order backward Euler in the present case). Therefore, a char-
acteristic deformation time can be defined as the inverse of the norm of the overall velocity gradient
(deformation rate + rotation speed). The time step ∆t should be lower than this upper bound in order
to avoid too important mesh distortion during a time step:

∆t < min
x

(
1

||∇u||(x)

)
, (3.47)

where ∇u is the velocity gradient tensor at location x.
With no-slip boundary conditions, the gradients are typically the largest inside the boundary layers,

in the region directly adjacent to the wall, as illustrated in Fig. 3.19. There, the norm of the velocity
gradient matrix is approximately

||∇u||wall '
∂u

∂n

∣∣∣∣
wall

(3.48)

where ∂u
∂n

∣∣
wall

is the wall-normal derivative of the tangential component of the velocity.
At that location, assuming the boundary layer to be well resolved, the velocity gradient can be

approximated by
∂u

∂n

∣∣∣∣
wall

≈ uc
L∗min

(3.49)

where uc is the tangential component of the velocity of the closest node to the wall and L∗min is
approximately its distance from it.

In practice, it is proposed to limit the time step according to

∆t <
L∗min

U
<
L∗min

uc
, (3.50)

where U is the velocity outside the boundary layer (as illustrated in Fig. 3.19). This provides a
conservative (more stringent) criterion than

∆t <
L∗min

uc
, (3.51)

and avoids computing uc, which may depend on different a priori unknown quantities, such as boundary
layer velocity profile and thickness. Moreover, for problems involving curved no-slip boundaries, U is
chosen as a reference velocity of the problem, for instance the relative velocity of a moving body
(cylinder/sphere) with respect to the surrounding fluid. Note that, because of the particular form of
the norm of the velocity gradient near the walls, the condition on the time step (Eq. (3.50)) closely
resembles that of the classical CFL condition used for Eulerian time integration (Eq. (3.46)).

Time discretization error

The second issue is related to the error coming from the time integration, inherent to the time dis-
cretization scheme. In that regard, the time step should be sufficiently small to capture rapidly varying
features of the flow, which can be estimated based on physical considerations but should be verified
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Figure 3.19: Illustration of the bound on the time step size resulting from the presence of a boundary layer on
a flat wall. At the beginning of the time step (time t), the mesh elements are well shaped inside the boundary
layer, assuming that a Delaunay triangulation has just been performed a the end of the previous time step. At
the end of the time step (time t+ ∆t), the mesh elements inside the boundary layer are significantly deformed,

especially those directly adjacent to the wall.

using time step convergence analysis. It is particularly crucial in the present case since the backward
Euler scheme is only first order accurate in time, and is subjected to much numerical dissipation when
larger time steps are used. In practice, however, it can be shown that the time step limit due to the mesh
distortion, as introduced above, is a good starting point to perform a time step convergence analysis
(see Chapter 5). Finally, it should also be mentioned that too small time steps may lead to spurious
pressure oscillations arising from the remeshing procedure, as pointed out by Cerquaglia [65].

Mass conservation error

A particular case of time discretization error is that associated with mass conservation. Even if the
present work mainly focuses on the reduction of the mass conservation error caused by the remeshing
(i.e., stemming from the boundary recognition step of the remeshing), it is important to also consider
the error in mass conservation linked to the numerical time integration.

For simplicity, only the backward Euler time integration of the position and continuity equations at
time n+1 are here considered (a more complete analysis is given in Appendix C):

(∇ · u)n+1 = 0 , (3.52)
xn+1 − xn

∆t
= un+1 . (3.53)

One can consider Eqs. (3.52-3.53) for a triangular element, whose velocity is taken in a non-rotating
frame of reference attached to one of the nodes, as illustrated in Fig. 3.20. The nodal positions and

𝒖1
𝑛+1

𝒖2
𝑛+1

𝒙1
𝑛+1

𝒙2
𝑛+1

Figure 3.20: Deformation of a triangular element during a single time step of a backward Euler time
integration. The two red vectors are the velocities of two nodes in the (non-rotating) system of reference fixed
with the third node (green). The dashed lines represent the triangle before deformation, at time tn = −∆t.
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velocities at time tn+1 are thus:

xn+1
0 = (0, 0) , un+1

0 = (0, 0) , (3.54)

xn+1
1 = (xn+1

1 , yn+1
1 ) , un+1

1 = (un+1
1 , vn+1

1 ) , (3.55)

xn+1
2 = (xn+1

2 , yn+1
2 ) , un+1

2 = (un+1
2 , vn+1

2 ) , (3.56)

For this linear finite element, the two derivatives ∂u
∂x

∣∣n+1 and ∂v
∂y

∣∣∣
n+1

can be computed as

∂u

∂x

∣∣∣∣
n+1

=
un+1

1 yn+1
2 − un+1

2 yn+1
1

xn+1
1 yn+1

2 − xn+1
2 yn+1

1

, (3.57)

∂v

∂y

∣∣∣∣
n+1

=
vn+1

2 xn+1
1 − vn+1

1 xn+1
2

xn+1
1 yn+1

2 − xn+1
2 yn+1

1

, (3.58)

which gives, for the divergence-free equation:

(∇ · u)n+1 = 0⇐⇒ ∂u

∂x

∣∣∣∣
n+1

+
∂v

∂y

∣∣∣∣
n+1

= 0⇐⇒ un+1
1 yn+1

2 + xn+1
1 vn+1

2 − un+1
2 yn+1

1 − xn+1
2 vn+1

1 = 0 .

(3.59)
Now, taking the origin of time t = tn+1 = 0, the times between tn and tn+1 correspond to negative
values of t, and the relative positions of nodes 1 and 2 with respect to node 0 are, according to Eq. (3.53),
given by

x1(t) = (xn+1
1 + un+1

1 t, yn+1
1 + vn+1

1 t) for −∆t < t < 0 ,

x2(t) = (xn+1
2 + un+1

2 t, yn+1
2 + vn+1

2 t) for −∆t < t < 0 .

The element area at a time t ∈ [−∆t, 0] is thus given by (assuming the non-zero component of x1(t)×
x2(t) is positive)

A(t) =
1

2
||x1(t)× x2(t)|| = 1

2

[
(xn+1

1 + un+1
1 t)(yn+1

2 + vn+1
2 t)− (xn+1

2 + un+1
2 t)(yn+1

1 + vn+1
1 t)

]
.

(3.60)
Taking the derivative of that expression with respect to time leads to

∂A

∂t
(t) =

1

2
[un+1

1 (yn+1
2 + vn+1

2 t) + vn+1
2 (xn+1

1 + un+1
1 t)− un+1

2 (yn+1
1 + vn+1

1 t)− vn+1
1 (xn+1

2 + un+1
2 t)] .

(3.61)
Then imposing this to be 0 at t = 0 (i.e., at time step n+ 1) yields

∂A

∂t

∣∣∣∣
t=0

= 0⇐⇒ un+1
1 yn+1

2 + xn+1
1 vn+1

2 − un+1
2 yn+1

1 − xn+1
2 vn+1

1 = 0 , (3.62)

which is the same expression as the divergence-free condition given by Eq. (3.59). As a consequence,
the area of the element does not vary much at the end of a time step (close to t = 0) but varies strongly
at the beginning of the time step (i.e., for t close to −∆t). This can be observed more precisely by
injecting the result of Eq. (3.59) into Eq. (3.61),

∂A

∂t
(t) = (un+1

1 vn+1
2 − un+1

2 vn+1
1 ) t , (3.63)

which only vanishes when the relative velocities un+1
1 and un+1

2 are parallel to each other. The total
error on the area between time t = −∆t and t = 0 is finally given by

∆A =

∫ 0

−∆t

(
un+1

1 vn+1
2 − un+1

2 vn+1
1

)
t dt = −

(
un+1

1 vn+1
2 − un+1

2 vn+1
1

) ∆t2

2
(3.64)

and the scheme is therefore second order accurate in terms of mass conservation.8
8Despite the second order accuracy, and considering the time step to scale as L∗min/U and the area of the smallest

element as L∗2min, the relative area variation ∆A/A near the no-slip boundary conditions may be consequent because of
large mesh distortion (i.e., the term L∗min vanishes in the local expression of ∆A/A). However, at that location the velocity
is almost parallel to the wall, and therefore, the two velocities u1 and u2 are also almost parallel to each other. This
means that the factor in front of ∆t2/2 in Eq.3.64 is small.
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Figure 3.21: Particular case of an infinitesimal triangle (left) and tetrahedron (right) rectangle at the
reference node (green). At the infinitesimal level, velocities (red vectors) of the other nodes can be expressed
with the velocity gradients. The relative position of these nodes is respectively expressed by infinitesimal

multiples of the orthogonal axes in the global Cartesian frame of reference.

Furthermore, this is further compounded by the stabilization term added to the incompressibility
constraint that also impacts the mass conservation, lowering the accuracy to first order, as briefly
explained in Appendix C.

Link with velocity gradient tensor

The above demonstration considered the specific case of linear triangular elements, i.e., a specific
space discretization. But even with a perfect space discretization, the backward Euler scheme is sub-
jected to a mass conservation error. This error is associated with the residual divergence of the mo-
mentum equation (as shown in Appendix C) and with the invariants of the velocity gradient tensor. To
show this latter relation, we can consider a particular infinitesimal triangle (tetrahedron in 3D) which
is rectangle at the node x0, with each adjacent edge parallel to one of the frame axes, as illustrated in
Fig. 3.21.9 The positions and velocities relative to this node x0 are

xn+1
0 = (0, 0) , un+1

0 = (0, 0) ,

xn+1
1 = (dx, 0) = exdx , un+1

1 =

(
∂u

∂x

∣∣∣∣
n+1

,
∂v

∂x

∣∣∣∣
n+1
)
dx ,
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2 = (0, dy) = eydy , un+1

2 =

(
∂u

∂y

∣∣∣∣
n+1

,
∂v

∂y

∣∣∣∣
n+1
)
dy ,

for a triangle, u,v being the respective velocity components along the directions x-y, and

xn+1
0 = (0, 0, 0) , un+1

0 = (0, 0, 0) ,

xn+1
1 = (dx, 0, 0) = exdx , un+1

1 =
∂u

∂x

∣∣∣∣
n+1

dx =

(
∂u

∂x

∣∣∣∣
n+1

,
∂v

∂x

∣∣∣∣
n+1

,
∂w

∂x

∣∣∣∣
n+1
)
dx ,

xn+1
2 = (0, dy, 0) = eydy , un+1

2 =
∂u

∂y

∣∣∣∣
n+1

dy =

(
∂u

∂y

∣∣∣∣
n+1

,
∂v

∂y

∣∣∣∣
n+1

,
∂w

∂y
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n+1
)
dy ,

xn+1
2 = (0, 0, dz) = ezdz , un+1

3 =
∂u

∂z

∣∣∣∣
n+1

dz =

(
∂u

∂z

∣∣∣∣
n+1

,
∂v

∂z

∣∣∣∣
n+1

,
∂w

∂z

∣∣∣∣
n+1
)
dz ,

for a tetrahedron, w being the third velocity component along the third direction z. The area A(t) of
this triangle and the volume V (t) of this tetrahedron, for time t|tn = −∆t < t < tn+1 = 0, are given

9This simplifies the derivation of the mass conservation error, although it could have been obtained from an arbitrary
infinitesimal triangle/tetrahedron.
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by the following expressions

A(t) =
1

2
det
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,

(3.65)

V (t) =
1

6
det

(
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= −dx dy dz t
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6
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t
I−∇un+1

)
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(3.66)

where det is the determinant. One can recognize the characteristic determinant of the opposite of
the velocity gradient tensor, −∇un+1, on the right-hand side of both equations (As a reminder, the
characteristic polynomial of a matrix A has the form det(A − λI). Using the invariants of −∇un+1,
this can be rewritten in terms of the characteristic polynomial,

A(t) =
dx dy

2

(
1 + tr

(
∇un+1

)
t+ det

(
∇un+1

)
t2
)

=
dx dy

2

(
1 + det

(
∇un+1

)
t2
)
,

(3.67)

V (t) = −dx dy dz
6

(
−1− tr

(
∇un+1

)
t− 1

2

(
tr
(
∇un+1

)2 − Tr
((
∇un+1

)2))
t2 − det

(
∇un+1

)
t3
)

=
dx dy dz

6

(
1 +

1

2
tr
((
∇un+1

)2)
t2 + det

(
∇un+1

)
t3
)
,

(3.68)

where the trace tr of the velocity gradient tensor has vanished because of the continuity equation:
tr
(
∇un+1

)
= ∇ · un+1 = 0. Replacing t by −∆t in these expressions clearly shows that, even for a

perfect space discretization, the accuracy on the mass conservation is second order accurate in time,
and the error is larger where the velocity gradients are large.

One can conclude that the local numerical mass conservation error is reduced through the use of a
smaller time step, such that the elements do not deform too much during a single time step. Finally, it
should be emphasized that the local numerical mass conservation error has a direct implication for the
global numerical mass conservation. If deformable boundaries are involved in a simulation (such as free
surfaces for instance), the exact compensation of the local surface area increases and decreases across
all elements cannot be guaranteed, such that total mass is not conserved.

Finally, it should be mentioned that the above derivation is linked with the geometric conservation
law (GCL) of the Arbitrary Lagrangian-Eulerian approach [66, 67]. When applying ALE to convection
problems, the error on the variation of volume of mesh cells directly impacts the computation of the
fluxes and the order of accuracy of the numerical method. In this situation, satisfying the GCL equation
helps to get stable and accurate solution. It is given by

d

dt

∫

K(t)
dx =

∫

∂K(t)
κ(s, t) · n(s, t)ds , (3.69)

where κ is the velocity of the volume K(t), and n the normal on its boundary ∂K(t). In particular,
satisfying this equation guarantees to recover the exact solution of a uniform stream flow. Within the
present Lagrangian approach, the flow velocity u and the volume velocity κ are the same thing, such
that the GCL equation is automatically satisfied. Moreover, it implies that in case of an incompressible
fluid flows, mass conservation errors can be directly obtained from purely geometric considerations, as
just shown above.

3.4 A theoretical framework for the mesh adaptation algorithm in 3D

The purpose of this section is to discuss the extension of the mesh adaptation algorithm to 3D.
First, the concept of nodal density is formalized. To demonstrate the relevance of the approach, some
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useful identities are derived within this framework. Afterwards, the 3D nodal density and its associated
quantities are rigorously defined and theoretical algorithms are presented for 3D boundary recognition,
mesh refinement, and mesh coarsening. Eventually, the case of slivers, i.e., highly flatten tetrahedra, are
discussed, and it is shown how the concept of nodal density can intuitively explain why such elements
are present in 3D meshes.

3.4.1 Definition of the nodal fraction and the nodal density

In this section, the concept of nodal density is defined in two dimensions. In addition, it is shown
that it is a useful measure that can be used to relate the number of nodes of a mesh to the number of
triangular cells and boundary edges. A generalization of this concept is then given for the 3D case in
Section 3.4.2, and analogous relations are derived there.

The concept of nodal density is ambiguous as a cloud of nodes is by definition discrete while a density
is usually a concept dealing with continuous quantities. Intuitively, the nodal density simply refers to
the number of nodes per unit volume/area, and basically measures the density and homogeneity of
nodes in space.

The drawback of this definition is that, because it is understood in an average sense, a sufficient
number of points, and thus a sufficiently large surface/volume, is required to obtain a meaningful
estimate of the nodal density. This is however at the cost of locality. This is illustrated for a 2D
uniform mesh of equilateral triangles as shown in Fig. 3.22. The nodal density is obtained by dividing
the number of nodes inside the circle of radius r by its corresponding area πr2. The resulting nodal
density is shown as a function of the circle size in Fig. 3.23. It can be seen that for a small r, the nodal
density depends strongly on the circle size (and in general on the reference surface/volume considered).
When the circle is increased, new nodes are included leading to jumps in the nodal density. Only
when the circle becomes sufficiently large, the nodal density starts to converge to a constant value. As
explained in the next paragraph, this limit value corresponds to 1/(2A∆) where A∆ is the surface area
of one of the equilateral triangles, which means that there is a nodal fraction fN = 1/2 inside a triangle.

r

Figure 3.22: Illustration of the concept of nodal density, which is computed by dividing the number of nodes
inside the circle of radius r by its area πr2. The larger the radius is, the more accurate the nodal density

measure is, as illustrated in Fig. 3.23, but the less local it is.

This can obviously be generalized for any polygon, where the nodal density of a mesh element e is
by definition

σe2D
∆
=
feN
Ae

, (3.70)
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Figure 3.23: Variation of the nodal density of a uniform mesh made of equilateral triangles, as one varies the
circular control volume of radius r, as illustrated in Fig. 3.22. The red line corresponds to the theoretical value,

which is obtained by dividing the number of nodes in one triangle (1/2) by its area.

feN and Ae being respectively the nodal fraction and the area of the element. Specifically, for a node i
shared by several elements, a fraction φei/(2π) of that node can be assigned to a specific element, where
φei is the internal angle of this element at that node i (see Fig. 3.24a for the case of a triangular element).
Considering the N e

nodes nodes of this element, the total nodal fraction fN inside this element e is

feN =
1

2π

Ne
nodes∑

i=1

φei . (3.71)

Because the angles of a polygon satisfy

Ne
nodes∑

i=1

φei = π(N e
edges − 2) , (3.72)

where N e
edges is the number of edges of element e, Eq. (3.71) can be rewritten

feN =
(N e

edges − 2)

2
, (3.73)

with feN = fN,∆ = 1/2 for triangular elements. Finally, the general nodal density of an element e can
be expressed as

σe2D =
(N e

edges − 2)

Ae
. (3.74)

In particular, this gives, for an element e of a triangular mesh:

σe∆ =
1

2Ae∆
. (3.75)

The advantage of this definition is that it provides a local and accurate estimate of the nodal density,
which is furthermore easy to compute. It is also consistent with the limit value obtained in the above
example.

The same approach can be considered for boundaries. As shown in Fig. 3.24b, half a node can be
assigned to a boundary edge on a straight boundary. One can thus define a linear nodal density for a
boundary edge b of length lb:

σb =
1

2lb
. (3.76)
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If the boundary is convex (concave), a small fraction of each boundary node is not assigned to any
edge (double counted), as shown in Fig. 3.25. For the external boundary of a meshed region, these angle
fractions sum up to 2π, i.e., one additional node that is not accounted for. For a possible hole in the
meshed region, these angle fractions sum up to −2π, i.e., one node doubled counted in this case.

Consequently, for any 2D mesh, possibly divided into Ndom domains, including Nholes unmeshed
holes, the total number of nodes is

Nnodes =
∑

e∈E
Aeσe +

∑

b∈B
lb σb +Ndom −Nholes . (3.77)

where E and B are respectively the ensembles of elements and boundary edges of the mesh. For a mesh
containing only one type of polygonal faces, it gives

Nnodes = feN Nelems +
1

2
Nb.edges +Ndom −Nholes , (3.78)

with feN = fN,∆ = 1/2 for the particular case of a triangular mesh, and where Nelems and Nb.edges are
respectively the number of faces and the number of boundary edges of the considered mesh.

Finally, a relation that also relates the number of interior edges with the previous quantities can also
be found. The Euler formula [68] for two-dimensional graphs10 is

Nnodes,g −Nedges,g +Nfaces,g = 2 , (3.79)

where Nnodes,g, Nedges,g and Nfaces,g are respectively the number of nodes, edges and faces of the graph.
The number of nodes of the graph, Nnodes,g, corresponds to the number of nodes of the mesh, Nnodes.
However, as the formula is valid for planar graphs in 1 piece (multiples pieces are not taken into account),
Ndom − 1 fictitious edges can be added to minimally reconnect the Ndom distinct graphs together into
a single graph, as illustrated in Fig. 3.26, such that Nedges,g should be replaced by Nedges + Ndom − 1.
Morover, the number of faces can be decomposed according to

Nfaces,g = Nelems +Nholes + 1 , (3.80)

Nelems corresponding to the number of mesh elements, Nholes to the number of holes, and the additional
term 1 is here to account for the remaining unbounded plane, as illustrated in Fig. 3.26. With this, the
Euler formula reads

Nnodes −Nedges +Nelems = Ndom −Nholes . (3.81)

Furthermore, Nedges can be decomposed into its interior and boundary contributions:

Nedges = Nb.edges +Ni.edges . (3.82)

Replacing this expression and Eq. (3.78) for Nnodes (Nnodes,∆) in the Euler relation (Eq. (3.81)) yields
for a triangular mesh

Ni.edges =
3

2
Nelems,∆ −

1

2
Nb.edges . (3.83)

The use of Eqs. (3.78 ) and (3.83) is illustrated in Fig. 3.27.
Equation (3.83) could have been obtained in a simpler way by recognizing, because an edge is shared

by its two adjacent triangles, that each triangle contains 3
2 edges. Furthermore, boundary edges have

only one triangle adjacent to them so that half of the boundary edges should be added. Therefore, one
has

Nedges =
3

2
Nelems,∆ +

1

2
Nb.edges , (3.84)

and subtracting Nb.edges from both sides directly gives Eq. (3.83). Equation (3.78) could have thus
been derived from Euler formula (Eq. (3.79)).

It should be emphasized that relations like Eq. (3.84) can be useful, in the context of meshes, to
evaluate the complexity of the remeshing algorithm (which has not been done in the context of this

10The formula is the same for the entities (vertices, edges and faces) at the bounding surface of a convex polyhedron.
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thesis but could be considered for future work). In particular, algorithms doing more or fewer operations
depending on the type of geometry entities considered (faces, edges or nodes11), whether they are located
near boundaries or not for instance, have a complexity that depends on the number of geometry entities
of each type. In this case, the overall complexity of the algorithm has a more complex expression than
a simple relation involving the total number of nodes Nnodes.

Particular case of a large mesh

If the mesh is sufficiently large and the length of the boundary sufficiently short, the number of
boundary edges may be neglected in Eq. (3.78), in comparison to the total number of nodes. It leads
to a direct approximate relation between the number of mesh nodes and the number of elements:

Nnodes ' feN Nelems (3.85)

For instance, for triangular meshes, there are approximately twice more elements than nodes. It is
interesting because, despite the two degrees of freedom on the number of mesh entities (i.e., number of
nodes, edges and faces), those being constrained by Euler relation (Eq. (3.79)), particularizing the latter
to sufficiently large meshes (i.e., whose number of entities on the boundary can be neglected) enables
to get almost one-to-one relations between two entities. For triangular meshes, one has for instance

from Eq. (3.85) : Nnodes '
1

2
Nelems,∆ , (3.86)

from Eq. (3.84) : Nedges '
3

2
Nelems,∆ , (3.87)

from Eqs. above : Nedges ' 3Nnodes . (3.88)

Area 𝐴𝑒

σΔ= 
1

2𝐴𝑒

ϕ𝑖
𝑒

𝑒

(a)

σb = 
1

2lb

lb

(b)

Figure 3.24: Definition of nodal density. Fractions of nodes assigned to the triangle (a) or to the boundary
edge (b), are depicted by the green disk fragments, showing that there is a total of half a node in each.

11including cells for 3D meshes.

52



mesh domain Hole in mesh domain

: not assigned angle

: double counted angle

Figure 3.25: Illustration of the difference, in terms of the boundary angle count, between the exterior (left)
and interior boundary (right) of a mesh. The sum of all the “unassigned” angles at convex locations (green)
minus the sum of the “double counted” angles at concave locations (red) equals 2π for an external boundary

(left) and equals −2π for an internal boundary (right).

Figure 3.26: Illustration of a valid graph (i.e., for which the Euler formula given by Eq. (3.79) can be used)
built by connecting Ndom = 3 distinct mesh domains (of which only the exterior boundary is represented by
dark blue lines) using Ndom − 1 = 2 fictitious edges (dashed dark blue lines). Finally, the surrounding infinite

part of the plane (hatched with blue lines), excluding the mesh domains, count as one face of the graph.
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Ndom = 3

(a)

Ndom = 1

Nholes = 1

(b)

Figure 3.27: Illustration of the relations (3.78) and (3.83). (a) Schematic of three triangular meshed regions:
Nnodes = 78, Nedges = 180, Nb.edges = 45, Ni.edges = 135, Nelem,∆ = 105, Nholes = 0 and Ndom = 3 (the relations

are valid for each of the 3 meshes taken individually, dividing each quantities by 3). (b) Mesh with a hole:
Nnodes = 48, Nedges = 112, Nb.edges = 32, Ni.edges = 32, Nelem,∆ = 64, Nholes = 1 and Ndom = 1.

3.4.2 Three dimensional nodal fractions and nodal densities

The generalization of the concept of nodal density to three dimensions consists in interpreting the ratio
of solid angles to 4π as nodal fractions. Specifically, for a node i shared by several elements, a fraction
Ωe
i/(4π) of that node can be assigned to a specific element e, where Ωe

i is the internal angle of this
element e at that node i (see Fig. 3.28). Considering the other nodes of this element, the total nodal
fraction feN inside this element is

feN =
1

4π

Ne
nodes∑

i=1

Ωe
i , (3.89)

which is analogous to Eq. (3.71) for the two dimensional case. Like in the two-dimensional case,
Eq. (3.71) can be particularized for a given polyhedron e using a relation between the internal angles

Ω𝑖
𝑒

4𝜋

Figure 3.28: Illustration of the nodal fraction at a polyhedron vertex (minimally involving 3 edges here). The
solid angle at the vertex (green) is a fraction of 4π (red), corresponding to a fraction of a node at the vertex.
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and the number N e
facets of polyhedron facets.12 The relation is known as the Gram-Euler theorem [69]

and writes as

2

Ne
edges∑

i=1

φei −
Ne

nodes∑

i=1

Ωe
i = 2π(N e

facets − 2) . (3.90)

where φi is the internal dihedral angles at edge i, Ωi the internal solid angles at nodes i, and N e
edges and

N e
nodes are respectively the number of edges and nodes of the polyhedron. Note that a generalization of

this result to higher dimensions has been later discovered [70, 71].
By opposition to the relation in two dimensions, Eq. (3.90) involves 2 types of angles, such that the

solid angle sum is not constant but depends on the sum of the dihedral angles. As a conclusion, the 3D
nodal fraction given by Eq. (3.89), unlike in the 2D case, depend on the shape of the element(s). It is
given by

feN,3D =
1

4π

Ne
nodes∑

i=1

Ωe
i

=
1

4π


2

Ne
edges∑

i=1

φei − 2πN e
facets + 4π




=
1

2π



Ne

edges∑

i=1

φei


− N e

facets

2
+ 1 .

(3.91)

Corollary of the Gram-Euler formula

There is a nice corollary to the Gram-Euler theorem, Eq. (3.90), giving a similar relation between
external polyhedron angles and the number of facets. It is first shown that, while the interior sum of
the dihedral angles and the solid angles does not directly reflect the number of edges and nodes, it is
the case for the total sum. Specifically, one has the following relations,

∑

s.angles

Ωe =

Ne
nodes∑

i=1

Ωe
i +

Ne
nodes∑

i=1

Ωe′
i =

Ne
nodes∑

i=1

(Ωe
i + Ωe′

i ) = 4πNnodes , (3.92)

∑

d.angles

φe =

Ne
edges∑

i=1

φei +

Ne
edges∑

i=1

φe′i =

Ne
edges∑

i=1

(φi + φe′i ) = 2πNedges , (3.93)

where ∑

s.angles

Ωe and
∑

d.angles

φe

are respectively the sums over all solid and dihedral angles of the element and Ωe′
i and φe′i are respectively

the exterior solid angle at nodes i and the exterior dihedral angle at edges i (one obviously has φei +φe′i =
2π and Ωe

i + Ωe′
i = 4π).

One can therefore write

2

Ne
edges∑

i=1

φe′i −
Ne

nodes∑

i=1

Ωe′
i =


2

∑

d.angles

φe −
∑

s.angles

Ωe


−


2

Ne
edges∑

i=0

φei −
Ne
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Ωe
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= 4π

(
N e

edges −N e
nodes −

N e
facets

2
+ 1

)

= 4π

(
N e

facets

2
− 1

)
.

(3.94)

12Facets are edges and faces, respectively for polygons and polyhedra.
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The second equality is obtained by replacing the term in the first parenthesis by Eqs. (3.92) and (3.93),
and the term in the second parenthesis using Gram Euler Theorem, Eq. (3.90). The second equality is
obtained using the Euler characteristic equation N e

edges−N e
nodes = N e

facets− 2. Equation (3.94) provides
the same result as for the interior angles (Eq. (3.90)) and is useful to study 3D meshes, where the
interior and exterior boundaries are considered as polyhedra.

For 2D meshes, some relations have been found between the interior and exterior edges of a mesh,
regarding the total number of triangular faces (see Eq. (3.83)). Similarly, for 3D meshes, relations
between the interior and exterior faces can be derived. The practical application of such relations is
the knowledge of the relative importance, in count, of elements adjacent to boundaries, as the mesh
adaptation algorithm involves more operations on those elements. For instance, suppose that one has a
mesh separated in Ndom domains, and that there are a total number Nholes of polygonal holes (how the
holes are distributed among the different domains does not matter). The domain and the holes therefore
consist in Ndom +Nholes polyhedra. For the domain and hole boundaries, the focus is on the total solid
angle and dihedral angle sums, respectively on the exterior and the interior of the polyhedra defined
by their boundary edges. Equation (3.94) has to be applied Ndom + Nholes times13, which amounts to
replace the term -1 by −Ndom − Nholes in this equation. Considering Nb.nodes, Nb.edges, and Nb.facets,
i.e., respectively the number of boundary nodes, edges and facets, one has

2

Nb.edges∑

i=1

φb′i −
Nb.nodes∑

i=1

Ωb′
i = 4π

(
Nb.facets

2
−Ndom −Nholes

)
, (3.95)

where φb′i is the exterior dihedral angle at the boundary edge i and Ωb′
i is the exterior solid angle at the

boundary node i. Once these contributions have been taken into account, the remaining part consist in
the contribution of the Nelems internal cells. The contribution of one element being given by Eq. (3.90),
the following relation holds for the total contribution of the mesh elements (assuming each mesh element
all have the same number of facets)

∑

e∈E
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Ne
edges∑

i=1

φei −
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nodes∑

i=1

Ωe
i


 = 4πNelems

(
N e

facets

2
− 1

)
, (3.96)

if ∆ el.
= 4πNelems,∆ . (3.97)

The second equality, Eq. (3.101) corresponds to the specific case of tetrahedral elements. On the other
hand, the global sum gives the differences between the total number of vertices and edges, through
Eqs. (3.92) and (3.93). One can thus write

4π(Nedges −Nnodes) = 2
∑

d.angles

φe −
∑

s.angles

Ωe

=
∑
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edges∑
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Ωe
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Nb.edges∑
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φb′i −
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Ωb′
i


 , (3.98)

= 4πNelems,∆ + 4π

(
Nb.facets

2
−Ndom −Nholes

)

= 4π

(
Nelems,∆ +

Nb.facets

2
−Ndom −Nholes

)
, (3.99)

where the second equality is obtained replacing the first and the second terms on the right hand side,
by Eq. (3.97) and Eq. (3.95), respectively. It is the 3D equivalent of Eq. (3.78). Furthermore, the
Euler identity for 3 dimensional CW-complexes can be used [68], similarly to what has been done in
Section 3.4.1 for the 2D case14. For 3D graphs, this identity writes

Nnodes,g −Nedges,g +Nfacets,g −Ncells,g = 0 , (3.100)
13The same formula holds for the interior and the exterior.
14The planar graphs used in 2D are two dimensional CW-complexes
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where Nnodes,g, Nedges,g, Nfacets,g, Ncells,g are respectively the number of vertices (nodes), edges, faces,
and cells of the 3D graph. For the formula to be valid, the mesh should be connected into one single
part (such that a path always exist, following edges, between two arbitrary chosen vertices). As in
the present example, if Ndom separated domains are considered, Ndom − 1 additional fictive edges are
needed to make the graph connected (see Fig. 3.26 for an example in 2D), such that Nedges,g, in the
Euler formula, is replaced by (Nedges +Ndom − 1). On the other hand, the formula considers Ncells,g as
all the cells that are filling the space, including the holes in the mesh as well as the space surrounding
the mesh (again, the situation is completely analogous to the 2D case, as shown above). For this reason,
it should be replaced by (Nelems +Nholes + 1). Finally, the Euler equation writes as

Nnodes −Nedges +Nfacets −Nelems = Ndom +Nholes . (3.101)

Combining this equation with Eq. (3.99) (and therefore replacing Nelems by Nelems,∆ as we are in the
special case of tetrahedral elements), dividing by 4π and rearranging the terms gives

Nfacets = 2Nelems,∆ +
Nb.facets

2
, (3.102)

where Ndom and Nholes have cancelled out. Now, rewriting Nfacets as the sum of all internal and
boundary contributions,

Nfacets = Ni.facets +Nb.facets , (3.103)

one has
Ni.facets = 2Nelems,∆ −

Nb.facets

2
, (3.104)

which is the 3D equivalent of Eq. (3.83). Again, this relation could have been obtained by considering
that there are two faces (4 × 1

2) per cell as each face is shared between two adjacent tetrahedra and
that they have four faces. The missing faces in the total count are the boundary faces and one half of
them have to be added in the count since they have been counted only one half, as they belong only
to one tetrahedron. It directly gives Eq. (3.102), which then could have been used with Eq. (3.99) to
demonstrate the Euler invariant given by Eq. (3.100).

As already mentioned in Section 3.4.1 for the 2D case, it should be emphasized that relations similar
to Eq. (3.104) can be useful, in the context of meshes, to evaluate the complexity of the remeshing
algorithm.

Particular case of a large mesh

If large meshes are used, such that the contribution of the boundary may be neglected, approximate
one-to-one relations between mesh entities can be found. One should first note that, despite the fact
that the nodal fraction feN is not constant among the elements, the following approximation can be
made using an averaged value fN :

1

4π

∑

s.angles

Ωe '
∑

e∈E

1

4π

Ne
nodes∑

i=1

Ωe
i (3.105)

⇐⇒
Nnodes ' fNNelems . (3.106)

The same procedure can be performed for the edges by defining an elemental edge fraction feE whose
average is

1

2π

∑

d.angles

φe '
∑

e∈E

1

2π

Ne
edges∑

i=1

φei (3.107)

⇐⇒
Nedges ' fENelems . (3.108)
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A relation between fN and fE can then be obtained considering Eq. (3.97), which gives

1
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)
(3.109)

⇐⇒
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)
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(
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facets

2
− 1

)
(3.110)

⇐⇒
(
fE − fN

)
=

(
N e

facets

2
− 1

)
. (3.111)

In the particular case of tetrahedral meshes (N e
facets = 4), this gives fE = fN + 1. In this case, one has

the following one-to-one relations between the different mesh entities:

from Eq. (3.106) : Nnodes ' fN Nelems,∆ , (3.112)

from Eq. (3.108) : Nedges '
(
fN + 1

)
Nelems,∆ , (3.113)

from Eq. (3.104) : Nfacets ' 2Nelems,∆ (3.114)

from Eqs. above : Nedges '
(
fN + 1

fN

)
Nnodes . (3.115)

from Eqs. above : Nnodes '
fN
2
Nfacets (3.116)

from Eqs. above : Nedges '
(
fN + 1

2fN

)
Nfacets (3.117)

To estimate fN , a 3D tetrahedral mesh has been build with gmsh inside a cube of unit side length with
50 subdivisions, using a Delaunay building procedure.15 This leads to a mesh containing ∼ 98000 nodes
and ∼ 590000 elements suggesting fN ' 98000

590000 ' 1
6 . Note that a theoretical estimation of fN is given

in the next paragraph.

3.4.3 Application of the concept of nodal density to mesh adaptation of unstruc-
tured tetrahedral meshes

The concept of nodal density in 3D can be used to ensure good mesh quality so as to reduce the space
discretization error. In the present context, the distortion of the mesh between two time steps degrades
its quality and the cloud of nodes need to be remeshed using 3D Delaunay triangulation. Moreover,
when adding or removing nodes for mesh adaptation, the spatial variation of the node distribution
should be sufficiently smooth to ensure a high quality Delaunay triangulation. The goal of this section
is therefore to clarify how to properly add and remove nodes in 3D meshes by leveraging the concept of
nodal density.

Rather intuitively, the more evenly spaced from each other the nodes are, the better the element
quality is, irrespective of the type of quality measure used.16 A notable exception is the specific case of
slivers, which are discussed later.

As aforementioned, the nodal fraction f τN of a tetrahedron τ involves the interior solid angles sum:

f τN =

∑4
i=1 Ωτ

i

4π
. (3.118)

Again, unlike the two-dimensional case, the sum of all the interior solid angles Ωi is not fixed for a given
polyhedron type but depends on its specific shape. In particular, it is related to the sum of the dihedral

15https://gmsh.info/
16Several ways can be used to quantify the element quality, which can be found in https://coreform.com/cubit_help/

mesh_generation/mesh_quality_assessment/tetrahedral_metrics.htm.
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angles φi through the Gram-Euler formula (Eq. (3.90)), which, in the particular case of a tetrahedron,
reads

2
6∑

i=1

φτi −
4∑

i=1

Ωτ
i = 4π . (3.119)

The fraction of nodes f τN inside the tetrahedron can therefore be expressed as

f τN =

∑6
i=1 φ

τ
i

2π
− 1 . (3.120)

Consequently, either the solid angles or the dihedral angles can be used to compute f τN , depending on
which approach (Eq. (3.118) or (3.120)) is the most efficient. On the one hand, solid angles between
three edges of unitary director vectors a,b, c can be computed with the formula [72]

Ω(a,b, c) = 2 arctan

( |a b c |
1 + (a · b) + (a · c) + (b · c)

)
, (3.121)

where |a b c | is the scalar triple product of vectors a,b and c. On the other hand, the dihedral angle
φi,j between the faces with normals ni and nj is given by17

φi,j = π − arcos(ni · nj) . (3.122)

Once f τN is computed, the nodal density of a tetrahedron element is given by

στ3D
∆
=
f τN
V τ

, (3.123)

where V τ is the tetrahedron volume. This nodal density thus represents an ideal indicator to determine
whether the mesh should be locally refined, locally coarsened or remain unchanged. This can be done
by comparing the local nodal density to a local target nodal density σ∗ and introducing threshold values
for adding or removing nodes.

Target mesh size and target nodal density.

The idea behind the definition of the target mesh size in 3D is very similar to that in 2D. While in
2D, the target mesh size was defined as the square root of the target surface area, here, in 3D, it should
be defined as the cubic root of the "ideal tetrahedron" target volume V τ

ideal:

L∗ = 3
√
V τ

ideal . (3.124)

An ideal tetrahedron should be understood as a tetrahedron with a nodal fraction f τN corresponding
to some average value fN , such that the target nodal density σ∗ is given by

σ∗ =
fN
L∗3

. (3.125)

As aforementioned, statistics performed on elements of a large mesh suggest fN = 1
6 . Another

estimation can be performed using particular sets of space filling tetrahedra, i.e., tetrahedra that can
be put next to each other to fill the entire space. To define such reference tetrahedron, two particular
cases of tetrahedra filling a cube are chosen, as it is trivially understood that cubes can fill the space.

The first example is illustrated in the left image of Fig. 3.29. At each face Fi of the cubeABCDEFGH,
a vertex Pi is added, which counts as 1/2 since it is shared among two cubes. At the center of the cube,
a vertex O is added and counts as 1 since it is entirely contained in the cube. Finally, the original

17It seems at first glance that the second option has a smaller complexity and may be the method of choice to compute the
nodal fraction, since it involves only six scalar products, compared to twelve for the first option (three at the denominator
times four vertices), without considering the other mathematical operations. Moreover, face normals are usually readily
available.
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vertices of the cube (A, B, C,...) are shared among 8 cubes in total, such that their sum counts as
1. The total number of nodes is therefore 1 + 6 × 1

2 + 1 = 5. It can be seen that, with the additional
vertices (O, P1, P2,...), the cubes can be divided into 24 similar tetrahedra. For instance, the pyramids
OFGHE with its base on the face GHEF is divided into 4 tetrahedra containing the edge OP1. Since
there is such a pyramid adjacent to each face, there are 4× 6 tetrahedra in total, leading to a fraction
of nodes per tetrahedron

fN =
5

24
' 0.2 . (3.126)

The second example is simpler and consists in observing that the cube can be divided in 4 similar
tetrahedra (AGEF , ABCG, CHEG, ACDE) and one larger tetrahedron (ACEG), giving a total of 5
tetrahedra for 1 node (the sum of all the solid angles being 4π). It yields the average nodal fraction

fN =
1

5
= 0.2 , (3.127)

which is almost identical to the first result. Note that it is a bit higher than the nodal fraction of a
regular tetrahedron, which is given by18 arcos(23/27)/π ' 0.175.

Despite the fact that this value is slightly different than the one previously obtained through statistics
(fN = 1/6), it is suggested to use it as the reference value19, such that one has

fN = 0.2 (3.128)

and
σ∗ =

0.2

L∗3
. (3.129)

Note that in 2D, these values are respectively 1/2 and 1/(2L∗2).
Once this target nodal density has been defined, higher and lower bounds, beyond which the mesh

is respectively coarsened or refined, have to be defined. The exact value of these thresholds depends
on the specific refinement and coarsening process. Therefore, the possible extension to 3D of the node
addition and removal process and the generalization of the boundary recognition algorithm are first
discussed. Upper and lower bounds for the nodal density are then proposed as an example. They are
also applied to the special case of slivers, that are badly shaped tetrahedra that cannot be eliminated
by the 3D Delaunay triangulation.

3.4.4 3D generalization of the mesh refinement, coarsening, and boundary recog-
nition algorithms

A possible 3D generalization of the 2D algorithms described in the beginning of this chapter is briefly
described. The generalization of the mesh refinement and mesh coarsening steps are first discussed,
followed by that of the boundary recognition algorithm

The geometric and solution-based criteria introduced at the beginning of this chapter for imposing
the target mesh size can be readily used in 3D. The idea is then to modify the local nodal density by
locally adding or removing nodes, such that this nodal density remains close to the target value 0.2/L∗3,
avoiding too large changes of the nodal density between adjacent elements. Therefore, the algorithm
for adding and removing nodes should be designed such that the local modification of the nodal density
remains limited.

Node addition

For mesh refinement, the general idea would be to add one node that affect several elements rather
than a single element, such that the added node impacts a larger portion of the space, thereby limiting
the resulting increase in nodal density. In two dimensions, the surface area considered is that of two
adjacent triangles and the node is added in the middle of their common edge if a given area threshold

18This value could also be used as a reference as it is between our 2 estimations 1/6 and 1/5, despite the fact that
regular tetrahedron cannot fill the space on themselves

19Note that slightly different values (for instance 1/6 or 0.175) could also be considered.
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Figure 3.29: Left : Illustration of the partition of a cube into 24 similar tetrahedra (only the four associated
with the face EFGH are shown in red). Right: Illustration of the partition of a cube into four similar

trirectangular tetrahedra (in red) at four of the cube corners (B, D, F , H), and one central regular tetrahedron.

is exceeded. Here, one choice could be to add a node on the common face of two tetrahedra, in which
case the volume impacted is the sum of the volume of the two tetrahedra. An alternative option could
be to add a node on a common edge of several tetrahedra, in which case the volume impacted is the
sum of the volumes of all adjacent elements. As it involves a larger volume, the second method has a
smaller impact on the nodal density increase; it is also computationally more expensive as it requires
computing a larger number of solid angle sums. In both cases, the local nodal density σl before node
addition is evaluated as

σl =

∑Nref.
i=1 σi Vi∑Nref.
i=1 Vi

=

∑Nref.
i=1 fN,i∑Nref.
i=1 Vi

, (3.130)

where Nref is the number of elements impacted. As one node is added in the compounded volume, the
increment of nodal density achieved by such a procedure is

∆σ =

(
Nref.∑

i=1

Vi

)−1

, (3.131)

such that the nodal density after the refinement process, σr, is given by

σr = σl + ∆σ . (3.132)

For convenience, the lower threshold value σ−th, to which σl could be compared, can be defined such
that a node is only added if the resulting nodal density σr does not exceed the target value σ∗ given by
Eq. (3.129):

σ∗ ≥ σ−th + ∆σ , (3.133)

or equivalently,
σ−th ≤ σ∗ −∆σ . (3.134)

It should be emphasize that, unlike in 2D, the above found for σ−th is case-dependent as ∆σ depends
on the volumes of the elements considered. In practice, a node should thus be added if σl ≤ σ−th with
the threshold

σ−th = kr(σ
∗ −∆σ) , (3.135)

where kr ≤ 1 is a constant to be determined based on the practical application of the proposed
algorithm.
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Node removal

Node removal is more challenging. While for the addition of nodes, the volume impacted by the
new inserted node is well defined and well separated, this is not the case for the removal of nodes as it
impacts the surrounding elements. It is assumed that the 3D algorithm would follow a similar approach
to the 2D cell collapsing described in Section 3.2.2.2. When the nodal density of a tetrahedron is higher
than a given threshold, this element is tagged to be collapsed, which means that each of its nodes are
removed and replaced by a single node at its center. Afterwards, each first and secondary neighbours
are tagged to prevent them from being collapsed (as already mentioned in Section 3.2.2.2, collapsing all
the elements in some region would lead to mesh refinement and not mesh coarsening, which also holds
in 3D). The removed element and its first and secondary neighbours correspond to a total number of
elements

Ncoars. = 1 + (D + 1)2 , (3.136)

where D is the number of dimensions of the mesh (2 or 3), which gives respectively 10 and 17 for 2D
and 3D meshes, respectively. The local nodal fraction fN,l for the compounded volume of these elements
is

fN,l =

Ncoars.∑

i=1

fN,i ' Ncoars. fN , (3.137)

where it has been assumed in the last equality that fN,i equals fN on average (0.5 in 2D and 0.2 in 3D).
As illustrated in Fig. 3.30, once the central element is collapsed and replaced by a node as its center, it
induces a decrease of the nodal fraction in that total volume

∆fN =
1

(D − 1)2π



D+1∑

i=1

D2+1∑

j=1

ΩDel
ij


− 1 , (3.138)

where ΩDel
ij is the solid angle (the regular angle in 2D) at node i of element j that shares this node

and is either the collapsed element, one of its direct neighbors or one of the elements adjacent to these
neighbors. They are D2 + 1 such elements for each of the D + 1 deleted nodes. The -1 in the above
expression corresponds to the contribution of the new node added at the center of the collapsed element.
To simplify this expression, it is assumed that, on average, a solid angle (regular angle in 2D) equals
(D−1)2π fN

D+1 because there are D+1 vertices in a D-simplex (triangles and tetrahedra are respectively
2-simplices and 3-simplices). Considering the (D + 1)(D2 + 1) solid angles, ∆fN can be approximated
as

∆fN ' (D2 + 1) fN − 1 . (3.139)

Therefore, the nodal fraction fN,c after the coarsening process is

fN,c ' fN,l −∆ fN = fN
(
Ncoars. − (D2 + 1)

)
+ 1 = fN (2D + 1) + 1 , (3.140)

where Eq. (3.136) has been used to obtain the last equality. For the same compounded volume, the
ratio between the nodal densities is equal to the ratio of the nodal fractions,

σc

σl
=
fN,c
fN,l

' fN (2D + 1) + 1

Ncoars. fN
=

1

1 + (D + 1)2

(
(2D + 1) +

1

fN

)
, (3.141)

which gives respectively 7/10 and 12/17 for the 2D and 3D20 cases. These values are close to each other
such that a value of 0.7 could be used in both cases. Practically speaking, it means that the algorithm
provides, as a first approximation, a reduction of the nodal density by a factor 0.7,

σc = 0.7σl . (3.142)

The upper threshold of the nodal density before mesh coarsening is chosen by imposing that the
coarsened value σc should be higher or equal to the target nodal density σ∗, so as to avoid too similar

2013/17 for fN = 1/6.
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Figure 3.30: Illustration of the solid angle (planar angles in 2D) count around each deleted vertex, among
those of the tagged elements plus the central one, both in 2D (left) and 3D (right). On the left image, the
dashed lines correspond to the elements involved in the solid angle counts around vertex 2 and 3. Their 3D

equivalent are not represented on the right for visibility. On the right image, the dashed lines are the edges that
are not visible in the foreground. The collapsed element is only delimited by green lines and its direct adjacent
neighbours by (2D − 3) green lines and D blue lines (D being the mesh dimensions, i.e., 2 or 3). The other
elements adjacent to these direct neighbors are delimited by D red lines, D − 1 blue lines and (D − 2) green

lines. It can be easily verified that the total number of solid angles equals (D + 1)(D2 + 1).

nodal densities after mesh refinement and mesh coarsening (a situation that could lead to node addition
and node removal cycles in a given region of the space, and a resulting large numerical dissipation).
This condition writes

σ+
th ≥

σ∗

0.7
= 1.43σ∗ . (3.143)

Finally, a coarsening constant kc > 1 can be introduced to exactly determine the threshold so that the
mesh is coarsened if σl > σ+

th with
σ+

th = 1.43kcσ
∗ . (3.144)

The constant kc should be determined based on the practical application of the proposed algorithm.

Remarks

The proposed approach is very theoretical and has not been implemented and tested yet. In par-
ticular, uncertainties still remain concerning the computation of the nodal densities, especially in 3D
and for the coarsening algorithm. The practical application of the algorithm is therefore required to
determine adequate values for the thresholds kr and kc. Additionally, another value for fNref may be
more adapted than 0.2 (for instance, motivations to use 1/6 also exist, as previously discussed), and may
require some statistics applied to tetrahedral meshes. Nevertheless, the proposed algorithm is based on
the concept of nodal density, which is a solid tool to derive relations between the number of different
mesh entities (i.e., nodes, edges, facets, and cells). It is therefore hoped that it will be used in future
work involving three dimensional unstructured meshes. To the author best knowledge, the proposed
idea of using the fractional number per elements based on the solid angles has not yet been proposed
in the literature in the context of mesh-based numerical simulations, and is a novel concept. It aims to
provide a general framework for metric-based mesh adaptation, where the accurate measure of the local
nodal density should enables finding a good trade-off between mesh quality and numerical dissipation
(see Section 3.2.2.2 for an example in 2D).

3D boundary recognition algorithm
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The extension of the boundary recognition algorithm to 3D would be very similar too and follow
the same philosophy as that in 2D (see Fig. 3.17). The three types of tetrahedra would be classified as
follows. The first category would include tetrahedra with two or fewer nodes on a boundary and would
be automatically kept in the triangulation similarly to triangles having at most one boundary node in
the 2D case. The next category would encompass tetrahedra having exactly three nodes (i.e., one face)
on a boundary; they would be considered a priori as fluid elements. Finally, tetrahedra having four
nodes on the boundary would a priori be considered as empty space. The following criteria for these
last two categories of elements would be very similar to those in 2D. First, the α-shape criterion would
be defined by Eq. (3.34) where the target mesh size L∗elem would be prescribed by some geometrical and
solution-based relations.

Afterwards, the elements having 3 nodes on a boundary should be removed if the α-shape criterion is
violated, if they have their largest face on the boundary, and if they reach the minimal mesh resolution
(similarly to the largest edge criterion in 2D). Moreover, in the case where the last criterion (minimal
mesh resolution) is not satisfied, a node would be added in the middle of the boundary faces that are
stretched to keep refining the free surfaces without inducing any volume loss.

Lastly, as in 2D, the elements having their four nodes on a boundary could be considered as fluid if
they match the resolution of their neighbours, and they could be used as collision anticipation elements
otherwise. In summary, every box in Fig. 3.17 could be adapted to a "3D equivalent".

Sliver elements

A last important point to mention about 3D triangulation is the possible presence of badly shaped
elements called slivers. These elements lead to inaccurate results and can cause stability problems in
the case of artificially compressible schemes [73]; therefore, they should be cleaned out from the trian-
gulation. Slivers consist in tetrahedra having all their nodes close to the equator of their circumscribed
sphere such that they have a "flat" shape, as illustrated in Fig. 3.31. As it can be seen in this figure,
they are characterized by some very small dihedral angles and a small volume, which can be used as
criterion to detect them. The presence of slivers is actually an interesting result illustrating well the
concept of nodal density. In particular, even if the nodes are quasi evenly distributed, resulting in a
smooth variation of the nodal density, very flat elements can exist as their small volume can be com-
pensated by a small solid angle sum (see Eq. (3.123)). This is the case for slivers of type 2 as illustrated
by the right image of Fig. 3.31, while slivers of type 1 (left part of the figure) are removed by the
proposed coarsening algorithm because of the higher nodal density (see the proof below, summarized by
Fig. 3.32b). Because the nodal density of type 2 slivers is close to that of their neighbors, they should
not be eliminated by adding or removing nodes (operations that should only apply when σl deviates
from σ∗), but rather by rearranging locally the disposition of the nodes. Different ways of doing it could
be considered but their discussion would go beyond the scope of this thesis. For some literature on
the subject, the reader is referred for instance to Meduri et al. [73] who have proposed to inflate the
slivers by solving a local elastic system based on prescribed stiffness constants for the different edges.
A summary of various methods to remove slivers can also be found in Tournois et al. [74]. Another
possibility, as recently proposed in the context of the X-mesh method [14] (see Chapter 1), is to keep
the slivers in the triangulation instead of removing them, making sure that, through special treatments,
they do not deteriorate the local accuracy of the solution.

This section concludes with an example illustrating how the coarsening algorithm is able to eliminate
slivers of type 1. By definition slivers are tetrahedra whose four nodes are close to a great circle of the
circumscribed sphere. To represent this, the nodes A,B and C of the tetrahedron are assumed to lie on
a great circle of radius 1, as illustrated in Fig. 3.32a. Tetrahedra having numerous degrees of freedom,
the exhaustive analysis of all of them would be tedious. For simplicity, it is assumed that A,B,C form
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an equilateral triangle with coordinates

A = (0, 1, 0) , (3.145)

B = (

√
3

2
,
−1

2
, 0) , (3.146)

C = (
−
√

3

2
,
−1

2
, 0) . (3.147)

The only remaining degrees of freedom are the angles φ and θ of point D lying on the circumscribed
sphere of radius 1:

D = (cos θ cosφ, cos θ sinφ, sin θ) . (3.148)

With this setup, the nodal density defined by Eq. (3.123) is a function of φ and θ where the solid
angles can be obtained from Eq. (3.121). The maximum volume Vmax is obtained when point D is at
its maximum height (the element volume is independent of φ as its height, the z-coordinate of point D,
remains unchanged as φ varies), which corresponds to θ = π/2. For the given numerical values, one has
Vmax ' 0.433. As the mesh is assumed Delaunay, there is no other nodes in the circumscribed sphere,
such that the volume of the adjacent elements is assumed to be of the order of Vmax. This maximum
volume can thus be used as a reference volume to define the target mesh size,

L∗3 = Vmax ' 0.433 , (3.149)

which corresponds to about 10% of the sphere volume. The corresponding reference nodal density is
therefore equal to 0.462 from Eq. (3.129) with the numerical value given by Eq. (3.149). Taking for
instance kc = 1, the upper threshold value of the nodal density for mesh coarsening, σ+

th, is computed
according to Eq. (3.144) leading to σ+

th = 0.66.
The different nodal densities for the different possible tetrahedra ABCD are plotted in terms of φ

for different θ levels in Fig. 3.32b, where the upper bound σ+
th = 0.66 is indicated by a black dashed

line. The proposed approach enables to eliminate slivers of type 1 in Fig. 3.31, provided that the angle
θ is less than 40◦. As illustrated in Fig. 3.32b, the nodal density increases each times point D passes
above one of the three other nodes A,C and B, respectively at angles φ = π

2 , φ = 7π
6 and φ = 11π

6 , such
that the nodal density becomes larger than the thresholds for θ < 40◦. Moreover, the algorithm does
not remove the elements with θ > 40◦, but those are not really flat and cannot be considered as slivers.
Consequently, they should not be removed.

Finally, it should be emphasized that, in this analysis, the volume of the sliver elements (for instance
with θ < 40◦) is assumed to be significantly smaller than L∗3elem. This assumption is expected to hold
far from boundaries, similarly to the 2D case. Close to boundaries, special treatment analogous to
Eq. (3.32) could be considered.
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Figure 3.31: Illustration of the two types of slivers, i.e., tetrahedra with all vertices close to a great circle of
the circumscribed sphere (black dashed line). The first type of sliver, on the left, is characterized by two

vertices close to each other (C and D), and is therefore characterized by a high nodal density. The second type
of slivers is characterized by well-spaced vertices and is therefore associated with a small nodal density.
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Figure 3.32: (a) Illustration of the remaining degrees of freedom φ and θ of vertex D, the points A, B and C
being set on a great circle of the sphere, and forming an equilateral triangle. (b) Variation of the nodal density

as the node D turns along the longitude φ for different latitudes θ, as illustrated in (a). The nodal density
increases at angles φ of π/2, 7π/6 and 11π/6, i.e., when point D is closest to points A,C and B, respectively.

The black dashed line in (b) represents the nodal density threshold, σ+
th = 0.66, for node removal.
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Chapter 4

Validation of the 2D mesh adaptation
algorithm

The goal of this chapter is to illustrate the advantages of the new mesh adaptation algorithm detailed
in Chapter 3 and to validate it. In particular, six two-dimensional test cases are considered, of which
three focus on bounded flows to demonstrate the mesh adaptation capabilities, and three deal with
free-surface flows to highlight the improved free-surface description and mass conservation properties
of the new algorithm. The validation relies on comparisons with the classical PFEM and with results
from the literature.

Flows in bounded domain

First of all, the focus is solely on the capability of the new algorithm to provide sufficient spatial
resolution in regions where the flow is rapidly changing, while keeping a limited increase of the total
number of nodes. As this goal is independent of the accurate representation of free surfaces and the
limitation of mass conservation errors coming from the boundary recognition step, such validation can
be performed using confined domains whose external boundaries do not change in time. The advantage
is that such flows are widely covered by the literature, because they can be easily simulated with classical
CFD methods such as the finite difference or the finite volume methods (to cite only those), within an
Eulerian formalism. The following cases are considered:

• the flow around a static cylinder at low Reynolds number (ReD ≤ 200) and around a rotat-
ing/oscillating cylinder at ReD = 200;

• the flow around an impulsively started cylinder at ReD = 9500;

• the lid-driven cavity flow at Re = 100 and Re = 400.

The first two cases are described in Section 4.1 and the last one in Section 4.2.

Free-surface flows

The mesh adaptation algorithm has also been developed in order to reduce the mass conservation
errors inherent to the boundary recognition technique of the PFEM, and to provide a more accurate
description of free surfaces. To assess the performance of the algorithm regarding these aspects, some
free-surface flows are simulated, for which the literature is scarcer than for flows in a fixed domain. The
following cases are considered:

• the sloshing of water occurring in an oscillating reservoir;

• a 2D viscous drop falling into a bath of the same fluid;

• an impulsively started cylinder going out of a bath at constant velocity.
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The first goal of these three test cases is to quantify the reduction of the mass conservation error achieved
by the new algorithm. The second goal is to demonstrate how the new algorithm enables an accurate
description of the free surfaces. Both features are evaluated through comparisons with results from the
literature, as well as results obtained with the classical PFEM algorithm on meshes of uniform element
size.

Finally, for the last test case, an additional goal is to demonstrate why the mesh adaptation is
essential for our application, and to assess the performance of the new algorithm in terms of CPU time.
These three test cases are respectively discussed in Sections 4.3, 4.4 and 4.5.

4.1 The flow around a cylinder

The case of a flow around a cylinder is a classical CFD case in the literature and has been the subject
of many publications over the past decades. As the amount of literature on this subject is large, only
a limited number of references have been considered, mainly at low Reynolds number (Re ≤ 200).
Below this limit, the behavior of the flow can be separated into two regimes (for a static cylinder), as
illustrated in Fig. 4.1. The first regime (Fig. 4.1a) is observed for a Reynolds number Re ≤ 40 and is
characterized by a steady symmetrical wake behind the cylinder, while the second regime (Fig. 4.1b)
features a regular oscillatory wake made of vortices, called the Von Karmann Vortex street.

Taking into account these aspects, the following cases are considered:

• the flow around a static cylinder for a Reynolds number ranging from 20 to 200: both steady and
unsteady regimes are investigated in Section 4.1.1;

• the flow around a rotating cylinder, for two different rotation speeds, at a Reynolds number of
200: with this test case, the simulation of the flow around a moving body takes advantage of the
Lagrangian nature of the method (Section 4.1.2);

• the flow around a cylinder oscillating perpendicularly to the flow, at two different oscillation
frequencies and amplitudes (Section 4.1.3): here again, the Lagrangian nature of the PFEM is
leveraged;

• the flow around an impulsively started cylinder at the larger Reynolds number ReD = 9500
(Section 4.1.4): this case assesses the maximum capacity of the mesh adaptation method for the
study of the cylinder wake during the transient regime, where a very fine mesh is required to
obtain accurate results.

Numerical setup

The numerical setup is the same for each simulation, except for the last one (impulsively started
cylinder at ReD = 9500, discussed in Section 4.1.4), and is summarized in Fig. 4.2. All physical
quantities reported below are made non-dimensional using the cylinder diameter D, the free-stream
velocity U∞ and the fluid density ρ. The computational domain is rectangular and the flow goes from
left to right. These test cases feature a flow that enters and leaves the computational domain at all
far field boundaries. Because inlet/outlet boundary conditions are not straightforward in Lagrangian
methods, the upper and lower boundaries are here modeled as slip walls, i.e., with zero normal velocity,
to prevent an in- or outflow at these two boundaries. The left and right boundaries are on the other
hand inlet and outlet boundaries, respectively. A uniform velocity profile is imposed at the inlet, a
constant pressure at the outlet and a no-slip condition at the cylinder surface. A description of the
actual implementation of such boundary conditions can be found in Cerquaglia [75].

A relatively large computational domain is chosen, with −4.5 ≤ x ≤ 75.5 in the streamwise direction
and −15 ≤ y ≤ 15 in the flow normal direction (length L = 80D and width W = 30D), where the
origin is located at the cylinder center. This allows minimizing the effect of boundary conditions and the
blockage effect induced by the slip walls (the blockage is here B = 1/30). Furthermore, it provides the
opportunity to clearly demonstrate the advantage of a non-uniform mesh, as relatively large elements
can be used away from the cylinder and its wake.
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Overall, the non-dimensional target mesh size ranges from L∗min = 0.01 to L∗max = 1.1, corresponding
to a ratio of 110 between smallest and largest elements. Two geometric refinement criteria are combined.
First, L∗1 is increased linearly from L∗min at the cylinder surface to L∗max at a distance d = 15 from the
cylinder center. The second geometric criterion imposes a target mesh size L∗2 with an intermediate
value L∗med of 0.11 for |y| ≤ 2 (i.e., in the wake region). For |y| ≥ 2, L∗2 increases linearly in y to L∗max at
the upper and lower boundary. Additionally, a solution-based criterion provides a target mesh size L∗3
that varies between L∗min where non-dimensional gradients are larger than 4 and 0.14 where gradients
are smaller than 0.012 according to Eq. (3.23) with β = 1/3. This criterion is however only applied
in the region |y| ≤ 2 to ensure a good resolution of the Karman vortex street. Finally, the prescribed
target mesh size is obtained as the minimum over the three criteria: L∗ = min{L∗1, L∗2, L∗3}. Examples
of meshes using only the two geometric or all three criteria are shown in Fig. 3.4 (Chapter 3). It is
interesting to note that a uniform mesh with a mesh size of 0.01 everywhere would increase the number
of elements by a factor between 10 and 60. At last, the non-dimensional time step is ∆t = L∗min.

4.1.1 Static cylinder (Re ≤ 200)

Many aspects of the flow around a cylinder have been investigated experimentally and numerically. For
instance, the variation of the drag coefficient CD at low Reynolds number, with respect to Re, has been
studied numerically by Henderson [76] and Sheard et al. [77], and experimentally by Wieselberger [78].
For Re > 40, the variation of the average value of the root mean square of the lift coefficient, with
respect to Re, has been studied numerically by Norberg [79]. Moreover, the variation of the Strouhal
number St, with respect to Re, has been studied by Henderson [80], Williamson [81], Karniadakis and
Keddar (private communication in [81]) and Zhang et al. [82]. As a reminder, the Strouhal number St
is the non-dimensional value of the shedding frequency f : St = fD/U∞. A last feature of interest is
the length of the separation bubble for the stable wakes at Re < 40. It has been studied experimentally
by Taneda [83], Grove et al. [84], Coutanceau and Bouard [85] and Acrivos et al. [86], and numerically
by Sen et al. [87] and Keller and Takami [88], for different values of the blockage ratio B = D/W .

Thanks to the use of the new mesh adaptation techniques, as described above in the numerical setup,
good results regarding the literature can be recovered. The aerodynamic coefficients are first analyzed.
The steady or mean (for unsteady cases) drag coefficient CD is compared for different values of ReD
ranging between 20 and 200 with references from the literature in Fig. 4.3. Because the steady or
mean lift vanishes by symmetry, the root-mean-square (rms) of the lift coefficient is reported in Fig. 4.4
and compared with the numerical results of Norberg [79]. A very good match is observed in both cases
between the present results and the reference data. This excellent agreement is further confirmed by the
comparison of the recirculation bubble length Lrec for steady cases with similar blockage B in Fig. 4.5,
and the Strouhal number for unsteady cases in Fig. 4.6.

The simulation at ReD = 200 has also been repeated using only the geometric refinement criteria,
L∗1 and L∗2. The same aerodynamic coefficients are found as for the simulation using the solution-based
criterion, but a 5% lower shedding frequency is observed, owing to the coarser mesh in the wake.

4.1.2 Rotating cylinder (ReD = 200)

To demonstrate the applicability of the method to moving bodies, the case of a two-dimensional
laminar flow around a rotating cylinder at ReD = 200 is briefly presented for two values of the cylinder
rotation velocity. It is well-known that a sufficiently large rotation velocity Ω can suppress the vortex
shedding process. More precisely, if the non-dimensional rotation velocity ω = ΩD/(2U∞) ' 2, a steady
but asymmetric solution is obtained [90, 91]. At lower values of ω, vortex shedding occurs but the wake
is displaced vertically and the solution is also asymmetric. This test case is interesting because the
position of the wake is not known a priori, such that a purely geometric refinement criterion might not
provide an optimal refinement. The use of a solution-based refinement criterion overcomes this difficulty,
as shown in two examples, one at a low (ω = 1.5) and one at a high (ω = 2.07) rotational speed.

The same computational domain and mesh characteristics are used as for the static case. The only
difference is for the solution-based refinement criterion, which uses Eq. (3.23) with β = 1. Moreover,
the target mesh size L∗3 varies between L∗min where relative gradients are larger than 0.8 and 0.2 where
relative gradients are smaller than 0.05. In order to avoid too high distortion of the mesh elements above
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Figure 4.1: Two-dimensional flow around a static cylinder. (a) Contour of the streamwise velocity component
for the the steady case at ReD = 40. The blue zone indicates the region where the streamwise velocity is

negative and illustrates the extent of the recirculation bubble. (b) Contour of the vorticity for the unsteady
case at ReD = 200 showing the periodic Karman vortex street. In both cases, only a short portion of the entire

computational domain is shown.
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Figure 4.2: Numerical setup for the flow around a cylinder. The boundary conditions are indicated in the
framed text near the four external boundaries. The dashed blue line is the limit of the first geometrical

refinement criterion, increasing the value L∗1 from L∗min at the cylinder surface to L∗max at a distance of 15 from
the cylinder center at (0, 0). The dashed red lines are the limits for the second refinement criterion between
which L∗2 is equal to the intermediate value L∗med, while L

∗
2 increases from L∗med to L∗max outside of this

intermediate region.
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Figure 4.3: Steady or mean (if unsteady) drag
coefficient as a function of the Reynolds number for

the laminar flow around a static cylinder. The present
results (red stars) are compared with the experimental
results of Wieselberger [78] and the numerical results

of Henderson [76, 89] and Sheard et al. [77].

Figure 4.4: Root-mean-square (rms) lift coefficient
as a function of the Reynolds number for the laminar
flow around a static cylinder. The present results (red

stars) are compared with the numerical results of
Norberg [79]. The first two PFEM data points
correspond to the steady cases without vortex

shedding.

Figure 4.5: Non-dimensional length of the
recirculation bubble behind the static cylinder for

ReD / 40. The present results (red stars, B = 0.033)
are compared with the experimental results of Taneda
(TA) [83], Grove et al. (GR) [84], Coutanceau and

Bouard (CB) [85] and Acrivos et al. (AC) [86], and to
the numerical results of Sen et al. [87] and Keller and
Takami (KT) [88], for different values of the blockage

B.

Figure 4.6: Strouhal number of the vortex shedding
in the wake of a static cylinder for different Reynolds
numbers. The present results (red stars) are compared

with experimental results of Zhang et al. [82] and
Williamson [81] and numerical results of

Henderson (2D and 3D) [80] and Karniadakis and
Kedar (taken from Williamson [81]).

the cylinder, where the flow velocity is increased by the cylinder rotation, the time step is reduced by
a factor of 2.5 and 3, respectively, with respect to the static case.

The resulting vorticity field is shown in Fig. 4.7 for the two cases. As expected, a Karman vortex street
is observed at low ω but displaced above the horizontal centerline. At larger ω vortex shedding is fully
suppressed and the wake is asymmetric. Because of the flow asymmetry induced by the cylinder rotation,
the lift does not vanish. The (mean) lift coefficient CL obtained for the two cases is summarized and
compared to numerical references from the literature in Table 4.1. Again good agreement is obtained.
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Figure 4.7: Vorticity contour for the laminar flow around a rotating cylinder at a non-dimensional rotation
speed ω = 1.5 (top) and ω = 2.07 (bottom). The suppression of the shedding process is clearly visible at large
ω. The wireframe representation illustrates the effect of the adaptive mesh refinement near the cylinder and

around the vortices and the wake.

ω = 1.50 ω = 2.07

Wang et al. [91] -3.93 -5.71
Mittal et al. [90] -3.90 -5.70
PFEM (GEO + SOL) -3.94 -5.66

Table 4.1: Mean lift coefficient CL of the rotating cylinder obtained for two different values of the
non-dimensional cylinder rotation speed ω and comparison with numerical results from the literature. GEO and

SOL indicate geometric and solution-based mesh refinement, respectively.

4.1.3 Transversely oscillating cylinder (ReD = 200)

To further illustrate the use of the proposed mesh refinement algorithm for moving bodies, the two-
dimensional laminar flow around a cylinder undergoing a forced vertical sinusoidal oscillation at ReD =
200 is investigated. The objective is to reproduce the lock-in phenomenon that occurs when the cylinder
oscillation has a sufficiently large amplitude and a frequency close to the natural vortex shedding
frequency. During lock-in, the shedding frequency departs from the natural shedding frequency and
synchronizes with the forcing frequency. Moreover, the characteristics of the wake are fundamentally
altered (see e.g. Kumar et al. [92]).

Three cases taken from Wang et al. [91] are considered here: (a) one with sufficient forced oscillation
amplitude Ae and adequate frequency to observe lock-in, (b) one with sufficient amplitude but a forcing
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frequency fe too different from the natural (i.e., for a static cylinder) shedding frequency fS that
lock-in should not take place, and finally (c) a case with an adequate forcing frequency but a low
oscillation amplitude Ae preventing again the appearance of the lock-in phenomenon. The corresponding
parameters are summarized in Table 4.2. The computational domain and mesh parameters are the same
as for the static cylinder case.

Case fe/fS Ae Lock-in
(a) 0.85 0.2 yes
(b) 0.75 0.2 no
(c) 0.85 0.1 no

Table 4.2: Parameters for the vertically oscillating cylinder, where fe is the forcing frequency, fS the natural
shedding frequency and Ae the forcing amplitude. Only the first case should lead to the lock-in phenomenon.

The time evolution of the lift and drag coefficients is shown in the left column of Fig. 4.8 for the
three cases. The vertical position yc(t) of the cylinder center is also reported for reference. Moreover,
the power spectrum of the lift oscillation is also illustrated in the right column of that figure. Unlike
the second and third cases (Fig. 4.8b,c) where several frequencies are clearly distinguishable, case (a)
exhibits a unique frequency (Fig. 4.8a). The Fourier analysis shown in the right column confirms that
this single frequency corresponds to the forcing frequency fe. In other words, the shedding frequency
has synchronized with the forcing frequency, there is a lock-in phenomenon. For cases (b) and (c), the
lock-in does not occur and the shedding frequency remains distinct from the forcing frequency, leading
to an amplitude modulation of the fluctuating aerodynamic coefficients. The Fourier analysis shows
that the dominant frequency is fS but contributions at fe and other frequencies are also present. The
frequency fe is too apart from fS (case (b)) or the oscillation amplitude Ae is too low (case (c)) to
trigger the lock-in phenomenon, in agreement with Wang et al. [91] (see Figures 21 (b), 21 (a) and 24
(b) for the aerodynamics coefficients of the cases in table 4.2 and figures 23 (b), 23 (a) and 26 (b) for
the power spectra of their lift coefficient). The corresponding wakes are shown in Fig. 4.9. A regular
periodic vortex shedding is observed for the lock-in case (Fig. 4.9a), while clear variations are seen in
the two other cases.
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(a) fe/fS = 0.85, Ae = 0.2 (lock-in)
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(b) fe/fS = 0.75, Ae = 0.2 (no lock-in)
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(c) fe/fS = 0.85, Ae = 0.1 (no lock-in)
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Figure 4.8: Left: lift and drag coefficients, CL and CD, and vertical position of the cylinder yc as a function of
the time for the flow around a vertically oscillating cylinder (to be compared with Figures 21 b), 21 a) and 24
b) of Wang et al. [91]). Right column: power spectra of the lift coefficient (to be compared with Figures 23 b),
23 a) and 26 b) of Wang et al. [91]). The dashed red line corresponds to the vortex shedding frequency fS and

the dashed blue line to the excitation frequency fe, both being normalized by fS . For each case, the
corresponding oscillation amplitude Ae and the ratio of the forcing frequency fe to the natural shedding

frequency fS is reported.
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(a) fe/fS = 0.85, Ae = 0.2 (lock-in)

(b) fe/fS = 0.75, Ae = 0.2 (no lock-in)

(c) fe/fS = 0.85, Ae = 0.1 (no lock-in)

-8 8

Vorticity

Figure 4.9: Vorticity contour in the wake of a vertically oscillating cylinder for different values of the cylinder
oscillation frequency fe and amplitude Ae. Only case (a) shows the lock-in phenomenon. The dots correspond

to the mesh nodes.
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4.1.4 Impulsively started cylinder (ReD = 9500)

Previous cases only involved a limited Reynolds number (ReD ≤ 200) for which the size of the
boundary layer was large enough that a limited resolution is sufficient to correctly capture the relevant
physics. Therefore, they are not the most challenging ones in terms of required spatial resolution. The
transient flow around an impulsively started cylinder at ReD = 9500 is now considered. The goal is to
evaluate different aspects of the mesh adaptation algorithm:

• The first objective is to compare two different solution-based strategies to define the target mesh
size L∗, using either the velocity gradient ||∇U|| or its normalized version given by Eq. (3.24),
together with Eq. (3.23), and determine how they are able to represent the interesting features
of the transient wake. These different mesh refinement strategies are respectively referred to as
SOL1 and SOL2, and their characteristics are summarized in Table 4.3.

• Secondly, it is shown that ||∇U|| or its normalized version given by Eq. (3.24) have both a
dependency on some negative power of the distance r, and that a clever choice of the parameter
β in Eq. (3.23) is able to provide a smooth progression of the target mesh size, therefore making
the use of geometry-based mesh refinement unnecessary.

• The accuracy of the results obtained with the PFEM is evaluated by comparing them with those
obtained by Koumoutsakos et al. [93] at the same Reynolds number and based on a vortex method.
In particular, the accuracy of the solution is assessed by the vorticity contour at different times
and by the time evolution of the drag coefficient.

Simulation setup

All quantities are here non-dimensionalized using the cylinder radius a, velocity U∞ and density
ρ. The main characteristics of the simulations, including domain size, boundary conditions and target
mesh sizes, are summarized in Fig. 4.10a. The mesh after one iteration with the SOL2 mesh adaptation
strategy (SOL1 leads to a very similar mesh) is shown in Fig. 4.10b. The parameters for mesh adaptation
are summarized in Table 4.3. The simulation is performed in a frame of reference that is fixed with the
cylinder and the flow goes from left to right. At t = 0, a uniform velocity U is prescribed everywhere
(except at the cylinder surface). For t > 0, a uniform velocity is imposed at the inlet.

SOL1 SOL2
L∗min 0.00175
L∗max 1.4
||∇u||min 0.0042 0.125
||∇u||max 10 5

β 1/3 1
(U∞, Uε) – ((1, 0) , 0.01)

Table 4.3: Target mesh size parameters of Eqs. (3.23) and (3.24) for the mesh refinement of the flow around
an impulsively started cylinder at ReD = 9500.
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Figure 4.10: (a) Setup of the simulation for the flow around an impulsively started cylinder at ReD = 9500.
(b) Mesh wireframe after one iteration using the SOL2 mesh adaptation (note that the SOL1 gives a similar

mesh).

Results

In a first step, the two mesh adaptation strategies are analyzed and compared. Figure 4.11 shows
the contour plots of ||∇U|| and its normalized version (Eq. (3.24)) used in the solution-based mesh
adaptation SOL1 and SOL2, respectively. At large distance, where the impact of the viscosity becomes
small, the flow is close to a potential flow, so that ||∇U|| only depends on the distance from the cylinder
center r (see Appendix A). As expected, the measure of the gradients, either in its absolute (Fig. 4.11a)
or in its relative (Fig. 4.11b) form, confirms this, as the contour plot exhibits a clearly circular shape
far from the wake. Therefore, no geometry-based criterion is needed to calculate L∗, the solution-based
criteria providing by themselves a smooth increase of the target mesh size from the cylinder surface to
larger distances from it. The advantage of both solution-based criteria over geometry-based criteria is
that, in the present case, they provide detailed mesh adaptation in and around the wake and its different
shearing layers.

Closer to the cylinder and in the wake, ||∇U || and its rescaled value strongly differ, as illustrated in
Fig. (4.12). Consequently, the two mesh adaptation strategies, SOL1 and SOL2, lead to some differences
in the mesh refinement. This can be visualized in Figs. 4.13 and 4.14 where the corresponding mesh
wireframes colored by vorticity are depicted at four different times, from t = 2.5 to t = 5.5, so as to
highlight the local mesh element size. For better visualization of the actual solution, contours of the
vorticity without the mesh wireframe are also shown in Figs. 4.15 and 4.16 and should be compared to
similar images in Fig. 26 of Koumoutsakos et al. [93], reproduced in Fig. 4.17. From these figures, it is
clear that the SOL2 mesh refinement enables capturing features that are not captured by SOL1 because
they are too weak. For instance, some thin vorticity structures seem to be cut in the lower left image
of Fig. 4.13 and the lower and top left images of Fig. 4.14, which does not occur with the SOL2 mesh
refinement (right column of these figures).

However, these differences are mostly an artefact of the wireframe representation, as demonstrated
by Figs. 4.15 and 4.16. The vorticity fields associated with SOL1 and SOL2 are almost identical at
early times and discrepancies become only apparent at later times. For instance, at t = 4.5, the vortex
pair being ejected into the wake looks better defined with SOL2. At t = 5.5 larger differences are
observed in the region around this ejected vortex pair, where the most downstream vortex filament is
mostly absent with SOL1. Other small discrepancies are also visible in the vortex filaments that link
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Figure 4.11: Contour plot in a logarithmic scale of the Frobenius norm of the velocity gradient for the SOL1
mesh adaptation (a) and its normalized version for the SOL2 mesh adaptation (b). The circular shape

obtained far from the wake (approximated by the black circle) clearly shows that these two quantities depend
on r (except for the small region between the inlet and cylinder in case of SOL2).

the ejected vortices to the cylinder. Comparison with the reference case (Fig. 4.17) indicates that SOL2
performs slightly better. While all the key structures are captured by the PFEM, differences with the
results of Koumoutsakos et al. [93] are nonetheless visible. First, the ejected vortex pair at t = 5.5
in the reference solution is fully disconnected from the cylinder, while these two vortices seem to still
be partly connected through a vortex filament to the cylinder in the PFEM solutions. Furthermore,
the vortex filament wrapping around the ejected vortices remain well distinct in the reference solution
but seems to have mostly merged with the core of the ejected vortices in the present results. It is also
interesting to note that the solutions remains well symmetric, although the mesh is not.

The drag coefficient obtained with SOL1 and SOL2 is compared to the reference case of Koumout-
sakos et al. in Fig. 4.18. The two mesh refinement strategies give very similar results, except for a small
time shift between both. Therefore, despite the differences observed in the mesh resolution, the mesh
refinement performs very similarly near the cylinder surface, resulting approximately in the same drag
coefficient. Finally, the drag coefficients obtained with the PFEM match qualitatively the reference
case but quantitative differences are observed, in particular at later times. Specifically, after t = 3, the
curve of Koumoustakos et al. shows a time lag with respect to that of PFEM (SOL1 and SOL2), and
reaches a higher maximum peak around t = 3.8 and a lower minimum peak around t ' 4.5. The lower
extrema in the PFEM results are most likely due to numerical dissipation associated with the finite
mesh size and the resulting diffusion of vortical structures, as previously discussed. Further refining the
mesh would improve the results but at a higher computational cost. Overall, the result are nonetheless
encouraging, especially in view of the large Reynolds number. Furthermore, this case would be much
more expensive to simulate with a uniform mesh and the added value of mesh adaptation is evident.
Finally, the SOL2 mesh adaptation strategy is for this case better adapted than SOL1.
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Figure 4.12: Contours of the Froebenius norm of the velocity gradients and normalized velocity gradients at
times t=4.5 and t=5.5 for the SOL1 (left) and the SOL2 (right) mesh adaptations.
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t = 2.5

t = 3.5

SOL1 SOL2
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Figure 4.13: Mesh wireframe colored by the vorticity at times t=2.5 (top) and t=3.5 (bottom) for the SOL1
(left) and SOL2 mesh adaptation (right).
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t = 4.5
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Figure 4.14: Mesh wireframe colored by the vorticity at times t=4.5 (top) and t=5.5 (bottom) for the SOL1
(left) and SOL2 mesh adaptation (right).
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t = 2.5 t = 2.5

SOL1

SOL2

Figure 4.15: Vorticity contour obtained for an impulsively started cylinder at ReD = 9500, at times t = 2.5
(left) and t = 3.5 (right) with the PFEM, using the SOL1 (top) and SOL2 (bottom) mesh adaptation.

t = 4.5 t = 5.5

SOL1

SOL2

Figure 4.16: Vorticity contour obtained for an impulsively started cylinder at ReD = 9500, at times t = 4.5
(left) and t = 5.5 (right) with the PFEM, using the SOL1 (top) and SOL2 (bottom) mesh adaptation.
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Figure 4.17: Vorticity contour obtained at different times t ∈ {2.5, 3.5, 4.5, 5.5} by Koumoutsakos et al. [93]
for an impulsively started cylinder at ReD = 9500. These results are taken as reference for the comparison with

the present results (see Figs.4.15 and 4.16).
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Figure 4.18: Drag coefficient a function of the time for an impulsively started cylinder at ReD = 9500,
obtained with the two different mesh refinement criteria SOL1 and SOL2, and reference results of

Koumoutsakos et al. [93]
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4.2 The lid-driven cavity

A square cavity is now considered, whose bottom and side walls are fixed and whose top wall (lid)
moves from left to right at constant velocity. After a transient phase, the velocity field reaches a steady
state characterized by a primary rotational structure and smaller vortices in the lower corners of the
cavity, as illustrated in Fig. 4.19. All reported quantities are made non-dimensional using the fluid
density ρ, the cavity side length L and the lid velocity U . Reynolds numbers of 100 and 400 are
considered, with Re = ρUL/µ, where µ is the dynamic viscosity. First, a mesh convergence analysis is
performed using a uniform mesh and results are compared with the literature for the case at Re = 400,
because it is more limiting than the case at Re = 100 in terms of required spatial resolution (see
Section 3.3). Then, still for Re = 400, several strategies to define the target mesh size are analyzed.
Afterwards, results obtained with uniform and non-uniform meshes are compared. These results are
mainly assessed in terms of the position of the primary and secondary vortices and the vorticity at these
locations. Finally, the results with the most resolved uniform and non-uniform meshes are shown for
the case Re = 100, and compared with the literature. The differences between the PFEM solutions at
the two different Reynolds numbers are also briefly discussed.

Primary

BR1
BL1

(a)

Primary

BR1

BL1

(b)

Figure 4.19: Streamlines at steady state obtained for the lid-driven cavity flow. The location of the three
main vortices is indicated by the red crosses. (a) Re= 100 on a non-uniform mesh with a minimal mesh
element size L∗min = 0.00375 and a maximum mesh element size L∗max = 0.015. (b) Re= 400 on a 80× 80

uniform mesh, corresponding to an average element size L∗ = 0.0075.

4.2.1 Main flow features and mesh convergence analysis

First, the convergence of the results at Re = 400 on a uniform mesh1 is analyzed using a series of
refined meshes with N ×N subdivisions along the vertical and horizontal walls, ranging from 20×20 to
160× 160. The corresponding total number of nodes is more or less 4N2/3, as triangular elements are
used. For comparison, this would correspond to L∗min = L∗max ≈ 0.6/N . The time step size is defined
based on the minimum target mesh size as ∆t = 5L∗min/12 for this mesh convergence study and all
subsequent simulations. The results obtained with these meshes are also compared to several references
from the literature [94–97].

Figure 4.19b shows the streamlines of the solution obtained with the 80×80 mesh. As summarized in
Table 4.4, it is found that the mesh with a resolution of 80× 80 is sufficient to get results close to those
of the literature. The most resolved mesh (160 × 160) does not lead to results that are significantly

1The mesh is not perfectly uniform since it deforms at each time step, but it has approximately a uniform element size.
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PFEM simulations Ghia et al. Schreiber et al. Vanka Hou et al.
Res. → 20× 20 40× 40 80× 80 160× 160 257× 257 180× 180 321× 321 256× 256

Num. meth. PFEM CSI-MG "homemade" BLIMM LBM
Form. var. u, v, p ψ − ω ψ u, v, p BGK model

Pr.
xc 0.5522 0.5527 0.5562 0.5543 0.5547 0.5571 0.5563 0.5608
yc 0.6039 0.6080 0.6074 0.6059 0.6055 0.6071 0.6 0.6078
ω 2.446 2.3155 2.292 2.289 2.2947 2.281 − −

BR1
xc 0.8910 0.8857 0.8856 0.8854 0.8906 0.8857 0.8875 0.8902
yc 0.1173 0.1213 0.1223 0.1224 0.1250 0.1143 0.1188 0.1255
ω 0.3749 0.4007 0.4104 0.4161 0.433 52 0.394 − −

BL1
xc − 0.0493 0.05 0.050 83 0.0508 0.05 0.05 0.0549
yc − 0.0457 0.0467 0.047 07 0.0469 0.0429 0.05 0.0510
ω − 0.0675 0.044 57 0.060 37 0.056 97 0.0471 − −

Table 4.4: Mesh convergence study on a uniform mesh for the lid-driven cavity test case at Re = 400: position
(xc, yc) and associated vorticity ω of the primary and secondary (BR1 and BL1, see Fig. 4.19 for definition)
vortices for different mesh sizes and comparison with the results of Ghia et al. (finite difference method,

vorticity-streamfunction formulation) [94], Schreiber et al. (fourth-order finite difference method,
vorticity-streamfunction formulation) [96], Vanka (finite difference method on staggered grid) [97] and Hou et

al. (Lattice Boltzmann method) [95].

different (the difference with respect to the coarser mesh is of the same order of magnitude as the
variability across the reference data), but increases noticeably the computational time. Because the
intermediate 80 × 80 mesh provides sufficiently accurate results while keeping the computational cost
limited, all following analyzes are based on meshes of a similar size.

4.2.2 Different mesh refinement strategies and comparison with uniform meshes

As discussed in Section 3.2.1, several criteria can be used to define the target mesh size. For this
test case, a geometric and two physics-based criteria are investigated. The geometric criterion (denoted
GEO) defines a target mesh size that increases linearly from L∗min at the top wall to L∗max at the bottom
wall. The finer mesh at the lid is motivated by the larger velocity gradients and the thinner boundary
layer in this region, as indicated by the closely packed streamlines in Fig. 4.19. Moreover, a finer mesh
at the cavity upper corners reduces the effect of the velocity discontinuity induced by the moving lid.

It can be expected that this geometric criterion is not sufficient to accurately capture the vortical
structures. An additional refinement based on the velocity gradients using Eq. (3.23) (denoted SOL1)
is thus also considered. Nonetheless, because the corner vortices are much weaker than the primary
vortical structure, their associated velocity gradients are much smaller, which leads to a rather large
target mesh size there. A better targeted refinement of the corner vortices can be achieved with a
solution-based criterion (denoted SOL2) that uses rescaled velocity gradients according to Eq. (3.24).
The mesh size is thus prescribed based on the shape of the vortices rather than on their intensity. The
different target mesh size parameters for the three criteria are summarized in Table 4.5. The mesh
resulting from these three criteria are compared for L∗min = 0.6/80 = 0.0075 and L∗max = 8L∗min.

GEO SOL1 SOL2
||∇u||min – 2/9 2
||∇u||max – 6 50

β – 1/3 1
(U∞, Uε) – – ((0, 0) , 0.01)

Table 4.5: Target mesh size parameters of Eqs. (3.23) and (3.24) for the mesh refinement of the lid-driven
cavity test case at Re = 400.

Typical meshes obtained at steady state using the above mesh refinement criteria are illustrated
in Fig. 4.20. The GEO criterion produces a mesh with progressively increasing size in the direction
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(a) GEO: Nst = 1184 (b) SOL1: Nst = 3566 (c) SOL2: Nst = 2469

Figure 4.20: Meshes at steady state obtained using three different mesh refinement strategies for the lid
driven cavity flow at Re = 400. For all three cases, L∗min = 0.6/80 = 0.0075 and L∗max = 8L∗min. The
approximate total number of nodes at steady state, Nst, is also reported. The other target mesh size

parameters are summarized in Table 4.5.

normal to the lid (Fig. 4.20a), while the SOL1 criterion leads to a mesh with the same background
mesh stretching but with additional refinement at the edge of the primary vortex, in particular just
below the top right corner (Fig. 4.20b). However, the resulting mesh at the two bottom corners is very
coarse, preventing an accurate representation of the corner vortices there. The SOL2 criterion, on the
other hand, yields a fine mesh along the entire edge of the primary vortex and at its core (Fig. 4.20c).
Additionally, a better refinement at the bottom corners is also achieved.

Uniform vs. non-uniform meshes

One of the main motivation for the present mesh refinement algorithm is to be able to refine locally
the mesh in order to improve the solution accuracy in specific regions while keeping the computational
cost limited. Alternatively, this also provides the ability to use a coarser mesh in regions where the
solution is smooth, thus reducing the computational cost while keeping the same accuracy of the solution.
However, it should be emphasized that even a very local and spatially limited mesh refinement has an
impact on the time step. More specifically, a reduction of the element size imposes a corresponding time
step reduction. It is important to note that, within a Lagrangian formalism, the bound on the time step
size is not directly related to stability but is a problem of convergence of the nonlinear algorithm. A too
large mesh deformation within one time step makes the convergence very difficult, or even impossible.
As a consequence, even when the decrease of L∗min induces only a small increase in the total number
of elements, a non-negligible increase in the overall computational cost due to a larger number of time
steps is unavoidable.

Three non-uniform meshes based on the SOL2 refinement with the same L∗min (corresponding to that
of a 80×80 uniform mesh) and a decreasing L∗max are compared to uniform meshes in Table 4.6. One can
observe that increasing L∗max deteriorates slightly the accuracy of the simulation, but also significantly
reduces the number of nodes. For instance, Mesh 2 in Table 4.6 has half as many nodes as the 80× 80
uniform mesh for virtually the same accuracy. Comparing Mesh 1 and the 40 × 40 uniform mesh that
both have a similar number of nodes, one observe that, although the position of the primary vortex is
surprisingly slightly less accurate for Mesh 1, the corresponding vorticity is much better predicted.

Comparison between Re = 100 and Re = 400

The flow physics is further analyzed by comparing the two Reynolds number cases. First, the results
obtained at Re = 100 are summarized for the most resolved uniform and non-uniform (SOL2) meshes
(among those used for simulations at that Reynolds number) in Table 4.7. Note that the resolution
of these meshes is expectedly slightly lower than for Re = 400. Globally, the accuracy of the vortex
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Similar L∗min Uniform
Mesh type → Mesh 1 Mesh 2 Mesh 3 (40× 40) (80× 80) (160× 160)

Parameters

L∗min 0.0075 0.0075 0.0075 0.015 0.0075 0.003 75
L∗max/L

∗
min 8 4 2 1 1 1

∆t × 103 3.125 3.125 3.125 6.25 3.125 1.5625
Ninit ∼ 500 ∼ 1200 ∼ 2900 ∼ 2200 ∼ 8500 ∼ 34000
Nsteady ∼ 3300 ∼ 5200 ∼ 7900 ∼ 2700 ∼ 10500 ∼ 42000

Results Primary
xc 0.5594 0.5563 0.5551 0.5527 0.5562 0.5543
yc 0.6106 0.6083 0.6072 0.6080 0.6074 0.6059
ω 2.281 2.2895 2.292 2.3155 2.292 2.289

Table 4.6: Comparison of different mesh adaptation strategies for the lid-driven cavity flow at Re = 400:
SOL2 mesh refinement for three meshes with same L∗min and decreasing L∗max and three uniform meshes with

decreasing L∗min. Mesh parameters, time step, initial and final number of nodes and position (xc, yc) and
associated vorticity ω of the primary vortex.

Uniform mesh Non-Uniform mesh Ghia et al. Schreiber et al. Vanka Wright et al.
Res. → 100× 100 L∗min = 0.00375 257× 257 180× 180 321× 321 1024× 1024

Num. meth. PFEM CSI-MG "homemade" BLIMM FV
Form. var. u, v, p ψ − ω ψ u, v, p u, v, p

Pr.
xc 0.6158 0.6156 0.6172 0.6167 0.6188 0.6157
yc 0.7376 0.7377 0.7344 0.7417 0.7375 0.7378
ω 3.1852 3.1716 3.1665 3.182 − 3.1704

BR1
xc 0.9428 0.9439 0.9453 0.9417 0.9375 0.9419
yc 0.0613 0.0604 0.0625 0.05 0.0563 0.062
ω 0.0383 0.0379 0.0331 0.0255 − 0.0351

BL1
xc 0.0343 0.0337 0.0313 0.0333 0.0375 0.0337
yc 0.0341 0.0319 0.0391 0.025 0.0313 0.0347
ω 0.0162 0.0105 0.0156 0.008 − 0.0146

Table 4.7: Position and corresponding vorticity of the three main corner vortices for the lid-driven cavity flow
at Re = 100. The PFEM simulations obtained with a uniform mesh are compared with those obtained with a
non-uniform mesh with a progression L∗max/L

∗
min = 4, as well as with results from the literature: Ghia et al.

(finite difference method, vorticity-streamfunction formulation) [94], Schreiber et al. (fourth-order finite
difference method, vorticity-streamfunction formulation) [96], Vanka (finite difference method on staggered

grid) [97] and Wright et al. (finite difference method with multigrids) [98].

position and associated vorticity is satisfactory, in the sense that the variability between the results
obtained with the uniform and non-uniform meshes is smaller that that observed in the results from
the literature. As already mentioned, results should be interpreted keeping in mind that they can
significantly vary depending on whether small corner vortices are captured or not.

Table 4.8 compares the results on the best uniform and non-uniform (SOL2) meshes for the two
Reynolds numbers. The changes in the solution when increasing the Reynolds number are illustrated
by Fig. 4.19. It can be observed that, with an increase of the Reynolds number,

• the vorticity at the center of the primary vortex becomes weaker (from 3.18 to 2.29) and the vortex
center moves to a lower position, closer to the cavity center;

• the two secondary vortices become larger, their center moves further away from the cavity corners,
and the associated vorticity increases.

These overall changes result from the larger relative contribution of inertia when Re is increased. As
expected, the secondary vortices become more prominent, thus modifying the primary vortex.

Finally, it should be emphasized that these results, and in particular the position of the different
vortices, are very sensitive to many factors. This is clearly demonstrated by the variability of the results
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Re =100 Re =400
Mesh type → Uniform Non-uniform Uniform Non-uniform
Resolution → 100× 100 L∗min = 0.00375 160× 160 L∗min = 0.0025

Pr.
xc 0.6158 0.6156 0.5543 0.5552
yc 0.7376 0.7377 0.6059 0.6067
ω 3.1852 3.1716 2.289 2.2945

BR1
xc 0.9428 0.9439 0.8854 0.8856
yc 0.0613 0.0604 0.1224 0.1225
ω 0.0383 0.0379 0.4161 0.4566

BL1
xc 0.0343 0.0337 0.050 83 0.4950
yc 0.0341 0.0319 0.0471 0.0469
ω 0.0162 0.0105 0.0604 0.0529

Table 4.8: Comparison of the position and associated vorticity of the three main vortices in the lid-driven
cavity flow for the two Reynolds numbers considered on both uniform and non-uniform (SOL2) meshes.

in the literature (see Tables 4.4 and 4.7) despite very fine meshes. This sensitivity is most likely due to
the presence of additional smaller and smaller vortices that emerge in the corners when increasing the
grid resolution. The abrupt appearance of such a vortex impacts the overall flow, and correspondingly
the other vortices. This phenomenon thus complicates the grid convergence analysis. Furthermore,
because the lid-driven cavity flow is fully confined and involves boundary layers on all four walls, the
gain achieved by using a non-uniform mesh is somehow limited; most Eulerian studies in the literature
are actually based on uniform meshes. Nonetheless, this test case provides the opportunity to test
different strategies of mesh refinement, as shown above.

4.3 Forced sloshing

The previous three test cases are classical examples for which an Eulerian approach would be better
adapted. On the other hand, the PFEM can be of advantage when simulating flows with a free surface.
To highlight the added value of adaptive mesh refinement and to illustrate the use of the proposed
algorithm for free-surface flows, the sloshing in a tank undergoing a forced roll motion is now studied.
The setup reproduces some experiments of Delorme et al. [99] and Souto-Iglesias et al. [100] for the case
of water in the large tank with lateral impacts. A schematic of that setup and its dimensions is shown
in Fig. 4.21 with the values of the geometrical and physical parameters summarized in Table 4.9.

The Reynolds number is defined with the initial water height H and the characteristic velocity√
gH, where g is the gravity acceleration, such that the Froude number Fr = 1. Using the shallow water

dispersion relation, Souto−Iglesias et al. [100] estimate the resulting sloshing period as

Ts = 2π

(
π g

L
tanh

(
πH

L

))−1/2

= 1.9191 s . (4.1)

The imposed rolling motion of the tank is an oscillatory rotational motion around the horizontal
with an amplitude φmax = ±4◦ and a period Tf that is 85% of the natural sloshing period Ts. The
corresponding tilt angle φ(t) with respect to the horizontal line has been taken from the experiment
and is shown in Fig. 4.22. Finally, a pressure sensor is located on the left wall at a height corresponding
to the initial water height H (red dot in Fig. 4.21).

2The units are m−1 instead of s−1 because the gradients are normalized by a scaling velocity.
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Figure 4.21: Schematic of the setup for the sloshing experiment of Delorme et al. [99] and Souto-Iglesias et
al. [100]. Only two-dimensional simulations are performed, neglecting the presence of the front and back walls
and the resulting friction. The red dot on the left wall indicates the position of the pressure sensor located at a

height corresponding to the initial water height H. The respective numerical values are summarized in
Table 4.9.

Initial water height H 93 mm
Tank length L 900 mm
Tank width W 62 mm
Sloshing period Ts 1.9191 s
Rolling amplitude φmax ±4◦

Density ρ 998 kg/m3

Dynamic viscosity µ 8.94 · 10−4 Pa s
Surface Tension σ 0.0728 kg/s2

Reynolds number Re 105

Froude number Fr 1
Rolling period Tf 1.6312 s

Table 4.9: Geometrical and physical parameters for the sloshing experiment of Delorme et al. [99] and
Souto-Iglesias et al. [100] for the water case. The geometrical dimensions are defined in Fig. 4.21.

Figure 4.22: Tilt angle φ(t) of the tank as a function of the time taken from the sloshing experiment of
Delorme et al. [99] and Souto-Iglesias et al. [100]. The points labeled (A) to (H) correspond to maximum, zero

and minimum tilt.

Mesh adaptation

For this case, the mesh adaptation strategy relies on the combination of one geometric and two
solution-based criteria. First, a mesh stretching from the minimum target mesh size L∗min = 1.4 mm at
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L∗min 1.4 mm
L∗max 13 mm
||∇̃u||min

2 21.5 m−1

||∇̃u||max 107.5 m−1

β 1
Uε 0.01 m/s

Table 4.10: Target mesh size parameters used for the solution-based mesh refinement of the sloshing test case.

the walls to L∗max = 9.28L∗min at a distance H from the walls is imposed through a geometric progression.
Then, regions of large velocity gradients are refined according to Eqs. (3.23) and (3.24), while the free
surface is refined using the criterion of Eq. (3.25). The corresponding parameters are summarized in
Table 4.10. The results are also compared to those obtained on a uniform mesh with an element size
L∗min using the classical PFEM algorithm. Despite the slight differences in Eqs. (2.43) and (3.34), the
same α is used for both mesh types. Moreover, two different values, α = 1.2 and α = 1.4, are considered
to assess the impact of α on mass conservation. As shown in the following, the best results are obtained
with α = 1.2 for the non-uniform mesh and α = 1.4 for the uniform mesh. These values are used when
illustrating the results. Finally, the same time step size ∆t = 0.0005 s is considered for all simulations.

Results

Figure 4.24 compares the deformation of the free surface between the uniform (α = 1.4) and non-
uniform (α = 1.2) meshes at the time instants (A) to (H) defined in Fig. 4.22, i.e., at zero, maximum
and minimum tilt angles. During this initial phase, both simulations lead to almost the same solution
with small differences only visible after some time, for instance at the free surface close to the left wall
(instant (G)) or towards the middle of the tank (instant (H)). This very good agreement between the
two simulations is achieved despite a large difference in their mesh size. For the classical PFEM, its
uniform mesh has the highest resolution everywhere so that its total number of nodes varies slightly
around 29000 during this initial phase. On the other hand, with the new algorithm, the non-uniform
mesh has an initial number of nodes of about 4200 that progressively increases due to mesh adaptation
to about 7500 at instant (H), as shown in Fig. 4.23. The new algorithm can thus significantly reduce
the computational cost while keeping the same accuracy. The effect of the curvature-based free-surface
mesh adaption is clearly visible with a progressive refinement around the high-curvature zones, which
allows a better description of the wave crest, as illustrated in Fig. 4.25. On the other hand, a much
coarser mesh can be used in regions where the gradients are smaller.

The deformation of the free surface obtained with the non-uniform mesh is then compared to exper-
imental measurements in Fig. 4.26 at the same time instants (A) to (H). The white dots correspond
to the mesh nodes and are superposed to photographs of the experiment. Very good agreement can
be observed for the free-surface motion during the first two sloshing periods ((A) to (F ) in Fig. 4.26
). Following the subsequent impact of the wave on the left wall, the flow becomes more chaotic, with
splashes and individual vortices, and discrepancies become more apparent. The wavefront seems to
break slightly earlier in the numerical simulations (instant (G)). Additionally, the free-surface reaches
a higher height when impinging onto the right wall (instant (H)). Nevertheless, although discrepancies
become more significant over time, the new algorithm provides a very good approximation of the flow
and free-surface motion in this initial phase.

The experiment also includes pressure measurements at the pressure sensor (red dot in Fig. 4.21),
which provide a more quantitative basis for comparison [99, 100]. The time evolution of the pressure
is shown in Fig. 4.27. Very good agreement is found between the PFEM simulation on a non-uniform
mesh (red line) and the experiment (green line) for the first wave reflection at t ≈ 1 s and when the
wave impacts the left wall at t ≈ 2.3 s. The agreement remains good for the two subsequent impacts, in
particular regarding the impact time, but a somewhat larger pressure level is predicted by the simulation
in the post-impact phase (at t ≈ 4.3 s and t ≈ 6 s). Furthermore, the fourth impact seems to be predicted
slightly earlier. The slower motion of the wave in the experiment is possibly due to the friction forces
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Figure 4.23: Evolution of the number of nodes at the time instants A to H (as shown in Fig. 4.24), for both
uniform (blue) and non-uniform (red) meshes. The number of nodes in the non-uniform mesh progressively

increases due to mesh adaptation. At instant H, the total number of nodes is N ' 29500 and N ' 7500 for the
uniform and non-uniform meshes, respectively.

on the front and back walls of the tank, as the tank width is about 15 times smaller than its length.
The presence of these front and back walls, and the corresponding friction, is not accounted for in the
present two-dimensional simulations. Figure 4.27 also includes the results obtained with the classical
PFEM on a uniform mesh with α = 1.4 (blue line). In this case, although the first two impacts are
well predicted, as expected from the above results, the long-time evolution of the pressure clearly shows
discrepancies. In particular, a growing time lag is observed for the third, and mostly fourth impact.
This time lag is even more significant with α = 1.2 (not shown). Moreover, the post-impact pressure
level continuously decreases at each impact.

To further analyze the differences between the two PFEM simulations and the experiment in the later
phase, the free-surface deformation at each of the four impacts on the left wall is shown in Fig. 4.28. The
main observation is that discrepancies between simulations and experiment increase at each impact, as
the flow becomes more and more complex, three-dimensional and chaotic. Additionally, the results are
much better with mesh adaptation than with the classical PFEM. For the non-uniform mesh, the figure
illustrates well the mesh refinement at the free surface, close to the walls and in vortical regions. The
overall free surface is well captured, despite some expected discrepancies in the impact region on the left
wall. For the uniform mesh on the other hand, the aforementioned growing time lag is clearly visible
and is particularly marked at the fourth impact. Even more striking in this case is the lower height
of the free surface, which suggests non-negligible mass loss. Such mass destruction, and the resulting
lowering of the average liquid height H, likely explains the time lag (larger sloshing period Ts, Eq. (4.1))
and possibly the decreasing pressure level over time that are observed with the classical PFEM on the
uniform mesh.
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Figure 4.24: Free-surface deformation for the sloshing test case, at different times corresponding to the

highlighted points in Fig. 4.22 for the uniform (α = 1.4, left) and the non-uniform mesh (α = 1.2, right). The
color contour depicts the pressure field normalized by the initial hydrostatic pressure ρgH at the bottom of the

pool.
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(a) t = 1.9 s, ||U||max = 0.49 m/s

(b) t = 2.1 s, ||U||max = 1.04 m/s

(c) t = 2.2 s, ||U||max = 1.42 m/s

(d) t = 2.3 s, ||U||max = 2.11 m/s

(e) t = 2.35 s, ||U||max = 2.23 m/s

0 | 𝐔 |𝑚𝑎𝑥

Figure 4.25: Nodal values of the velocity magnitude, at different times during the second sloshing period
(between point (C) and (E) in Fig. 4.22). The corresponding maximum velocity is also reported.

Mass conservation

To further investigate the problem of mass conservation, Fig. 4.29 depicts the time variation of the
total volume due to remeshing alone, ∆Vrem, and to both remeshing and time integration, ∆Vtot =
∆Vrem + ∆Vnum. The first observation is that the value of α has a non-negligible impact on mass
conservation. In particular, a lower mass error is achieved with α = 1.4 on a uniform mesh, while
α = 1.2 yields better results on the non-uniform mesh.
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Figure 4.26: Free-surface deformation for the sloshing test case: PFEM computational nodes (white dots)
superimposed to photographs of the experiment [99, 100] at different times corresponding to the highlighted

points in Fig. 4.22.

The remeshing in the new algorithm leads to some mass creation (see Fig. 4.29(a)), but which remains
limited compared to the larger mass destruction (about two times in magnitude when comparing the
better results) in the classical algorithm. As already mentioned in Section 3.2.3, the new algorithm
strongly reduces unwanted mass destruction at the free surface; this allows using a low value of α that
limits mass creation. Note that most mass creation takes place at the vertical walls when wetted by
splashes. As shown by the red dashed lines in Fig. 4.29, increasing α to 1.4 leads to a larger mass
creation. On the other hand, a larger α reduces mass destruction with the classical PFEM on a uniform
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Figure 4.27: Non-dimensionalized pressure at the pressure sensor on the left wall of the tank as a function of
the time. PFEM results obtained with a uniform mesh (blue) and a non-uniform mesh (red) are compared to

the experimental measurements (green) [99, 100].

Uniform Non-uniform
Ninit ∼ 29000 ∼ 4200
Nimp.2 ∼ 30000 ∼ 5500
Nimp.3 ∼ 29000 ∼ 8000
Nimp.4 ∼ 26000 ∼ 8000

Table 4.11: Total number of nodes at the beginning of the simulation and after the second, third and fourth
impacts on the left wall, for both the uniform (α = 1.4) and the non-uniform (α = 1.2) meshes. The decrease of
the total number of nodes of the uniform mesh is due to mass destruction linked to nodes that are eliminated

when too close to each other.

mesh. This mass destruction mostly results from nodes deleted on purpose to prevent a bad mesh quality
when they get too close to each other. This is further supported by Table 4.11 that summarizes the
total number of nodes at the beginning of the simulation and at the second, third and fourth impacts
on the left wall. Because the uniform mesh has elements of size L∗min, its initial number of nodes
is approximately six times that of the non-uniform mesh. However, its mesh size decreases between
the third and fourth impact. On the other hand, the total number of nodes of the non-uniform mesh
expectedly increases over time due to mesh adaptation. Nevertheless, towards the end of the simulations,
the number of nodes of the non-uniform mesh remains more than three times smaller than that of the
uniform mesh. Finally, the numerical time integration induces in both cases some mass destruction (see
Fig. 4.29(b)). For the new algorithm the two contributions, ∆Vrem and ∆Vnum, cancel each other almost
perfectly (probably by chance here) such that the total error in mass conservation is almost zero, while
it amounts to more than 25% after 8 s with the classical PFEM using α = 1.4.

Overall, the results obtained with the new algorithm are very good despite some discrepancies at
later times, mostly due to the inherently chaotic nature of splashes, two-dimensional approximation
and finite mesh resolution. Moreover, the use of mesh adaptation and boundary tracking reduces the
error in mass conservation. In particular, the new algorithm allows choosing a lower value of α (more
stringent criterion), which decreases mass destruction. Additionally, the value of α has been found to
have an important impact on mass conservation. This value could potentially be further optimized
for this specific case, but mass conservation would still remain a major challenge [44]. This issue can
be mitigated with the new algorithm. Moreover, for the same maximum mesh resolution, the non-
uniform mesh has a lower total number of nodes, such that the computational cost is significantly
reduced. Finally, it should be mentioned that the significant error in mass conservation due to the time
integration is most likely due to the accumulation of errors following the relatively long simulation time
and repeated impacts at the side walls.
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(a) t = 0.85 s (b) t = 2.33 s

(c) t = 4.033 s (d) t = 5.63 s

𝑝 − 𝑝𝑒𝑥𝑡
𝜌𝑔𝐻

-0.1 1 2

Figure 4.28: Free-surface deformation for the sloshing case at four different times corresponding to the first
wave reflection and the three successive impacts on the left wall: photograph from the experiment [99] (top)
and mesh wireframe from the PFEM simulations on the uniform mesh with α = 1.4 (middle) and non-uniform

mesh with α = 1.2 (bottom), colored by the non-dimensional pressure.
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Figure 4.29: Variation of the total volume (mass) as a function of the time for the classical PFEM on a
uniform mesh and for the new algorithm on a non-uniform mesh for both α = 1.2 and 1.4 in Eqs. (2.43) and

(3.34), respectively. (a) Error ∆Vrem due to the remeshing only, and (b) overall error including the error due to
the time integration, ∆Vtot = ∆Vrem + ∆Vnum.
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4.4 Drop falling into a liquid bath

The fifth test case considered is taken from Franci et al. [44] and corresponds to a two-dimensional
drop falling into a bath of the same liquid. A schematic of the problem is shown in Fig. 4.30 and the
key parameters are summarized in Table 4.12.

H

R

B

H

Figure 4.30: Schematics of the initial configuration
of the test case where a two-dimensional drop falls into
a tank full of the same viscous fluid, as proposed by

Franci et al. [44]. The numerical values of the different
geometric parameters are summarized in Table 4.12.

Initial liquid height H 0.07 m
Length of the tank B 0.3 m
Initial drop position H 0.07 m
Initial drop radius R 0.025 m
Liquid dynamic viscosity µ 0.1 Pa·s
Liquid density ρ 103 kg/m3

Table 4.12: Geometric and physical parameters for
the 2D drop falling into a liquid bath, as proposed by

Franci et al. [44]. The definition of the geometric
parameters is given in Fig. 4.30.

To reduce the computational time, the simulations begin with the drop closer to the free surface, as
the initial phase only involves the drop’s uniform acceleration. In practice, the simulation is started at
t0 = 108.3 ms, i.e., when the drop is at a distance h0 = 0.5R above the free surface, with the initial
drop velocity U0 =

√
2g(H − h0).

Mesh adaptation

Two different meshes are considered. The first one is uniform and the classical α-shape technique
with α = 1.2 in Eq. (2.43) is used, while the second simulation relies on a non-uniform mesh using the
new refinement and boundary recognition algorithm with α = 1.2 in Eq. (3.34). These results are then
compared to the most resolved case of Franci et al. [44].

Again, the target size of the non-uniform mesh relies on a combination of geometric and solution-
based criteria. First, the tank’s side walls are discretized using the finest mesh resolution L∗min in order
to minimize the mass error during their wetting. Then, a geometric criterion imposes a linear increase
of the target mesh size from L∗min at the side walls to L∗max at a distance 0.75D away from these walls.
No special refinement is imposed on the bottom no-slip wall as the impact of the boundary layer in
this region is considered small. Then, the curvature-based criterion, Eq. (3.25), is used to refine the
free surface with m = 270, provided that the resulting target mesh size is not smaller than L∗min. This
is combined with a solution-based refinement relying on Eq. (3.23). On the other hand, the drop is
initially discretized at its surface using a mesh size of L∗min, which is slightly smaller (62%) than the
value that would be imposed by the curvature-based criterion. Finally, this test case relies additionally
on the contact detection algorithm to minimize mass conservation errors during the impact of the drop
onto the bath’s free surface and merging of the two fluid subdomains.

The mesh parameters for both the uniform and non-uniform meshes are summarized in Table 4.13
and the initial non-uniform mesh is shown in Fig. 4.31. The uniform mesh is similar to that of Franci
et al. [44]. It is interesting to observe that the two meshes have approximately the same final number
of nodes Npost. At last, the time step size is set to ∆t = 0.157 ms for both simulations.

Results
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Figure 4.31: Initial non-uniform mesh for the falling
drop. The mesh refinement in the vicinity of the side
walls, as imposed by the geometric criterion, and at

the drop surface is clearly visible.

Uniform Non-uniform
α 1.2 1.2

h [mm] 1.5 -
L∗min [mm] ∼ 1 0.18
L∗max [mm] ∼ 1 7.3

Ninit ∼ 14000 ∼ 8000
Npost ∼ 14000− 15000 ∼ 14000− 16500

||∇u||min [s−1] - 85
||∇u||max [s−1] - 3.15

β - 1/3

Table 4.13: Mesh parameters for the falling liquid
drop test case. Both a uniform mesh similar to that of
Franci et al. [44] and a non-uniform mesh using the
solution-based criterion given by Eq.( 3.23) are

considered. The definition of α is given by Eq. (2.43)
for the uniform mesh and by Eq. (3.34) for the
non-uniform mesh. The number of nodes at the

beginning of the simulation and after the drop impact
is also reported.

A key feature of this test case is the merging of two fluid domains. As discussed above, the PFEM
is well adapted to deal with such cases but it also suffers from mass conservation errors. The mesh
refinement technique and the contact detection algorithm proposed here attempt to mitigate this issue.
The application of the contact algorithm is illustrated in Fig. 4.32, which shows the mesh of the drop
and bath free surface at different instants in time shortly before and during the merging process for
both mesh types. The mesh of the falling drop is initially much finer than that of the flat liquid pool.
Without contact detection algorithm, the merging of the drop with the bath occurs when the drop
is within a distance of the bath mesh size of the free surface, with a thereby large associated mass
error. The contact detection allows anticipating the merging and refining accordingly the liquid bath
free-surface region around the expected impact point. The mass conservation error is thus lower, of the
order of the smallest element size.

The motion of the bath free surface after the drop impact is shown in Fig. 4.33 and should be
compared to Fig. 25 of Franci et al. [44]. The results with the uniform mesh are very similar to
those of Franci et al., with small discrepancies, particularly close to the walls. These discrepancies
can be explained by the chaotic nature of the problem. This high sensitivity to small perturbations is
highlighted by the asymmetry of the solution at later times. The mesh resolution has thus also a clear
impact, as demonstrated by the results of Franci et al. and the present comparison between uniform and
non-uniform mesh. The more accurate representation of the free surface through local mesh refinement
is further illustrated by the close view on a splash next to the right wall in Fig. 4.34. The non-uniform
mesh yields a much more refined description of the liquid filament because mesh adaptation ensures
that small elements are used there and the boundary recognition algorithm prevents elements to be
removed unless they are smaller than the highest grid resolution or have their three nodes on the free
surface. Nonetheless, the total number of nodes is kept limited by using a coarser mesh away from the
free surface, which greatly reduces the overall computational time.

Mass errors

Unlike the previous test case, the error in mass conservation due to remeshing is here of the same order
of magnitude for the classical PFEM on the uniform mesh and for the new algorithm, as illustrated
in Fig. 4.35. For the uniform mesh this error oscillates between periods with predominantly mass
destruction and periods of mass creation, such that the error seems to remain bounded over time. On
the other hand, a monotone mass increase is observed with the new algorithm. This increase seems to
take place during certain events between phases where the mass remains mostly constant. This is again
due to the interface tracking algorithm which strongly reduces mass destruction. Despite the relative
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Non-uniformUniform

t = 108 ms

t =116 ms

t =118 ms

t =119 ms

t =113 ms

Figure 4.32: Comparison between a uniform mesh (left) and a non-uniform mesh with contact detection
algorithm (right) at several time instants before the initial drop impact and during merging with the bath. The
non-uniform mesh at the free surface of the liquid bath is initially much coarser than the respective mesh of the

drop. By identifying the upcoming merging process, the algorithm can refine the liquid bath mesh in the
expected impinging region. As shown by the last two time instants, the size of the added elements during the
merging process is thus proportional to the smallest mesh size so as to minimize the mass conservation error.

small value of α, mass is created at the vertical walls during wetting events (see for example Fig. 4.34).
A larger value of α would further exacerbate this issue. Owing to the contact detection algorithm, a
much lower mass increase is also observed at the drop impact (t ≈ 0.1 s). Despite the similar mass
conservation error due to remeshing, the new algorithm allows a much better representation of the free
surface, and, thereby, a more accurate time integration. This is shown by Fig. 4.35b, which represents
the variation of the total volume (mass) due to both remeshing and time integration. Because the time
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t = 0.5 s

t = 1.05 s

t = 0.3 s

Figure 4.33: Free-surface deformation at three instants in time after the impact of the falling drop for the
uniform (left) and non-uniform (right) mesh. The snapshots correspond to those in Fig. 25 of Franci et al. [44].

Non-uniformUniform

t = 200 ms

t = 250 ms

0 1

𝐔 [m/s]

Figure 4.34: Free-surface deformation and splash at the right wall after the fall of a drop into a liquid bath.
Two different time instants are shown for the uniform (left) and non-uniform (right) meshes. Contour of the

velocity magnitude.
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Figure 4.35: (a): Variation of the total volume (mass) due to remeshing as a function of the time for the
falling drop test case: most resolved results of Franci et al. [44] (green), classical PFEM algorithm on the

uniform mesh (blue) and new algorithm with contact detection on the non-uniform mesh (red). The parameters
used for the simulations are summarized in Table 4.13.(b): Variation of the total volume (mass) due to both

time integration and remeshing as a function of the time for the falling drop test case: classical PFEM
algorithm on the uniform mesh (blue) and new algorithm with contact detection on the non-uniform mesh (red).

integration leads to mass destruction, the two contributions for the new algorithm again almost cancel
each other, such that the net error remains very small. On the other hand, the classical PFEM shows
a continuous mass decrease over time. This again illustrates the accuracy improvement brought by the
new algorithm.

4.5 Cylinder pulled out of a bath at constant velocity

The last test case is directly related to the main application of interest. It corresponds to a solid
cylinder of radius a that is initially immersed in a liquid bath at a depth d from the free surface and
pulled out vertically at a constant velocity U (see schematics in Fig. 4.36). The main goal of this test
case is to show how the present mesh adaptation algorithm provides a more accurate representation of
a stretching free surface and thin film dynamics above and below the cylinder. Moreover, it is used to
highlight the importance of using mesh adaptation to reduce the computational cost of the simulation,
while enabling the use of a large domain to limit the impact of the boundary conditions on the flow.
For this test case however, a rather small domain is used, in order to allow comparison with uniform
meshes. It can already be pointed out that the mesh adaptation is essential to study this application
with a reasonable CPU time.

The physical quantities, non-dimensionalized by the cylinder radius a, velocity U and density ρ, are
summarized in Table 4.14. A free-slip boundary condition is imposed at the tank walls and a no-slip
condition at the cylinder surface. The flow is characterized by an initial deformation and stretching of
the free surface. Then, when the cylinder crosses the interface, a thin liquid film forms around it by
entrainment and eventually drains along its surface to fall back into the bath.

Setup of the simulations

Three simulations are considered. The first one uses the classical PFEM with α = 1.2 in Eq. (2.43)
and a uniform mesh whose average element size is L = 0.024. The two other simulations are performed
on two different non-uniform meshes with the new boundary tracking and mesh adaption algorithm and
α = 1.2 in Eq. (3.34). The corresponding target mesh size is based on a geometric criterion to refine the
region around the cylinder. In particular the mesh size increases linearly from L∗min,GEO at the cylinder
surface to L∗max,GEO at a distance dGEO away from the cylinder. This is combined with a solution-based
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Figure 4.36: Schematics of the setup for the cylinder pulled out
of a liquid bath at constant velocity.

Cylinder radius a 1
Cylinder release depth d 3
tank depth H 6
tank half width W 6
Cylinder velocity U 1
Reynolds number ReD 200
Froude number Fr 0.5

Table 4.14: Geometric and physical
parameters for the case of the cylinder
pulled out of a liquid bath at constant
velocity. The geometric parameters are
defined in Fig. 4.36. All quantities are

non-dimensionalized by the cylinder radius
a and its velocity U , except for the

Reynolds number which uses the diameter
D = 2a as reference length scale.

Coarse mesh Fine mesh
L∗min,GEO 0.02 0.005

GEO L∗max,GEO 0.28 0.28
dGEO 5 5
L∗min,SOL1 0.028 0.007
L∗max,SOL1 0.28 0.28

Eq. (3.23) ||∇u||min 0.0058 0.0058
||∇u||max 2 2
β 1/3 1/3

Table 4.15: Parameters of the geometric and solution-based mesh refinement criteria to define the target size
of the two non-uniform meshes for the case of the cylinder pulled out of a liquid bath at constant velocity.

criterion, Eq. (3.23), to ensure sufficient refinement in the wake of the cylinder. The parameters for
these two target mesh size criteria are summarized in Table 4.15.

The uniform and the coarser non-uniform meshes have approximately the same maximum resolution,
but the latter has initially about 15 times fewer nodes (see Fig. 4.37a). Because of mesh adaptation, the
number of nodes of the non-uniform mesh expectedly increases during the simulation from about 4000
to 8500, but remains nonetheless seven times smaller than that of the uniform mesh. An illustration of
the nodal density increase in the cylinder wake and at the free surface is shown in Fig. 4.37b. On the
other hand, the finer non-uniform mesh has a four times higher resolution and its total number of nodes
averaged over the simulation is approximately 60000, of the same order as the uniform mesh. Finally,
the time step size is ∆t = 0.02 for the first two simulations, and four times smaller, i.e., ∆t = 0.005, for
the simulation on the finer non-uniform mesh.
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Uniform    Ninit ~ 60000

Non-uniform (coarse)    Ninit ~ 4000

(a)

(b)

Figure 4.37:
(a) Initial distribution of mesh nodes for the cylinder pulled out of a liquid bath at constant velocity. The
wireframe is not shown for better visibility. The uniform mesh (top) has initially about 15 times more nodes

than the coarser non-uniform mesh (bottom) for the same maximum resolution.
(b) Distribution of mesh nodes for the coarser non-uniform mesh at time t = 6. The total number of nodes has
increased up to 8500 because of the mesh refinement at the free surface and in the wake of the cylinder, but

remains about seven times smaller than that of the uniform mesh.

Results

The free-surface deformation shortly before the cylinder crosses the interface (t = 2.5) and the
drainage of the film when the cylinder is above the interface (t = 6) are compared for the three
simulations in Fig. 4.38. During the initial phase, the free surface is stretched, such that some elements at
the free surface becomes very obtuse and are consequently eliminated by the classical α-shape algorithm,
contributing thus to mass destruction (see also Fig. 2.5). The new algorithm allows on the other hand
a much more accurate representation of this free surface and thus greatly reduces mass destruction.
This is even clearer at later times, where the surface of the film around the cylinder appears very rough
and the filament draining down below it breaks into several “drops” for the classical PFEM. With mesh
adaption and boundary tracking, the film thickness remains more homogeneous and the filament does
not break yet. It is also interesting to observe that the solution remains much more symmetric with the
finer non-uniform mesh.

Mass conservation is further analyzed in Fig. 4.39, which shows both the changes in total volume due
to remeshing only, ∆Vrem, and to both remeshing and time integration, ∆Vtot. One can observe that,
for the uniform mesh (blue dashed line), mass already starts to continuously decrease due to remeshing
at t = 2, while with the new algorithm mass conservation is maintained until shortly before t = 4 (red
dahsed line). However, a continuous mass increase is then observed with the new algorithm, which
reaches the same level as the mass destruction for the classical PFEM at the end of the simulation. This
creation of mass mostly takes place when two filaments dripping from the cylinder approach each other.
When their distance is of the order of the neighboring element size, new elements are created between
them, leading to their merging (see also Fig. 3.14b). Consequently, the use of a finer mesh (green dashed
line) greatly reduces this mass increase. Unlike the previous cases, the time integration induces mostly
a mass increase such that the overall error on mass conservation is decreased for the classical PFEM,
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Figure 4.38: Wireframe mesh colored by the vertical component of the velocity at (t = 2.5, yc = −0.5) (left)
and (t = 6, yc = 3) (right) for the cylinder pulled out of a liquid bath at constant velocity: classical PFEM on a

uniform mesh (top), and new algorithm on the coarser (middle) and finer (bottom) non-uniform mesh.
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Figure 4.39: Variations of the total volume (mass) due to remeshing only, ∆Vrem (dashed line), and to
remeshing and time integration, ∆Vtot (continuous line), as a function of time t for the cylinder pulled out of a

liquid bath at constant velocity.

Uniform Non-uniform Non-uniform
(classical) (coarse) (fine)

Nmean 60× 103 8.5× 103 60× 103

Ttot/Ttot unif. 1 0.16 2.8
Trem/Trem unif. 1 0.11 5.4

Trem
N 0.03 s 0.047 s 0.16 s

Trem/Ttot 7.53 % 14.1 % 14.5 %

Table 4.16: Total number of nodes averaged over the simulation, Nmean, total simulation time Ttot and time
required for the remeshing (including mesh adaption and boundary tracking) Trem for the cylinder pulled out of
a bath at constant velocity. Both Ttot and Trem are reported with respect to the classical PFEM on a uniform
mesh. The ratio of remeshing time to total simulation time is also indicated. Note that the simulation on the

fine non-uniform mesh uses a four times smaller time step size than the two other simulations.

while it increases for the new algorithm on the coarser mesh. On the finer mesh, the error due to time
integration is almost negligible because of both the smaller elements and smaller time step size. It should
be emphasized that the simulations approach their limit in terms of mesh resolution as the film around
the cylinder and the filaments slowly reach a thickness of the order of the mesh size. The apparent
better mass conservation with the classical PFEM at the end of the simulation is likely fortuitous as
the overall thinning and draining of the liquid film do not seem to be physically accurate. Despite a
non-negligible mass creation, the solution with the new algorithm on the coarser mesh resembles much
more the solution on the fine mesh. As demonstrated by the results on the finer mesh, a reduction of
the mass conservation error can be achieved by imposing a smaller target mesh size, but at the expense
of a higher computational cost. It should be emphasized that this finer description of the free surface
enables the study of the dynamics occurring in the film, which would have been impossible with the
classical algorithm. Those physical aspects are discussed in Chapters 5 and 6.

Finally, the advantage of mesh adaptation is to reduce the computational time while keeping a
similar accuracy or to increase accuracy while keeping a similar computational time. This is illustrated
in Table 4.16, which summarizes the averaged number of nodes, Nmean, total simulation time Ttot
and time used for remeshing (including the different steps of the new algorithm) Trem for the three
simulations. Despite an increase in the cost of the remeshing step relative to the overall computational
time, the new algorithm allows a much lower number of nodes for a similar accuracy (size of the smallest
elements), which translates into a reduction of the computational time by more than 85%. On the other
hand, if the size of the smallest elements is reduced four times, a much more accurate solution is obtained.
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In this case, the overall simulation time is about 2.8 larger than for the uniform mesh, although the
total number of nodes is approximately the same for both cases. The reason for this increase is the four
times smaller ∆t. Although a factor of four would be expected, the lower computational cost observed
is due to fewer iterations required to converge the nonlinear system of equations. Note that these results
are representative of the other test cases, which clearly illustrates the advantage of the new algorithm.
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Chapter 5

The 2D flow around cylinders and spheres
pulled out of a bath at constant velocity

This chapter aims to study the physics of the flow around a body impulsively pulled out of a liquid bath
at constant velocity. It mostly focuses on the case of a 2D rising cylinder, but the case of a rising sphere
using a 2D axisymmetric formulation is also considered. The chapter is structured as follows. First,
a literature review on the topic is presented. Then, a mesh convergence analysis is performed for the
cylinder, which is followed by different analyses of the physics for a typical range of parameters. Some
comparisons with experiments are then presented to complement the numerical analyses. Finally, the
physics of flows at very low Reynolds number (Re < 1) is investigated numerically. The chapter ends
with a brief discussion about the sphere to highlight the differences. The nomenclature for both cases is
defined in Fig. 5.1. In addition, the non-dimensional numbers involved in this problem are summarized
in Table 5.1.
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Figure 5.1: Nomenclatures for the cylinder (a) and the sphere (b) pulled out of a liquid bath at constant
velocity: tank depth H and width 2W , cylinder/sphere radius a, cylinder/sphere initial depth d = −yc(t = 0),
vertical position yc(t) of the cylinder/sphere center, cylinder/sphere vertical velocity U , height ys(t) of the

free-surface, thickness h(t) = ys(t)− (yc(t) + a) of the liquid column above the cylinder/sphere apex. The origin
of the vertical axis is at the initial location of the free surface. All quantities are non-dimensionalized by the

cylinder radius a and velocity U .
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Froude number Fr U2/g a
Reynolds number ReD 2U a/ν
Weber number We ρU2 a/σ

Table 5.1: Three main non-dimensional numbers for the cylinder/sphere pulled out of a liquid bath at
constant velocity. These definitions involve the cylinder/sphere radius a as the characteristic length scale,

except for the Reynolds number which is based on the cylinder/sphere diameter D = 2a instead, and velocity
U . The other physical quantities g, ν, σ and ρ are respectively the acceleration of gravity, the kinematic

viscosity, the surface tension and the density of the fluid.
.

5.1 Literature review

The interaction of a free surface with a submerged cylinder is a well-known subject in fluid mechanics.
Havelock [101–103] studied the flow around a submerged cylinder in a uniform stream. More specifically,
he studied analytically the vertical force on the cylinder using the method of images of the potential
flow theory. Afterwards, Dean studied the diffraction of a linear wave due to a restrained cylinder [104],
whose results have been later confirmed by Ursell [105]. At the same time, Havelock investigated a
problem closer to the present problem of interest, i.e., the free-surface response to a cylinder started
from rest [106, 107]. Havelock papers considered the cylinder at constant velocity (as in the present case)
or constant acceleration, using linear theory, i.e., approximating the free-surface quantities at the initial
free-surface position for all times (see Chapter 1). These results have later been extended to the nonlinear
regime by Tuck [108]. On the other hand, among other authors, Tyvand and Miloh [109, 110], instead
of analyzing the long-time evolution predicted by linear theory (with possible nonlinear corrections),
studied the short time dynamics, successively triggering nonlinear effects, using a small-time expansion
of the full nonlinear initial/boundary value problem. They found that, during the interface crossing, the
thickness h of the film above the cylinder was almost uniform along the cylinder surface, i.e., independent
of the angle from the cylinder apex. This result confirmed earlier inviscid simulations of the problem
performed by Telste [111] and has been confirmed by Greenhow and Moyo [112]. A similar behavior is
also found in the present work.

Until then, all theoretical works and simulations of this kind of problems relied on a potential
flow formulation, which had been successfully used for a long time to represent free-surface flows.
Unfortunately, the potential flow theory assumes an inviscid fluid such that viscous effects cannot be
investigated in that framework. For instance, the "waterfall breaking" below the cylinder, as observed
by Greenhow and Lin [113], cannot be predicted by inviscid simulations as it arises from vortices induced
by viscosity.

However, more recent works have been done on similar problems involving viscous fluid flows and
vortex dynamics. For instance, Horowitz & Williamson [114] studied the dynamics of freely rising
or falling cylinders inside a fluid; their trajectories were found to be rectilinear or not, depending
on the density ratio of the cylinder and the fluid. A second article by the same authors gives more
attention to the influence of the vortex-induced vibrations for the similar problem [115]. Truscott et
al. studied the unsteady forces on spheres during free-surface water entry [116] and the water exit
dynamics of buoyant spheres [117]. Nair and Bhattacharyya [118] studied the cylinder water entry and
exit problems using a volume of fluid method (VOF) [119]. Similar problems have been investigated by
Ni et al. with a Boundary Element method (BEM) [120] and by Haohao et al. with a Lattice Boltzmann
method [121]. Interestingly, the latter have shown that the free-surface elevation strongly depends on
the Froude number for values lower than Fr ≈ 4, while the dependency is less significant for larger
Froude numbers. Wu et al. [122] also investigated this dependency for both fixed and free spheres rising
towards the water surface.

The objective of this work falls into this line and aims to investigate the problem of a rising cylinder
(or sphere) toward the free surface at constant velocity. Note that a work of collaborators can be
found on the same subject [123]. Unlike most previous studies (e.g., Havelock [106, 107], Tyvand and
Miloh [109, 110], Telste [111], Greenhow [112], etc.), viscous effects, such as boundary layers and wake
dynamics, should be here accounted for. Moreover, the PFEM provides the opportunity to investigate
the long time dynamics, including phases after the interface crossing, such as fluid separation below
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the cylinder (sphere), but also the dynamics of the thin film above the cylinder. For instance, unlike
traditional ALE methods, the PFEM, through its continuous remeshing, can represent the free-surface
folding on itself. Within this framework the goal is to provide new results with respect to the literature,
as well as to confirm some known results [111]. In particular, it is shown that the exit dynamics is
governed by the balance between inertia and gravity, as also confirmed by the experiments of Liju et
al. [124] at Re > 500. More specifically, the dependency of the free surface elevation with respect to the
Froude number is highlighted.

5.2 The rising cylinder

The focus is here on the case of a cylinder rising towards the free surface at constant velocity. The
main flow features have already been mentioned in Chapter 1. In particular, the following ones are of
main interest:

• The free-surface surge and film thinning, measured by the free-surface displacement ys(t) and the
fluid height h(yc) above the cylinder apex (see Fig. 5.1): the influence of different parameters on
h is discussed, such as the release depth, the Froude number, and the wake dynamics.

• The skin friction coefficient cf at the cylinder surface and the drag coefficient CD, and the influence
of the Froude and Reynolds numbers on those quantities. These quantities are also compared to
the case without free surface to identify the role and contribution of this free surface.

• The flow in the wake of the cylinder. A comparison with the case without free surface is also done
to identify the impact of the latter on the wake dynamics.

In a first step, numerical aspects related to the PFEM simulations are discussed. In particular,
following the guidelines given in Section 3.3, mesh and time step convergence analyses are presented.
Then, the main features of the flow are analyzed and discussed. This is followed by the comparison
between simulations and in-house experiments [125], where focus is mainly on the film thickness h(yc)
and the drag force.

5.2.1 Convergence analysis of the space and time discretizations

To assess the accuracy of the numerical results, the different sources of numerical errors should be
quantified. For this purpose, the general discussion of Section 3.3 is exploited, and both mesh and time
step convergence analyses are performed. The case of a rising cylinder is considered, whose parameters,
using the nomenclature of Fig. 5.1a, are summarized in Table 5.2. The tank dimensions are chosen
sufficiently large to minimize the effect of its walls.

5.2.1.1 Choice of the mesh resolution

As already discussed in Section 3.3, one important limiting parameter in terms of spatial resolution
for CFD simulations is the thickness of boundary layers, which is directly related to the value of the

a 1
d 7
H 28
W 21
ReD 103 & 104

Fr 0.5
We 500

Table 5.2: Parameters used in the mesh and time step convergence analyses for the case of a cylinder pulled
out of a bath at constant velocity. All lengths (whose nomenclature is given in Fig. 5.1a) are

non-dimensionalized by the cylinder radius a. The non-dimensional numbers are defined according to Table 5.1.
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Reynolds number. As a reminder, in Section 3.3, the following relation for the minimal mesh size has
been estimated:

L∗min,c(ReD) =
1

4
√
ReD/2

. (5.1)

This gives L∗min,c = 1/90 and 1/280 for the two Reynolds numbers considered here, where L∗min,c is non-
dimensionalized by the cylinder radius a. This provides a first estimate of the minimal mesh resolution
to obtain an accurate solution.

In practice, the initial mesh is defined by imposing a grid spacing ∆s on the boundaries. For the
present case, ∆s = ∆smin on the cylinder boundary and ∆smax on the tank walls. Note that this
resolution remains unchanged during the simulation. Additionally, ∆smin and ∆smax are related to
L∗min and L∗max through L∗ =

√
2∆s/2 such that the square mesh size L2 of a uniform triangular mesh

would correspond to half the area ∆s2 of a square with side length ∆s.
For the mesh convergence analysis, ∆smax has been set to 2 and kept fixed, while the convergence

on ∆smin has been studied. Following values have been considered:

∆smin ∈
{

1

20
,

1

40
,

1

80
,

1

160
,

1

320

}
, (5.2)

which corresponds to the following values for L∗min:

L∗min ∈
{

0.7

20
,
0.7

40
,
0.7

80
,

0.7

160
,

0.7

320

}
. (5.3)

From that set, the two or three most refined meshes are expected to be sufficiently accurate (i.e., having
a minimal mesh size smaller than L∗min,c(ReD)) for the case ReD = 1000, while only the most refined
one should have a sufficient accuracy for the case ReD = 10000. This is later confirmed to be more or
less in agreement with the mesh convergence analysis. Note that, in order to minimize the impact of the
time discretization, the same time step size, ∆t = 0.7a/(320U) ' 1/457, is used for all simulations. It
corresponds to the time step size leading to the maximum acceptable mesh distortion near boundaries
for the most resolved mesh if the boundary layer were not resolved.

Because for low mesh resolution the mesh distortion over one time step is much lower than that
obtained with finer meshes, it could be inefficient to remesh the domain at each time step. Instead,
the remeshing takes place only once the distortion factor λ, Eq. (3.33), is above a given threshold. In
practice, it is checked whether the average mesh distortion over a subset of elements whose distortion
is higher than a first threshold λ1, is higher than a larger threshold λ2. The remeshing criterion
mathematically writes as

mean
λi>λ1

(λi) > λ2 with λ2 > λ1 . (5.4)

It is a compromise between taking the average distortion over the entire mesh (a criterion where negli-
gible distortion occurring in many places could mask the strong mesh distortion occurring in boundary
layers) and taking the overall maximum distortion factor (a criterion that may be too sensitive to very
localized mesh distortion, possibly even at a single isolated element). For the present analysis, λ1 = 3
and λ2 = 3.5 have been chosen. The total number of times remeshing is performed is plotted in Fig. 5.2
as a function of 1/L∗min. In the left plot (Fig. 5.2a), the total number of remeshing processes is normal-
ized by the total non-dimensional physical time of the simulation, while in the right plot (Fig. 5.2b),
it is normalized by the total number of time steps. Remeshing takes place on average at every second
iteration for the finest mesh, but only every five iterations for the coarsest mesh. One can also observe
that, for the Reynolds number ReD = 10000, the number of remeshing processes shows a stronger
dependency on 1/L∗min than for ReD = 1000.
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Figure 5.2: Total number of remeshing processes divided by the total (physical) simulation time (a) or by the
total number of time steps (b).

Geometrical and solution-based mesh refinement setup

Together with the definition of the global maximal and minimal values of the target mesh size,
L∗max and L∗min, the simulations use two different criteria to impose the local target mesh size. The
first one is a geometric criterion, prescribing a linear progression of L∗ from L∗min,GEO= L∗min at the
cylinder surface, to L∗max,GEO=L

∗
max at a distance of 21 from the cylinder center. The other one is a

solution-based criterion, given by Eq. (3.23), and based on the norm of the velocity gradient tensor, as
described in Section 3.2.1. The parameters used for Eq. (3.23) are given in Table 5.3. An illustration
of the effect of this solution-based mesh refinement is illustrated in Fig. 5.3. It can be seen that the
mesh size in the wake is slightly smaller than outside of it, but remains limited in order to avoid a too
large computational time. Note that, as the mesh size in the wake is similar for all meshes, the mesh
convergence of the different flow features in the wake is not studied.

Mesh convergence parameters

For the mesh convergence analysis, the accuracy of different flow features is assessed, whose correct
representation requires a sufficient resolution very close to the cylinder surface. The convergence in
the wake is not studied, and it is assumed that the correct representation of the separation process is
sufficient to obtain a good estimate of the impact of the wake on the free-surface deformation. Although
wake instabilities are not accurately represented, the starting depth is supposed to be small enough
(d = 7) such that no strong asymmetries appear (as a reminder, a much finer mesh in the cylinder wake
was used for the cylinder at ReD = 9500 in Section 4.1.4, and it was shown that the flow remained
symmetric at least until t = 5.5).

Practically speaking, the following mesh convergence criteria are used:

L∗min,SOL 0.7/20

L∗max,SOL 0.7/2

β 1/3
||∇u||min 0.08
||∇u||max 2

Table 5.3: Parameters of the solution-based criterion for mesh adaptation used in the mesh and time step
convergence analyses of the rising cylinder. All quantities are non-dimensionalized using the cylinder velocity U
and its radius a. Note that L∗min,SOL and L∗max,SOL respectively play the role of L∗min and L∗max in Eq. (3.23),

but differ from the global extreme target mesh sizes.
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𝑈𝑦
-0.56 2.1

Figure 5.3: Wireframe mesh colored by the vertical component of the velocity, uy, for the Reynolds number
ReD = 1000. The minimal mesh size is set to L∗min = 0.7/80 and the parameters used for the solution-based

mesh refinement are given in Table 5.3. The image corresponds to the time t = 4.5 (yc = −2.5).

• The skin friction coefficient cf at the cylinder surface, at different specific times.
It is a typical characteristic quantity used in the context of mesh convergence analysis in CFD
applications. The skin friction coefficient is defined as

cf =
τw,1

1
2ρU

2
=
µ ∂ut

∂n

∣∣
w

1
2ρU

2
, (5.5)

where τw,1 is the wall shear stress, and ∂ut
∂n

∣∣
w
is the variation, along the wall-normal direction, of

the tangential component ut of the velocity field at the wall.

• The time evolution of the drag coefficient CD(t). It is defined as the total force opposed to
the cylinder motion, divided by 1

2ρ aU
2. The drag coefficient depends on both the friction at the

surface and the pressure difference between the top and the bottom surfaces of the rising cylinder.
In general, the contribution of the pressure to the total drag is well captured if the separation of
the boundary layer is, which should be the case provided that the skin friction coefficient is well
captured everywhere.

• The time evolution of the film thickness h(t) and its specific value h∗ = h(tyc=−1) when
the cylinder apex reaches the free-surface initial position. Because it is the key quantity
of interest in this work, it is important to represent it accurately.

Results

The skin friction along the cylinder surface is shown in Fig. 5.4 and 5.5, for different cylinder
positions yc (from −5 to 2) and the two Reynolds numbers. For both Reynolds numbers, increasing
the spatial resolution leads to some monotonic, but not complete, convergence and to a reduction of
oscillations. Also, unresolved simulations strongly underestimate the surface friction. This can be
understood by looking at the boundary layer region, as illustrated in Fig. 5.6. In that figure, the
cylinder side (θ = π/2) is shown at position yc = −3 for the case ReD = 1000, where the coarse mesh
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with L∗min = 0.7/40 is superposed to the finer mesh with L∗min = 0.7/160. It is clear that with the
coarse mesh (thick black lines), the boundary layer, illustrated by the contour plot of the y-component
of the velocity field obtained with the finer mesh (grey lines), cannot be properly resolved. Therefore,
the linear finite elements adjacent to the cylinder surface underestimate the velocity gradient at the
wall, ∂ut

∂n

∣∣
w
, which results in an underestimation of the skin friction coefficient. Moreover, the observed

oscillations of cf are also directly related to the poor resolution. More specifically, from one element
adjacent to the wall to the next element, the velocity slopes ∂ut

∂n

∣∣
w
are directly correlated with the size

and shape of these elements.1 They can therefore differ from one element to the next, along the cylinder
surface. This becomes less pronounced as the boundary layer becomes more resolved. In this case, the
slope is directly related to the physics and less dependent on the elements size, as confirmed by the
lower oscillations observed for the meshes with the higher resolution.

The second observation is that, globally, the results for all meshes are closer to the converged solution
for the case at ReD = 1000 because, as previously mentioned, the boundary layer is thicker in this
case. In particular, it seems that the friction coefficient is completely converged for the finer mesh
(L∗min = 0.7/320), and almost converged for the mesh with L∗min = 0.7/160. For the case ReD = 10000,
it seems that none of the meshes has a sufficient resolution to obtain a fully converged solution. However,
the difference between the two finer meshes (orange and red curves) is not too large.

In light of these results, L∗min = 0.7/160 is deemed to be sufficient to obtain a correct representation
of the boundary layer close the the cylinder surface for all cases where ReD ≤ 1000. For the cases with
1000 < ReD < 10000, a similar resolution is used as the results are not too far from convergence and
the computational cost remains manageable. However, it should be kept in mind that in that case,
the results still entail a small numerical error. Finally, for the cases with ReD > 10000 a finer mesh
should definitively be used in order to get acceptable results, i.e., results sufficiently accurate to provide
a meaningful description of the physics.

The second quantity of interest considered in this mesh convergence analysis is the drag coefficient
CD. Note that the correct computation of the skin friction coefficient is necessary to correctly predict
CD, because cf has both a direct and indirect effect on it, respectively through the viscous shear stress,
on the one hand, and through the wake separation and associated pressure drag on the other hand. The
drag coefficient is shown for the two Reynolds numbers in Fig. 5.7. The two best resolutions give almost
the same solution (except for a small discrepancy at ReD = 10000 around yc = −2). At ReD = 1000
convergence seems to be even achieved for a resolution L∗min = 0.7/80. Similarly to the skin friction
coefficient, a reduction of the oscillations is also observed when the mesh is refined.

A comparison of the present results at Re = 10000 with the drag coefficient of the impulsively
started cylinder in Section 4.1.4 (see Fig. 4.18) shows that the oscillations of the drag coefficient at
t ≈ 3 to 5.5 in Fig. 4.18 are much less prominent in Fig. 5.7 (yc ≈ −4 to −1.5). These much weaker
oscillations could possibly be explained by a poor mesh resolution in the cylinder wake. In the present
mesh convergence analysis, the wake is not progressively refined, while the test case of Section 4.1.4
has been computed on a much finer mesh, allowing small vortices to develop and modulate the drag.
Another likely explanation for this difference is the presence here of the free-surface, as discussed later
in Section 5.2.2.2.

To assess the impact of the mesh resolution on the free-surface deformation, the film thickness h(t) for
different mesh sizes is shown in Fig. 5.8. No difference can be observed in the initial phase. Discrepancies
begin to appear and progressively grow above yc = −1 when the cylinder crosses the interface and the
film starts thinning. This is however partly due to the semi-log representation. Beyond the need to
choose a sufficient resolution to resolve the boundary layer, the required accuracy also depends on the
minimal thickness h(t) that one would like to resolve. In other words, the film keeps thinning until its
thickness approaches the maximum grid resolution L∗min. Beyond this point, the mesh becomes much
too coarse to correctly represent the physics2, as illustrated by the coarsest meshes in Fig. 5.8. The
minimum mesh size thus imposes a maximum simulation time. Using the second maximal resolution,
L∗min = 0.7/160, the overall simulation can be run until yc = 6 (yc = 2) for Re = 1000 (Re = 10000)

1The value of the velocity slope is constant on the element as linear shape functions are used.
2In some cases, beyond the resolution limit, viscous-dominated flows are recovered since viscosity strongly dominates

the flow, and the thin film theory should apply perfectly [126], using the lubrication approximation of Reynolds [127].
Therefore, the behavior below this resolution can be obtained from the literature.
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Figure 5.4: Skin friction coefficient on the cylinder surface at several time instants (i.e., yc = −5,−3,−1) for
meshes with different minimal mesh sizes L∗min. The top of the cylinder corresponds to the value θ = 0. The left

column is for ReD = 1000 while the right column is for ReD = 10000.

while still having several layers of mesh elements to represent the film. This is deemed sufficient within
the scope of the present work. If the later dynamics is of interest, then the grid resolution, at least in
the film, must be increased. Finally, Fig. 5.9 shows the variation of the specific value h∗ = h(tyc=−1)
of the film thickness when the cylinder apex reaches the free-surface initial position for different mesh
resolutions. One can observe that the difference between the two most refined meshes is less than 0.5%,
suggesting again that the second finest mesh is sufficient to have a good representation of the free
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Figure 5.5: Skin friction coefficient on the cylinder surface at several time instants (i.e., yc = 0, 1, 2) for
meshes with different minimal mesh sizes L∗min. The top of the cylinder corresponds to the value θ = 0. The left

column is for ReD = 1000 while the right column is for ReD = 10000.

surface.
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Figure 5.6: Boundary layer on the side of the rising cylinder (around an angle of π2 from its apex). The coarse
mesh (black lines) has a minimal mesh size L∗min = 0.7

40 at the wall, while that of the fine mesh (blue lines) is
L∗min = 0.7

160 . The color plot represents the vertical velocity component v for the most refined mesh.
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Figure 5.7: Drag coefficient as a function of the cylinder position at Reynolds numbers 1000 (left) and 10000
(right) for different mesh resolutions. The dashed black line represents the evolution of the buoyancy force,

assuming that the free surface does not deform.
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Figure 5.8: Film thickness h above the rising cylinder as a function of the cylinder position for meshes with
different minimal mesh sizes at Reynolds number 1000 (left) and 10000 (right). The corresponding resolution

limits L∗min are shown by the horizontal dashed lines.
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results obtained with the highest mesh resolution (L∗min = 0.7/320), for the two different Reynolds numbers.
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5.2.1.2 Choice of the time step

A time step convergence analysis has been performed to determine the appropriate time step size.
To do so, the minimal mesh size L∗min = 0.7/160 has been chosen, and only the case at ReD = 1000
has been considered. It has been shown above that such level of spatial resolution was sufficient to
get accurate results at that Reynolds number. Therefore, the focus is solely on the time step analysis.
Because of the no-slip condition, it is known that higher mesh distortion occurs close to the cylinder
surface, and that the time step should therefore scale as L∗min

U (see Fig. 3.19 in Section 3.3). With U = 1
this yields ∆t ' 0.7/160. However, since the boundary layer is resolved, a larger time step can possibly
be used, again according to Fig. 3.19. Values smaller and larger than 0.7/160 are therefore considered,
such that the time step size is in the following set:

∆t ∈
{

0.7

80
,

0.7

160
,

0.7

320
,

0.7

640

}
. (5.6)

The time step analysis is performed by considering the film thickness h(yc) and the drag coefficient CD.
In Fig. 5.10, no difference is visible between the h curves obtained with the different time step sizes.
Therefore, it seems that the largest time step is adequate. However, the use of larger time steps can cause
problems when solving the nonlinear equations. Specifically, if the time step is too large, the nonlinear
iterative algorithm cannot converge to the imposed tolerance. In this case, the algorithm automatically
reduces the time step, as illustrated in Fig. 5.11 (Appendix D explains how the convergence of the
nonlinear algorithm is assessed, and how the surface tension is computed). This issue is mainly due to
the difficulty of achieving convergence of the surface tension force because it is highly dependent on the
mesh geometry (as also discussed in Appendix D). In other words, similarly to the no-slip boundary
condition at walls, the surface tension at deforming interfaces represents a limiting factor, and should
thus also be taken into account in the choice of the time step size.

The results for the drag coefficient (Fig. 5.12) are again very similar for the different chosen time
steps. However, a closer look (Figs. 5.12b and 5.12c) reveals that the drag coefficient is subject to some
oscillations that are larger for smaller values of the time step size. This has already been pointed out by
Cerquaglia et al. [65], who have shown that the spurious pressure oscillations frequently observed in the
PFEM are inversely proportional to the time step size. Quite remarkably, the conclusion of this analysis
seems to be that, to reduce pressure oscillations, finer meshes and larger time steps should be used.
If this recommendation is extended to the context of mesh refinement, for similar pressure oscillation
levels, the use of smaller mesh elements should enable the use of smaller time steps, but lowering too
much the time step size for a similar mesh resolution would lead to larger pressure oscillations.

As a conclusion, the intuitive idea of using ∆t ' L∗min
U seems to provide a good estimate. Larger time

steps would lead to larger mesh distortions and convergence issues, while too small time steps would
lead to increased pressure oscillations. The idea is therefore to choose a value slightly smaller than L∗min

U ,
such that no convergence issues are encountered, while no large pressure oscillations are introduced.
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Figure 5.10: Film thickness h above the rising cylinder as a function of the cylinder position for the four
different times steps at ReD = 1000 and with L∗min = 0.7/160. The curves are so close to each other that they

are practically indistinguishable.
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Figure 5.12: Drag coefficient as a function of the cylinder position for different time step sizes at ReD = 1000
with L∗min = 0.7

160 . (a) entire simulation and (b,c) closer view (corresponding to the black boxes in (a)) on the
oscillations observed around yc = −3 and yc = 0.75.

5.2.2 Analysis of the different flow features

Using the parameters determined from the previous convergence analyses, the physical features of the
flow around a rising cylinder are now investigated. The first feature of interest is the evolution of the
surface deformation and film thickness h over the entire simulation, from the cylinder impulsive start
to the development and drainage of the thin film around the cylinder. As discussed in the literature
review, the flow physics is mostly controlled by the balance between inertia and gravity, quantified by
the Froude number Fr = U2

ga , where U is the cylinder velocity, g the gravity acceleration, and a the
cylinder radius. Another important parameter is the starting cylinder depth d as it determines the
development stage of the wake when the cylinder reaches the free surface. The free-surface deformation
depends on all these aspects, as discussed in Section 5.2.2.1.

The other point of interest is the flow dynamics during the early stage, when the cylinder is still
immersed. It includes the skin friction and the vorticity on the cylinder surface, the overall drag on
the body and the wake dynamics (mainly evaluated through the shape of the streamlines). Here again,
it is shown that the Froude number plays a significant role during the early phase dynamics, even if
the Reynolds number, ReD = 2Ua

ν , is the main parameter governing the wake dynamics (as in bounded
flows). All these aspects are discussed in Section 5.2.2.2.
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5.2.2.1 Free-surface surge and film thinning

First, the focus is on the amplitude of the free-surface deformation, quantified by the film thickness
h above the rising cylinder, as defined in Fig. 5.1a. The variation of h with time t, and/or cylinder
position yc = −d+ Ut, and its specific value h∗ = h(yc = −1) when the top of the cylinder reaches the
initial free surface, are both investigated. In this context, the flow is divided into two phases. The first
phase corresponds to the surface surge, when the cylinder is below the initial free surface (yc < −1).
The second phase starts at the interface crossing (yc > −1), after which the film h(t) becomes thinner
(h(t) < 1). For sufficiently long simulations, the film thinning is such that it reaches the viscous-gravity
length scale lν ,

lν =

(
4Fr

Re2
D

) 1
3

, (5.7)

at which gravity and viscous forces are in balance [128] (see Appendix E for the derivation of this length
scale). The transient regime from h ' 1 to h ' lν is discussed in Chapter 6, for which a dedicated model
is presented. Note that all variables are non-dimensionalized using the cylinder radius a and velocity
U (except the Reynolds number ReD). As aforementioned, h and h∗ depend mainly on the Froude
number, larger Froude numbers leading, quite intuitively, to larger h and h∗ (see Fig. 5.14). However,
for a sufficiently small starting depth d, h and h∗ also depend on d. Vincent et al. [123] have shown
that, using a free-slip boundary condition at the cylinder surface (no wake), there is a threshold value
dmax(Fr) above which h∗ does not depend anymore on d. Their figure summarizing the findings of their
parameter space exploration is reproduced in Fig. 5.13. It shows h∗ as a function of the Froude number
Fr and release depth d. The theshold dmax(Fr) is indicated by the curved continuous shadow-like line.
For larger values of d, h∗ only depends on the Froude number.
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Figure 5.13: Characteristic bulge height h∗ at yc = −1 in slip conditions (no wake) for an unbounded domain
(i.e., where the side walls are at infinity) as a function of the starting depth d and Froude number. h∗ follows
an algebraic trend for Fr ≤ 0.2, and a logarithmic trend above; surface color indicates the distance to the best
logarithmic fit (red line). A ridge betrays transient dynamics: the solid line marks the expected crest location
found by matching travel time to yc = −1 and expected time of occurence of the first surging peak. The thick
diffuse lines mark the approximate boundaries of zones where h∗ becomes independent of either d (solid line) or

Fr (dashed line). Taken from Vincent et al. [123].

Configurations and simulation setup
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As summarized in Table 5.4, three sets of simulations are considered, each corresponding to a different
fluid. The first one, F1, is just a generic very viscous fluid. Only one velocity is considered so that the
Reynolds number is fixed, while the Froude number is varied from 0.01 to 1 by changing the gravity
acceleration. The two other sets of simulations use water and oil, respectively, for later comparison with
in-house experiments. In this case, the Froude number is varied by changing the cylinder velocity so
that the Reynolds number varies accordingly.

In the case of water, the mesh resolution has been kept moderate to limit the computational cost,
although the corresponding Reynolds number is large. According to the previous mesh convergence
analysis, the boundary layer in this case is not fully resolved. However, the viscous effects are small in
the early stage of the surface elevation so that the resulting error should remain limited. Furthermore,
the geometrical dimensions of the cylinder and tank are different for each set of simulations so as to assess
the effect of confinement. According to the inviscid analysis of Vincent et al. [123], the starting depth
d is larger than the threshold dmax for most cases, except for the water case at Fr > 1. Nonetheless,
one should keep in mind that the presence of the wake in the present viscous simulations can introduce
a stronger dependence on d. Finally, it should be noted that surface tension has been neglected for all
cases, as its effect is negligible, at least until the free surface becomes very distorted with regions of
strong curvature.

Impact of the Froude number on the surface deformation
The surge of the free surface, h(yc), is reported for the first set of simulations, F1, in Fig. 5.14a. As
expected, h increases with Fr for a given cylinder position yc. Note that the semi-log representation
emphasizes the differences between the different curves at large yc and reduce them at low yc. In some
region around yc ' 0 for the five largest Froude numbers and around yc ' −1 for the four smallest ones,
the curves appear to be straight indicating an exponential decrease of the film thickness. In the next
chapter, it is shown that this exponential decrease is mainly driven by a balance between gravity and
inertial terms, consistently with the observations of Telste [111] and Liju et al. [124]. For larger values of
yc, when the cylinder emerges out of the bath, the film thinning rate decreases because the contribution
of gravity to the pressure gradient inside the film slowly decreases, and the relative contribution of the
convective terms increases. In addition, the viscous effects also become relatively more important as
the film gets thinner, contributing also to the slowing down of the film thinning. Note that for smaller
Froude numbers, the slope decrease takes place for smaller value of h, which simply indicates that the
film is thinner at the time when the cylinder emerges out of the bath.

The same dependence on the Froude number is observed for h∗, as shown in Fig. 5.14b. Using
simulations with a free-slip boundary condition (no wake), Vincent et al. [123] have shown that h∗ is
well approximated by

h∗(Fr) =

{
0.6Fr0.45 for Fr < 0.2

0.17 ln(Fr) + 0.55 for Fr > 0.2 .
(5.8)

However, it seems unlikely that the threshold value Fr = 0.2 has any physical justification, the behavior
of the curves being very similar below and above Fr = 0.2. A better approximation of the dependency
of h∗ on Fr, which covers a larger range of Fr, can be obtained using the so-called LambertW function,
defined by its reciprocal as

W−1(x)
∆
= x exp(x) . (5.9)

With a fit of the form
h∗(Fr) =W(aFrb) , (5.10)

a and b being two calibration constants, we have

h∗ exph∗ = aFrb . (5.11)

When h∗ is small, which is the case when Fr is small, the exponential is close to 1 and

h∗ ≈ aFrb , (5.12)
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which is the form used by Vincent et al. [123] to approximate h∗ for Fr < 0.2. On the other hand,
taking the logarithm of Eq. (5.11) and putting h∗ in evidence yields

h∗
(

1 +
ln (h∗)

h∗

)
= ln (a) + b lnFr . (5.13)

In the limit of large h∗ (h∗ � 1), the expression in parenthesis on the left-hand side approaches 1 such
that one has approximately

h∗ ≈ ln (a) + b lnFr , (5.14)

which is the form proposed by Vincent et al. [123] for the fit with Fr > 0.2. Therefore the Lambert W
function allows a smooth transition from an algebraic to a logarithmic behavior, as somehow suggested
by its other name in the literature: the logarithm product.

For the simulation set F1 in Table 5.4, such a fit (obtained using a non-linear least square technique)
is illustrated in Fig. 5.14b, where a = 1.2 and b = 0.6. We observe that Eq. (5.12) provides a very good
approximation of h∗(Fr). The present calibration constants are interestingly quite different from those
in Eq. (5.8), explaining the deviation observed in Fig. 5.14b from the present results. The main reason is
that the present PFEM simulations include viscous effects, such that h∗ is increased by the presence of
the wake (which leads to a larger zone of high pressure above the cylinder), while the results of Vincent
et al. [123] have been obtained using a free-slip boundary condition at the cylinder surface (no wake).
Unfortunately, it also means that the fit not only depends on the Reynolds number, but also on the
starting depth since it may impact the wake length. Note that all simulations of the F1 set are at the
same Reynolds number, therefore resulting in the same wake dynamics as illustrated in Fig. 5.15. As a
consequence, the curves obtained in Fig. 5.14 remains meaningful but using another Reynolds number
or another starting depth may require a different calibration.

Nevertheless, ignoring the influence of the wake, the fact that a unique fit with two parameters is
enough to describe h∗(Fr), is a remarkable result. Furthermore, it is shown in the next chapter that
the Lambert W function is a great tool that can help in the modeling of the film dynamics.

F1 Water Oil
Cylinder diameter D m 2 0.05 0.05
Cylinder velocity U m/s 1. [0.2 - 1] [0.099 - 1.162]

Acceleration of gravity g m/s2 1/Fr 9.81 9.81
Kinematic viscosity ν mm2/s 2000 1 50
Tank half width W - 21 22 6
Tank height H - 28 29 28.8

Initial depth of the cylinder d - 7 7 19.8
Reynolds number ReD - 1000 [10000 - 50 000] [99-1162]
Froude number Fr - [0.01-1] [0.16-4] [0.04-5.5]

Minimal mesh size L∗min - 0.003 0.004 0.003
Maximal mesh size L∗max - 1.2 1.2 0.8
Time step size ∆t - 0.0033 0.0025 0.0033

Table 5.4: Simulation parameters for the cylinder rising towards a free surface at constant velocity. Three sets
of simulations are considered, each with a different fluid. All non-dimensional quantities have been

non-dimensionalized using the cylinder radius a and velocity U , except for the Reynolds number which uses the
cylinder diameter D instead of a, to be consistent with the literature.

Influence of the bath half width W and starting depth d, on the intial surge speed c∗

Another important aspect is the impact of lateral confinement and starting depth of the cylinder.
Based again on simulations with a free-slip boundary condition, Vincent et al. [123] have found corre-
lations which link the initial (non-dimensional) surge speed c∗, i.e., the vertical velocity at t = 0 of the
free-surface point vertically above the cylinder, with the starting depth d, as illustrated in Fig. 5.16. In
particular, they have identified two regimes:
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Figure 5.14:
(a) Evolution of h as a function of the cylinder position yc for different Froude numbers, ReD = 1000 and for a

starting depth d = 7 (case F1 in Table 5.4). The horizontal dashed lines indicate the corresponding
viscous-gravity length scale lν defined in Eq. (5.7). The vertical dotted line highlights the cylinder position

yc = −1 where h∗ is defined.
(b) Corresponding variation of h∗ = h(yc = −1) with respect to the Froude number.The red symbols correspond

to the simulation results, the dashed line to the regression using the Lambert W function according to
Eq. (5.10), and the dotted line the prediction by vincent et al. [123] given by Eq. (5.8) in the absence of a wake.

• In the unbounded regime, for d
W < 1/2, the initial surge speed c∗ is well approximated by 2

d2
.

• In the laterally confined regime, for d
W > 1/2, the initial surge speed c∗ is well approximated by

20
W 2 e−3.14 d

W .

These correlations are evaluated for selected simulations of Table 5.4. The first two sets of simulations
("F1" and "Water") fall in the case of the unconfined regime, as d

W ' 1
3 <

1
2 , and an initial surge speed

approximately equal to 2
d2

should be recovered. On the other hand, the results for the oil case fall into
the second category. The results are listed in Table 5.5, where the deviation from the predictions using
the confined and unconfined correlations is reported. For each series of simulations, the error is within
10% of the predicted values, which is satisfying considering the no-slip boundary condition imposed
here compared to the free-slip condition used by Vincent et al. to obtain the correlations.3

3So far, the PFEM code does not include free-slip/stress-free boundary conditions on curved surfaces. The main
difficulty arises from the Lagrangian nature of the method, where additional implementation is required, for instance to
correct the node position after they slide on a curved boundary, or to add kinematic constraints. Such developments may
be considered for future work, and ideas are presented in the perspectives in Chapter 7.
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(a) Fr = 0.09 (b) Fr = 0.25

(c) Fr = 0.5 (d) Fr = 1

-0.65 2.3uy / U

Figure 5.15: Surface elevation at the moment when the top of the cylinder reaches the initial free surface
(yc = −1), for a Reynolds number ReD = 1000 and different Froude numbers(case F1 in Table 5.4). The

contour plot illustrates the vertical component of the velocity field.
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F1 Water Oil
Initial depth of the cylinder d 7 7 19.8

Tank half width W 21 22 6
d/W 1/3 0.3182 3.3

Confined No No Yes
Initial surge speed (theoretical) c∗th 0.0408 0.0408 1.75× 10−5

Average initial surge speed (simulations) c∗sim 0.0367 0.0379 1.91× 10−5

Standard deviation of c∗sim 2.6× 10−5 3.2× 10−4 1.4× 10−7

% of error on c∗ 10% 7.1% 9.1%

Table 5.5: Initial surge speed c∗ of the impulsively started gravity wave, for different simulations. The values
have been obtained by averaging the results at the different Froude numbers, with a standard deviation more
than 100 times smaller, which clearly indicates that this initial velocity is independent of the Froude number.

In each case, the deviation of the initial surge speed remains within 10% of the correlations proposed by
Vincent et al. [123].

Impact of the wake

The free-surface deformation depends also indirectly on the starting depth d through the cylinder
wake. As shown by Vincent et al. [123], a longer wake induces a larger free-surface deformation. In
particular, by comparing simulations using a no-slip condition at the cylinder surface to a simulation
with a stress-free condition (i.e., without wake), they observed an additional increment δwake of the
surface deformation h∗ that increases with the starting depth d (see Fig. 5.17 left). To quantify the
wake size, they introduced the so-called jet area j as the area of the flow region downstream of the
cylinder for which the vertical flow velocity component v > U , and j∗ = j(yc = −1) the value of j when
the cylinder reaches the free surface (see Fig. 5.17 middle and Fig. 5.18 left). As shown in Fig. 5.17 right,
δwake/

√
j∗ depends only on the Froude number and not on the starting depth, as long as Fr ≤ d/3, i.e.,

as long as the wake as sufficient time to develop without interference from the free surface. Furthermore,
for Fr > d/3, the ratio δwake/

√
j∗ seems to reach a constant value that is independent of Fr. Vincent

et al. [123] also showed that the jet size j increases during the cylinder rise following an algebraic law
whose exponent slightly varies with the Reynolds number but is independent of the Froude number (see
Fig. 5.18).

To compare the present results with those of Vincent et al. [123] in terms of the impact of the wake
on the surface elevation, their relations given by Eq. (5.8) has been subtracted from the present values
of h∗ to get the increment δwake. The results are presented in Fig. 5.19 for the case d = 7.
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For the renormalization, the wake area j∗ at the time when yc = −1 is required. To compute
this, the growing time of the wake during the rising phase is required, the latter being equal to t− =
d − 1 − δt(ReD), δt(ReD) being the time delay required for the wake to start growing. In the present
case, it has been estimated based on Fig. 5.18(a), where a linear interpolation on the Reynolds number
enables to find δt = 1.125 for ReD = 1000. The delayed time t− is therefore equal to d−1−δt '= 4.875.
Injecting this into the relations of Fig.(a) (both relations give similar results for this value of t−), a
value of j∗ ' 2.3 is found, which seems to be in agreement with the results shown in Fig. 5.18(b) for a
release depth d = 7, despite the use of different Reynolds numbers.

In Figure 5.19, the agreement between the present results and those of Vincent et al. [123] is quite
satisfying, which demonstrates that the present approach correctly captures the impact of the wake on
the free-surface elevation. Quite interestingly, the increment δwake seems to follow a different trend at
very low Froude number (Fr < 0.1). In particular, δwake obtained from the present simulations is larger
than expected. This was not pointed out by Vincent et al., possibly because of their coarser sampling
of the Froude number range below Fr = 1.

These results are very useful for modeling the surge dynamics. In particular, they suggest that, for a
sufficiently deep starting position, the surface elevation h∗ can be modeled as an “inviscid” contribution
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Figure 5.19: Variation of the free-surface elevation increment δwake with respect to the Froude number.
Present results and results of Vincent et al. [123] are shown for an initial depth d = 7. For the present case, a

renormalizing wake area j∗ ' 2.3 is used.

that depends only on the Froude number plus a correction δwake that takes into account the effect of
the wake. This wake correction non-dimensionalized by the wake size (jet area j∗) when the cylinder
reaches the free surface also depends only on the Froude number, while the wake size itself depends on
the initial starting depth d and, weakly, on the Reynolds number, but not on the Froude number.

5.2.2.2 Drag, skin friction, vorticity and wake dynamics

In this section, aspects associated with the boundary layer and wake of the cylinder are further investi-
gated, including overall drag, surface friction and vorticity, and streamlines in the wake. Two different
sets of simulations are considered, whose parameters are given in Table 5.6. The first set is at constant
Froude number and the second set at constant Reynolds number.

In addition, a simulation of a cylinder rising towards an impermeable but inviscid horizontal wall is
performed to investigate the limiting case of a very low Froude number, for which the free surface does
almost not deform. The same parameters as in the simulation set 2 are used in this case.

Numerical setup

For both series of simulations, a constant velocity and a no-slip boundary condition are imposed at
the cylinder surface, while a free-slip boundary condition is imposed at the tank walls. For the first set
of simulations, two geometrical refinement criteria are used. The first one interpolates L∗ from L∗max

10
at a distance 22/3 from the vertical center line to L∗max at the walls. The other geometrical criterion
interpolates from L∗min at the cylinder surface to L∗max at a distance of 22 from the cylinder center.
In addition, the velocity-gradient based criterion given by Eq. (3.23) is used with the parameters of
Table 5.6. Note that the threshold values of the target mesh size for the solution-based criterion are
denoted L∗min,SOL and L∗max,SOL to differentiate them from L∗min and L∗max used for the geometry-based
criteria.

For the second set of simulations, only one geometrical criterion is used, interpolating L∗ from L∗min

at the cylinder surface to L∗max at a distance of 22 from the cylinder center. The solution-based criterion
for mesh refinement is also used but with different parameters, as summarized in Table 5.6.
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Set n◦ 1 Set n◦ 2
Tank half width W 22 21
Tank height H 28 28

Initial depth of the cylinder d 6 7

Froude number Fr {0.5, 10}4 {0.25, 0.5, 1, 2}
Reynolds number ReD {550, 3000, 9500} 1000

Min. mesh size L∗min 0.003 or5 0.0015 0.002
Max. mesh size L∗max 1.2 1.2
Time step size ∆t 0.0025 or 0.00125 0.0033

Power parameter β 1/3 1/3
Max. velocity gradient norm ||∇u||max|| 2 2
Min. velocity gradient norm ||∇u||min|| 0.03125 0.016
Min. mesh size for SOL L∗min,SOL 0.014 0.014

Max. mesh size for SOL L∗max,SOL 0.14 0.186

Table 5.6: Geometrical, physical, mesh and mesh refinement parameters of two different sets of simulations.
All quantities are non-dimentionalized by the cylinder velocity U and its radius a, except the Reynolds number
which uses the cylinder diameter as a characteristic length. The solution-based mesh refinement parameters are

used in Eq. (3.23).

Vorticity and skin friction at the cylinder surface

For the simulations at a Froude number of 0.5 (simulation set 1 in Table 5.6), the wall vorticity6

at the cylinder surface is plotted for ReD = 550, 3000 and 9500 in Fig. 5.20, at different times after
an impulsive start. The black curves are the results for an impulsively started cylinder without free
surface obtained by Koumoutsakos et al. [93] using a vortex method with around 300000 vortex elements.
Despite the lower number of nodes in our simulations, i.e., from 35000 to 55000 for ReD = 550 and
from 60000 to 80000 for ReD ≥ 3000, the present results are relatively close to those of Koumoutsakos
et al. in the early stage, owing to the small mesh size near the cylinder surface and in its wake. For
later times, the cylinder approaches the free surface and some deviations from Koumoutsakos results
can be observed. These discrepancies can be attributed in part to the lower mesh resolution, but mostly
to the presence of the free surface in the present simulations. More specifically, the increasing weight
of the liquid above the cylinder, due to the surface elevation, tends to increase the velocity tangential
to the cylinder surface, which increases the skin friction and the vorticity at the wall. Note that the
increasing velocity above the cylinder is clearly observable in analyses introduced in Chapter 6, and is
mainly found to be a function of the Froude number. We can also observe that the flow complexity
increases with time: the vorticity changes sign at several locations along the cylinder surface, and more
vortex shedding events take place. This had already been discussed in Section 4.1.4. As expected, this
trend is even more prominent and occurs more rapidly when the Reynolds number increases.

To further investigate the impact of gravity on the boundary layer, the skin friction coefficient cf for
the different Froude numbers at a constant ReD = 1000 (simulation set 2 in Table 5.6) is plotted for
different cylinder positions yc in Fig. 5.21, together with the results obtained for the simulation of the
cylinder rising toward a wall (only for yc < −1).

While the results are very similar at a depth yc = −4.5, the curves progressively differ from each other
as the cylinder approaches the free surface, the skin friction being larger for smaller Froude numbers.
In other words, while the free surface deforms less at smaller Froude numbers, this smaller deformation
has a stronger impact on the flow around the cylinder, like if the cylinder was approaching a wall. In
particular, in the limit of very small Froude numbers, the free surface should not move at all, provided
that the friction effects remains negligible on the overall film dynamics, which should be the case if h is
not too close to 0. This is confirmed by the simulation of the cylinder rising towards the fixed wall with

4This series also includes simulations in a bounded domain (i.e., a domain without deforming interfaces), where the
Froude number is irrelevant.

5The resolution L∗min=0.003 is used for ReD = 550 only.
6See Appendix F for the relation between surface vorticity and friction coefficient.
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free slip boundary condition. At yc = −1.5, the maximum values of the skin friction increases as the
Froude number decreases, and is found at a smaller angle θ, closer to the top of the cylinder. To further
support this argument, the contour of the horizontal component of the velocity is shown in Fig. 5.22 for
the wall case and the case at Fr = 0.25. These similarities between the low Froude number simulations
and the simulation of the cylinder approaching a wall have already been observed by Telste [111].

It is important to note that, while there are clear differences across Froude numbers for the friction on
the upper part of the cylinder (|θ| < π/2), cf is almost identical for all Froude numbers along the bottom
surface of the cylinder (|θ| > π/2), at least as long as the cylinder remains immersed (yc ≤ −1.5). This
suggests that the free surface has almost no impact on the wake dynamics. The same vortex shedding
process, with separations and reattachments of the boundary layer, occurs during the cylinder rise
toward the free surface. After the interface crossing, the impact of the Froude number becomes visible.
Separation only occurs close to the cylinder bottom, where the thin film draining along the cylinder
surface separates, as shown in Fig. 5.23. Interestingly, at small Froude number, large oscillations of the
skin friction coefficient are observed along the bottom part of the cylinder (see Fig. 5.21, Fr = 0.25,
yc = 2, |θ| > π/2). These oscillations are due to gravitational instabilities in the film, because the
acceleration of gravity points from the free surface toward the outside of the fluid. These developing
instabilities of the film are clearly visible for Fr = 0.25 in Fig. 5.23 (right). At Fr = 0.5, the film
seems to be stable, but small oscillations in the skin friction coefficient suggest that the instability
could develop. Note that this instability could be avoided if surface tension was taken into account,
which is not the case in the present simulation, mainly to achieve an easier convergence of the nonlinear
algorithm.

Finally, it should be mentioned that the small amplitude oscillations of the skin friction coefficient
on the upper part of the cylinder at Fr = 0.25 and yc ≥ 1 are mostly due to a mesh in the film that is
slightly too coarse. The need for a higher resolution at small Froude number is due to the corresponding
smaller viscous to gravity length scale Lν/a = 3

√
4FR
ReD

. The correspondingly larger contribution of the
gravity acceleration leads to a larger draining velocity of the film and thus a more rapid film thinning.
This illustrates that, when prescribing the mesh resolution in the film, not only the Reynolds number,
but also the Froude number, should be considered.

131



ω [−]

ReD= 550 ReD= 3000 

ReD= 3000 ReD= 9500 

ReD= 9500 ReD= 9500 

𝜃 [rad] 𝜃 [rad]

ω [−] ω [−]

ω [−]

𝜃 [rad]

ω [−]

𝜃 [rad]

𝜃 [rad]

ω [−]

𝜃 [rad]

Figure 5.20: Non-dimensional vorticity ω as a function of the position angle θ along the cylinder surface at
different time instants after the impulsive start (Fr = 0.5, simulation set 1 in Table 5.6). The cylinder top

corresponds to θ = 0. The results of Koumoutsakos et al. [93] for an impulsively started cylinder without free
surface are shown as black lines.
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Figure 5.21: Skin friction coefficient on the cylinder surface at different positions yc = {−4.5,−3,−1.5, 0, 1, 2}
for different Froude numbers (ReD = 1000, simulation set 2 in Table 5.6) and for the case of a cylinder rising

towards a wall (yc ≤ −1.5 only). The top of the cylinder corresponds to the value θ = 0.
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Figure 5.22: Contour of the horizontal component of the velocity at yc = −1.5 for the cylinder rising toward a
wall (Fr → 0, left), and the cylinder rising toward the free surface at Fr = 0.25 (right), both at ReD = 1000.
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Figure 5.23: Contour of the vertical component of the velocity at yc = 2 (after the free surface crossing) for
the cylinder rising toward the free surface at Fr = 0.5 (left) and Fr = 0.25 (right), both at ReD = 1000.

134



Overall cylinder drag in the immersed phase.

The evolution of the overall drag acting on the impulsively started cylinder rising towards the free
surface (yc ≤ −1) is now analyzed for ReD = 550, 3000 and 9500 (simulation set 1 in Table 5.6). To
further assess the impact of the free surface, simulations are performed at a low (Fr = 0.5) and high
(Fr = 10) Froude number and compared to simulations in a bounded domain (i.e., without free surface).
The corresponding drag coefficient CD is shown in Figs. 5.24 and 5.25 and shows two opposite trends.
The results in a bounded domain are also compared to those of Koumoutsakos et al. [93], as already
discussed in Section 4.1.4.

For the low Froude number (Fig. 5.24), the drag coefficient CD is systematically larger for the free-
surface case (continuous blue lines) than in the bounded domain (dashed blue lines). Moreover, the
“drag excess” (continuous red lines) increases as the cylinder approaches the free surface. Interestingly,
the qualitative behavior of CD is nevertheless the same in both cases until shortly before yc = −1 at
which point CD rapidly increases in the free-surface case, while it decreases in the bounded-domain case
(note that this behavior might depend on the starting depth).

While the drag coefficient in a bounded domain at ReD = 550 is very close to that of Koumoustakos
et al. (dashed green lines), discrepancies appear at ReD = 3000 and are even more prominent at
ReD = 9500. They are mainly due to the limited mesh resolution in the wake. However, both drag
curves seem to be on the same level of magnitude, such that, regardless of temporal oscillations, the
global scaling is correctly captured. Moreover, because the drag excess is assessed on the same PFEM
mesh, it can be expected that a better mesh resolution would change the individual curves but only
slightly the drag excess itself.

On the other hand, for the large Froude number (Fig. 5.25), the drag coefficient in the free-surface
case is systematically lower than in the bounded domain, despite again the same qualitative behavior
of the two curves. In other words, while the free surface induces a drag excess at small Froude number,
it leads to a “drag deficit” at large Fr.

135



−6 −5 −4 −3 −2 −1
yc

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
D

ReD = 550

PFEM (FS)

PFEM (BD)

Koumoutsakos et al. (BD)

PFEM (FS - BD)

λg
ys
Fr

−6 −5 −4 −3 −2 −1
yc

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
D

ReD = 3000

PFEM (FS)

PFEM (BD)

Koumoutsakos et al. (BD)

PFEM (FS - BD)

λg
ys
Fr

−6 −5 −4 −3 −2 −1
yc

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

C
D

ReD = 9500

PFEM (FS)

PFEM (BD)

Koumoutsakos et al. (BD)

PFEM (FS - BD)

λg
ys
Fr

Figure 5.24: Drag coefficient for an impulsively started cylinder at ReD = 500, 3000 and 9500. Comparison
between PFEM simulations in a bounded domain (BD, blue dashed line) and a free surface (FS, blue

continuous line, Fr = 0.5). The results of Koumoutsakos et al. [93] (BD, green dashed line) obtained in a
bounded domain with a vortex method are also shown. The curves are plotted with respect to yc, which is not
relevant for the results in a bounded domain (a depth yc corresponds to the time t = yc + 6 from the impulsive
start). The continuous red line is the measured excess of the PFEM drag coefficient with a free surface (FS)
compared to the drag coefficient obtained in a bounded domain (BD). The red dashed line shows the linear

relation of this excess drag with the free-surface elevation ys (Eq. (5.15)).
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Figure 5.25: Drag coefficient for an impulsively started cylinder at ReD = 500, 3000 and 9500. Comparison
between PFEM simulations in a bounded domain (BD, blue dashed line) and a free surface (FS, blue

continuous line, Fr = 10). The results of Koumoutsakos et al. [93] (BD, green dashed line) obtained in a
bounded domain with a vortex method are also shown. The curves are plotted with respect to yc, which is not
relevant for the results in a bounded domain (a depth yc corresponds to the time t = yc + 6 from the impulsive
start). The continuous red line is the measured deficit of the PFEM drag coefficient with a free surface (FS)
compared to the drag coefficient obtained in a bounded domain (BD). The red dashed line shows the linear

relation of this drag deficit with the free-surface elevation ys (Eq. (5.16)).
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As illustrated above, the drag excess is directly related to the free surface deformation. At low Fr,
the free surface deformation is small and the free surface acts like a wall. The fluid between the cylinder
and the free surface can only escape on the side and the pressure increases accordingly in this region,
thereby increasing the drag. This drag excess can be quantified by considering the weight of the fluid
above the initial free surface as additional contribution to the drag, as schematically shown in Fig. 5.26.
The drag excess can thus also be understood as “gravity drag”. The over time increasing weight of the
fluid above the cylinder should scale as aYsρg, where Ys = ysa is the dimensional free-surface elevation
and ys = h+ 1 + yc. Consequently, the drag excess (or gravity drag) coefficient can be approximated as

Cg = λg
a2 ys ρ g

ρU2 a
= λg

ys
Fr

, (5.15)

where λg is a proportionality constant. A regression analysis on the parameter λg gives the values 0.6,
0.57 and 0.56 for ReD = 550, ReD = 3000 and ReD = 9500, respectively. The weak variation of λg
across different Reynolds numbers provides support to this simple model.

It should be emphasized that ys itself also depends on the Froude number, as clearly shown by
the aforementioned dependence of h(y) on Fr. Specifically, at yc = −1 Eqs. (5.8) or (5.10) for h∗ =
ys(yc = −1) suggest that the increase of ys with Fr is weaker than the explicit 1/Fr decrease of Cg in
Eq. (5.15), so that overall, the drag excess coefficient decreases with the Froude number. Unfortunately,
the drag difference between free-surface and confined domain is not available at other intermediate
Froude numbers so that this model prediction cannot be further validated. The only other Froude
number for which results are available is the case Fr = 10. At this larger Froude number, the drag
excess model predicts a smaller but positive drag excess. However, the results just discussed above show
a drag deficit in this case. This indicates that another competing effect is at play.

The physical mechanism for this drag deficit is not directly related to gravity, but rather to the mere
presence of the free surface, i.e., a material line at constant atmospheric pressure. In particular, the
lower drag observed is due to the absence of fluid above the free surface that needs to be displaced when
the cylinder moves. Results in Fig. 5.25 suggest that the drag deficit (or free-surface drag) coefficient
could be modeled as

Cfs = −λfs ys , (5.16)

where λfs is another constant of proportionality. In this case, a regression analysis gives λfs = 0.56,
0.55 and 0.55 for ReD = 550, ReD = 3000 and ReD = 9500, respectively. Figure 5.25 shows a very
good match between this simple model and the data with an even lower variation of λfs across Reynolds
numbers compared to the drag excess model. Surprisingly, the calibrated value of λfs in Eq. (5.16)
is almost identical to λg in Eq. (5.15). Because this drag deficit model is mostly ad-hoc without any
physical justification, this similarity between λfs and λg in the two models in most likely fortuitous.
Nonetheless, it suggests that there is neither drag excess nor drag deficit at Fr ≈ 1. Finally, note that
here again ys depends on Fr so that Cfs also does.

ys λys

1

Perceived bulge weight

Figure 5.26: Illustration of the bulge weight effect increasing the drag above the cylinder rising toward the
free surface.
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In summary, the drag acting on a cylinder rising vertically towards a free surface at constant velocity,
and its deviation from the drag of the similar flow in a bounded domain, stems from two opposite
effects. On the one hand, the absence of fluid above the free surface has the effect to decreases the drag
coefficient, leading to a negative contribution called the free-surface drags Cfs, related to the free-surface
elevation ys through Eq. (5.16). On the other hand, the bulge of height ys forming at the free surface
has the effects of increasing the drag coefficient through its weight in the gravitational field, leading to
a positive drag contribution called the gravity drag Cg given by Eq. (5.15). It should be emphasized
that these results are only a very preliminary step towards a predictive model, for several reasons:

• For the considered Froude numbers (Fr = 0.5 and Fr = 10), gravity is not completely dominant,
nor completely negligible, such that Cfs and Cg should have been considered simultaneously when
fitting the constants λg and λfs.

• The assumption that Cg and Cfs are both linear in ys is not well justified, and more complex
relation may fit better, especially for Cg as the fit is not as good as for Cfs.

• The actual dependence of Cg and Cfs on the Froude number could unfortunately not be verified.

• While a correlation for h∗(Fr) has been proposed, the dependence of ys on Fr for other cylinder
positions (yc < −1) is not available.

Nonetheless, these relations between drag excess/deficit and free-surface elevation are an important
result as they directly relate the dynamics occurring in depth with observable kinematics of the free
surface. In the next chapter, the main attention is on the prediction of h(t) (and therefore ys(t) =
h(t) +yc(t) + 1) based on models of the averaged forces and convective terms along the cylinder surface.
From there, better models could be later obtained to predict Cg and Cfs, without any a priori knowledge
of ys(t), by considering simulations at different Froude numbers, and simultaneous fits of the Cg and
Cfs models. However, these possible extensions have not been considered in the present work.

Finally, it is important to consider how Cg and Cfs fit into the existing literature. Tyvand and
Miloh [109] identified three contributions to the zeroth-order forces (with respect to time) on a rising
cylinder submerged in an inviscid fluid [109]:

• A downward dynamic-pressure force.

• A downward force due to free-surface nonlinearity.

• An upward force due to geometric nonlinearity.

In our case, the net upward force corresponds to Cfs. Note that the terminology behind the different
contributions in Tyvand and Miloh comes from the different terms within the potential flow formalism
of the problem, and are not directly applicable to the present full-time computation of the problem using
the Navier-Stokes equations. On the other hand, Cg corresponds to the effect of the gravity, which was
also studied by Tyvand and Miloh in the small time limit. For this term, they have found an analytical
expression based on a Fourier series, involving the non-dimensional cylinder radius ε = a

d , i.e., the radius
normalized by the cylinder initial depth. However, their formula is only valid in the small time limit,
while the present work investigates the behavior of Cg and Cfs during the overall rising phase of the
cylinder below the initial free surface.

Wake dynamics

The results for the friction coefficient and the surface vorticity suggest that the free surface does not
impact the wake. This is further analyzed by considering the streamlines of the wake, in the cylinder
frame of reference, for ReD = 550, 3000 and 9500, and Fr = 0.5, in Figs. 5.27, 5.28 and 5.29, respectively.
The PFEM simulations are compared with the numerical results of Koumoutsakos et al. [93] (Figs. 5.27a
and 5.29a) and the experimental results of Bouard et al. [129] (Figs. 5.27b, 5.28a and 5.29b). The PFEM
streamlines (top image of the respective figures) are very similar to those obtained in the literature,
despite the presence of the free surface. In particular, a good qualitative match is found regarding the
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size and position of the different vortices. This further demonstrates that the free-surface deformation
has a negligible impact on the wake dynamics (note that the opposite is not true, as shown by Vincent
et al. [123]). A first possible explanation is that the wake is shielded from the free surface by the body
itself and thus feels only weakly its presence. Another explanation is that the wake development takes
place during the entire motion of the cylinder, from its start. If the starting depth is sufficiently large,
the deformation of the free surface remains very limited during most of this wake formation process and
only matters when the cylinder reaches the free surface.

This has a practical consequence for the predictivity of flows around bodies crossing a free surface.
Before the interface crossing, the wake can be more or less assumed to be in a state that only depends
on its release depth7, and which can be computed in a bounded domain, for which more efficient
classical CFD solvers are available, or directly obtained from the literature. Furthermore, the free-
surface deformation could be approximated through an inviscid calculation with a pseudo-body that
includes the body and its wake. Note that the behavior of the wake during and after the interface
crossing is briefly discussed in Appendix G.

7At least for the range of parameters considered here.
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Figure 5.27: Streamlines in the wake of the impulsively started cylinder at ReD = 550 after a
non-dimensional time t = 5 (i.e., yc = −1 for the PFEM simulation with Fr = 0.5). (a) Comparison between
the results obtained with the PFEM (top) and the numerical results of Koumoutsakos et al. [93] (bottom); (b)
comparison between the results obtained with the PFEM (top) and the experimental measurements of Bouard
et al. [129] (bottom). The cylinder boundary in the PFEM images (top) is represented by a thick red curve.
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Figure 5.28: (a) Streamlines in the wake of the impulsively started cylinder at ReD = 3000 after a
non-dimensional time t = 5 (i.e., yc = −1 for the PFEM simulation with Fr = 0.5), obtained with the PFEM
(top), and experimentally by Bouard et al. [129] (bottom). The cylinder boundary in the PFEM image (top) is
represented by a thick red curve. (b) PFEM mesh wireframe colored by the velocity magnitude (in the cylinder

frame of reference) at the same time as in (a).
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Figure 5.29: Streamlines in the wake of the impulsively started cylinder at ReD = 9500 after a
non-dimensional time t = 5 (i.e., yc = −1 for the PFEM simulation with Fr = 0.5). (a) Comparison between
the results obtained with the PFEM (top) and the numerical results of Koumoutsakos et al. [93] (bottom). (b)
Comparison between the results obtained with the PFEM (top) and the experimental measurements of Bouard
et al. [129] (bottom). The cylinder boundary in the PFEM images (top) is represented by a thick red curve.
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5.2.3 Comparisons with experiments

To further validate the numerical results, they are compared to in-house experiments that have been
conducted for the case of a cylinder pulled out of a liquid bath at constant velocity [125]. Because
in experiments real fluids are used, any variation of the Froude number (i.e., of the cylinder velocity)
implies also a corresponding variation of the Reynolds number. Therefore, to separate the two effects,
two different fluids have been considered: water and oil. As the viscosity of the latter is much larger
than that of water, lower Reynolds numbers can be achieved for a given cylinder velocity (Froude
number), which has the advantage that the spatial resolution in simulations can be lower. Therefore,
all comparisons are done for the oil case here, and only this case is discussed.

First, the experimental measurements are briefly described. Then, the numerical setup is sum-
marized. Finally, numerical results for the surface elevation and the force acting on the cylinder are
compared to experimental results.

5.2.3.1 Experimental setup

The experimental setup for oil consists of a rectangular tank with a length of 72 cm, a width of 30 cm
and a height of 79 cm, filled with silicon oil (50 cSt), in which a cylinder is pushed (for surface elevation
and film thickness measurements) or pulled (for force measurements) from an initial depth at constant
velocity (typically between 0.1 to 1 m/s8). Oil experiments were conducted with two different cylinders:
a thicker cylinder of radius a = 2.5 cm and aspect ratio L/a = 10 and a thinner cylinder of radius
a = 1.25 cm and aspect ratio L/a = 12, whose axes were aligned with the length of the tank and
parallel to the free surface, as shown in Fig. 5.30. To further reduce 3D effects in the experiment,
end-plates were used for the surface deformation (and film thickness measurements) but not for the
force measurements. The initial depth varied depending on the measurement type and the presence or
not of end-plates.

The surface deformation during the initial phase was obtained using high-speed imaging of the liquid-
air interface and the film thickness during drainage using a Chromatic Confocal Point Sensor (CCPS).
Note that for this second measurement, the cylinder was at rest above the free surface. The force
acting on the cylinder during its vertical motion was measured with a strain gauge. Two-dimensional
planar Particle Image Velocimetry (PIV) was also used but the results are not considered here. More
informations about the experimental setup, protocols and results can be found in Dorbolo et al. [125].

Numerical setup

Because simulations are two-dimensional, a 2D cross-section of the experimental setup with the same
tank width and height is considered. The geometrical, mesh and mesh adaptation parameters are given
in Table 5.7. The initial meshes are shown in Fig. 5.31. For the mesh adaptation, a geometrical mesh
refinement is used to impose a small progression of the target mesh size from L∗min,GEO to L∗max,GEO. The
progression starts from L∗min,GEO at the cylinder surface and initial free-surface level, to L∗max,GEO at
the respective distances of W −1 and W/6 from them. In addition, the solution-based mesh adaptation
of Eq. (3.23) is used, whose the parameters are defined in Table 5.7; it is referred here as SOL.

5.2.3.2 Results

Comparison between simulations and experiments are first done with the thicker cylinder (L/a = 10,
d = 19.8) for the thickness h(yc) of the oil column above the cylinder, and then with the thinner
cylinder (L/a = 12, d = 37.6) for the force F acting on the cylinder. Finally, simulations with the
thicker cylinder are analyzed and compared to a simple model. The thicker cylinder is considered in
this case because its wake is more stable, as discussed below.

8The cylinder reaches its steady target velocity after a short acceleration period. In particular, a velocity U = 1 m/s
is reached after the cylinder has moved 12 cm from its initial position.
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Figure 5.30: Picture of the first experimental setup. Three instruments are shown on this picture, and are
framed by yellow rectangles. On the top right, there is the force sensor; on the lower left, there are the high

speed camera and the laser used for PIV. Courtesy of S. Dorbolo.

Column height for the thicker cylinder in oil

The results for the height h(yc) of the oil column above the thicker cylinder (L/a = 10, d = 19.8)
are shown in Fig. 5.32 where the experimental and numerical results are respectively represented by the
dashed and the continuous lines. Globally, a very good agreement is observed for all cylinder velocities.
Note that simulations can reach larger yc, i.e., smaller values of h, where experimental results are either
hard or impossible to obtain because of the limited possible vertical displacement of the camera and
measurement uncertainties at small h. In the experiment, the film thickness is then measured much
more precisely with the CCPS, but this requires to bring the cylinder to rest. This specific case has not
been reproduced with simulations. The exponential decreasing rate of h(yc) decreases as the film gets
thinner, because of viscous effects. This is confirmed by the fact that the curves approach, or reach,
the viscous-gravity length scale lν , where the viscous-to-gravity balance becomes dominant over inertial
effects.

Additionally, images of the numerically simulated flows are shown in Fig. 5.33 for different values of
the velocity U and cylinder positions yc. One can observe that the wakes are similar, but are slightly
longer for smaller velocities (smaller Reynolds number), which is a well-known effect in the literature on
viscous flows around a cylinder [87]. For the larger velocity (larger Reynolds number), the wake starts
to become unstable, as indicated by its small asymmetry (right column of Fig. 5.33). The free-surface
elevation and the film thickness are larger for larger velocities, which is consistent with the results for
h(yc). It is also interesting to note that, after the interface crossing, the film thickness seems to be
uniform along the cylinder surface (i.e., for a significant range of angles θ from the cylinder apex), as
already observed in the literature (see Section 5.1). This observation is used when modeling the film
thickness in Chapter 6.

Vertical force on the thinner cylinder.

The second quantity of comparison between the experiments and the simulations is the downward
force opposing the cylinder motion. While it is usually referred to as the drag force in the literature, it is
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(a) (b)

Figure 5.31: Initial meshes for the simulation of the thicker (a) and the thinner (b) cylinders.

Thicker cylinder (L/a = 10) Thinner cylinder (L/a = 12)
Tank half width W 6 12
Tank height H 28.8 57.6

Initial depth of the cylinder d 19.8 37.6
Maximal mesh size L∗max,GEO 0.6 1.2
Minimal mesh size L∗min,GEO 0.0033
Time step size (*) ∆t 0.0033

Maximal mesh size of SOL L∗max,SOL 0.45 0.9
Minimal mesh size of SOL L∗min,SOL 0.03

Minimal velocity gradient (*) ||∇u||min|| 0.006
Maximal velocity gradient (*) ||∇u||max|| 2

Power parameter β 1/3

Table 5.7: Geometrical, mesh and mesh adaptation (see Eq. (3.23)) parameters for the simulations. See
Fig. 5.1 for the definition of the different length scales, which are all non-dimensionalized by the cylinder radius

a. (*) Quantities involving the time are also non-dimensionalized by the cylinder velocity U .
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Figure 5.32: Comparison of the height h of the oil column above the thicker cylinder (L/a = 10) as a function
of its vertical position yc between experiments (with end-plates, dashed lines) and simulations (continous lines)

for different cylinder velocities U (Fr = 0.04 to 5.44, Re = 99 to 1155). The initial cylinder depth in the
experiment is d = 15. Note that in the experiment the thickness of the oil film can only be measured until

shortly after the free-surface crossing. The viscous-gravity length scale lν is indicated by the horizontal black
dotted line.

preferred to avoid this terminology here as this force includes different contributions, including the drag
induced by the cylinder motion, but also the buoyancy (or Archimedes’) force which is oriented upward
and non-zero even at rest. One could try to remove the buoyancy contribution, as it is well defined by
the body’s volume and the fluid density. However, during the interface crossing, the cylinder is formally
surrounded by fluid everywhere while some parts of his volume is located above the initial free-surface
level. In these conditions, it is not clear how to define the buoyancy force and how to isolate it from
the other contributions along the vertical position9. This difficulty of clearly defining the different force
contributions at the interface crossing is symptomatic of the problem complexity, and it is expected that
the level of surface deformation plays a particular role here. While the surface deformation is intuitively
lower at smaller Froude numbers, its impact on the force exerted on the cylinder, and on the flow above
it, is actually stronger through the higher effect of gravity. This larger effect at small Froude number
was already shown through the gravity drag Cg introduced in Section 5.2.2.2. Its effect on the flow
above the cylinder is investigated in more detail in Chapter 6.

Before showing the forces, the procedure to obtained them is described. When comparing the force
from experiments and simulations, two important aspects have to be taken into account. First, the force
sensor in the experiment measures all contributions at play, which includes, as previously mentioned, the
dynamic drag, the static buoyancy, the added-volume and inertial effects during the acceleration phase,
but also the cylinder weight. The zero-level thus depends on which contributions are included when
reporting the force. Because the cylinder weight is irrelevant in the simulations, it is here subtracted
from the measured force. Consequently, the reported force corresponds to minus the static buoyancy
force at t = 0 and vanishes at large times when the film has fully drained. Secondly, as the simulations
are two dimensional, the force is defined per unit length, and should therefore be multiplied by the
length of the cylinder. However, the sectional force in the experiment is obviously not constant along
the cylinder length because of three-dimensional effects towards the cylinder ends. This is expected to
be a major source of discrepancies between experiments and simulations.

9Note that the "drag" terminology was used in the previous sections because there, it was only referring to the dynamics
occurring below the free surface, where the buoyancy force is assumed to be well defined and can be removed from the
other contributions to the overall vertical force.
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Figure 5.33: Contour plots of the vertical component of the velocity around the rising thicker cylinder for
different velocities U and positions yc obtained from simulations.

Figure 5.34 shows the force (from which the cylinder weight has been subtracted) on the thinner
cylinder (L/a = 12) for different velocities ranging from 0.1 m/s (purple lines) to 1.3 m/s (red lines)
by steps of 0.1 m/s from the experiment (dashed lines, d = 38) and simulations (continuous lines). In
the simulations, after an initial spurious peak due to the infinite acceleration of the impulsive start,
the force rapidly increases, while the wake is developing, before reaching a maximum value around
yc = −34. Then, the force slowly decreases until the cylinder approaches the free surface. The rapid
force growth and its maximum value increase with the cylinder velocity. At very low velocities, they
are not distinguishable and the force remains more or less constant during the immersed phase. This
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behavior is also observed experimentally, but at a larger yc. Specifically, the force increase is much more
gradual, the maximum value is reached just after the end of the acceleration phase and is much lower
than in the simulations. Interestingly, this maximum value seems to almost lie on the numerical curves
and, after this point, a very good match is observed between numerical and experimental results. The
discrepancies observed during the initial phase are thus mostly due to the different kinematics imposed
to the cylinder, but once the cylinder has reached a constant speed and its wake has formed, a much
better agreement is found. At the largest velocity, a large and rapid increase of F is observed around
yc = −12 in the simulations. This significant quantitative and qualitative change compared to lower
velocities is likely caused by the destabilization of the wake and the inception of vortex shedding, as
illustrated in Fig. 5.35. Wake destabilization is observed for the four largest values of the velocity, and
is significantly larger for the largest velocity. The more stable experimental drag curves are possibly
due to a more progressive development of the wake (much weaker acceleration) such that instabilities
have not sufficient time to develop (constant velocity is maintained over a shorter distance until the free
surface). Additionally, three-dimensional effects can also play an important role.

Other discrepancies are found when the cylinder approaches and crosses the free surface. For low
velocities, the drag starts to rapidly increase because the buoyancy force decreases to zero when the cylin-
der emerges out of the bath. It then reaches a positive maximum value that corresponds approximately
to the weight of the entrained liquid, as discussed in the next section. With the subsequent drainage of
the film the force then continuously decreases, and should eventually vanish after full drainage. With
increasing velocity, the time at which the maximum force occurs and its magnitude increase because
more liquid is entrained. The same behavior is observed experimentally and numerically, but the peak
value of the force is lower and occurs at larger yc in the experiment. Moreover, the force during drainage
is consistenly larger in the simulations, most likely due to the two-dimensional simplification.

For the larger velocities, simulations show a rapid decrease of the force, that departs from the
experimental results, before the interface crossing. After reaching a minimum at yc ≥ 1, the force
increases back to the experimental value. This behavior could again be due to the instabilities developing
in the cylinder wake at larger velocities, but more conclusive analyses are necessary to ascertain it.
Nonetheless, the drainage phase seems to be again similar to lower velocities. This last phase is further
investigated in the next section.
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Figure 5.34: Force F acting on the thinner cylinder (L/a = 12, the cylinder weight has been subracted) in oil
as a function of the cylinder vertical position yc obtained numerically (continuous lines) and experimentally
(d = 38, dashed lines) for velocities ranging from 0.1 m/s (purple lines) to 1.3 m/s (red lines) by steps of

0.1 m/s. It corresponds to Reynolds numbers ranging from 50 to 650 and Froude numbers ranging from 0.0815
to 13.78. (a) Entire yc range and (b) close-view on values yc > 0. For visibility, the color range has been

reduced for (b), such that it does not directly correspond to the curves in (a).

Vertical force on the thicker cylinder
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Figure 5.35: Contour of the vertical component of the velocity, when the thinner cylinder is at position
yc = −2. (a)U = 1.2 m/s, ReD = 600, F r = 11.74 : the wake remains almost perfectly symmetrical.
(b)U = 1.3 m/s, ReD = 650, F r = 13.78 : the wake is unstable and vortex shedding has appeared.

To check the assumption that the force at yc > 0 is mainly due to the weight of the entrained
liquid, a closer look is taken at the force obtained numerically for the thicker cylinder. The rational
for considering the thicker cylinder is that its wake is stable for almost all velocities, despite a larger
Reynolds number, because the initial location of the cylinder is closer to the free surface (d = 19.8).
Unfortunately, experimental force measurements for the thicker cylinder are not available for this setup
so that only numerical results are used.

The force (per unit length) obtained from simulations is shown in Fig. 5.36 for different velocities.
For yc < 0 (Fig. 5.36a), the observations are similar to those for the thinner cylinder. Although the
wake seems to be more stable in this case, the rapid drop of the force just before interface crossing
is visible for the three largest velocities, suggesting that small wake asymmetries could nonetheless be
present, as previously illustrated in Fig. 5.33.

To correlate the force with the weight of the entrained liquid for yc > 0, the weight (per unit length)
W of the annulus of fluid surrounding the cylinder can be considered, assuming the thickness of the
annulus to be uniform along the cylinder surface and equal to h(yc), as illustrated in Fig.5.37. It is thus

W = π ρ g a2
(
(1 + h)2 − 1)

)
. (5.17)

Figure 5.36b compares the actual force F (yc) with the scaled weight 1.2W (yc). The clear correlation
between the two quantities for all velocities supports the assumption that the force for yc > 0 is mainly
due to the entrained liquid, plus some contribution of the stretching of the emerging wake filament
below it, which also seems to be proportional to the weight of the annulus of fluid.

Furthermore, the black dots in Fig. 5.36b show the value 1.4W (yc) at the position yc where F
reaches its maximum. Again, a strong correlation is found between the maximum force and the amount
of entrained liquid. The corresponding flow field at maximum F is shown in Fig. 5.38. Some wake
asymmetry can be observed for the largest velocities. More importantly here, the horizontal thickness
of the entrained liquid below the cylinder is of the same order for all velocities. This is further quantified
in Fig. 5.39, where the minimal wake thickness ∆ when the force is maximal is plotted as a function
of the Froude number. For Fr ≥ 0.5, ∆ is more or less constant. On the other hand, the evolution
in time (not shown) indicates that the entrained liquid filament below the cylinder shrinks, while the
pressure on the lower cylinder surface decreases, inducing a suction akin to the well-known Coanda effect
(Fig. 5.40). This suction reaches a maximum because of the opposite effect of a decreasing pressure
and a thinner wake filament, i.e., a smaller wetted cylinder surface. Additionally, one can observe that
the shrinking of the wake filament occurs at later times for higher velocities. Because more liquid is
entrained in this case, it takes longer for the fluid to flow until this maximum suction is reached.

It is remarkable that this suction force is approximately proportional to the weight of the annulus
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Figure 5.36: Force per unit length on the thicker cylinder in oil as a function of the cylinder vertical position
yc obtained numerically for different cylinder velocities (Reynolds number ranging from 100 to 1150 and Froude
number from 0.04 to 5.4). (a) Entire range of positions yc and (b) close view on yc > 0. In (b) dashed lines are
placed at 1.2 times the weight of the annulus of fluid surrounding the cylinder and black dots indicate the yc
position of the local maximal forces at a level corresponding to 1.4 times the weight of the annulus of fluid at

that time.

h

W

Figure 5.37: Illustration of the annulus of fluid draining around the cylinder after the interface crossing.

of fluid around the cylinder. In fact, it can be shown that both these quantities (i.e., the maximum
suction force and the annulus weight) are related to the wake minimal thickness ∆ at the time when
the drag is maximal (yc > 0), so that these two quantities are proportional to each other by a factor
1.4. In particular, a linear fit can be obtained for both, as illustrated in Fig. 5.39.

Finally, from the time t when the drag is maximum, corresponding to the cylinder elevation yc, a
collapse of all force curves can be obtained by rescaling the force F by the annulus weight at that initial
time, W (yc), and plotting their evolution with respect to the gravity−normalized time tg =

√
g
a t. The

result is shown in Fig. 5.41. This collapse, in addition to show that the force is proportional to the film
weight all along its drainage, highlights the fact that the drainage is purely gravity-driven, and that the
cylinder velocity does not play any role here. Nonetheless, for smaller velocities, the force (i.e., also the
film thickness) decreases more slowly, which is likely due to the relatively stronger effects of viscosity
occuring for a smaller film thickness (which is an indirect effect of using smaller velocities).

Conclusions

By comparing simulations and experiments of a cylinder rising toward and crossing the free-surface,
for Reynolds number ranging from 50 (thin cylinder at U = 0.1 m/s) to 1155 (thick cylinder at U =
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Figure 5.38: Contour of the vertical component of the velocity (from −1.5U in blue to 2U in red) around the
thicker cylinder at the position yc > 0 when the downward force is maximal, indicated by the black dots in

Fig. 5.36b.

1.155 m/s), and Froude number ranging from 0.04 (thick cylinder at U = 0.1 m/s) to 13.78 (thin
cylinder at U = 1.3 m/s), it has been shown that:

• The drainage of the annulus of fluid around the cylinder is governed by an inertia-to-gravity
balance, resulting in an exponential decrease of the film thickness h(yc). The exponential decrease
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Figure 5.39: (a) Dependency of the minimal wake thickness ∆ when the suction effect is maximal on the
Froude number. (b): Dependency of the strength of the suction effect and of the weight of the annulus with
respect to the wake minimal thickness ∆. The linear fits between each of these two quantities and ∆ suggest

that they are proportional to each other with a factor 1.4.
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Figure 5.40: Contour of pressure before (left) and after (right) the time when the drag is maximal for the
thicker cylinder at U = 0.702 m/s. Before, the pressure below the cylinder is high and starts to progressively

decrease as there is less flowing fluid on each side. The maximal drag is then obtained by suction resulting from
the lower pressure below the cylinder combined with "still" large wetted cylinder surface by the wake filament.
Afterwards, the pressure remains low but the suction effect weakens because of the decreasing wake thickness

(i.e., smaller wetted area on which the low pressure acts).

becomes slower as the film thickness approaches the viscous-to-gravity length scale lν where viscous
effects become relatively more important.

• The force acting downward on the cylinder after the interface crossing is proportional to the weight
of the annulus of fluid surrounding the cylinder, and is maximal when the wake minimal thickness
is around 1.2 radius (1 < Fr < 5 in Fig. 5.39(a) ). It results from a suction effects due to a small
depression below the cylinder.

• The evolution of that force is mainly gravity-dependent, and the cylinder velocity has only an
indirect influence on it through the thicker or thinner annulus of fluid around the cylinder. This
dependence on gravity is shown through a collapse of the force evolution at all cylinder velocities,
normalized it by the annulus weight and using a time description normalized by a gravitational
time scale tg =

√
a
g (see Fig. 5.41).
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Figure 5.41: Drag force on the rising cylinder, normalized by the annulus weight W at the time tg and
cylinder position yg, when the drag force is maximal. The evolution is expressed in terms of the

non-dimensional time tg =
√

g
a t.

To summarize, this section enabled to validate results of the previous one (evolution of film thickness
h(yc)) while complementing others. Specifically, while the behavior of the drag was investigated for
yc < 0 in the precedent section, the force after the interface crossing yc > 0 has been investigated here.

5.2.4 Wake dynamics and fluid entrainment at very small Reynolds number (ReD ≤
1)

So far, typical flow regimes at Froude number around 1 and Reynolds number around 1000 − 10000
have been investigated. It has been shown that the surface elevation is mainly influenced by the Froude
number, while the Reynolds number only plays a secondary role in the free-surface deformation. In
the film dynamics, the Reynolds number only starts to matter as the film thickness gets closer to the
viscous-gravity length scale lν .

In this section, the effect of the Reynolds number in the highly viscous regime (Re ≤ 1) is investigated
at a constant Froude number of 1 (fixed gravity and velocity). In this case the Reynolds number is
expected to have a significant effect on the free-surface deformation. Moreover, the lower Reynolds
number also results in an almost linear dynamics (very weak effect of the nonlinear convective terms)
and therefore to highly symmetrical flows. This provides the possibility of a direct study of the vertical
filament dynamics that drains and is stretched below the cylinder10.

The specific nomenclature for this particular analysis is given in Fig. 5.42, where the minimal width
of the filament below the cylinder is noted w. Unlike in the previous sections, all length scales are here
non-dimensionalized by the cylinder diameter, except for the Froude number that is still defined using
the cylinder radius a. All these non-dimensional parameters are summarized in Table 5.8. At the time
where w = 1, the characteristic length Lw of the filament can be defined as yc|w=1 + 1. The following
analysis attempts to relate this characteristic filament length Lw to the Reynolds number.

Numerical setup

At such low Reynolds numbers, the effect of viscosity does not only impact the boundary layers
but also the entire flow. Consequently, the boundaries have a significant impact on the flow. In order

10By direct, it is meant that only one simulation per case is necessary because of the wake stability, while statistics
would be required to study the entrained fluid at higher Reynolds number for which random asymmetries are unavoidable.
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Cylinder diameter D 1
Initial depth of the cylinder d 1

Pool depth H 51
Half pool width W 50
Reynolds number ReD ∈ [0.01, 1]
Froude number Fr 1

Minimal mesh size L∗min 0.0075
Maximal mesh size L∗max 2.25
Time step size ∆t 0.045

Table 5.8: Simulation parameters for the case of the rising cylinder in the highly viscous regime (ReD ≤ 1).
All quantities are non-dimensionalized by the cylinder velocity U and diameter D, except for the Froude

number which uses the radius a instead of D (as in all previous sections). The Reynolds numbers considered
are in the set {0.01, 0.025, 0.05, 0.075, 0.1, 0.25, 0.5, 0.75, 1}.

𝑦𝑐 = 0

𝑦𝑐 = −1

𝐿𝑤𝑤 = 1

𝑦𝑐 = 𝐿𝑤 − 1

Figure 5.42: Definition of key quantities for the analysis of the wake filament at low Reynolds number, in
complement to those defined in Fig. 5.1a. All lengths are here non-dimensionalized using the cylinder diameter

D.
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Figure 5.43: Initial mesh for the rising cylinder in an highly viscous fluid. The corresponding simulation
parameters are given in Table 5.8.

to mitigate this effect, a very large domain (see the simulations parameters in Table 5.8) is used, as
illustrated in Fig. 5.43 (W = 50 and H = 51). The computational cost remains nonetheless limited
owing to mesh adaptation, as very large elements (L∗max = 2.25) can be used near the tank walls.
Moreover, since we are not interested in the effect of the pool walls, a free-slip boundary condition is
imposed on each walls, such that no shearing occurs there11.

A benefit of simulating highly viscous fluid flows is that there is no boundary layer per se (the
viscous region includes the entire domain). There is thus less stringent requirements in terms of the
spatial resolution, as small flow features are either nonexistent or very quickly diffused. For that reason,
a rather large minimal target mesh size (L∗min = 0.0075) is used, compared to the other cases at higher
Reynolds number12. However, the mesh size must still be small enough to actually capture the wake
filament below the rising cylinder and the film around the cylinder.

The target mesh size is imposed through a linear progression from L∗min at the cylinder surface, to
L∗max at a distance of 10D from the cylinder center. Because of the high shearing occurring everywhere,
no solution-based refinement is used here, as it would lead to unnecessary refinement in many regions
of the computational domain13. Furthermore, the mesh coarsening is deactivated during the cylinder
rise, such that the film developing below the cylinder remains well refined during its rise.

Finally, because of the absence of boundary layer, the time step can be slightly larger than what
is usually expected for flows with boundary layers (see Fig. 3.19 in Section 3.3). It is set here to
6L
∗min
U = 0.045DU , which is sufficient to simulate all flows without convergence issues until yc = 7, as

illustrated in Fig. 5.44. Convergence issues start to appear for larger simulation times, all the earlier at
higher Reynolds number. All simulation parameters are summarized in Table 5.8.

Results

Figure 5.45 shows the free-surface nodes for the different Reynolds numbers considered, at the times
when the cylinder successively reaches the positions yc = 0 (Fig. 5.45a), yc = 1 (Fig. 5.45b), yc = 2
(Fig. 5.45c) and yc = 3 (Fig. 5.45d). As expected, the amount of fluid entrained around the cylinder
is larger at smaller Reynolds number because of the increased friction. While a wake filament starts to
stretch below the cylinder for the higher Reynolds numbers (ReD ≥ 0.5) in the considered range of yc
(see Figs. 5.45c and 5.45d), this is not the case for smaller Reynolds numbers, for which this filament

11While this is not representative of the real highly viscous flow in a tank of finite length, it is likely closer to what one
should expect in a pool of infinite size, which is more consistent with the fact that the effects of the walls are not studied
in the present analysis.

12Note that here the mesh sizes are non-dimensionalized by the cylinder diameter instead of the radius, such that a
factor of two should be applied to the present mesh sizes for a fair comparison with resolutions used in the precedent
sections.

13It is nonetheless possible to adapt the solution-based criterion, Eq. (3.23), to this particular case.
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Figure 5.44: Evolution of the time step size as the simulation proceeds (i.e., increasing yc) for the highly
viscous fluid flow around a cylinder rising toward a free surface. To ensure convergence of the nonlinear solver
(Picard algorithm), the time step must be decreased sooner for larger Reynolds number because the wake
filament thinning occurs more rapidly. For all Reynolds numbers considered, no time step size adaptation is

required until yc > 7.

forms at later times. To quantify this effect, the value of Lw is plotted in Fig. 5.46b with respect to the
Reynolds number, where a quasi-power fit of the data can be performed. In Fig. 5.46a, the corresponding
free-surface deformation is shown for all the Reynolds numbers considered. In addition the evolution of
the minimal wake filament thickness w (continuous lines), once it has reached the value w = 1, is shown
in Fig. 5.47a in a log-log plot, where its rate of decrease follows an arithmetic law of the form14

w(t) = C(t+ L0)−k , (5.18)

that is fitted (dashed lines) to the data (fitting has been performed on the time range during which
w ∈ [0.04, 0.4]). The two calibration parameters C and k are plotted in Fig. 5.48 for the different
Reynolds numbers, with L0 fixed to 0.9Lw(ReD), for which a correlation has been found. Figure 5.48
suggests a logarithmic dependence on the Reynolds number, as the points are almost aligned.

The behavior described by Eq. (5.18) can be easily interpreted by considering mass conservation,
leveraging some basic assumptions regarding the flow. As illustrated in Fig. 5.47b, the vertical velocity
component uy at a fixed time t increases with y (at least locally near the position where the wake
filament is the thinnest). Moreover, as the cylinder rises, the velocity gradient ∂uy

∂y , and therefore uy,
decreases at a fixed position y (the velocity uy increases from the bath where it is more or less 0 to the
cylinder where it is equal to 1). As a consequence, the velocity evolves inversely proportionally to the
film elongation: uy ∝ 1

t+L0
, where L0 is a constant to determine, and t is the (non-dimensional) time

which has its 0 when w = 1. In mathematical terms, one therefore has

uy(y, t) ' k
y

t+ L0
, (5.19)

from which it directly follows from mass conservation that

ux(x, t) ' −k x

t+ L0
. (5.20)

In other words, the wake filament thinning corresponds to an extensional flow in the y-direction.
Replacing x by w/2 in the above expression yields

d(w/2)

d t
' −k w/2

t+ L0
, (5.21)

14All lengths are normalized by the cylinder diameter D and the time by the characteristic time D/U .
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or equivalently,
dw

d t
' −k w

t+ L0
, (5.22)

whose solution is given by Eq. (5.18). From there, L0 can be intuitively related to the initial length of
the filament, at the time t = 0 (i.e., when w = 1). It is therefore related to Lw and the value L0 = 0.9Lw
has been found to provide good fits for w ∈ [0.04, 0.4].

As a conclusion, it is clear that the behavior of the free-surface elevation is strongly affected by the
Reynolds number in the highly viscous limit, as it was expected. It has been shown that, on the one
hand, the characteristic wake filament length Lw is related to the Reynolds number through a correlation
close to a power law. On the other hand, it has been shown that the time evolution of the filament
thickness below the cylinder follows a decreasing power law.

Additional cases could have been considered, such as a larger initial depth d for instance. However,
the surface deformation is already very large with a rather small release depth of 1 (i.e., only one radius
of fluid initially above the cylinder), as illustrated in Fig. 5.45, such that considering higher release
depths would not provide much more insight: the qualitative findings, i.e., the shape of the Lw(ReD)
correlation and the power law decrease of w would likely remain the same.
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Figure 5.45: Free-surface nodes (i.e., deformation) in the highly-viscous case when the cylinder is at the
successive positions yc = 0 (a), yc = 1 (b), yc = 2 (c) and yc = 3 (d) for the different Reynolds numbers

considered.
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Figure 5.46:
(a) Free-surface nodes (i.e., deformation) when the wake filament minimal thickness reaches w = 1 for the

different Reynolds numbers considered. (b) Corresponding characteristic length Lw of the wake filament below
the cylinder when its minimal thickness reaches w = 1. An empirical correlation with ReD successfully

describes Lw for ReD ∈ [0.01, 1].
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Figure 5.47:
(a) Evolution of the wake filament thickness w (continuous lines), in a log-log plot, starting from the time when

it is equal to 1, for the different Reynolds numbers. The decrease of w is well described by the power
law (dash-dotted lines) given by Eq. (5.18). (b) Mesh wireframe colored by the vertical velocity component uy
at ReD = 0.25 and yc = 5. The vertical velocity in the wake filament varies approximately between 0 and 1
over a length scale that increases with time, such that the vertical velocity gradient in the y-direction slowly

decreases with time. Note that the velocity is below 0 in some regions, meaning that the wake filament shrinks
under the effect of both the rising cylinder and the large amount of fluid close to the initial free surface, falling

back into the bath.
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Figure 5.48: Calibration parameters k (a) and C (b) of the wake filament thinning model given by Eq. (5.18)
with L0 = 0.9Lw(ReD), used to obtain the fitted curves (dash-dotted lines) in Fig. 5.47a, as a function of the

Reynolds number. The log-lin plots suggests that k ∝ ln (ReD) and C ∝ − ln (ReD).
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5.3 The rising sphere

The case of a rising axisymmetric sphere is interesting because it highlights the fundamental differences
between flows around infinitely long bodies (2D) and bodies with a limited extent (3D).

The simulations for a rising sphere are performed with the same parameters as for the cylinder,
summarized in the first column of Table 5.4 (set F1), using the nomenclature of Fig. 5.1b. The results
for h(yc) and h∗(Fr) are respectively given in Figs. 5.49 and 5.50. In the second figure, the results
are directly compared to those obtained with the cylinder. Globally, the same qualitative observations
as for the cylinder case can be made. For values of yc around −1 (interface crossing), an exponential
decrease of h(yc) is observed, followed by a decrease of its decreasing rate due to viscous forces, down
to the viscous-gravity length scale lν . The difference with the cylinder is that the exponential decrease
is more abrupt, due to the fact that the fluid can flow along two space dimensions instead of one, as
it is discussed in Chapter 6. As a consequence, the transition to the viscous regime is more abrupt
than for the cylinder case, and the viscous-gravity length scale, lν , is reached sooner. These qualitative
similarities are also observed for the free-surface deformation h∗(Fr) when the sphere reaches the initial
interface, as shown in Fig. 5.50 (b). The surface deformation at a given Fr is expectedly smaller than
for the cylinder case, for the same reasons as mentioned above. Nevertheless, a similar fit based on the
LambertW function, Eq. (5.10), can be performed with satisfying agreement for Froude numbers below
1.

In conclusion, the qualitative behavior of the flow around the axisymmetric sphere is very similar
to that around the 2D cylinder, despite quantitative differences arising from the different numbers of
space dimensions. Quite intuitively, very similar models should be derivable for both cases, in which the
effect of the different geometries, and the different numbers of dimensions, should be highlighted. This
is the subject of the next chapter. Finally it should be mentioned that, although much fewer analyses
have been performed for the case of a sphere, because fewer simulations and experimental measurements
were available, the modeling effort in Chapter 6 considers both almost equally.
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Figure 5.49: Height h of the liquid column above a rising axisymmetric sphere as a function of its vertical
position yc for different Froude numbers (ReD = 1000, initial depth d = 7). The horizontal dashed lines

indicate the viscous-gravity length scale lν .
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Figure 5.50: Comparison of the film drainage around a rising axisymmetric sphere and an infinitely long
cylinder for a Reynolds number ReD = 1000 and an initial depth d = 7. (a) Height h of the liquid column

above the cylinder/sphere as a function of its vertical position yc, for a Froude number Fr = 1. (b)
Free-surface deformation h∗ = h(yc = −1) when the cylinder/sphere reaches the initial interface as a function of

the Froude number (dots) and best fit with the Lambert W function (continuous line).

5.4 Conclusions

In this chapter, the flow around a cylinder pulled out of liquid bath has been considered. First, through
a mesh convergence analysis, the minimum resolution required was determined such that a smooth
variation of the friction coefficient cf is observed, and remains almost unchanged when the mesh is further
refined. Then, it has been shown that the time step should be set based on a compromise between mesh
deformation and pressure oscillations: a too large time step leads to large numerical mass conservation
errors and convergence issues while a too small time step leads to pressure oscillations, because of the
remeshing. This analysis therefore enabled to select appropriate space and time discretizations for the
study.

Afterwards, the physical features of the considered flow were investigated. The first part of the study
considered the bulge formation above the cylinder, and the subsequent film drainage around it. In
particular, the bulge height at the time when the top of the cylinder reaches the initial free surface
(yc = −1), h∗, was shown to follow a Lambert W law for Fr ≤ 1 (the W function is applied on an
algebraic expression of the Froude number Fr). Note that according to Vincent et al. [123], a logarithmic
law can be used for larger Froude numbers (Fr ∈ [1 − 10]). In addition, Vincent et al. have shown
that h∗ results from two contributions: one "wake-independent" contribution, and one contribution δ h∗

scaling as
√
j∗, j∗ being the wake area at that time. This scaling has been verified with the present

simulations.
Another finding concerning the bulge formation concerns its initial vertical velocity at its apex.

Vincent et al. have identified two regimes. An unconfined regime where the cylinder initial depth d is
smaller than the half pool width W and a confined regime, where d is larger (or W smaller). They have
shown that the initial surge speed at the apex, c∗, was given by two different expressions depending on
these regimes. In this work, their findings have been confirmed for both regimes with only a few % of
error.

After the bulge formation, the film drains around the cylinder and we can trace the evolution of its
thickness h with time or cylinder elevation. Initially, the drainage follows an exponential decrease that
is driven by a balance between inertia and gravity forces. When the film gets thinner, viscous effects
become relatively more important and the film thickness decreases more slowly, approaching the viscous-
to-gravity length scale lν . In that regard, results for a rising sphere (in axisymmetric formulation) have
been compared to those of the cylinder. The exponential decrease rate appears to be more important
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for the sphere, leading to a more abrupt and sooner transition to the viscous regime. The drainage
dynamics and the transition between the two regimes are investigated in more details in Chapter 6.

The effects of the free-surface and gravity field on the aerodynamic loads have also been investigated.
When the cylinder approaches the free-surface, two additional effects are present compared to similar
flows in an infinite domain. At low Froude number, the weight of the bulge tends to increase the pressure
above the cylinder and therefore increases the drag, vorticity and skin friction. At high Froude number,
the free-surface elevation tends to decrease the pressure above the cylinder, therefore reducing the drag,
vorticity and skin friction. Both effects are present and should cancel each other for some Froude
number around 1 leading to a flow very similar to that in an infinite domain. On the other hand, when
the Froude is very low, the flow is very similar to that obtained when the cylinder approaches a wall
(with free-slip BC). While the Froude number is a key parameter governing these effects, the Reynolds
number does not play a significant role here. Specifically, the surface deformation has been shown to
be only indirectly affected by the Reynolds number, through the size of the wake. By opposition, the
impact of the free-surface on the wake formation is almost negligible for the considered range of Froude
numbers Fr ∈ [ 0− 10], provided that the release depth is sufficiently large, and the wake dynamics in
the presence of a free-surface is almost identical to that observed in infinite domains, until the cylinder
gets very close to the free-surface.

By comparing experiments and simulations of the rising cylinder in oil, a good agreement has been
observed for the vertical force after the acceleration phase (cylinder was impulsively started in the
simulations), provided that the wake remains stable. For the evolution of the film thickness h, a good
agreement was also observed, even if some scaling differences are present due to different confinement
effects between 2D simulations and 3D experiments [125].

For the evolution of the force after the interface crossing, it has been shown that a maximum peak
occurs at different cylinder elevations yc (larger yc for larger cylinder velocity), and that the force was
proportional to the weight of the annulus of thickness h of the fluid surrounding the cylinder. This
maximum peak is due to a suction effect caused by a depression below the cylinder, at the time when
the smallest wake thickness along the horizontal direction is about 1.2 times the cylinder radius for Fr
between 1 and 5.

From the time this maximum peak occurs at tg = 0 until tg ' 2, the evolution of the vertical force
only depends on gravity: the velocity of the cylinder determines only the initial amount of fluid around
the cylinder at tg = 0.

The case of a rising cylinder at ReD <= 1 was finally investigated for a constant Froude number
Fr = 1. In this case, the stretching of the filament below the rising cylinder after the interface crossing
has been shown to follow a power law evolution, the two calibration parameters of this extensional
flow having a logarithmic dependency on the Reynolds number. In addition, the characteristic filament
height, i.e., the height at which the minimum horizontal wake thickness equals the cylinder diameter,
has been shown to follow a quasi-power algebraic dependency (power law) with respect to the Reynolds
number.

The chapter ended by comparing results of the 2D cylinder and the 3D axisymmetric sphere, as
discussed above. The similar results between both cases in terms of film drainage motivates the use of
a similar strategy for the derivation of models for the film drainage dynamics. This is the subject of
Chapter 6.
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Chapter 6

Simplified model for the dynamics of the
film between a rising cylinder/sphere and
a free surface

The purpose of this chapter is to model the evolution of the film thickness above the apex of a cylinder/-
sphere crossing a liquid/gaz interface at different Froude and Reynolds numbers. The symmetry of the
geometries considered (cylinder/sphere) is leveraged by expressing the conservation laws in a moving
frame of reference, using a polar or an axisymmetric spherical coordinate system whose origin is located
at the cylinder or the sphere centre, respectively.

The corresponding two-dimensional Navier-Stokes equations, expressed in terms of the radial and
azymuthal directions, r and θ, and time t, are then simplified. Because the interest is in predicting
the film thickness h(θ, t) around the apex, the radial dependence of the solution is first eliminated by
integrating the equations in this direction from the body surface to the free surface. This approach is
often used when the thin film approximation can be made, i.e., when the length scale of the dimension
along which the integration is performed is much smaller than the other(s). Typical examples are
boundary layer integral methods [130] or lubrication theory [126, 127]. In the thin film limit, the
film thickness h(θ, t) is linked to the radially integrated volume flow rate q(θ, t) through the thin film
continuity equation:

∂h

∂t
= −∂q

∂θ
(6.1)

The other equations in thin film models are the momentum conservation equations integrated over the
film thickness. For some reviews on the subject, the reader is referred to Chang et al. [131], Craster et
al. [132] or Ruyer-Quil et al. [128].

The aim here is however to predict the film thickness around the apex for all Froude numbers, i.e.,
also when h cannot be considered small compared to the cylinder/sphere radius, so that the thin film
assumption cannot be invoked. Consequently, Eq. (6.1) must be adapted. The proposed approach is to
complement the radially-integrated equations with an assumption on the shape of the velocity profile
(similarly to some boundary layer integral methods). Concretely, the assumed velocity profile shape is
proposed based on PFEM simulation results. Additionally, another major simplification is obtained by
considering a uniform film thickness around the body apex. Using a Taylor expansion in the θ-direction
and keeping only the first non-zero terms of the expansion eliminates the explicit θ-dependence of the
solution.

It is shown that this approach allows predicting the exponential decrease of h(t) observed in the
precedent chapter, when h(t) is of the order of one radius or less. Furthermore, special functions
involving the exponential function, to which they simplify in the asymptotic limit of small film thickness
h, are introduced to capture the trends for larger values of h. These special functions enable to greatly
simplify the mass conservation equations, leaving all the complexity in the momentum conservation
equations.

The chapter is divided as follows. First, the key assumption of uniform film thickness is discussed.
Then, the non-dimensionalization of the equations is recalled. This is followed by the mathematical
development of the model, explicitly detailing the integration of the equations in the radial direction,
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the introduction of special functions to partially address the nonlinearity of the problem, and the small
angle approximation. These developments are made for the 2D cylinder and the 3D axisymmetric
sphere in parallel, the different steps being very similar in both cases. In the subsequent section, the
θ-momentum equation evaluated at the free surface is introduced along further assumptions regarding
the velocity profile to replace the integrated θ-momentum equation. This enables the derivation of the
final time-dependant differential equations. Their numerical resolution and the corresponding required
initial conditions are then described. At last, the model is validated by comparing its predictions to the
results obtained with other PFEM simulations.

6.1 Main assumption

Unlike most works associated with film dynamics, the thin film assumption is not a priori invoked
here. The main justification for this choice is that it allows the study of h < h∗(Fr) for all Froude
numbers, whereas the thin film assumption is not valid for large Froude numbers (h∗(Fr = 1) ' 0.63
for the cylinder and 0.38 for the sphere).

The key assumption of the model relies on the observation, in the literature and in our simulations,
that, from the beginning of the interface crossing, the film thickness h(θ, t) is approximately uniform in
the neighborhood of the apex:

∂h

∂θ
' 0 for θ ∈ [−θmax(t), θmax(t)] , (6.2)

where θ is measured clockwise from the vertical axis and θmax(t) < π is some increasing function of
time t, as illustrated in Fig. 6.1. In other words, when the body is sufficiently close to the free surface,
the evolution of the film thickness at the apex, h(θ = 0, t), is representative of the evolution of the film
thickness h(θ, t) in its neighborhood. Moreover, the region of uniform film thickness increases with time.

h0
h(𝜃𝑚𝑎𝑥) ≅ h0h(−𝜃𝑚𝑎𝑥) ≅ h0

𝜃𝑚𝑎𝑥

Figure 6.1: Illustration of the range [−θmax(t), θmax(t)] over which the film thickness can be assumed to be
uniform. The example shown is for Fr = 1, ReD = 1000, yc = 0.25 and θmax(yc) = 19◦. The initial free surface
is indicated by the dark blue horizontal dashed line. On the left, the film thickness increment with respect to h0

observed outside the range [−θmax(t), θmax(t)] is highlighted by the small red segment. Note that even in the
range [−θmax(t), θmax(t)], h(θ) is not rigorously uniform but the assumption remains a good approximation.

If surface tension is neglected (it has only a non-negligible impact in the late phase of the process),
and because the pressure is uniform at the free surface, the uniform film thickness implies that

∂p

∂θ

∣∣∣∣
r=1+h

' 0 for θ ∈ [−θmax(t), θmax(t)] . (6.3)

Note that, in addition, the uniform thickness assumption could also be combined with the vanishing
shear stress at the free surface to express the velocity gradient ∂ruθ|r=1+h in terms of other quantities.
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However, as discussed and justified later, this gradient is here rather obtained from the assumed velocity
profile inside the film.

6.2 Non-dimensionalization of the equations

To identify and study this specific flow, and characterize how it behaves at different Froude and Reynolds
numbers, a non-dimensionalization of the equations should be performed. This is done using the fol-
lowing characteristic physical quantities:

• The length scales, such as the radial position and the film and boundary layer thicknesses, are
all non-dimensionalized by the radius a of the cylinder/sphere: r = ar̂, δ = aδ̂, h = aĥ, where ·̂
represents a dimensionless quantity.

• The velocity variables are non-dimensionalized by the cylinder/sphere velocity U : u = U û. Note
that the choice u =

√
ghû could also be used, as the velocity inside the film is larger when the effect

of gravity is stronger, but then the Froude number would not explicitly appear in the equations.

• The pressure variable is non-dimensionalized by the factor ρU2 where ρ is the fluid density:
p = ρU2p̂.

• The time variable is non-dimensionalized by the ratio a/U : t = a
U t̂.

For the remaining sections of this chapter, all variables are non-dimensional and the ·̂ is dropped to
simplify the notation.

It is well-known that, with the above non-dimensionalization, the viscous terms are multiplied by
the inverse of the Reynolds number Rea and the gravity term is replaced by the inverse of the Froude
number Fr, with

Fr =
U2

ga
, (6.4)

2Rea =
UD

ν
= ReD , (6.5)

where g is the gravity acceleration, ν the kinematic viscosity of the fluid and D = 2a the cylinder/sphere
diameter.

6.3 Mathematical development of the simplified model

The first step of the present mathematical derivation consists in expressing the Navier-Stokes equa-
tions either in polar (for the 2D cylinder) or in axisymmetric spherical coordinates (for the 3D axisym-
metric sphere), such that quantities are expressed as functions of the spatial variables r and θ and the
time variable t. Afterwards, the variable r is eliminated from the equations by integrating in r over
the film thickness h(θ, t). Note that only the mass conservation and the θ-momentum equation are
considered. The integrated r-momentum equation would lead to other unclosed terms that would be
difficult to deal with, but this option could nevertheless be considered for future work. Doing so, one is
left with two equations for two variables: the film thickness h(θ, t) and the volume flow rate q(θ, t) along
θ, as illustrated in Fig. 6.2a and 6.2b. Nonetheless, these two equations involve unclosed terms which
are further discussed in Section 6.4. Eventually, a special composed function is used to simplify the
equations, and the limit of small angles θ is considered, such that one is left with only time-dependent
quantities describing the dynamics near the cylinder/sphere apex.

6.3.1 Integrated form of the mass and momentum conservation equations

In this section, the integrated non-dimensional equations of mass and momentum conservation are
formulated in terms of the volume flow rate q(θ, t) and the thickness h(θ, t). They are expressed in polar
and axisymmetric spherical coordinates for the 2D and the 3D cases, respectively.
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First, the volume flow rate is defined as

q(θ, t) =

∫ 1+h(θ,t)

1
uθ dr in 2D , (6.6)

q(θ, t) =

∫ 1+h(θ,t)

1
2π r sin θ uθ dr in 3D , (6.7)

where uθ is the fluid velocity along θ, as shown in Figs. 6.2a and 6.2b.
Then, the mass conservation equations,

1

r

∂r ur
∂r

+
1

r

∂uθ
∂θ

= 0 in 2D , (6.8)

1

r2

∂r2 ur
∂r

+
1

r sin θ

∂(uθ sin θ)

∂θ
= 0 in 3D , (6.9)

after multiplication respectively by r and 2π r2 sin θ, can be integrated in r over the thickness h(θ, t):

[r ur]
1+h
1 = −

∫ 1+h(θ,t)

1

∂uθ
∂θ

dr in 2D , (6.10)

2π sin θ
[
r2 ur

]1+h

1
= −

∫ 1+h(θ,t)

1

∂(2π r sin θuθ)

∂θ
dr in 3D . (6.11)

The non-penetration boundary condition at the cylinder/sphere surface yields ur|r=1 = 0, while at the
film surface, i.e., at r = 1 + h, ur corresponds to the total derivative of h, such that

ur|r=1+h
1 =

dh

dt
=
∂h

∂t
+
uθ|r=1+h

1 + h

∂h

∂θ
. (6.12)

These results can be introduced into Eqs. (6.10) and (6.11), where the derivative with respect to θ has
been taken out of the integral using Leibniz integral rule, leading to an additional term on the right
hand side:

(1 + h)

(
∂h

∂t
+
�
��

��
��uθ|r=1+h

1 + h

∂h

∂θ

)
= − ∂

∂θ

(∫ 1+h(θ,t)

1
uθ dr

)
+���

���
�∂h

∂θ
uθ|r=1+h , (6.13)

2π sin θ(1 + h)2

(
∂h

∂t
+
�
��

�
��
�

uθ|r=1+h

1 + h

∂h

∂θ

)
= − ∂

∂θ

(∫ 1+h(θ,t)

1
2π r sin θ uθ dr

)
+
((((

((((
(((

(((

2π (1 + h) sin θ
∂h

∂θ
uθ|r=1+h .

(6.14)

Cancelling identical terms on both sides and using respectively the volume flow rate definitions (Eqs. (6.6)
and (6.7)) finally yields

(1 + h)
∂h

∂t
= −∂q

∂θ
in 2D , (6.15)

2π sin θ(1 + h)2∂h

∂t
= −∂q

∂θ
in 3D . (6.16)

These equations look very similar to the thin film continuity equation, Eq. (6.1), and only differ from it
by the terms in front of ∂th. In particular, the first converges towards Eq. (6.1) in the thin film limit.

At this stage, one has one equation for two unknowns, such that one additional equation is needed.
To progress further, the θ-momentum equation is considered. Because it is quite complex in either polar
or axisymmetric-spherical coordinates, all terms but the temporal one are for now lumped together on
the right-hand side. The integration over the film thickness yields

∫ 1+h(θ,t)

1

∂uθ
∂t

dr = χ in 2D , (6.17)
∫ 1+h(θ,t)

1

∂(2π r sin θuθ)

∂t
dr = χ in 3D , (6.18)
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Figure 6.2: (a) Illustration of the variables of the 2D integral model. The blue solid line represents the free
surface and ut the θ-component of the velocity at the free surface. (b) Illustration of the variables of the 3D
integral model. The volume flow rate q is the integral of the velocity along θ passing through the truncated

cone of area A.

where χ denotes the integrated form of the remaining lumped terms of the momentum equation, i.e.,
the integrated stresses minus the integrated convective terms. Rewriting these equations in terms of the
volume flow rate using Leibniz integral rule leads to

∂q

∂t
− ut

∂h

∂t
= χ in 2D , (6.19)

∂q

∂t
− 2π sin θut(1 + h)

∂h

∂t
= χ in 3D , (6.20)

where ut is the θ-component of the velocity at the free surface:

ut(θ, t) ≡ uθ|r=1+h . (6.21)

It is useful to introduce the average azimuthal velocity

uθ(θ, t) =
q(θ, t)

h(θ, t)
in 2D , (6.22)

uθ(θ, t) =
q(θ, t)

A(θ, t)
in 3D . (6.23)

where the flow cross-section areas are, respectively,

h(θ, t) =

∫ 1+h

1
dr in 2D , (6.24)

A(θ, t) =

∫ 1+h

1
2π r sin θdr = π h (h+ 2) sin θ in 3D . (6.25)

Secondly, one can introduce a so-far unknown radial variation parameter α that relates the azimuthal
velocity at the film surface to the averaged velocity:

α(θ, t) =
ut − uθ
1 + h

. (6.26)
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Equations (6.19) and (6.20) can be rewritten using these new quantities. After some manipulations,
one obtains

∂ (uθ)

∂t
= χ+ α

(
1 + h

h

)
∂h

∂t
in 2D , (6.27)

∂ (uθ)

∂t
= χ+ α

(
2(1 + h)2

h(2 + h)

)
∂h

∂t
in 3D , (6.28)

where χ is the average of the stresses and convective terms in the film:

χ =
χ

h
or χ =

χ

A
. (6.29)

6.3.2 Geometrical ansatz

One has now two nonlinear partial differential equations, Eqs. (6.15) and (6.27) in the 2D case and
Eqs. (6.16) and (6.28) in the axisymmetric 3D case, for the two unknowns q(θ, t) (or uθ(θ, t)) and h(θ, t).
Nevertheless, it is important to emphasize that the two unclosed terms χ(θ, t) and α(θ, t) still need to
be addressed. Before discussing this issue, additional mathematical manipulations and approximations
are performed to further simplify the equations.

First, the following ansatz is leveraged, which consists in expressing h(θ, t) in terms of some special
functions, to help cancelling the nonlinear terms:

h(θ, t) =W(exp (−f(θ, t))) in 2D , (6.30)
h(θ, t) = F(exp (−f(θ, t))) in 3D , (6.31)

where W(x) and F(x) are functions defined by their reciprocal:

W−1(x) = xex , (6.32)

F−1(x) = e2x x

x+ 2
. (6.33)

In particular, W(x) is known in the literature as the Lambert W function, or product logarithm. The
derivative of the functions W(x) and F(x) are given respectively by

dW(x)

dx
=

1

x

W(x)

W(x) + 1
, (6.34)

dF(x)

dx
=

1

x

F(x)(F(x) + 2)

2(F(x) + 1)2
. (6.35)

The relation between ∂th and ∂tf is obtained by deriving expressions (6.30) and (6.31) using the chain
rule to obtain

∂h

∂t
= −

(
h

h+ 1

)
∂f

∂t
in 2D , (6.36)

∂h

∂t
= −

(
h(h+ 2)

2(h+ 1)2

)
∂f

∂t
= −

(
h

h+ 1

)(
2 + h

2 + 2h

)
∂f

∂t
in 3D . (6.37)

This result can be used to simplify the mass conservation equations (6.15) and (6.16), which yields

h
∂f

∂t
=
∂q

∂θ
in 2D , (6.38)

A
∂f

∂t
=
∂q

∂θ
in 3D . (6.39)

On the other hand, the momentum conservation equations (6.27) and (6.28) also simplify to

∂uθ
∂t

= χ− α∂f
∂t

in 2D , (6.40)

∂uθ
∂t

= χ− 2α
∂f

∂t
in 3D . (6.41)
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Equations (6.38) and (6.39) can finally be manipulated to explicitly involve the derivative of the mean
velocity uθ,

∂f

∂t
=
∂uθ
∂θ

+ uθ
1

h

∂h

∂θ
in 2D , (6.42)

∂f

∂t
=
∂uθ
∂θ

+ uθ
1

A

∂A

∂θ
in 3D , (6.43)

where the equation for the axisymmetric 3D case can be rewritten as
∂f

∂t
=
∂uθ
∂θ

+ uθ

(
cot θ +

1

h(h+ 2)

∂ (h(h+ 2))

∂θ

)
. (6.44)

It is interesting to note that the equations for the 2D and axisymmetric 3D cases have now the same
form.

6.3.3 Small angle approximation

Equations (6.42) and (6.43) are now almost linear, only the last term on the right-hand side remains
nonlinear. This last remaining nonlinearity can be eliminated by considering the limit of small angles θ.
One first assumes that the unknown functions (uθ, q, h, χ, α , f) are analytical, which means that they
are locally infinitely differentiable, both in θ and t, such that they can be written as a Taylor series,

ξ(θ, t) =
∑

i

∑

j

ai,jθ
itj , (6.45)

where ξ represents any of the variables and the coefficients ai,j depend on the cross-derivatives of ith

order in θ and jth order in t. However, because of the symmetry of the problem, some of the unknown
variables are odd with respect to θ (χ, uθ, q, α,A), and can therefore be written in the form

ξodd(θ, t) =
∞∑

i=0

∞∑

j=0

a2i+1,jθ
2i+1tj , (6.46)

while the others are even (h,f) and can be written in the form

ξeven(θ, t) =
∞∑

i=0

∞∑

j=0

a2i,jθ
2itj . (6.47)

The problem is now further simplified by considering the equations near the position θ = 0 to obtain
the evolution of the film thickness just above the apex of the symmetrical body. Considering the almost
uniform film thickness around the apex, only the zeroth order and first order terms in θ are kept for the
odd and even expansions given by Eqs. (6.46) and (6.47). Specifically,

ξodd(θ, t) '



∞∑

j=0

a1,jt
j


 θ = ξ1(t)θ (6.48)

for the odd functions and

ξeven(θ, t) '



∞∑

j=0

a0,jt
j


 = ξ0(t) (6.49)

for the even functions.
Using these approximations in the vicinity of θ = 0 leads to

q(θ, t) ' q1(t)θ , (6.50)
uθ(θ, t) ' uθ1(t)θ , (6.51)
χ(θ, t) ' χ1(t)θ , (6.52)
α(θ, t) ' α1(t)θ , (6.53)
h(θ, t) ' h0(t) , (6.54)
f(θ, t) ' f0(t) , (6.55)
A(θ, t) ' A1(t)θ = πh0(h0 + 2)θ . (6.56)
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Note that, because h is even by symmetry, one has

lim
θ→0

∂h(θ, t)

∂θ
= 0 . (6.57)

As pointed out in the literature and at the beginning of Section 6.1, this relation should also be valid
for an increasing range of angle θ around the apex, which is our key assumption. This means that in the
mathematical developments below, terms of O(θ2) and higher can be neglected for all variables (i.e, not
only for h). In the limit θ → 0, the mass conservation equations, Eqs. (6.42) and (6.43), thus simplify1

to
∂f0

∂t
= uθ1(t) in 2D , (6.58)

∂f0

∂t
= 2uθ1(t) in 3D . (6.59)

The same can be done for Eqs. (6.40) and (6.41), which have been divided by θ to avoid the singularity,
to have

∂uθ1

∂t
= χ1 − α1

∂f0

∂t
, (6.60)

for both 2D and 3D cases. The variable uθ1(t) can at last be eliminated to obtain the final differential
equations

∂2f0

∂t2
= χ1 − α1

∂f0

∂t
in 2D , (6.61)

∂2f0

∂t2
= 2χ1 − 2α1

∂f0

∂t
in 3D . (6.62)

These equations are unfortunately unclosed, as the terms χ1 and α1 are still unknown.
To summarize, the use of a geometrical ansatz enabled to get simpler forms of the radially inte-

grated equations of continuity and momentum conservation along θ, for both the 2D cylinder and the
axisymmetric sphere. While the derived equations are formally valid in the small angle limit without
any assumption on the flow, they are assumed to hold for an increasing range of angle θ around the
apex, which is the main assumption of the present model (see Section 6.1). In summary, the model is
at this stage represented by the following equations, in which the terms in red remain unclosed (they
are discussed in the next section):

2D cylinder 3D axisymmetric sphere

Mass conservation :
∂f0

∂t
= uθ1(t)

∂f0

∂t
= 2uθ1(t) (6.63)

Momentum conservation :
∂2f0

∂t2
= χ1 − α1

∂f0

∂t

∂2f0

∂t2
= 2χ1 − 2α1

∂f0

∂t
(6.64)

Geometric ansatz : e−f0 = h0eh0 e−f0 =
h0

h0 + 2
e2h0 (6.65)

Rel. between derivatives :
∂h0

∂t
= −

(
h0

h0 + 1

)
∂f0

∂t

∂h0

∂t
= −

(
h0(h0 + 2)

2(h0 + 1)2

)
∂f0

∂t

(6.66)

1In Eq. (6.44), the derivative of h with respect to θ vanishes following the main assumption (Eq. (6.2)). Moreover, the
first order term in θ of uθ,1 and the cotangent, cancel each other in the small angle approximation: limθ→0(θ cot θ) = 1.
This explains the factor 2 instead of 1 on the RHS of the second equation.
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6.4 Film model based on the free-surface θ-momentum equation

In the above equations (6.63) to (6.66), the two terms in red remain unclosed. The first one, χ,
contains the averaged balance between stresses and convective terms along the direction θ. In particular,
it includes the pressure gradient along θ. To eliminate the pressure, the r-momentum equation should
be used, which however strongly complicates the problem. Moreover, it requires assumptions on how
the velocity uθ varies along θ. The other unclosed term, α, also requires the knowledge of the velocity
profile to relate the free-surface velocity ut to the average velocity uθ. Once this relation is given,
α is simply closed by using Eq. (6.26). Alternatively, assuming the relation between ut and uθ, and
differentiating it with respect to time, would relate ∂tut,1 to ∂tuθ, such that the inviscid momentum
conservation equation along θ (the impact of dismissing the viscous terms in this equation is further
discussed below),

∂uθ
∂t

= −ur
∂uθ
∂r
− uθ

r

∂uθ
∂θ
− uθ

ur
r
− ∂p

∂θ
+

sin θ

Fr
, (6.67)

can be evaluated at the free-surface, as a replacement of Eq. (6.64). At first order in θ, it gives

∂ut
∂t

= −
[
ur
∂uθ
∂r

]

r=1+h

− ut
r

∂ut
∂θ
− ut

[ur
r

]
r=1+h

−
[
∂p

∂θ

]

r=1+h

+
θ

Fr
. (6.68)

where ut is by definition uθ|r=1+h.
2 Using the results found in Section 6.1 with the assumption of a

uniform film thickness, ∂θp|r=1+h vanishes from the equation. If one also notes that, according to the
main assumption (∂θh� 1),

ur|r=1+h =
dh

dt
=
∂h

∂t
+

ut
1 + h

∂h

∂θ
' ∂h

∂t
, (6.69)

Eq. (6.68) becomes

∂ut
∂t

= − ut
1 + h

∂ut
∂θ
− ∂h

∂t

ut
1 + h

+
θ

Fr
− ∂h

∂t

∂uθ
∂r

∣∣∣∣
r=1+h

, (6.70)

and with the small angle approximation, ut(θ, t) ' ut,1(t)θ and h(θ, t) ' h0(t), one obtains

∂ut,1
∂t

= −
u2
t,1

1 + h0
− ∂h0

∂t

ut,1
1 + h0

+
1

Fr
− ∂h0

∂t

∂uθ,1
∂r

∣∣∣∣
r=1+h0

, (6.71)

The alternative to solving Eq. (6.64) is thus to solve Eq. (6.71) and use some relation between ut
and uθ to obtain the latter. This approach has the advantage of not requiring the closure of χ and of
eliminating the pressure, as no pressure term appears in the overall set of equations.

6.4.1 Assumed velocity profile approach

As mentioned above, to solve the global problem, one still needs a relationship between ut,1 and uθ,1,
i.e., an expression for α1 = α/θ (see Eq. (6.26)). Additionally, the term

∂uθ,1
∂r

∣∣∣∣
r=1+h0

(6.72)

in Eq. (6.71) remains so far unknown. One way to address these two issues is to assume the shape
of the uθ velocity profile, and thus of uθ,1, in the radial direction. For the method to be useful, the
dependence of uθ,1 on r, using an adequate parametrization, should be the same for different times and
for different values of the global parameters (Fr, ReD). An a priori determination of this r-dependence
is not trivial, so that, to make further progress, it is useful to consider actual velocity profiles from
simulations.

Figure 6.3 represents the profile of uθ,1 = uθ/θ as a function of the radial position r at two different
angles, θ = 9.5◦ and θ = 18.4◦, and different positions of the cylinder, i.e., different times, for both

2Note that this equation holds for both polar and axisymmetric spherical coordinates.
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Figure 6.3: Velocity profiles in the thin film above the 2D cylinder (a) and the 3D axisymmetric sphere (b),
at two different angles θ from the apex and different positions yc; Fr = 1, ReD = 1000.
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Figure 6.4: Velocity profiles in the thin film above the 2D cylinder (a) and the 3D axisymmetric sphere (b)
for three different Froude numbers; yc = −1, ReD = 1000.

the cylinder and the axisymmetric sphere with Fr = 1 and ReD = 1000. Similar velocity profiles
are also obtained for different Froude numbers, as shown in Fig. 6.4. First, one observes that almost
the same velocity profile of uθ,1 is obtained for different angles θ, which provides support to the main
model assumption of a uniform film thickness. One can also identify three regions along the radial
direction from these velocity profiles. The region directly adjacent to the cylinder/sphere corresponds
to the viscous boundary layer. The velocity vanishes at the solid surface (r = 1), because of the
no-slip boundary condition expressed in the frame of reference moving with the cylinder/sphere, and
increases up to a maximum value, uw(t), at the boundary layer edge (r = 1+δ, where δ is the boundary
layer thickness). At a given Reynolds number, it seems that δ remains fairly constant in time and is
independent of the Froude number during the interface crossing. Note also that, in the inviscid limit,
the maximum velocity would be found at the cylinder/sphere surface, i.e., there would be no viscous
boundary layer. Therefore, the maximum velocity uw(t) can also be seen as the wall velocity in an
inviscid flow. Past the boundary layer edge, the velocity decreases with increasing r until shortly before
reaching the free surface. This corresponds to the bulk flow. Finally, in a region of thickness of the
order of δ adjacent to the free surface, the velocity stops decreasing with r and even slightly increases
when reaching the free surface. This is referred to the viscous free-surface layer and is discussed in more
details below. As yc (i.e., time) increases, both the radial position of the free surface, i.e., h, and the
maximum velocity uw(t) decrease. On the other hand, the velocity at the free surface seems to slightly
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increase (more for the sphere) before decreasing when the cylinder/sphere crosses the initial free surface
(yc ≈ 0). It is also interesting to mention that, during the interface crossing, the thickness of the viscous
boundary and viscous free-surface layers remains more or less constant, while the bulk layer, on the
other hand, becomes thinner as h decreases. It is expected that, once h ∼ δ, only the boundary layer
region remains.
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Figure 6.5: Velocity profiles in the thin film above the 2D cylinder (a) and the 3D axisymmetric sphere (b)
normalized by their respective maximum velocity uw, for two different angles θ from the apex and different

positions yc; Fr = 1, ReD = 1000.
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Figure 6.6: Velocity profiles in the thin film above the 2D cylinder (a) and the 3D axisymmetric sphere (b)
normalized by their respective maximum velocity uw for three different Froude numbers; yc = −1, ReD = 1000.
The black dotted line and the black dashed line represent the assumed velocity profile inside and above the
boundary layer, respectively. Those are respectively given by Eqs. (6.80) and (6.77). Cylinder: δ = 0.079,

Sphere: δ = 0.07

Interestingly, the different velocity profiles seem to all have a similar shape in r, which suggests that
an assumed velocity profile approach might be successful. This is better illustrated in Figs. 6.5 and 6.6,
where the velocity uθ is normalized by the corresponding maximum velocity uw. One observes in this
case that the velocity profiles uθ/uw(t) at different times and Froude numbers collapse on a single curve,
at least for radial positions below the viscous free-surface layer. The goal is thus to find a parametric
representation of this radial profile, considering each region separately, as depicted in Fig. 6.7. The
same velocity profile is assumed for the cylinder and the sphere.
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Figure 6.7: Illustration of the three regions defining the overall velocity profile. The first region is the viscous
boundary layer, whose velocity profile (red) is defined by an half-cubic branch given by Eq. (6.80); the second
region is the bulk layer, with a velocity profile (green) defined by Eq. (6.77); the last region corresponds to the
viscous free-surface layer that is neglected in the present model, but whose exact velocity profile (blue) is given

in Appendix H. For this example, δ = 0.1, h = 0.66 and δFS = 0.12 (see Appendix H).

6.4.1.1 Viscous free-surface layer

The shear stress tangential to the free surface should vanish. Under the uniform film thickness assump-
tion, this writes

σrθ|r=1+h0 =
2

ReD

[
r
∂

∂r

(uθ
r

)
+

1

r

∂ur
∂θ

]

r=1+h0

' 0 . (6.73)

Moreover, because ur is symmetric in θ, ∂θur ≈ ur,2, which is assumed small. In other words, at the
free surface one has approximately,

∂

∂r

(uθ,1
r

)∣∣∣∣
r=1+h0

' 0 , (6.74)

or equivalently,
∂uθ,1
∂r

∣∣∣∣
r=1+h0

' uθ,1
r

∣∣∣
r=1+h0

=
ut,1

1 + h0
, (6.75)

which could be used to close Eq. (6.71). This results also indicates that ∂ruθ,1 is positive at the free
surface and increases with decreasing h0, as it can be seen in Fig. 6.3 for instance. The change in the
r-dependence of the velocity profile in the viscous free-surface layer thus stems from viscous effects: the
velocity must adapt to ensure that the shear stress at the free surface vanishes. This effect is however
limited to a thin region of thickness δFS similar to the boundary layer thickness δ. Moreover, in the
inviscid limit, this viscous region would not exist and the velocity profile at the free surface would
correspond to that in the bulk. Consequently, and to keep the model simple, the viscous free-surface
layer is neglected here and it is assumed that the bulk region extends up to the free surface. Accordingly,
and to be consistent with this simplification, the derivative ∂ruθ,1|r=1+h0 in Eq. (6.71) is calculated from
the assumed velocity profile rather than from Eq. (6.75).

6.4.1.2 Bulk layer

In the bulk layer, trial and error has shown that a good fit of simulation results can be obtained with

uθ,1(r, t)

uw,1(t)
=
c1

r
+ c2r , (6.76)
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where uw,1(t) = uw(θ, t)/θ, and c1 and c2 should be independent of time t, angle θ and Froude number
Fr. In particular, taking c1 = 1 and using uθ,1(r = 1 + δ, t) = uw,1(t), one obtains c2 = δ/(1 + δ2) and

uθ,1(r, t) = uw,1(t)

(
1

r
+

δ

(1 + δ)2
r

)
for 1 + δ ≤ r ≤ 1 + h0(t) . (6.77)

The fit is illustrated by the dashed black line in Figs. 6.6 and 6.8, in which δ = 0.079 and 0.07 for the
cylinder and the sphere, respectively.
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Figure 6.8: Closer views of Figs. 6.6a and 6.6b to highlight the junction between the velocity profiles in the
boundary layer and in the bulk. Note that, while the velocity is continuous at the junction, its slope is not.

It is interesting to note that, assuming a negligible ∂θur, the contribution c1/r corresponds to an
irrotational vortex flow, while the contribution c2r represents a solid body rotation. Consequently, the
second contribution does not lead to any shear stress σrθ. Moreover, the viscous term

2

ReD

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

+
1

r2

∂2uθ
∂θ2

− uθ
r2

+
2

r2

∂ur
∂θ

)
(6.78)

in the θ-momentum equation (i.e., the divergence of the stress) vanishes for both contributions:

∂2uθ,1
∂r2

+
1

r

∂uθ,1
∂r
− uθ,1

r2
= 0 . (6.79)

In other words, the assumed velocity profile in the bulk layer does not lead to any viscous contribution
in the θ-momentum equation. If one additionally neglects the viscous free-surface layer, this is consistent
with the assumption made to obtain Eq. (6.71).

To justify the choice c1 = 1, one can consider the inviscid limit, in which one could expect that
only the irrotational c1/r contribution remains. In this case, the velocity should be maximum at the
cylinder/sphere surface, i.e., r = 1, such that uθ,1(r = 1, t) = uw(t), which yields c1 = 1. This argument
also explains why c1 is independent of δ. On the other hand, c2 is linked to the rotational contribution
of the velocity profile, which should directly be impacted by viscous effects. As such, it is not surprising
that c2 depends on δ.

6.4.1.3 Viscous boundary layer

In the viscous boundary layer, a velocity profile of the form

uθ,1(r, t) = uw,1(t)

[
1−

(
δ − (r − 1)

δ

)3
]

for 1 ≤ r ≤ 1 + δ (6.80)

is assumed. The fit is illustrated by the dotted black line in Figs. 6.6 and 6.8, in which δ = 0.079 and
0.07 for the cylinder and the sphere, respectively.
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As stated above, the boundary layer thickness δ is approximately independent of the time t (or
cylinder position yc) and Froude number Fr during interface crossing. This is further illustrated by
Fig. 6.9, which shows the variations of δ with yc at two different angles θ and with Fr. Although δ is
not perfectly constant, its variations remain small.

On the other hand, the boundary layer thickness should strongly depend on the Reynolds number
ReD. The velocity profiles shown above were all obtained at ReD = 1000. In order to account for this
dependency, it is assumed that the boundary layer remains laminar so that its thickness scales like

δ ' k√
ReD

. (6.81)

Using data for the case ReD = 1000, one obtains the values k = 2.5 and k = 2.21 for the cylinder and
the sphere, respectively.
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Figure 6.9: Boundary layer thickness (a) as a function of the cylinder/sphere position yc at two different
angles θ, Fr = 1 and ReD = 1000, and (b) as a function of the Froude number at yc = −1, θ = atan(1/3) and

ReD = 1000.

6.4.2 Closure using the assumed velocity profile

Using the assumed velocity profiles given by Eq. (6.77) above the boundary layer and Eq. (6.80) in
the boundary layer, one can obtain the radial derivative of the azimuthal velocity at the free surface,
Eq. (6.72), and the relationship between ut,1 and uθ,1. In particular, from Eq. (6.77), the tangential
velocity at the free surface is given by

ut,1(t) = uw,1(t)

(
1

1 + h0
+

δ

(1 + δ)2
(1 + h0)

)
, (6.82)

which can be inverted to obtain
uw,1(t) =

ut,1(t)(1 + h0)

1 + δ
(

1+h0
1+δ

)2 . (6.83)

On the other hand, the average velocity uθ,1 is defined as

uθ,1 =
uw,1(t)

h0

[∫ 1+δ

1

(
1−

(
δ − (r − 1)

δ

)3
)

dr +

∫ 1+h0

1+δ

(
1

r
+

δ

(1 + δ)2
r

)
dr

]
(6.84)

for the cylinder and

uθ,1 =
2uw,1(t)

h0(h0 + 2)

(∫ 1+δ

1

(
1−

(
δ − (r − 1)

δ

)3
)
rdr +

∫ 1+h0

1+δ

(
1

r
+

δ

(1 + δ)2
r

)
rdr

)
(6.85)
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for the sphere, where the blue and red terms correspond to the boundary and to the bulk layers,
respectively. After integration,

uθ,1 =
uw,1
h0

[
3

4
δ + ln

(
1 + h0

1 + δ

)
+
δ(h0 − δ)(2 + h0 + δ)

2(1 + δ)2

]
in 2D, (6.86)

uθ,1 =
2uw,1

h0(h0 + 2)

[
3

4
δ +

9

20
δ2 + h0 − δ +

δ

3(1 + δ)2

(
(1 + h0)3 − (1 + δ)3

)]
in 3D , (6.87)

and replacing uw,1(t) by ut,1(t) using Eq. (6.83), one finally obtains

uθ,1 =
ut,1(t)(1 + h0)

h0

(
1 + δ

(
1+h0
1+δ

)2
)
[

3

4
δ + ln

(
1 + h0

1 + δ

)
+
δ(h0 − δ)(2 + h0 + δ)

2(1 + δ)2

]
, (6.88)

uθ,1 =
2ut,1(t)(1 + h0)

h0(h0 + 2)

(
1 + δ

(
1+h0
1+δ

)2
)
[
−1

4
δ +

9

20
δ2 + h0 +

δ

3(1 + δ)2

(
(1 + h0)3 − (1 + δ)3

)]
, (6.89)

for the cylinder and the sphere, respectively. In these two expressions, δ depends on ReD according to
Eq. (6.81). In the inviscid limit (ReD → ∞), the boundary layer thickness δ vanishes and Eqs. (6.88)
and (6.89) become

uθ,1(t) =
ut,1(1 + h0) ln (1 + h0)

h0
, (6.90)

uθ,1(t) =
2ut,1(1 + h0)

h0 + 2
. (6.91)

Finally, the velocity gradient at the free surface to close Eq. (6.71) can be determined using Eq. (6.77):

∂uθ,1
∂r

∣∣∣∣
r=1+h0

= uw,1

(
− 1

1 + h2
0

+
δ

(1 + δ)2

)
, (6.92)

which, after introducing Eq. (6.83), yields

∂uθ,1
∂r

∣∣∣∣
r=1+h0

=
ut,1

(1 + h0)



δ
(

1+h0
1+δ

)2
− 1

δ
(

1+h0
1+δ

)2
+ 1


 . (6.93)

Finally, Eq. (6.71) can be rewritten in the closed form

∂ut,1
∂t

= −
u2
t,1

1 + h0
− ∂h0

∂t

(
ut,1

1 + h0

)



2δ
(

1+h0
1+δ

)2

1 + δ
(

1+h0
1+δ

)2


+

1

Fr
. (6.94)

It is interesting to note that, in the inviscid limit (δ = 0), the second term on the right-hand-side
vanishes, leading to the following equation:

∂ut,1
∂t

= −
u2
t,1

1 + h0
+

1

Fr
. (6.95)

This provides another justification for replacing the zero-shear-stress condition at the free-surface by
the assumed velocity profile derivative. For sufficiently high Reynolds numbers, Eq. (6.95) should thus
be a good approximation to Eq. (6.94).
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6.4.3 Summary of the final model equations

A model to describe the evolution of the thin film of fluid above a cylinder or an axisymmetric sphere has
been developed. A closure term for the pressure has been avoided by using the θ-momentum equation
evaluated at the free surface, where the pressure gradient vanishes. In addition, a velocity profile in
the radial direction has been assumed based on actual simulation profiles. Two separate r-dependencies
have been assumed in the boundary layer and in the bulk, while the viscous free-surface layer has been
neglected. Leveraging these velocity profiles, the relation between the average fluid velocity in the film
and the velocity at the free surface can be deduced, which enables to obtain the former indirectly from
the dynamical evolution of the latter.

The only required calibration parameter in this model is the parameter k that relates the boundary
layer thickness δ to the Reynolds number ReD, and that is obtained by fitting some of the velocity
profiles from PFEM simulations (see Fig.6.6b). Knowing the average velocity in the film, the evolution
of the film thickness is therefore known through mass conservation, as derived in Section 6.3.2. Through
these steps Eqs. (6.63) to (6.66) can be replaced by the following equations (based on mass conservation,
momentum conservation along θ, geometrical ansatz and assumed velocity profile):

2D cylinder 3D axisymmetric sphere

∂f0

∂t
= uθ1(t)

∂f0

∂t
= 2uθ1(t) (6.96)

∂ut,1
∂t

= −
u2
t,1

1 + h0
− ∂h0

∂t

(
ut,1

1 + h0

)



2δ
(

1+h0
1+δ

)2

1 + δ
(

1+h0
1+δ

)2


+

1

Fr

(6.97)

e−f0 = h0eh0 e−f0 =
h0

h0 + 2
e2h0 (6.98)

∂h0

∂t
= −

(
h0

h0 + 1

)
∂f0

∂t

∂h0

∂t
= −

(
h0(h0 + 2)

2(h0 + 1)2

)
∂f0

∂t
(6.99)

uθ,1(ut,1) from Eq. (6.88) uθ,1(ut,1) from Eq. (6.89) (6.100)

6.4.4 Initial conditions

To integrate the above two ordinary differential equations, Eqs. (6.96) and (6.97), two initial conditions
for h0 and ∂th0, or equivalently for f0 and ∂tf0, are required. A natural moment at which these
initial conditions should be imposed is the time when the top cylinder reaches the initial free surface,
i.e., at yc = −1. This initial time is also convenient because an empirical relationship for h∗0(Fr) is
already known, as illustrated again in Fig. 6.10a. Similarly, it would be useful to have another empirical
expression that relates (∂tf0)∗ to the Froude number. It turns out that a power law provides a very
good fit of the simulation results, as shown in Fig. 6.10b.

The two expressions for h∗0(Fr) and (∂tf0)∗(Fr) could therefore be used as initial conditions for the
model given by Eqs. (6.96) to (6.100). However, it is important to observe that these expressions do not
include a dependence on the Reynolds number. As h0 is expected to depend, albeit weakly, on ReD,
the model is hereafter evaluated using as initial conditions the exact values for h∗0 and (∂tf0)∗ directly
taken from the simulations, rather than the corresponding approximations from empirical correlations.
This ensures a slightly better model accuracy at other Reynolds numbers.
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Figure 6.10: (a) Film thickness and (b) average azimuthal velocity at the interface crossing (yc = −1) as a
function of the Froude number that can be used as initial conditions for the model (ReD = 1000). The symbols

are simulation data while the continuous lines represent empirical fits.

6.4.5 Numerical resolution scheme

To obtain the solution h0(t), the two coupled ordinary differential equations, Eqs. (6.96) and (6.97),
are integrated numerically from the initial conditions using a predictor/corrector scheme and a uniform
time step size ∆t.

First, (ut)
n+1 is updated using a first order explicit scheme,

(ut,1)n+1 = (ut,1)n +

(
∂ut,1
∂t

)n
∆t , (6.101)

where (∂tut,1)n is given by Eq. (6.97) evaluated at time tn = n∆t. Note that, when needed, (h0)n and
(∂th0)n can be obtained from (f0)n and (∂f0)n using Eq. (6.98) and Eq. (6.99), respectively. Following
the same approach, an estimate of f0 at time n+ 1 (predictor) is calculated as

(f̃0)n+1 = (f0)n +

(
∂f0

∂t

)n
∆t , (6.102)

where (∂tf0)n is obtained from the solution at the current time step n through Eqs. (6.96) and (6.100).
This predictor value, (f̃0)n+1, and (ut)

n+1 can then be used to calculate an improved estimate (∂tf̃0)n+1

(corrector). Finally, the value of (f0)n+1 is computed using an average of the predictor and corrector:

(f0)n+1 = (f0)n +
1

2



(
∂f0

∂t

)n
+

(
∂f̃0

∂t

)n+1

∆t . (6.103)

At this stage, the process starts over at Eq. (6.101) for the next time step.
In the following, the system of equations has been integrated numerically using a time step size

∆t = 0.005. The total simulation time, on the other hand, has been chosen based on the fact that the
velocity profile is formally not valid for h0 < δ. In practice, the integration has been stopped at a value
h0 = 0.5δ as the fit remained accurate up to this value. In the viscous thin film limit, i.e., for smaller
h0, another model with a different assumed velocity profile should be used. This is briefly considered
in Section 6.5.5.

6.5 Results

The model accuracy is now assessed by considering different cases. First, viscous calculations are
performed at ReD = 1000, i.e., the Reynolds number at which the parameter k for the boundary layer
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thickness has been calibrated. This is then extended to other Reynolds numbers. The inviscid limit
is also briefly considered. In a subsequent section, the model is leveraged to obtain the pressure at
the cylinder/sphere apex. Finally, the viscous thin film limit (i.e., when h � 1), for which a different
assumed velocity profile is proposed, is investigated.

6.5.1 Model validation at ReD = 1000

Using the initial conditions given in Fig. 6.10, the model is integrated, for the cylinder and the sphere,
at ReD = 1000 and several Froude numbers, ranging from Fr = 0.09 to Fr = 2.8 (corresponding
to case F1 in Table 5.4). The results of the model (continuous lines) are shown in Figs. 6.11 to 6.13
for ∂tf0, f0 and h0 and are compared to the numerical results from PFEM simulations (dashed lines).
The agreement between model and PFEM simulations is very encouraging, especially considering all
the assumptions that have been made in the model development. As expected, small discrepancies are
nevertheless visible as yc increases. Among other things, this might be due to the assumed constant
boundary layer thickness, while δ can be expected to depend weakly on Froude number and time.
Neglecting the viscous free-surface layer might also contribute to the discrepancy.
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Figure 6.11: Average azimuthal velocity ∂tf0 = uθ/θ for the cylinder (a) and the sphere (twice the velocity in
this case) (b) at different Froude numbers and ReD = 1000; PFEM simulations (dashed lines) and model

(continuous lines). The black dots represent the initial conditions for the model.
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Figure 6.12: Argument of the exponential representing the film thickness in the case of the cylinder (a) and
the sphere (b) at different Froude numbers and ReD = 1000; PFEM simulations (dashed lines) and model

(continuous lines). The black dots represent the initial conditions for the model.
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Figure 6.13: Film thickness at the apex of the cylinder (a) and the sphere (b) at different Froude numbers
and ReD = 1000; PFEM simulations (dashed lines) and model (continuous lines). The black dots represent the

initial conditions for the model.

6.5.2 Model validation at other Reynolds numbers

To assess the validity of the model for the boundary layer thickness, Eq. (6.81), three other Reynolds
numbers are now considered. The parameters of the corresponding simulations are listed in Table 6.1.
The comparison between model and PFEM simulations is shown for ∂tf0, f0 and h0 in Figs. 6.14 to
6.16, for the 2D cylinder and the 3D axisymmetric sphere. Here again, the predictions of the model for
the range of Froude and Reynolds numbers considered are quite good, providing further support to the
model.

F1
Cylinder diameter D 2
Cylinder velocity U 1
Froude number Fr 0.15 - 0.3 - 0.6 - 1.2
Reynolds number ReD 500 - 1500 - 4500
Tank half width W 21
Tank height H 28

Initial depth of the cylinder d 7
Minimal mesh size L∗min 0.003
Maximal mesh size L∗max 1.2
Time step size ∆t 0.0033

Table 6.1: Simulation parameters for the cylinder/sphere rising toward a free surface at constant velocity,
used for the validation of the film model. All quantities are non-dimensionalized using the cylinder radius a and
velocity U , except for the Reynolds number which uses the cylinder diameter D instead of a, to be consistent

with the literature.
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Figure 6.14: Average azimuthal velocity ∂tf0 = uθ/θ for the cylinder (a) and the sphere (twice the velocity in
this case) (b) at different Froude numbers (Fr ∈ [0.15-0.3-0.6-1.2], top to bottom curve triplets) and Reynolds
numbers of 500 (red), 1500 (green) and 4500 (blue); PFEM simulations (dashed lines) and model (continuous

lines). The black dots represent the initial conditions for the model.
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Figure 6.15: Argument of the exponential representing the film thickness in the case of the cylinder (a) and
the sphere (b) at different Froude numbers (Fr ∈ [0.15-0.3-0.6-1.2], top to bottom curve triplets) and Reynolds
numbers of 500 (red), 1500 (green) and 4500 (blue); PFEM simulations (dashed lines) and model (continuous

lines). The black dots represent the initial conditions for the model.
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Figure 6.16: Film thickness at the apex of the cylinder (a) and the sphere (b) at different Froude numbers
(Fr ∈ [0.15-0.3-0.6-1.2], top to bottom curve triplets) and Reynolds numbers of 500 (red), 1500 (green) and
4500 (blue); PFEM simulations (dashed lines) and model (continuous lines). The black dots represent the

initial conditions for the model.
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6.5.3 Inviscid limit

Although the PFEM solver cannot deal with free-slip boundary conditions on curved surfaces, it is
interesting to analyze the model predictions in the inviscid limit, i.e., when δ = 0. The assumed velocity
profile then reduces over the entire film height to the bulk layer profile, Eq. (6.77), with only the
irrotational contribution. Results are again shown for ∂tf0, f0 and h0 in Figs. 6.17, 6.18 and 6.19. As
expected, large differences are observed between the model assuming an inviscid flow and the viscous
PFEM calculations. In particular, owing to the absence of friction at the cylinder/sphere surface, the
mean azimuthal velocity, uθ = ∂tf0 becomes much larger than in the viscous case. This translates then
into a faster decrease of the film thickness h0. One can also observe that the curvature change in the
h0 curves, visible in Fig. 6.13, is not present in the inviscid case of Fig. 6.19. One has thus not only a
quantitative but also a qualitative change of the solution.
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Figure 6.17: Average azimuthal velocity ∂tf0 = uθ/θ for the cylinder (a) and the sphere (twice the velocity in
this case) (b) at different Froude numbers; PFEM simulations at ReD = 1000 (dashed lines) and model

assuming an inviscid flow (continuous lines). The black dots represent the initial conditions for the model.
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Figure 6.18: Argument of the exponential representing the film thickness in the case of the cylinder (a) and
the sphere (b) at different Froude numbers; PFEM simulations at ReD = 1000 (dashed lines) and model
assuming an inviscid flow (continuous lines). The black dots represent the initial conditions for the model.
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Figure 6.19: Film thickness at the apex of the cylinder (a) and the sphere (b) at different Froude numbers;
PFEM simulations at ReD = 1000 (dashed lines) and model assuming an inviscid flow (continuous lines). The

black dots represent the initial conditions for the model.

6.5.4 Pressure at the apex of the body

The purpose of the film model is to predict the film thickness h during the interface crossing of the
cylinder/sphere. Nonetheless, the model can also be leveraged to predict the pressure or, more precisely,
its zeroth-order approximation in θ, pw,0, at the cylinder/sphere apex. This is demonstrated here for
the case of the cylinder.

To achieve this, the radial momentum equation is integrated from r = 1 to r = 1 + h ≈ 1 + h0 while
neglecting the viscous effects in the radial direction:

− [p]1+h0
1 = pw,0 +O(θ2) =

∫ 1+h0

1

∂ur,0
∂t

dr +

∫ 1+h0

1
ur,0

∂ur,0
∂r

dr +

∫ 1+h0

1

dr

Fr
+O(θ2)

=

∫ 1+h0

1

∂ur,0
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dr +

[
u2
r,0

2

]1+h0

1

+
h0

Fr
+O(θ2)
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∫ 1+h0

1

∂ur,0
∂t

dr +
1

2

(
∂h0

∂t

)2

+
h0

Fr
+O(θ2) , (6.104)

which yields, at zeroth order in θ,

pw,0 =

∫ 1+h0

1

∂ur,0
∂t

dr +
1

2

(
∂h0

∂t

)2

+
h0

Fr
. (6.105)

The radial velocity, i.e., ur,0, can be obtained from mass conservation (for the cylinder):

ur,0 =
1

r

(
−
∫
uθ,1dr + c1

)
(6.106)

where c1 is an integration constant to satisfy the impermeability condition

ur,0|r=1 = 0 . (6.107)

Replacing uθ,1 by Eqs. (6.77) and (6.80) in Eq. (6.106) then yields

ur,0(r, t)

uw,1(t)
=

{
1 + 1

4δ3r
(δ + 1− r)4 + c1

r for 1 ≤ r ≤ 1 + δ ,
ln(r)
r + δ

2(1+δ)2
r + c2

r for 1 + δ ≤ r ≤ 1 + h0 ,
(6.108)

where the integration constant c2 can be determined from the continuity of ur,0 in r = 1 + δ. Because
the impermeability condition and the continuity condition must be satisfied at all times t, we have

c1 = −1− δ

4
, (6.109)

c2 =
δ

4
− ln(1 + δ) . (6.110)
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As the time dependence of ur,0(r, t) is solely contained in uw,1(t), its time derivative ∂tur,0 is given
by ∂tuw,1 multiplied by the right-hand-side of Eq. (6.108). We thus have for the first term on the
right-hand-side of Eq. (6.105)

∫ 1+h0

1

∂ur,0
∂t

dr =
∂uw,1
∂t

[∫ 1+δ

1

(
1 +

1

4δ3r
(δ + 1− r)4 − 1 + δ/4

r

)
dr

+

∫ 1+h0

1+δ

(
ln(r)

r
+

δ

2(1 + δ)2
r +

δ

4r
− ln(1 + δ)

r

)
dr

]
.

(6.111)

After integration in r, one obtains
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(6.112)

Introducing Eq. (6.112) into Eq. (6.104) finally yields
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(6.113)

with ∂tuw,1 the time derivative of uw,1 given by Eq. (6.83), i.e.,

∂uw,1
∂t

=
1

1 + δ
(

1+h0
1+δ

)2

[
(1 + h0)

∂ut,1
∂t

+
(1 + δ)2 − δ(1 + h0)2

(1 + δ)2 + δ(1 + h0)2
ut,1

∂h0

∂t

]
. (6.114)

In turn, ut,1, ∂tut,1, h0 and ∂th0 are obtained from the numerical solution of the system of Eqs. (6.96)-
(6.100).
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Figure 6.20: Pressure at the cylinder apex as a function of time / position for Fr = 1 and ReD = 1000:
zeroth-order approximation, Eq. (6.113), of the film model (continuous red line) and pressure from PFEM

simulations (dashed blue line).

The film model approximation pw,0(t), Eq. (6.113), for the cylinder at Fr = 1 and ReD = 1000
is compared to PFEM simulation results in Fig. 6.20. It can be seen that the model provides a good
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qualitative approximation of the pressure at the cylinder apex. Quantitatively, the relative error is
less than 10%. This demonstrates that the film model proposed here can not only provide a good
approximation for the film thickness, but also for the pressure at the apex of the cylinder. Finally,
note that the mathematical developments have been restricted to the cylinder case here, but a similar
approach could also be used for the axisymmetric sphere.

6.5.5 Thin film limit

The film model is now extended to the viscous thin film regime, h� 1. In this limit, curvature effects
can be neglected and viscous effects dominate so that the velocity profile corresponds to a semi-parabola.
This is illustrated in Fig. 6.21 for the case of the cylinder, where the normalized velocity profile uθ/ut
is represented as a function of the scaled radius

r̃(t) = 1 +
r − 1

h0(t)
. (6.115)

One can observe that, as the film becomes thinner (i.e., yc, and thus t, increase), the normalized velocity
profile tends towards the parabolic profile (dotted black line in Fig. 6.21)

uθ(r̃, t)

ut(t)
= 1− (2− r̃)2 for 1 ≤ r̃ ≤ 2 . (6.116)

The same steps as in Section 6.4.1 can be followed, using the assumed velocity profile for the thin
film limit given by Eq. (6.116) this time. First, the average velocity can be related to the velocity at
the free surface:

uθ,1 =
2

3
ut,1 . (6.117)

Then, one can neglect the two terms multiplied by ∂th0 in Eq. (6.71) as they are of first order in h0 and
thus much smaller than the other terms. However, unlike previously, in the thin film limit the viscous
terms dominate. This means that the θ-momentum equation evaluated at the free surface, Eq. (6.71),
should now include viscous terms Vt:

∂uθ,1
∂t

= −3

2

uθ,1
2

1 + h0
+

2

3Fr
+

2

3
Vt , (6.118)

where Eq. (6.117) has been used to replace ut,1 by uθ,1. For the cylinder, using the same assumptions
as in Section 6.4.1.2, Vt is given at first order by

Vt =
2

ReD

[
∂2uθ,1
∂r2

+
1

r

∂uθ,1
∂r
− uθ,1

r2

]

r=1+h0

. (6.119)

Considering r ' 1 (thin film assumption), ∂r = 1
h0
∂r̃, and introducing the velocity profile given by

Eq. (6.116), one finds

Vt =
−2ut,1
ReD

(
1 +

2

h2
0

)
' −4ut,1
ReDh2

0

, (6.120)

where the last approximation is made considering h0 � 1. The mathematical development being much
more complicated for the case of the axisymmetric sphere, the same form of Vt is used as an ad-hoc
approximation. Finally, the free-surface equation in the thin film limit becomes

∂uθ,1
∂t

= −3

2
uθ,1

2 +
2

3Fr
− 4uθ,1
ReDh2

0

. (6.121)

Using this equation and the relation between uθ,1 and ∂tf0, Eq. (6.96), enables to get the evolution
of uθ,1 and f0, and therefore h0 through Eq. (6.98). The numerical integration scheme is analogous
to the one presented in Section 6.4.5, except that one has directly an equation for uθ,1 instead of only
indirectly through ut,1. The thick film model, Eqs. (6.96) to (6.100), is first integrated until the film
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Figure 6.21: Normalized velocity as a function of the scaled radius defined in Eq. (6.115) in the thin film limit
for the cylinder at Fr = 1 and ReD = 1000; PFEM simulations at several positions yc (continuous colored

lines) and parabolic fitting profile, Eq. (6.116), assumed in the model (dotted black line).

thickness h0 reaches the boundary layer thickness δ. The corresponding time t (or position yc) is then
used as initial time at which the initial conditions for ∂tf0 and f0 (and thus h0) are imposed for the
thin film model. These initial conditions could be obtained from the thick film model, but they are here
taken from the PFEM simulations. The rational is to eliminate the error associated with the thick film
model and thus to isolate the error only associated with the thin film model.

The thin film model predictions are shown in Figs. 6.22 to 6.24 and compared to the PFEM simulation
results for several Froude numbers and ReD = 1000. The model is able to capture the general trend
very well despite a slight underestimation of the film thickness as time increases, which is more visible
at small Froude number. Nonetheless, it should be emphasized that, here again, the dependency on the
non-dimensional numbers has been derived a priori, and that no calibration has been required.
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Figure 6.22: Average azimuthal velocity ∂tf0 = uθ/θ for the cylinder (a) and the sphere (twice the velocity in
this case) (b) in the thin film limit at different Froude numbers and ReD = 1000; PFEM simulations (dashed

lines) and thin film model (continuous lines).
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Figure 6.23: Argument of the exponential representing the film thickness in the case of the cylinder (a) and
the sphere (b) in the thin film limit at different Froude numbers and ReD = 1000; PFEM simulations (dashed

lines) and thin film model (continuous lines).
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Figure 6.24: Film thickness at the apex of the cylinder (a) and the sphere (b) in the thin film limit at
different Froude numbers and ReD = 1000; PFEM simulations (dashed lines) and thin film model (continuous

lines).

6.6 Conclusion

In this chapter, a film model has been proposed to predict the film thickness above a rising cylinder
and a rising sphere during the interface crossing. The model leverages the relation between the average
velocity in the film, uθ, and the film thickness h through the use of the mass conservation equation and
a special Ansatz where h is expressed as a special function: the Lambert W function in the case of a
2D cylinder and a similar function in the case of an axissymetric sphere (see Eqs. (6.30) to (6.33)). In
both cases, these special functions involve a decreasing exponential whose argument f is a function of
t and θ. In the limit where ∂θh � 1, the main assumption of the model and a feature of the present
flow in agreement with the literature and PFEM simulations, ∂tf represents the average azimuthal
velocity inside the film multiplied by the number of directions through which the fluid can flow, D-1,
D being the number of space dimensions (see Eq. (6.63)). Through a small angle approximation, the
dynamics inside the film could therefore be described through a linear differential equation for f (mass
conservation) and the θ-momentum equation for the free-surface tangential velocity ut, the latter being
related to ∂tf = (D−1)uθ through an assumed velocity profile. Inside the boundary layer, the profile is
cubic in r, whereas in the bulk it has the form uθ(r) = 1

r + δ
(1+δ)2

r, which has the implication that the
viscous terms vanish from the θ-momentum equation. The dependency on the Reynolds number is given
through the boundary layer thickness δ(ReD) = kRe

1/2
D where the parameter k = 2.5 for the cylinder

and k = 2.21 for the sphere has been obtained from PFEM simulations. It should be emphasized that
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k is the only calibration parameter of the model. The proposed approach leads to a set of two ordinary
differential equations, where the dependency on the Froude number stems from the initial conditions
h∗(Fr) and (∂tf)∗ (Fr), and from the gravity force term 1

Fr in the momentum equation.
The model has then been extended to the thin film limit, h < δ � 1, where viscous terms dominate.

In particular, the assumed velocity profile of the thick film model has been modified to a new assumed
velocity profile, parabolic in r. In this case, the model integrate the dependency on both the Froude
and Reynolds numbers without any calibration parameter.

It has also been shown for the cylinder case that the film model can be leveraged to provide an
approximation of the pressure at the cylinder/sphere apex. This is achieved by considering the integrated
r-momentum equation and the assumed velocity profile.

Finally, the predictions of both the thick and thin film models have been validated for different
Froude and Reynolds numbers through comparison with PFEM simulations. Overall, a good agreement
is observed. In particular, the model is able to reproduce very well the qualitative behavior of the
solution and the quantitative discrepancies, inherent to the various simplifications made in the model
development, remain limited. It has also been shown that, in the inviscid limit, the film thinning is
both quantitatively and qualitatively different.

The main source of errors in the model include

• the uniform thickness assumption and corresponding small angle approximation,

• the assumed velocity profile and neglecting the viscous free-surface layer,

• the assumption that the boundary layer thickness does not depend on time and Froude number,
and the corresponding approximation of δ.

Including terms of higher order than the leading order term in the small angle expansion could help ad-
dress the first limitation. This however makes the mathematical development of the model significantly
more complex. On the other hand, the motivation behind the assumed velocity profile approach was
to avoid modeling the pressure. Taking higher order terms in θ into account could provide a way to
model the pressure, and thus to by-pass the need for an assumed velocity profile, addressing the second
issue. To address the third limitation, a better model for the boundary layer thickness that includes
the dependence on time and Froude number should be developed. This might allow taking into account
the influence of the initial release depth. These improvements are however left for future work.

At last, it should be mentioned that the present film model does not include the effect of surface
tension on the film dynamics. From dimensional analysis, one expects surface tension to have a signif-
icant impact only during the late phase of the process, when small scale variations of the free surface
appear. However, it has been found that surface tension tends to decrease the film thickness at small
Froude numbers (Vincent et al. private communication). The probable explanation is the presence of a
large free-surface curvature responsible for a depression on the body sides. This suggests that a strong
interaction between the film and the bath is at play, a phenomenon that cannot be taken into account
by a simple film model.
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Chapter 7

Conclusions and Perspectives

This work aimed to study flows around bodies crossing a physical interface. To achieve this goal,
the advantages of a Lagrangian formalism have been leveraged through the use of the Particule Finite
Element Method (PFEM). As it has been shown, the state of the art in the application of this method
is subjected to some limitations, such as the mass conservation linked to the remeshing and boundary
recognition steps. It has so far also lacked a clear and well-defined mesh adaptation algorithm. The
objective of this work was therefore twofold. On the one hand, it consisted in the development and
implementation of a mesh adaptation technique for the PFEM so as to improve the mass conservation
and efficiency of the method. This contribution included the validation of the overall algorithm for
several two-dimensional cases as well as some suggestions and theoretical demonstrations of its possible
extension to three dimensions. On the other hand, this work also consisted in the application of the newly
developed algorithm for the study of the interface crossing of a body pulled out of a bath at constant
velocity. In particular, the second part of this work has been dedicated to the in-depth analysis of a
two-dimensional cylinder, and to a lesser extent, of an axisymmetric sphere, crossing a free surface.

7.1 Adequacy of the PFEM to simulate flows around bodies approach-
ing an interface

The main challenges in the flows of interest are, as shown in Section 1.3, the presence of a deforming
interface and its interaction with the moving body. In this context, unlike Eulerian or Lagrangian-
Eulerian approaches, the PFEM does not require a particular boundary tracking algorithm as the
equations directly dictates the interface displacement, which confers the PFEM an advantage over other
methods. Nevertheless, the drawback is that the mesh nodes are subjected to large displacements so
that the computational domain needs to be periodically remeshed to avoid too large mesh distortion
that would otherwise lower the stability and accuracy of the time-integration. To deal with this aspect
without compromising (too much) the code efficiency, triangular and linear finite elements are typically
used, such that fast Delaunay triangulation can be performed for remeshing the domain. Afterwards,
the boundaries are automatically identified through the boundary recognition algorithm, i.e., the α-
shape technique, by identifying badly-shaped triangles adjacent to the physical boundaries. This last
feature of the method is precisely the main source of the mass conservation error linked to remeshing.

7.1.1 Limitations of the PFEM

Mass conservation represents the main challenge in the PFEM. Corresponding errors can be divided
into two types. The first type of error is not specific to the PFEM and is referred to as the "numerical
mass conservation error". It is the error associated with the time integration. In this thesis, the error
has been demonstrated to be directly related to the invariants of the velocity gradient tensor, each order
of ∆t being proportional to one of the invariant (see Eqs. (3.67) and (3.68) in Section 3.3). In particular,
the first order in ∆t is proportional to the residual of the incompressibility constraint, which is larger
in the presence of stabilizing terms. This intuitively explains why such stabilizing terms have some
negative impact on the numerical mass conservation. The second type of error is very specific to the
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use of the α-shape technique for the boundary recognition, and is referred to as the "remeshing mass
conservation error". As it has been shown, the α-shape technique leads to adding elements in merging
fluid regions and deleting elements where the free surface gets stretched, which respectively translates
into mass creation and destruction. This work has focused on improving only this second type of error,
as it is more often the major source of mass conservation errors in the PFEM.

Another limitation of the PFEM is that it does not provide a standard framework to include mesh
adaptation, i.e., local dynamic refinement or coarsening of the mesh.

7.1.2 Improvement of the PFEM

In order to incorporate mesh adaptation capabilities in the PFEM while decreasing the remeshing
mass conservation error, boundary nodes tagging has been combined with a prescribed local mesh size.
In this framework, the creation/destruction of mesh elements has been limited as much as possible and
is only performed when the mesh resolution approaches the nearby/minimal target size.

7.1.2.1 Target mesh size or size field

The first step of the method consists in defining the size field1 (or target mesh size). Two main
approaches have been proposed. The first one is geometry-based and consists in interpolating the
prescribed size field between bounds based on distances from regions of interest (see Section 3.2.1.1).
In the second approach, the size field is prescribed based on the flow solution itself. In this thesis, the
norm of the velocity gradient tensor and the free-surface curvature have been used (see Section 3.2.1.2),
but other quantities could also be considered.

7.1.2.2 Improved boundary recognition algorithm

The second step of the method aims at improving the mass conservation properties of the boundary
recognition algorithm. In the traditional PFEM, the information about the boundary location is not
conserved during the remeshing step. In the new method, boundary nodes are tagged. Moreover,
several criteria based on the number of boundary nodes belonging to a given element have been added
to the classical α-shape technique so as to ensure that elements are added/removed only when it is
absolutely necessary, e.g., to simulate merging or separation processes. Moreover, when performed, the
creation/destruction of mesh elements at the boundary is accomplished at a high mesh resolution owing
to the mesh refinement/coarsening technique.

This overall procedure, as discussed in the validation chapter, decreases mass destruction more
strongly than the mass creation but the resultant mass variations remain below the current state of the
art for the PFEM2.

7.1.2.3 Node insertion/removal algorithms

Based on the size field and the location of the boundary nodes, the mesh refinement/coarsening to
approximately achieve the target mesh size is performed by adding/removing nodes in specific locations.
The addition of nodes is based on a cell subdivision while the removal of nodes on a cell collapse. These
approaches respectively refine/coarsen the mesh according to how the element areas compare with the
prescribed size field (see Section 3.2.2), using specific thresholds. In particular, the choice of these
thresholds ensures that refinement and coarsening regions do not overlap, and that a compromise is
achieved between the coarsening-induced numerical diffusion and the level of element distortion.

Finally, this addition/removal of nodes also includes specific treatments near the boundaries so as
to ensure good element quality there, which is beneficial for mass conservation.

1This terminology is used here as it better matches the existing literature on the subject.
2Note that this claim does not include the most recent developments, such as, for instance, Leyssens et al. [133] and

Fernandez et al. [134].
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7.1.3 Validation

The mesh adaptation algorithm has been validated through several two-dimensional test cases. The
first two do not include a free surface and therefore only evaluate the performance of the mesh re-
finement/coarsening algorithm, while the last three also assess the improvement brought by the new
boundary recognition algorithm.

Flow around a cylinder

The first case was the flow around a cylinder with different variants described in Section 4.1: a
static cylinder (ReD ∈ {40, 80, 120, 160, 200, 9500}), a rotating cylinder (ReD = 200) and a transver-
sally oscillating cylinder (ReD = 200). For each case, results from the literature have been successfully
reproduced despite the use of a limited number of mesh elements thanks to the mesh refinement algo-
rithm, demonstrating its interest for reducing the computational cost. This is specifically the case for
external flows around bodies because the major part of the fluid domain may be discretized by coarse
elements as they are located far away from boundary layers and wake of these bodies.

Lid-driven cavity flow

The second case is the lid-driven cavity flow (Re ∈ 100, 400). For this test case, the interest of the
normalized version of the solution-based mesh refinement (see Eqs. (3.23) and (3.24)) is demonstrated
by its ability to capture small flow features, such as the vortices located at the cavity corners, unlike
the case with the "non-normalized" version. In particular, the position and intensities of the vortices
are in agreement with the results of the literature. Nevertheless, the gain in terms of solution accuracy
over CPU time ratio is not very significant in this case, as refinement is required in many regions of the
flow to capture all the shearing layers.

Forced sloshing

For the third case, the forced sloshing of a liquid in a reservoir oscillating harmonically has been
studied. The efficiency of the mesh refinement based on the free-surface curvature is demonstrated by
its ability to correctly capture the free surface deformation with a limited number of elements. The
time evolution of the free surface deformation and the pressure at the wall have been compared with
both experimental results and other PFEM simulations with a uniform mesh. In particular, it has been
shown that the new mesh adaptation method leads to results (free-surface deformation and impact at
the wall) closer to the experiment than those obtained with a uniform mesh, while requiring much fewer
mesh elements. In addition, mass conservation also turns out to be better, even if some creation of mass
still persists because of the successive wetting of the lateral walls. Despite the undeniable improvement
brought by the new algorithm, this remaining mass creation caused by the wetting of the walls indicates
that there is still room for further improvement, which is left for future work.

Drop falling into a liquid bath

The fourth case, the drop falling into a liquid bath, solely addresses the correct evolution of the free
surface and the mass conservation properties of the new algorithm. It also illustrates the effect of the
collision anticipation algorithm described in Section 3.2.3.2, in which the merging of two approaching
free surfaces is anticipated. Around the expected merging region, the smaller mesh size is propagated so
as to limit the mass creation occurring during the merging process. In addition, the combination of dif-
ferent geometrical and solution-based refinement criteria enables refining the region of high free-surface
curvature and high velocity gradients. The algorithm results in better mass conservation properties
than with a uniform mesh, while requiring fewer mesh elements. Unfortunately, for that case again, the
wetting of the lateral walls still results in some increase of the total mass.
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Cylinder rising toward and crossing the interface

The last validation case is the rising cylinder toward the free surface, i.e., the main case of interest
for the second part of the present work. In this test case, the new mesh adaptation method enables
to gradually refine the fluid region in between the free surface and the approaching body. Combined
with the new boundary recognition algorithm, it results in very good mass conservation up to liquid
films of thickness comparable to the minimal mesh size, thanks to the nodal insertion in the middle of
free-surface edges. On the contrary, the classical α-shape technique induces significant mass destruction
due to deleted obtuse triangles following the stretching of the free surface. The improvement achieved by
the new algorithm regarding the free-surface stretching is therefore clearly demonstrated. In particular,
the good behavior of the new algorithm regarding surface stretching makes it well suited for the study
of the free-surface deformation and the flow inside the film above the body’s apex.

7.1.4 Concept of nodal density and extension to 3D

The new mesh adaptation algorithm is limited to two-dimensional meshes, which are generally easier to
tackle than three-dimensional meshes. Nevertheless, based on theoretical considerations, the extension
of this mesh adaptation algorithm to three dimensions has been discussed. The general idea relies
on the claim that a quantitative measure of the nodal density (i.e., the number of nodes per unit of
area/volume) at the discrete level can be performed by interpreting internal angles (solid angles in
3D) at cell vertices as nodal fractions. The total nodal fraction per element is then simply the sum of
the internal angles (solid angles) divided by 2π (4π) and the nodal density is this total nodal fraction
divided by the element area (volume). Using this novel concept of nodal density and fundamental
results of discrete geometry (e.g., Euler invariant, Gram-Euler theorem), several relations for 2D and
3D triangular meshes have been derived. The application of this concept to mesh refinement/coarsening
has then been discussed and preliminary 3D algorithms have been proposed. The extension of the new
boundary recognition algorithm to 3D then follows in a natural way. Finally, the problematic case of
slivers has also been briefly discussed.

7.1.5 Perspectives for further improvement of the PFEM

While the proposed mesh adaptation algorithm successfully enables the reduction of remeshing mass
conservation errors while increasing the accuracy over CPU time ratio, it is still subjected to some
limitations, such that further improvement of the proposed approach or development of alternative
approaches are possible. The first one consists in (1) improving the code efficiency. In addition, other
improvements also include the possibility to (2) avoid complete re-triangulation of the entire domain
by performing local mesh modifications, (3) use anisotropic mesh refinement, (4) improve boundary
conditions on fixed boundaries, (5) use another boundary-recognition technique, (6) extend the proposed
algorithm to three dimensions.

7.1.5.1 Improvement of the code efficiency

The code has been developed as a “proof of concept” and is thus not optimal in many regards, for
technical and historical, rather than theoretical, reasons. In future developments a special attention
should be put on the following aspects to improve the code efficiency:

• The parallelization of relevant parts of the code (excluding remeshing step). While some parts
of the code have been parallelized (e.g., the building of the elemental matrices), this is not the
case for all parts. Increasing parallelization will help decrease the computational cost of large
simulations.

• A better data storage management. So far, some intermediate data generated by the remeshing
are stored on disk, which should be avoided by keeping all the information in memory during
code execution. This could be done by interfacing the remeshing library (Triangle) with the solver
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instead of executing the library from the command line, unavoidably leading to some data written
on disk.3

Note that other ways of improving the solver efficiency could be considered, but would affect the overall
algorithm. For instance, parallelizing the remeshing step requires dividing the mesh into sub-meshes
with interface boundaries between them, such that the overall remeshing output would be affected by
the process and would not be equivalent to a remeshing performed in series.

7.1.5.2 Avoiding unnecessary re-triangulation

In this work, each time the mesh became too distorted, it was fully discarded and replaced by a a
completely new mesh, considering the triangulation algorithm as a black box, as it is the case in the
classical PFEM approach. Although it simplifies the implementation of the mesh refinement/coarsen-
ing algorithm as the triangulation data structure is automatically updated after each re-triangulation
without any specific local treatment, it might not be efficient when the mesh in significant parts of the
computational domain remains of good quality. Another alternate approach could avoid such complete
re-triangulation, and therefore reduce the computational time associated with the remeshing step of the
PFEM.

For instance, as already discussed in Section 3.1.2, another way to combine the α-shape technique
with the use of non-uniform meshes is to use regular triangulation together with the weighted α-shape
technique. The interest of the method relies in the possibility of removing nodes within the mesh
refinement algorithm, such that the node removal process could potentially be automatized. In other
words, the triangulation is performed at the same time as the node removal, and the remeshing after the
node removal is therefore unnecessary, reducing the total mesh coarsening and remeshing CPU time.
On the other hand, the local mesh modifications required to avoid remeshing after node insertions is
usually much easier to tackle than after node removal. More specifically, the elements impacted by the
new nodes are easily identified such that the required reconnections are easier to perform.

The main challenge of the overall approach relies in the development of a fully integrated remeshing
algorithm that is as efficient as the one provided in existing libraries. Within this formulation, not only
the fluid elements would remain in memory, but also the empty elements, such that the entire convex
hull of the cloud of nodes would be known at any time.

A related method is currently developed by Leyssens et al. [133], where the node addition is performed
as part of the remeshing using Delaunay refinement. It consists in adding nodes at the center of the
circumscribed circles of the triangle that need to be refined (see Ruppert’s and Chew’s algorithms for
some examples [135]),or on the middle of the boundary edges in case the center of the circumscribed
circle is located outside the fluid domain.4 With this method, when the mesh has been cleaned using
Delaunay refinement, the time integration is performed and nodes are displaced, the α-shape criterion
for boundary recognition being only applied subsequently. If mesh element quality is preserved after
the nodal displacement has occurred, the α-shape technique should behave well and should not produce
artifacts as empty holes in the fluid domain. In practice, it implies the use of a small time step and/or
mesh adaptation at each time step to ensure that the mesh quality is preserved and to prevent the
occurrence of artifacts. By opposition, in the present work, this requirement is not absolutely necessary
for the method to operate, although it remains a good practice.

7.1.5.3 Anisotropic mesh refinement

Another possibility of improvement concerns the metric-based mesh adaptation (see Section 3.1.1.3).
In the present work, the metric consisted in the single parameter L∗, the target mesh size, which can
be imposed based on both geometrical and physics-based criteria. In the general metric-based mesh
adaptation formalism, the mesh elements not only satisfy a global scaling L∗, but can have different size
in different directions, which is determined by the local metric tensor. While this may be straightforward
in the case of structured meshes, the use of metrics for the PFEM mesh adaptation can be challenging for
several reasons. (1) The criterion for the addition and removal of nodes should be based on different edge

3This had been planned but was later abandoned due to other conflicting work packages.
4In some way, it is similar to the boundary edge splitting proposed in the present work in Section3.2.3.1.
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length thresholds depending on the edge direction with respect to the eigenvectors of the metric matrix,
rather than using the area of the elements. (2) The Delaunay triangulation should be performed on an
isotropic space (e.g., if an anisotropic metric is used, on the abstract space (u, v) rather than on the real
physical space (x, y)), which may be challenging from a computational point of view. (3) The solution-
based criterion to define the metric should be adapted in order to reduce the computational errors.
This could be done using the Hessian matrix associated with the different variables (see Appendix B to
see how to compute it). The challenge would then be to define the metric using a clever combination
of the different Hessian matrices associated with the variables. (4) The node displacement, due to the
Lagrangian nature of the PFEM, can lead to the rotation of some mesh elements, such that the size of
these elements can become too large or too small in a specific direction, just because of this rotation
relatively to the metric. In the worst case, this could induce cycles of node insertions and deletions,
which would in turn produce significant numerical diffusion. Therefore, another challenge would be to
take this effect into account to properly adapt the metric so as to avoid these node addition and removal
cycles.

In summary, even if the use of anisotropic metric has, in theory, the potential to further increase the
accuracy over CPU time ratio, it faces many challenges in the context of the PFEM. In particular, it is
not clear whether the small potential improvement is worth the effort in regard to all the challenges to
overcome, which is the main reason why it has not been considered in the present work. This question
is therefore left open for future research on the PFEM.

7.1.5.4 Improved boundary conditions on fixed boundaries

In the PFEM, the mass conservation is not only affected by the boundary recognition algorithm
used to follow deforming interfaces, but also by the way the fixed boundary conditions are treated, in
particular to describe wetting and de-wetting phenomena. There are therefore perspectives of further
improvement in that regards, for both free-slip and no-slip boundary conditions.

Free-slip boundary condition
In the context of the PFEM, the free-slip boundary condition is useful when one can neglect viscous
effects near walls, which would otherwise requires a small mesh size to correctly capture the boundary
layer (e.g., fluid in large reservoirs, channels, etc...). By imposing a free-slip boundary condition, one can
therefore use elements much larger than the boundary layer adjacent to solid walls, thus saving precious
computational time for many practical applications in which the boundary layer does not significantly
impact the physics of interest (e.g., in the imposed sloshing or the droplet fall test cases presented in
Chapter 4).

In the original PFEM solver used here, the free-slip boundary condition was first only possible on
horizontal and vertical surfaces, and simply consisted in removing one of the two velocity degrees of
freedom. To impose it on an inclined surface, one first has to rotate the degrees of freedom using
local rotation matrices, and then simply remove the degree of freedom of the displacement along the
normal direction to the surface (similarly to horizontal and vertical surfaces). Such an approach has
been re-implemented in this work for the sloshing test case, based on the work of Cerquaglia [1, 24].
However, the results have not been shown as the method failed at the second splash on the left wall
(see Section 4.3). The problem with the free-slip boundary condition is that the walls are fictitious and
are thus not represented by nodes, unlike for the no-slip boundary condition. To solve this issue, the
walls where free slip occurs should be represented as lines in memory, and the fluid crossing these lines
should somehow be reattached to them, the free-slip condition (removal of one degree of freedom) being
imposed after the reattachment is complete. Such an approach has for instance been implemented by
Leyssens [133], which improved the mass conservation properties of the PFEM. Note that Cerquaglia
et al. [24] used another approach based on contact elements, where the free-slip nodes slide along the
solid surfaces described by nodes, but it is not a computationally accurate approach. Specifically, the
contact elements constitute some non-physical empty space between the fluid and the sliding wall. As a
consequence, the sliding motion of the fluid particles on top of these elements does not always occur at
the same distance from the boundary, and in case of curved boundaries, does not rigorously follow the
boundary shape. In that respect, another possible improvement of the free-slip boundary condition is
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precisely its extension to curved surfaces. Such surfaces are challenging within a Lagrangian framework,
as the surface nodes are moving tangentially to the surface. One cannot simply remove the normal
degrees of freedom because the tangential motion of particles would lead to the deterioration of the
curved surfaces. Instead, the normal velocity could be constrained based on the tangential velocity. For
instance, it can be shown that, for a surface with a local radius of curvature r, the normal velocity un
can be related to the the tangential component ut and the time step ∆t through the relation

un =
u2
t ∆t

r
, (7.1)

such that the particle remains on the same arc of circle or radius r. The idea would then be to replace
the momentum equation along the normal direction by the constraint, Eq. (7.1), and then to apply
some small correction to take into account the variability of r along the surface. This would require to
have the exact analytical shape of the surface in memory, with all the complications it may imply. Note
that while this suggestion seems feasible in theory, it might not work in practice5.

No-slip boundary condition
The Dirichlet (no-slip) boundary condition is also challenging in the context of the PFEM. This is
particularly the case when fluid is attaching or detaching from dry walls. To describe the wetting of
a wall, the method described in this work consists in creating some elements adjacent to the wall to
make the junction with the fluid, generating undesired mass conservation error. This issue can be dealt
with similar developments to those of Leyssens et al. [133], reattaching the fluid nodes on the wall, the
latter having its own mesh-independent geometrical description. However, another problem subsists
in the case of the no-slip boundary condition: the de-wetting of the surface is no longer possible as
one prevents the attached node to detach from the surface. Recently, solutions have been proposed by
Rizzieri et al. [136] to address this issue. It consists in allowing the non-sliding nodes to detach from
the boundary when the average velocity of adjacent nodes projected into the normal direction reach
a given threshold. To conclude, the overall promising effect of the approaches of Leyssens et al. [133]
and Rizzieri et al. [136] is to decrease the mass conservation error in the presence of wetting/drying
boundaries, when free-slip and no-slip conditions are respectively imposed on those.

7.1.5.5 Alternative boundary recognition algorithms

One of the major issue faced in this work was the tendency of the α-shape algorithm, a purely
geometrical criterion, to cause mass creation and destruction close to boundaries. While it has been
possible to improve the α-shape technique based on additional criteria involving boundary node tagging,
alternative approaches could be considered. In particular, the drawback of the α-shape technique in the
PFEM lies in its purely geometrical nature, so that more physical approaches may be better suited for
the boundary recognition. A recent example of improvement in the context of the PFEM is the use of
the level set function as a replacement of the α−shape technique [134]. The method shows a significant
improvement in mass conservation, in particular for the drop falling into a bath (see also Section 4.4),
and seems to be a promising step in the right direction.

7.1.5.6 Extension to three dimensions

The main avenue for further improvement concerns the extension of the ideas presented in the first
part of Chapter 3 to three-dimensional tetrahedral meshes. One important aspect in three dimensions
is that the remeshing takes significantly more CPU time, such that re-triangulating the whole cloud of
nodes each time the mesh is locally too distorted should be avoided. Instead, local mesh modifications
should be preferred, as already discussed for two-dimensional triangular meshes in Section 7.1.5.2. For
the rest, the extension to 3D would consist in implementing the ideas developed in Section 3.4, taking
into account the goal of avoiding total re-triangulation of the domain. The reader is referred to Sec-
tion 3.4.4 for the boundary recognition algorithm and the addition/removal of nodes. Additional aspects

5For instance, in the case of inclined flat boundaries, one could keep the original horizontal and vertical components
ux and uy and constrain uy based on ux, or conversely. However, the experience shows that it does not work in practice,
as “no control is given on what is happening in the rotated frame of reference” [24].
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Figure 7.1: Illustration of a variant of the node removal algorithm using the cell-collapse approach, in which
node removal is done directly, instead of tagging the elements and removing them within another loop. In this
illustrative example, the central element has been detected to be too small (too high local nodal density), and is
deleted (smaller black cross) and replaced by a new node (red dot). Its three associated nodes are also deleted
(red crosses). All the adjacent elements sharing an edge are also removed (black crosses), while those only

sharing one node (elements from 1 to 9) replace this node by the new one (red dot). The new mesh is shown on
the right.

should furthermore be considered to enable local remeshing (as already mentioned in the perspectives
of Section 7.1.5.2, not only the fluid elements but all elements should be kept in memory).

On the one hand, when a node is added, on a boundary face or on an edge, as suggested by the
algorithm described in Section 3.4.4, the data structure should be modified locally to incorporate the
new elements, faces and edges associated with this node insertion, and to delete those that are obsolete.
This generally leads to a local non-Delaunay triangulation, such that a few more operations are necessary
to restore the Delaunay triangulation, if desired6.

On the other hand, node removal is a little bit more complex because the removal of tetrahedral
cells and associated nodes directly affects the adjacent cells. For instance, problems arise when nodes
should be removed in two or more regions close to each other, as conflicts between these regions may
exist. To reduce this problem, the modification of the data structure should be local and immediate, as
illustrated in Fig. 7.1 for the 2D case. In this respect, the cell-collapse approach proposed in this work
has an advantage in terms of simplicity for the node removal algorithm: one simply has to replace the
nodes of the collapsed element by the node in its middle, which is the single modification to perform for
the adjacent elements (elements 1 to 9 in Fig. 7.1). The elements having previously two nodes or more
among the deleted nodes are simply deleted (black crosses). This should not lead to any problem in
terms of inverted elements in 3D, as the algorithm is very similar to that for two-dimensional meshes.
The only drawback is the introduction of sharper angles at the inserted node, which can be mitigated by
taking into account that the other nodes of Fig. 7.1 may be removed based on the coarsening criterion
applied to other elements adjacent to those shown in the figure, which would expectedly increase the
angles at the red central node. Again, in case the resulting mesh is not Delaunay, a few more operations
can be performed locally to make it Delaunay, if it is desired.

Note that another advantage of the proposed cell-collapse method is that the nodal insertion suc-
cessfully increases the area of all neighbour elements (from 1 to 9 in Fig. 7.1), thus limiting the potential
diffusion by subsequent node removal

7.2 Flows around symmetrical bodies rising toward a free surface

The second part of the present work consisted in a specific application: the flow around a cylinder and
an axisymmetric sphere rising towards and crossing a free surface at constant velocity. For this problem,
both the free-surface elevation and the vertical forces on the body were investigated, as it is classically
the case in the literature (see Section 5.1). Simulations have been used to analyze the influence of the

6The Delaunay triangulation in 3D has not the optimal properties of the Delaunay triangulation in 2D, such that it is
not detrimental to just leave the mesh like this, and solve the problem on a non-Delaunay mesh.
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Reynolds and Froude numbers. Comparison with experimental measurements have also been proposed.
Finally, a reduced-order model has been developed to predict the film thickness above the body’s apex
(Chapter 6).

7.2.1 Free-surface elevation

First, it has been shown that the surface elevation ys(t) (i.e., the distance of the highest point of
the free surface with respect to the initial free-surface level) mainly depends on the inertia-to-gravity
balance, represented by the Froude number,

Fr =
U2

g a
, (7.2)

where U is the rising velocity of the body, g the acceleration of gravity, and a a characteristic size of
the body (here the radius of the cylinder/sphere). In practice, this has been shown in Chapters 5 and 6
by considering the variation of the distance between the cylinder apex and the top of the free surface,
h(t). In particular, a correlation involving the LambertW function has been fitted for h∗(Fr), h∗ being
defined as h(t) at the time when h(t) and ys(t) coincide (i.e., the cylinder apex is at the level of the
initial free surface), for small values of the Froude number (Fr ≤ 1). Although the Froude number is
the most important parameter in this case, the Reynolds number ReD and the release depth d also have
an indirect impact on the surface elevation through the wake size j∗. In particular, the surface elevation
is larger for a larger wake size j∗(ReD, d), i.e., for larger initial release depth d and smaller ReD. By
opposition, the wake is almost not affected by the presence of the free surface, except during and after
the interface crossing (yc > −1).

To predict the variation of h(t) for different Froude and Reynolds number, radially averaged models
have been proposed in Chapter 6. For both the cylinder and the axisymmetric sphere, it has been
shown that the function h(t) could be expressed with the help of some special function S applied to an
exponential:

h(t) = S(exp(−f(t))) . (7.3)

In particular, the function S is the Lambert W function for the case of the cylinder, and another
"W-looking" function in the case of the sphere. This formalism enabled to greatly simplify the mass
conservation equation, under the assumption that ∂θh� 1, which is known in the literature to hold for
the cylinder, but which is more generally a good approximation for a smooth body surface symmetrical
around its apex7. The simplification yielded an equation relating the argument of the exponential, f(t),
and the cross section average (radial average in 2D) of the azimuthal velocity uθ, in particular in the
small angle limit from the cylinder apex:

∂f

∂t
= (D − 1)

∂uθ
∂θ

, (7.4)

D being the dimension of the problem.

7.2.2 Kinematics of the film above the body’s apex

For the film regime where h(t) < 1, two similar kinematic models have been proposed in Chapter 6
for the cylinder and the sphere. These models leverage the momentum equation along θ evaluated
at the free surface, where the free-surface velocity ut is related to the average velocity uθ through an
assumed velocity profile. In particular, this velocity profile can be characterized as a cubic function in
the boundary layer of thickness δ, followed by a velocity profile of the form 1/r + δr/(1 + δ)2. In this
film model δ is the only quantity that requires calibration and has been assumed to have a Re−1/2

D -
dependency and no dependency on the Froude number, as well as a negligible variation in time. Note
that questioning these assumptions and proposing a better closure model for δ could be a possible
improvement of the present model. This approach enables to neglect the influence of the pressure as
this pressure is constant at the free surface, which greatly simplifies the equations.

7Which is the case for both the cylinder and the sphere.
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It has been shown that the evolution of h(t) above the cylinder/sphere and the corresponding average
velocity uθ are well captured for Froude numbers ranging from 0.25 to 2 and Reynolds numbers ranging
from 500 to 4500, which demonstrates the interest of the proposed film model.

Additionally, when the film reaches a thickness smaller than the boundary layer,

h ' lν < δ(Re) (7.5)

i.e., when it is of the order of the viscous-to-gravity length scale, the model becomes less accurate as it
neglects the dynamics of the boundary layer, the latter becoming determinant in the dynamics of the
film. For that regime, the film model has been modified, assuming a parabolic velocity profile over the
entire film thickness (with the maximum of the parabola at the free-surface). This has been shown to
correctly predict the film thickness in the thin film limit, for both the cylinder and the sphere.

7.2.3 In-depth dynamics

For the dynamics occurring “in depth”, i.e., when the cylinder apex is below the initial free surface
(yc < −1), the main challenge was to understand the effects of (1) the free surface at constant pressure
and (2) the gravity field. In particular, the impact of these two effects has been analyzed by comparison
with the flow around the same body, moving at the same speed in an infinite fluid domain. It has been
shown that these two effects have different relative contributions depending on the Froude number.

For small Froude number (Fr < 1), the effect of gravity dominates, and the bulge forming when the
body approaches the free surface tends to accelerate the flow perpendicularly to the motion of the body
around its apex (larger values of ∂tf in Chapter 6), as illustrated in Fig. 7.2a. The weight of the bulge
also tends to increase the drag and the skin friction coefficient (as shown in Chapter 5), in comparison
to the impulsively started cylinder in an infinite domain at the same Reynolds number. The added drag
Cg coming from the free-surface deformation subjected to gravity has been called the "gravity drag",
and has been approximately related to the free-surface elevation ys.

For large Froude number (Fr � 1), the effect of gravity is small and the main effect stems from the
free surface at constant pressure, which results in an easier displacement of the free-surface material
line in comparison to the same material line within an infinite fluid domain, as illustrated in Fig. 7.3.
This results in a deceleration of the flow perpendicularly to the motion of the body around its apex,
as well as a diminution of the drag and skin friction coefficient, as illustrated in Fig. 7.2b. The drag
deficiency or negative drag Cfs coming from the free surface at constant atmospheric pressure has been
called the "free-surface drag", and has also been related to the free-surface elevation ys. Note that both
the effects of Cg and Cfs are to be taken into account simultaneously for an arbitrary Froude number,
but this has not been investigated in the present work. It could however be considered for future work,
as discussed later in Section 7.2.6.1.

7.2.4 Comparison with experiments

Finally, some comparisons with experiments using oil have been performed at Reynolds numbers
below 1200 for the cylinder case. Both the experimental film thickness h(t) and drag force have been
compared to those predicted by the simulations. Despite some discrepancies arising from the 3D nature
of the flow in the experiments (finite aspect ratio of the cylinder), a good match has been obtained
for h(t). For the drag, several observations have been made. When the cylinder was below the free
surface (yc < −1), good match between experiments and simulations has been observed, except during
the acceleration phase, or when the wake became unstable. In particular, the acceleration delayed the
maximum drag in comparison to that obtained very soon after the impulsive start in the simulations
(see Fig. 5.34). For the experiments, the drag reaches its maximum very soon after the end of the
acceleration phase, and its maximum is located very close to the corresponding value obtained in the
simulations for the same cylinder position yc.

During the interface crossing and after, a local maximum of the drag was observed when the wake
thickness below the cylinder reached a value around 1.2 radii, except for the smaller velocities where it
was slightly smaller. It has been shown that this maximum drag was due to a suction effect resulting
from a decreasing pressure below the cylinder. This effect is maximal at a time t∗ when the product of
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Figure 7.2: Schematic comparison of the flow dynamics around a rising cylinder between two regimes where
the Froude number is either smaller or much larger than 1. For small Froude number (a), the gravity effects are
large. As the cylinder/sphere approaches the free surface, it results in an increase of the azimuthal velocity uθ,
as well as of the drag and skin friction coefficients, compared to the flow around the same body (same speed
and same Reynolds number ReD) in an infinite fluid. For Froude number much larger than 1 (b), the gravity
effects are small and the main effect is the easier pushing of the flow above the cylinder, due to the free surface
at constant pressure, compared to the case in an infinite fluid. Consequently, as the cylinder approaches the

free surface, there is a progressive decrease of the azimuthal velocity uθ, as well as of the drag and skin friction
coefficients, compared to flow around the same body in an infinite fluid.

low pressure and wake width ∆ is maximal. This also explains why the maximum observed drag was
proportional to this wake thickness at that time t∗, and why the drag progressively decreases as the wake
thickness decreases afterwards. In addition, the weight W of the annulus of fluid around the cylinder
at the time t∗ is also proportional to this wake thickness at that time, which explains the correlation
between this weight and the maximum drag, where an average ratio of 1.4 has been found between both.
Finally, if one divides the forces by W (given by Eq. (5.17)), and use a common "gravitational" time
tg =

√
g
a t for each curve, all the curves collapse, as shown in Fig. 5.41, indicating that the drainage

dynamics in the film is driven by gravity.

7.2.5 Case of a highly viscous fluid

The case of the rising cylinder has also been studied in the very small Reynolds number regime
(ReD < 1), for a constant value of the Froude number, Fr = 1, where, by opposition to the previous
cases, it has a strong impact on the free-surface deformation. A power law has been obtained for the
wake width w(t), which can be derived from a very simple stretching model. For the different Reynolds
numbers, the wake reaches, after the interface crossing (yc > 1), a characteristic length Lw, which is
defined as the distance travelled by the cylinder, starting from a release depth of one diameter (i.e.,
with a thickness of one radius of fluid initially above the cylinder) until the wake thickness reaches a
size of one diameter. Here again, Lw is related to ReD through a quasi-power law, obtained empirically.
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𝐹𝑟 → ∞

Material line (p = 𝑐𝑜𝑛𝑠𝑡)

U
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Infinite fluid 

Material line (p ≠ 𝑐𝑜𝑛𝑠𝑡)
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Figure 7.3: Schematic illustration of the easier displacement of a material line at constant atmospheric
pressure (i.e., the free surface), when a moving body approaches it (a), in comparison to the displacement of

the “same” material line in an infinite fluid domain (b).

7.2.6 Perspectives for future studies

While significant efforts have been made to cover in depth the subject of interface crossing, there is
still much room for improvement regarding this topic. In particular, one can cite: (1) the drag model
during the rise of the cylinder below the free-surface, (2) the wake dynamics after the interface crossing,
(3) the film dynamics above the apex of the body. Perspectives regarding these three flow features are
given in the following paragraphs.

7.2.6.1 Drag and skin friction dependency on Fr

Considering the total drag CD on the cylinder as well as the skin friction cf along its surface, increased
values of these quantities have been observed at small Froude number, with respect to those obtained
in an infinite domain for the same Reynolds number, i.e., with more or less the same wake dynamics.
By opposition, lower values have been obtained at large Froude number. The increases and decreases
of the total drag, respectively at small and high Froude number, have been roughly correlated with
the free-surface elevation ys, but the limited sampling among the possible values of the Froude number
prevented the development of a solid model valid for a wide range of Fr.

Therefore, a natural extension of this work would be to investigate in more depth the link between the
variation of the drag excess Cg or drag deficiency Cfs, and other quantities (ys(t), h(t), etc.) with respect
to the flow parameters (Froude number Fr, release depth d,...) and variables (ys,h(t),...). Concretely,
this would require additional simulations to further explore the parameter space.

7.2.6.2 Wake dynamics above the free surface

At the end of Section 5.2.2.2 it is referred to Appendix G, where it is theoretically shown that the
amount of entrained liquid below the cylinder and the characteristic elevation of this entrained liquid
above the initial free surface result from a momentum-to-gravity balance. First, the total vertical fluid
momentum stored in the wake depends on the history of the cylinder motion occuring below the free
surface. It therefore depends on both the release depth and the Reynolds number, while being almost
independent of the Froude number. Then, during and after the interface crossing, the gravity starts to
have an influence, progressively decreasing the vertical momentum of the entrained liquid, this decrease
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becoming gradually stronger as more fluid is going above the initial free surface. As a consequence,
the characteristic elevation of the wake has been shown to result from a balance between the stored
momentum and the gravity magnitude. This is reflected by an elevation length scale that depends on
both the Froude number Fr and the characteristic wake length Lc.

Verifying this scaling is however challenging. On the one hand, the unstable nature of the wake
dynamics results in a chaotic behavior of the wake. This means that different simulations of the same
problem lead to different wake dynamics above the free surface. As a consequence, any analysis of this
problem should involve statistical tools, such as averages over different simulations of the same problem,
which makes this investigation very expensive in terms of CPU time. On the other hand, one needs to
define a practical way to measure the “characteristic wake elevation”, which is not obvious a priori.

Unfortunately, because of these difficulties, the characteristic wake elevation has not been measured in
simulations. Moreover, not enough simulations could be performed in order to compute such statistical
averages. However, these steps represent a natural possible extension of this work.

7.2.6.3 Dynamics of the film above the body’s apex

The film model of Chapter 6 relies on the θ-momentum equation evaluated at the free surface. In
contrast, an alternative approach could consist in modelling the dynamics inside the film. While the
parameter α of Eq. (6.64) can be closed using the assumed velocity profile for uθ(r), the term χ requires
the closure of the pressure term, which involves the radial momentum equation. In particular, the
pressure terms of order8 2n in θ in the r-momentum equation translate into terms of order 2n − 1 in
the θ-momentum equation. To address this, one can leave the dependency on θ unknown and solve the
system of differential equations for the variables t and θ, which requires boundary conditions and some
a priori knowledge of the film-pool interactions.

Another possible approach is to close the system of equations by truncating the dependency on
θ up to a given order, and balance terms of equal order in θ in both the momentum (i.e., the one
remaining after eliminating the pressure) and mass conservation equations. This leads to a total of
2n + 2 equations associated with the couple of unknowns (ur,2i(t), uθ,2i+1(t) ) for i = 0, ..., n. With
this approach the difficulty lies in the increasing number of equations up to the order considered and
in the closure hypotheses required for the truncation at that order, the former being related to some
assumptions on the flow.

Alternatively, in the context of the proposed model that relies on the free-surface momentum equa-
tion, a better closure model for the parameter δ could be proposed. This could be done for instance by
introducing the assumed velocity profile for the boundary layer into the Navier-Stokes equations and
integrating them over the boundary layer thickness. However, unfortunately here again the difficulty
stems from closing the pressure term that depends on terms of higher order in θ, as discussed above.

At last, the proposed film model, which does not rely on a thin film approximation, and its general
framework could be extended to address other, more complex surface geometries.

7.3 Final words

In this work, the state of the art associated with the PFEM has been pushed forward in two specific
directions. First, the α-shape technique has been modified by adding criteria based on node tagging,
thus improving mass conservation properties, but without completely removing the fundamental limi-
tation of the method in this regard. Although other efforts have contributed to improving the α-shape
technique (for instance Leyssens et al. [133] with Delaunay refinement), alternative approaches to this
purely geometric-based α-shape technique, such as for instance the PFEM combined with a level set
method [134], could also be considered.

Secondly, novel remeshing techniques have been proposed, which rely on different existing concepts
found in the literature, such as size field (or target mesh size), cell-collapse and edge bisection. The
novelty of the approach lies in the area-based criterion for node addition and removal, and the related
concepts of nodal density and nodal fraction. In particular, these concepts have been used to develop

8The radial momentum equation is even in θ by symmetry.
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a theoretical extension of the proposed mesh adaptation techniques to three dimensions. Irrespective
of the number of space dimensions, the goal was to be able to enforce a distribution of nodes with a
density as close as possible to that prescribed by the size field. This can only be achieved by clearly
defining the concept of node density. To the author’s best knowledge, the question of measuring the
local density of nodes in a mathematically rigorous way was yet unexplored, and the definition of the
nodal density given in Chapter 3 represents an important contribution in that regard.

In the second part of this work, the understanding of the flow dynamics, and in particular the
film dynamics, above a cylinder/sphere exiting a bath has been improved. Specifically, the physics
underlying the surge of the free surface and the associated drag exerted on the cylinder/sphere are now
better understood. In addition, the film drainage near the cylinder/sphere apex has been described
through the use of a new film model. The originality of the model is that it does not rely on a thin
film approximation, and therefore offers perspectives for generalization. In particular, one can wonder
whether the vanishing contribution of the stress in the momentum equation for the bulk layer also
applies to other cases involving large films with internal boundary layers and, if it is the case, under
what conditions. The vanishing stress would then provide a tool to compute velocity profiles in the film,
which in turn would allow reducing the equations to one single space dimension.

Finally, several avenues have been proposed for further improving the PFEM, and we hope that
the method will continue to develop in the near future. On the other hand, the new contributions
towards better understanding and modeling the physics of interface crossing open the way to further
improvements in the field. For example, the film model and empirical relations proposed in this work
could potentially find direct application in coating and related fields or, at least, offer a strong basis for
the development of new models. Nonetheless, much remains to do.
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Appendix A

Analytical solutions for the solution-based
mesh refinement

The solution-based mesh refinement being function of the norm of the velocity gradient matrix, it is
shown how it behaves with the spatial coordinates for different analytical solution. The following 2D
cases in polar coordinates are considered:

The first case is a general solution such that

u−U∞ = (a cos θ, b sin θ)rξ , (A.1)

a, b and ξ being some parameters. Note the potential flow around a cylinder, of velocity U and radius
R, enters in that category with the choice a = −UR2, b = UR2 and ξ = −2. The second case is that of
a vortex, such that

u−U∞ = (0, a rξ) . (A.2)

Note that Euler vortex of circulation Γ enters in that category with the choice a = γ
2π and ξ = −1.

Let’s first look at the first case. By mass conservation, one has that

∂rur
∂r

+
∂uθ
∂θ

= 0 (A.3)

⇐⇒ (A.4)

∂(rξ+1)

∂r
a cos θ +

∂(sin θ)

∂θ
brξ = 0 (A.5)

⇐⇒ (A.6)
(ξ + 1)a = −b , (A.7)

which enables to rewrite b as −(ξ + 1)a. From this velocity field, the velocity gradient matrix can be
computed, and has the following form

∇u =

(
∂ur
∂r

1
r
∂ur
∂θ − ∂ur

∂r
∂uθ
∂r

1
r
∂uθ
∂θ + ur

r

)
, (A.8)

and whose the norm is

||∇u|| =
√(

∂ur
∂r

)2

+

(
1

r

∂ur
∂θ
− ∂ur

∂r

)2

+

(
∂uθ
∂r

)2

+

(
1

r

∂uθ
∂θ

+
ur
r

)2

. (A.9)

In our first case (Eq. (A.1)), one gets

∇u =

(
aξ rξ−1 cos θ aξ rξ−1 sin θ

−a(ξ + 1)ξ rξ−1 sin θ −aξ rξ−1 cos θ

)
(A.10)

and
||∇u|| = |aξ| rξ−1

√
2 + (2ξ + ξ2) sin2 θ . (A.11)

204



On the other hand, for the second case (Eq. (A.2)) one gets

∇u =

(
0 −arξ−1

aξrξ−1 0

)
(A.12)

and
||∇u|| = |a|rξ−1

√
1 + ξ2 . (A.13)

This demonstrate that, for these two cases, the norm of the velocity gradient is one order less in term
of the radius with respect to the initial velocity field (removing the constant term U∞ that does not
play any role in the computation of the velocity gradient). A good choice of the exponent parameter β
of the solution-based imposition of L∗ (Eq. (3.23)) can therefore be made by using our knowledge on
ξ. If this scaling of the flow is not a priori known, another possibility is to use the rescaled version of
the solution-based criterion, which uses the normalized velocity gradient defined by Eq. (3.24). In these
two cases, the relative velocity gradient simply scale as r−1 such that an appropriate choice of β is 1.
Lets quickly demonstrate that the scaling is indeed of order −1 with respect to r:

For the first case (Eq. (A.1)) the norm of the velocity field (in the moving frame of reference to cancel
U∞) is given by

||u− U∞|| =
√
a2r2ξ cos2 θ + (1 + ξ)2a2r2ξ sin2 = |a| rξ

√
1 + (2ξ + ξ2) sin2 θ , (A.14)

and the normalized norm of the velocity gradient is then given by

||∇u||
||u− U∞||

= |ξ| r−1

√
2 + (2ξ + ξ2) sin2 θ

1 + (2ξ + ξ2) sin2 θ
, (A.15)

which is well of order r−1 as expected 1. Now if the second case is taken back (Eq. (A.2)), one simply
has

||∇u||
||u− U∞||

=
|a|rξ−1

√
1 + ξ2

|a|rξ =
√

1 + ξ2r−1 , (A.16)

which is again well of order r−1 as expected.
This finishes to demonstrate how relevant is the solution-based criterion for the definition of L∗.

Even if particular mass-conservative forms have been taken2 to justify it, it is reasonable to assume that
the norms of the velocity and its gradient around a body are scaling, in a first approximation, as some
power of the distance to that body, which is an assumption that helps for choosing good parameters for
the solution-based criterion.

1Note that the dependency on θ also disappears for ξ = −2, which corresponds to the case of a potential flow around
a cylinder.

2It has not been checked whether or not such a flow satisfies the momentum equation: there is no guarantee that only
a pressure field can balance it. However, an arbitrary external force can.
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Appendix B

Hessian matrix and higher order
derivatives computation with a linear
finite element formulation

This section provides the way to compute the Hessian matrix with linear finite element in the context
of anisotropic mesh refinement. This is not directly used in the present work but it is an interesting
perspective for alternative ways of doing solution-based mesh refinement. Note that this section also
describes how higher order derivatives can be approximated.

second order derivative at the element level

As a reminder the Hessian matrix related to one scalar field η (which can be any component of the
velocity field or the pressure) is given by (in index notation):

Hi,j =
∂2η

∂xi xj
. (B.1)

In particular, one needs a discrete expression associated to each element, such that the average of that
matrix can be taken at the element level:

∂2η

∂xi xj
= Hi,j =

∫
Ve
Hi,jdV

Ve
, (B.2)

where Ve is the element volume (area). To compute this quantity, Gauss Theorem can be used in the
special case of a scalar φ multiplied by the external normal vector, integrated on the surface (in index
notations): ∫

Se

φnidS =

∫

Ve

∂φ

∂xi
dV . (B.3)

Replacing φ by ∂η
∂xj

into this equation yields to:

∫

Se

∂η

∂xj
nidS =

∫

Ve

∂2η

∂xj∂xi
dV = Hj,iVe , (B.4)

which gives each component of our Hessian matrix multiplied by the volume Ve. As linear finite elements
are used, this should gives 0 = 0 if only the gradients inside this element are taken into account. In
fact these gradients are discontinuous from one element to another, and some averaging between these
discontinuous values can be done at the edge level in order to avoid a trivial results. The simplest
solution would be to take the arithmetic average of the two adjacent gradients, which should work fine
for uniform meshes made of equilateral triangles. However, better approximations should be possible to
get considering weighted averages based on the relatives size of adjacent triangles. Note that this is for
instance the case for the computation of second derivative at the node level, rather than at the element
level.
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Second order derivative at the node level

Computing the second order derivatives is in fact what is done when the discrete matrices are built
from the finite element discretization. Suppose that a node is surrounded by Ne elements eI . The
second order derivative at this node is given by the following weighted average

∂̃2η

∂xj∂xi
=

∑N
I=0

∫
eI

∂2η
∂xj∂xi

N̂ I(x, y)deI
∑N

I=0

∫
eI
N̂ I(x, y)deI

=

∑N
I=0

∫
eI

∂2η
∂xj∂xi

N̂ I(x, y)deI

1
3

∑N
I=0 VeI

, (B.5)

where the N̂ I(x, y) are the linear shape functions associated at each adjacent elements that are equal to
1 at the node, and where the "wide tilde" notation has been used to make a difference with the average
at the node level from that at the element level (horizontal line). The numerator of this expression is
of course formally 0, but using the same trick as before, Gauss theorem can be used to transfer one
derivative from η to the shape function. The surface terms coming from this operation should formally
not cancel out in between element, as the first order derivative is discontinuous here. However, it is
assumed continuous as before, in order to get a non trivial expression of the second derivative. This
finally gives

∂̃2η

∂xj∂xi
= −

∑N
I=0

∫
eI

∂η
∂xj

∂N̂I(x,y)
∂xi

deI

1
3

∑N
I=0 VeI

, (B.6)

that can be computed since only first order derivatives of the shape functions appear.

Approximation of higher order derivative at the node level

Now, using a similar reasoning, the way to compute estimations of the higher order derivative is
shown. Assuming that it is required to compute the third-order derivative of the variable η:

∂3η

∂xi∂xj∂xk
. (B.7)

It immediately follows that, using a similar reasoning than above,

∂̃3η

∂xi∂xi
= −

∑N
I=0

∫
eI

∂2η
∂xi∂xj

∂N̂I(x,y)
∂xk

deI

1
3

∑N
I=0 VeI

, (B.8)

where a second order derivative of η appears at the numerator. It can be approximated using the
average at the element level (components of the Hessian matrix at the element level),

∂2η

∂xi xj
, (B.9)

which requires quantities of the elements adjacent to these elements adjacent to the node. Finally, one
has

∂̃3η

∂xi∂xi
= −

∑N
I=0

∫
eI

∂2η
∂xi∂xj

∂N̂I(x,y)
∂xk

deI

1
3

∑N
I=0 VeI

. (B.10)

As one can see, higher order derivatives can be approximated within a linear finite element formulation,
by considering quantities associated to element further and further away, as it is the case for all type of
space discretisation. However, in our context, because of the mesh non-uniformity, the accuracy on those
approximation becomes poorer and poorer, such that in most cases, only the second order derivative at
the node level are considered in the discretized equation. Nevertheless, approximation of higher order
derivatives could be considered as a criterion to set the target mesh size, estimate computational errors,
etc..., because there the accuracy is not so crucial than for solving the numerical equations.

Finally, to come back to our original concern, i.e., the use of the Hessian matrix to define a mesh
refinement metric, there is another difficulty, assuming that the Hessian matrix has been correctly
computed.
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The difficulty is that, since there is one Hessian matrix for each of the variables (components of the
velocity and pressure field), a clever way to combine them should be found to get the anisotropic metric
that would lead to a local mesh size minimizing the overall local error, but this question would lead too
far.

208



Appendix C

Equivalent system of partial differential
equations

We give a more detailed analysis of the influence of the time discretization on numerical errors,
compared to that what is done in Section 3.3. The present analysis is based on the Equivalent system
of partial differential equations of the semi-discrete backward Euler scheme (continuous in space and
discontinuous in time), to evaluate, at the more fundamental level, the impact of this scheme for the
Lagrangian form of the Navier-Stokes equations.

The incompressible Navier-Stokes equations are expressed using a Lagrangian formalism, which can
be written as follows,

Du

Dt
= −1

ρ
∇p+ ν∆ u + f = a , (C.1)

∇ · u = 0 (C.2)
Dx

Dt
= u , (C.3)

where x,u,a are respectively the position, the velocity and the acceleration vectors, ρ is the fluid density,
∇p is the pressure gradient, ∆ u is the Laplacian of the velocity field, and f is the vector of body and
surface forces.

The Lagrangian formalism, as a reminder, implies that there is no convective terms, because the
time derivatives D·

Dt are material derivatives, which measure the time variation of quantities attached
to moving fluid particles. Within this formalism, the position of the moving particles should also be
updated which is represented by the last equation.

The equation C.1 is the incompressibility constraint. As it does not include any time derivative, it
makes the use of explicit scheme complicated even if some solution exists as the fractional step methods.
Therefore, in this thesis, an implicit backward Euler scheme was used, such that the system of PDE
from Eqs. (C.2) to (C.3) is time-discretized using the following set of equations1,

un+1 − un

∆t
= −1

ρ
(∇p)n+1 + ν(∆ u)n+1 + fn+1 = an+1 , (C.4)

(∇ · u)n+1 = 0 (C.5)
xn+1 − xn

∆t
= un+1 , (C.6)

where ∆t is the time step, and the subscripts n and n+ 1 respectively represent the successive times t
and t+ ∆t. Note that the acceleration as been rewritten in a compact form using a.

To evaluate the error introduced by this time discretization, the equivalent system of partial differ-
ential equations must be derived. To do so, each term is approximated using a Taylor expansion around
a time in between t and t + ∆t, at a time t + ε∆t, with 0 < ε < 1. Note that the subscript used for
that time is simply n+ ε.

1In this analysis, only the time discretization is considered, assuming that the space discretization is ideal,i.e., that it
does not introduce errors or stability problems. This can be done considering the great stability properties of that time
scheme
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Equivalent differential equations

The Taylor development of each terms of Eqs. (C.4) to (C.6) are detailed around any time t+ ε∆t,
between t and t+ ∆t. As one can see, both of the equations to update the velocity and the position of
the fluid particles have a form

ξn+1 − ξn

∆t
=
Dξ∗

Dt

∣∣∣∣
n+1

, (C.7)

where ξ are either the positions or the velocities2. Since they have the same form, the development
into Taylor series is similar for each case and leads to similar expression of the truncation error.

The mass conservation equation is slightly different. As seen in Section 3.3, with a backward Euler
time integration, the variation of the area of an element is larger at the beginning of a time step, and
0 at the end of the time step (see Eq. (3.63)). This result can in fact be formally written using the
Equivalent differential equation of the discrete divergence-free equation. However, for the EDE, we
want to have an error representative of the overall mass conservation error occurring during a time
step. Before going there, a small mathematical artifice is introduced, which is justified at posteriori.
It consists in introducing a scalar function φ∗ whose the particulate time derivative corresponds to the
divergence of the velocity field:

Dφ∗

Dt
= ∇ · u∗ . (C.8)

From there, the implicit backward Euler scheme would writes

φ∗,n+1 − φ∗,n
∆t

=
Dφ

Dt

∣∣∣∣
n+1

, (C.9)

which has the same form than Eq. (C.7) but where the ∗ subscript has been placed on the LHS.
Afterwards, all the quantities need to be expressed around t+ ε∆t using Taylor expansion. One has

ξn+1 = ξn+ε + (1− ε)∆t Dξ

Dt

∣∣∣∣
n+ε

+
(1− ε)2

2
∆t2

D2ξ

Dt2

∣∣∣∣
n+ε

+O(∆t3) , (C.10)

ξn = ξn+ε − ε∆t Dξ

Dt

∣∣∣∣
n+ε

+
(ε)2

2
∆t2

D2ξ

Dt2

∣∣∣∣
n+ε

+O(∆t3) , (C.11)

Dξ∗

Dt

∣∣∣∣
n+1

=
Dξ∗

Dt

∣∣∣∣
n+ε

+ (1− ε)∆t D
2ξ∗

Dt2

∣∣∣∣
n+ε

+O(∆t2) , (C.12)

ξn+1 − ξn

∆t
=
Dξ

Dt

∣∣∣∣
n+ε

+ (
1

2
− ε)∆t D

2ξ

Dt2

∣∣∣∣
n+ε

+O(∆t2) , (C.13)

where Eq. (C.13) is obtained by subtracting C.10 from C.11 and dividing by ∆t. Finally, replacing
Eqs. (C.13) and (C.12) into Eq. (C.7) yields

Dξ

Dt

∣∣∣∣
n+ε

=
Dξ∗

Dt

∣∣∣∣
n+ε

+
1

2
∆t

D2ξ∗

Dt2

∣∣∣∣
n+ε

+O(∆t2) , (C.14)

which leads to Eqs. (C.25) and (C.27) respectively for the velocity and the position updates. The mass
conservation equation is obtained by using the scalar function φ instead of ξ inverting the position of
the ∗ symbol:

Dφ∗

Dt

∣∣∣∣
n+ε

=
Dφ

Dt

∣∣∣∣
n+ε

+
1

2
∆t

D2φ

Dt2

∣∣∣∣
n+ε

+O(∆t2) . (C.15)

Furthermore, by noting that Dφ∗

Dt

∣∣∣
n+ε

= (∇ · u∗)|n+ε = 0 by definition of an incompressible flow, one
finally gets

2the ∗ subscript on the RHS is used to make the difference between the real values obtained from the scheme from the
ideal ones, i.e., the one that would be obtained if no error was introduced during a time step (they differ only by a term
proportional to ∆t)
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Dφ

Dt
= −∆t

2

D2φ

Dt2
+O(∆t2)

⇐⇒

∇ · u = −∆t

2

D(∇ · u)

Dt
+O(∆t2) , (C.16)

where the n+ε subscript has been removed has the expression is valid for all ε (i.e., it does not appear in
the leading term of the truncation error). From there, we can already see that the continuity equation
is second order accurate in time. Indeed, if one assumes a local solution of the differential of the form 3

∇ · u(t) = Cn+1(tn+1 − t)γ = Cn+1(−t)γ , (C.17)

one solution is given by choosing γ = 2 at t = −∆t. On the other, the additional stabilization terms
of the PSPG method consist in some projected residual of the momentum conservation equation, which
is well known to be only first order accurate in time with a backward Euler time integration scheme.
Therefore, this additional term immediately implies that the continuity equation also becomes first order
accurate in time, making the stabilization the main responsible for numerical mass conservation errors.

detailed derivation of the equivalent mass conservation equation

The remaining difficulty is to evaluate the term D(∇·u)
Dt to relate it with other physical quantities.

Unlike the partial derivative, the particulate derivative defined as

D·
Dt

=
∂·
∂ t

+ ui
∂·
∂xi

, (C.18)

where the index notation with Einstein summation convention is used, does not commute with space
derivative (the indices corresponds to the different space directions). For instance, the divergence of the
acceleration a is given by

∇ · a = ∇ ·
(
Du

Dt

)
=

∂

∂xj

(
∂uj
∂t

+ ui
∂uj
∂xi

)

=

(
∂2uj
∂t∂xj

+ ui
∂2uj
∂xi∂xj

)
+
∂ui
∂xj

∂uj
∂xi

(C.19)

=

(
∂·
∂ t

+ ui
∂·
∂xi

)
∂uj
∂xj

+
∂ui
∂xj

∂uj
∂xi

(C.20)

=
D

Dt
(∇ · u) +∇u : ∇uT , (C.21)

which can be rewritten
D

Dt
(∇ · u) = ∇ · a−∇u : ∇uT . (C.22)

Finally, this can be inserted in Eq. (C.16) to get Eq. (C.29), rewritten here as

∇ · u = −
(
∇ · a−∇u : ∇uT

) ∆t

2
+O(∆t2) . (C.23)

Remark

For the velocity and the position, since the first order term of the truncation error does not depend
on ε, it can be removed from Eqs. (C.25) and (C.27) to get Eq. (C.28) and (C.30), as already mentioned
in the corresponding section. The goal of the use of the mathematical artifice for the mass conservation

3tn+1 = 0
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equation is precisely to remove the dependence of the truncation error on ε. Indeed, ones could simply
have used a Taylor development for the constraint (∇ · u)n+1 to get

(∇ · u)n+1 = (∇ · u)n+ε +
(

(∇ · a)n+ε − (∇u : ∇uT
)n+ε

)
(1− ε)∆t = 0 , (C.24)

which does depend on ε. This makes sense because, as the constraint is at n + 1, the error on mass
conservation is smaller when ε is close to 1. However, using the φ function, the value obtained as
a coefficient of ∆t was 1

2 which is the average of all possible value of ε between 0 and 1, describing
some average error on mass conservation from the time step, which is what is needed to get a correct
equivalent differential equation.

Final form of the equivalent system of differential equations
The analysis performed in the previous paragraphs finally leads to the following system of equations,

Du

Dt

∣∣∣∣
n+ε

= an+ε +
D2u

Dt2

∣∣∣∣
n+ε

∆t

2
+O(∆t2) , (C.25)

(∇ · u)|n+ε = −
(

(∇ · a)n+ε − (∇u : ∇uT
)n+ε

) ∆t

2
+O(∆t2) , (C.26)

Dx

Dt

∣∣∣∣
n+ε

= u + an+ε∆t

2
+O(∆t2) . (C.27)

Remarkable enough, the first order term (in ∆t) does not depend on ε which makes the relation valid
for all ε such that it can just be dropped from the equations, which gives

Du

Dt
= a +

D2u

Dt2
∆t

2
+O(∆t2) , (C.28)

∇ · u = −
(
∇ · a−∇u : ∇uT

) ∆t

2
+O(∆t2) , (C.29)

Dx

Dt
= u + a

∆t

2
+O(∆t2) . (C.30)

From that equivalent system of equations, a few observations can be made. The first equation dictates
the variation of the velocity of a fluid particle. The correct solution should be given by the acceleration
at that time, i.e., the sum of the forces divided by ρ. Instead, the truncation error term includes the
second derivative of the velocity vector. In other words, the error at each time step is proportional the
the time variation of the acceleration of that particle. The main famous example of such an error is the
braking of a particle in circular motion, which explains why the vortices artificially and slowly decay
over time.

The second equation shows that the velocity field is not exactly divergence free. Even if one has
the discrete constraint (∇ · u)n+1 = 0, this equation reflects the fact that the divergence of the velocity
field is not 0 at each time, but proportional4 to ∆t2, and to the difference between the divergence of
the acceleration field and the inner product of the velocity tensor with its own symmetric tensor, which
is directly related to the pressure field though the Poisson equation5:

−1

ρ
∆ p+∇ · fbody = ∇u : ∇uT = ∇ · a +O(∆t) , (C.31)

where a potential divergent body force field fbody has been included (which is rather rare in practice
as body forces mostly consist in gravity, which is divergent-free).

4The term into brackets is the divergence of the residual of the momentum conservation equation, which is known to
be proportional to ∆t, bringing a total dependency on ∆t2

5In fact, the term into brackets corresponds to the divergence of the residual of the momentum conservation equation.
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Appendix D

Surface tension and convergence of the
non linear algorithm

Convergence criterion

In this work, the solution of one implicit time step is obtained by using a Picard algorithm. Let’s
denote by the subscript n+ 1, k, the kth iteration to find the value of our variables qn+1 (velocity and
pressure in our case). The Picard algorithm consists in solving the following system of equations1 many
times to obtain qn+1,k+1 from qn+1,k until convergence:

Mn+1,k(qn+1,k)qn+1,k+1 + Kn+1,k
int (qn+1,k)qn+1,k+1 = fext

n+1,k(qn+1,k) . (D.1)

In this equation, M is the mass matrix, Kint is the matrix of internal forces (viscous stresses and pressure
gradients) and fext is the vector of external forces (body forces, surface traction, surface tension, etc...).
It can be noted in a compact form, rewriting the matrix×vector products as force vectors2:

fine(k, k + 1) + fint(k, k + 1) = fext(k, k + 1) . (D.2)

After each iteration, the residual vector Rk+1 is computed as

Rk+1 = fine(k, k + 1) + fint(k, k + 1)− fext(k, k + 1) . (D.3)

This should be close to a null vector at convergence. From this vector, a scalar value of the residual is
computed:

resk+1 =
||Rk+1||

NormFactor
, (D.4)

where NormFactor is either a user defined value (a good practice is to use NormFactor = ρ g when
gravity is involved) or based on a global scaling computed from the forces:

NormFactor = ||fine||+ ||fint||+ ||fext|| . (D.5)

From there, the user has to define a tolerance, tol below which the solution is considered to be converged,
such that the next time iteration can start. In other words, the nonlinear iterations stop when

resk+1 < tol . (D.6)

Note that in this work, most simulations have used that criterion with NormFactor = ρ g and tol = 10−6.
1The incompressibility constrains and the stabilization terms are not shown here as there are not involved in the

computation of the residual. Note that a similar criterion exists, which uses the residual on the stabilization terms instead
of the momentum conservation.

2the subscripts have been removed as it involves both contribution at k and k + 1
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𝒓 F = - σ dl
𝒓

| 𝒓 |𝟐

dl

Figure D.1: Illustration of the computation of the surface tension force, which depends on positions of the
nodes at n+ 1 and therefore need non linear iteration to converge.

Surface tension

The surface tension developed by Marco Lucio Cerquaglia in his code is computed as illustrated in
Fig. D.1. It is based on the radius of curvature of the surface, which is computed as the radius of the
circle circumscribed to the triangle made by a node on the free surface and its two neighbours on that
free surface. It is given by the following formula,

F = −σ dl r

||r||2 , (D.7)

where σ is the surface tension at the interface, r is a vector joining the center of the circle to the node
on which the surface, and dl is the sum of the projections of the two half free-surface edges on the
direction perpendicular to r, as illustrated in Fig. D.1.

Without this force, the right hand side of Eq. (D.1) would normally remain constant over the non
linear iterations, which is why the Picard algorithm is also referred as the fixed-point algorithm. The
fact that this is not the case with surface tension renders the convergence less easier. Moreover, this
difficulty of convergence is further aggravated by the fact that the surface tension force depends on both
the amplitude and the direction of r, which is function of the nodal positions in an highly non linear
way.

Therefore, when using surface tension, the PFEM user should either use a smaller time step to limit
surface deformation and makes the convergence easier, either use another nonlinear algorithm which
is less affected by this issue. For instance, another PhD student working on PFEM, Simon Février,
pointed out that this problem was lowered using a Newton-Raphson algorithm. However, in this work,
the Picard algorithm was used as it has been shown to be efficient in most applications, while remaining
quite simple, provided that an adapted time step is chosen3.

3Note that an adaptive time step routine has been added to Cerquaglia’s implementation to reduce the time step when
convergence issues where encountered
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Appendix E

The Viscous-gravity length scale

Here, the goal is to derive the length scale lν at which the gravity and the viscous forces balance,
such that the other sources, inertial terms and pressure terms, are only considered in the next order
in h(θ, t). The local Reynolds number Reν depends on both that length scale lν and a characteristic
velocity Uc:

Reν =
Uc lν
ν

. (E.1)

To get an estimate of that characteristic velocity, the following fact is leveraged: the viscous term,
related to the velocity gradients and scaling as ν Uclν , should balance with the gravity term scaling as glν .
In other words, the shear force related to the velocity gradient in the film of thickness lν should balance
the gravity force glν , which writes

ν
Uc
lν

= g lν . (E.2)

Isolating Uc finally gives

Uc =
g l2ν
ν
. (E.3)

This can only make sense if the viscosity effects are important, which can be written as Reν = 1, and
inserted in Eq. (E.1), together with the expression of Uc, given by Eq. (E.3):

1 =
g l3ν
ν2

. (E.4)

Finally, lν can be isolated to get

lν =

(
ν2

g

) 1
3

. (E.5)

Of course, a normalized form can be obtained by dividing both sides of this equation by the radius
a, where the Reynolds number ReD = 2Rea = 2U a

ν and the Froude number Fr = Fra = U2

g a appear,
which gives

lν
a

=

(
4Fr

Re2
D

) 1
3

. (E.6)

Note that in the body of the thesis, lνa was noted as lν as each quantities were non-dimensionalized in
the section where lν has been introduced.
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Appendix F

Link between vorticity and skin friction
coefficient at the cylinder surface

In this section, the link between the voriticity at the cylinder surface and the skin friction coefficient
is derived. The skin friction is defined by Eq. (5.5),

cf =
µ∂ut∂n
1
2ρU

2
, (F.1)

which can be non-dimensionalized using ut = Uût and n = an̂ where ∂ût
∂n̂ is the non-dimensional

derivative of the tangential velocity along the normal direction. With a few manipulation, the friction
coefficient can be rewritten

cf =
4

ReD

∂ût
∂n̂

, (F.2)

where the hats are dropped from the notation from this point, remembering that each variable is non-
dimensional. To get ∂ut

∂n from the velocity gradient matrix ∇u, this last is projected on the normal
vector n, the resulting vector being in turn projected on the tangent vector t,

∂ut
∂n

= t · (∇u) n , (F.3)

where, at a position θ on the cylinder surface, n,t and ∇u are given by

n = (cos θ, sin θ) , (F.4)
t = (sin θ,− cos θ) , (F.5)

∇u =

(
∂ux
∂x

∂ux
∂y

∂uy
∂x

∂uy
∂y

)
. (F.6)

This can be inserted into Eq. (F.3) to get (developing the matricial products):

∂ut
∂n

=

(
∂ux
∂x
− ∂uy

∂y

)
sin θ cos θ +

∂ux
∂y

sin2 θ − ∂uy
∂x

cos2 θ . (F.7)

Then, using the following trigonometric relations,

sin θ cos θ =
sin 2θ

2
, (F.8)

sin2 θ =
1− cos 2θ

2
, (F.9)

cos2 θ =
1 + cos 2θ

2
. (F.10)

The following can finally be written,

∂ut
∂n

=
1

2

[(
∂ux
∂x
− ∂uy

∂y

)
sin 2θ +

(
∂ux
∂y
− ∂uy

∂x

)
−
(
∂ux
∂y

+
∂uy
∂x

)
cos 2θ

]
, (F.11)
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which makes the vorticity ω = ∂ux
∂y −

∂uy
∂x appearing. The vorticity is finally related to the skin friction

coefficient, replacing ∂ut
∂n by its expression in Eq. (F.2):

2

ReD

[
ω + sin 2θ

(
∂ux
∂x
− ∂uy

∂y

)
− cos 2θ

(
∂ux
∂y

+
∂uy
∂x

)]
. (F.12)

As a conclusion, excepted the pre-factor 2
ReD

, the skin friction and the vorticity have the same scaling,
and qualitative observations and discussions on one of these quantities is generally valid for the other
quantity. For example, there are both increasing as the rising cylinder approaches the free surface.
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Appendix G

Behavior of the wake during and after the
interface crossing

The expected scaling of the wake elevation above the initial free surface is derived theoretically by
considering the gravity-to-inertia balance. Because, at moderate and large Reynolds numbers, the wake
shows many random features, a numerical analysis would require a significant number of simulations.
Wake properties are thus investigated numerically only at very small Reynolds numbers, for which the
wake remains symmetric, in Section 5.2.4. As it has been shown, before the interface crossing the state
of the wake does not depend on the free-surface dynamics, and the separation region is well defined.
Therefore, the characteristic thickness of the wake can be approximated as the cylinder radius a, while
its characteristic length Lc depends on the Reynolds number and the release depth (for instance, the
separation bubble length is a good choice). The total momentum in the wake just before the interface
crossing (defined as t∗ = 0), pw, should thus be approximately proportional to the density ρ, size of the
wake aLc and cylinder velocity U ,

pw(t∗ = 0) = λ1 ρ aLc U , (G.1)

where λ1 is some constant. Neglecting any viscous effect and assuming that gravity is balanced by
buoyancy for the immersed part of the wake (y < 0) but fully acts on its emerged portion (y > 0), as
schematically shown in Fig. G.1, the change of momentum in the wake can be expressed as

dpw
dt∗

= −λ2 ρ g aU t
∗ , (G.2)

where λ2 is another constant. Using the initial condition in Eq. (G.1), we have

pw(t∗) = λ1 ρ aLc U −
1

2
λ2 ρ g aU t

∗2 . (G.3)

The maximum elevation of the wake’s center of gravity would approximately be reached when the wake
momentum vanishes. This occurs at a characteristic time

t∗c =

√
2
λ1

λ2

Lc
g

= k

√
Lc
g
, (G.4)

where k is a constant encompassing the constants λ1 and λ2. The non-dimensional characteristic
elevation of the wake’s center of gravity is then given by

k′
U t∗c
a

= k′ ′

√
U2 Lc
g a2

= k′ ′
√
Fr L̂c , (G.5)

with k′ < 1 to take into account the progressive deceleration of the wake, k′ ′ = k′ k, and L̂c = Lc
a . This

suggests that the larger the Froude number and the longer the wake, the higher the wake is entrained,
as one can logically expect.

The present analysis is very simplified and provides only a rough scaling. To get a better idea about
how the fluid is entrained, other aspects should be investigated, such as the wake-tank interactions, the
effect of vortices, but also the lowering of the free-surface level, etc...
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𝑝𝑤 = 𝑝𝑤(0) 0 < 𝑝𝑤 < 𝑝𝑤(0)

𝑝𝑤= 0

g

U U U

𝑡∗ = 0 0 < 𝑡∗ < 𝑡𝑐
∗ 𝑡∗ = 𝑡𝑐

∗

𝑝𝑤 = 0

Figure G.1: Simple model illustrating the effect of gravity on the entrained wake (schematically represented
by the rectangle below the cylinder). Left: the lower part of the cylinder (i.e., the top part of the wake) reaches
the initial free-surface level (t∗ = 0). Middle: the wake is subjected to a resultant gravity force proportional to
the mass of the emerged part of the wake (light orange); gravity is balanced by buoyancy in its immersed part

(light blue). Right: the wake has reached its maximum elevation (t∗ = t∗c) as its vertical momentum pw
vanishes.
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Appendix H

Velocity profile close to the boundary layer

The shape of the velocity profile above the cylinder/sphere near the free-surface suggests a local modi-
fication of the form

uθ,1(r) = uw,1

(
1

r
+ δr + c3(t) (r − (1 + h− δFS))2

)
∀r > 1 + h− δFS , (H.1)

where δFS is some free-surface layer thickness, which presumably scales as the boundary layer thickness
δ. As the film thins, this local profile goes down such that the profile shape is fundamentally, but locally
unsteady. Considering this aspect of the flow would have required much efforts, however, the value of
c3(t) can be correlated with that of δFS considering the no-shear condition at the free-surface. Indeed,
according to Eq. (6.75) one has

∂uθ,1
∂r

∣∣∣∣
r=1+h0

' uθ,1
r

∣∣∣
r=1+h0

=
uθ,1|r=1+h0

1 + h0
. (H.2)

Evaluating both sides using Eq. (H.1) yields

uw,1

( −1

(1 + h0)2
+ δ + 2c3δFS

)
=

uw,1
1 + h0

(
1

1 + h0
+ δ(1 + h0) + c3δ

2
F

)
, (H.3)

which implies

c3(t) =
2

(1 + h0)δFS (2(1 + h0)− δFS)
' 1

(1 + h0)2δFS
(H.4)

where the last equality is obtained by making the approximation δFS � 1. For Fig. 6.7, a value
δFS = 0.1 has been used, which results in a value of c3 ' 3.02. To account for this new velocity profile
in the model, additional modifications should be performed. Not only the relation between uθ,1 and ut,1
is affected but also the free-surface momentum equation. Indeed, neglecting viscous terms is no more
valid with this new approach, since the gradient tensor does not vanish anymore due to the different
velocity profile. Note that it may be neglected as well but should clearly be justified. Anyway, this is left
for future work. Finally, the reader may agree that, even if these extensions have not been considered in
the present model, some insights on how to solve the problem have been given by providing the scaling
of c3(δFS , t), and that good approximation for δFS should not be too hard to obtain.
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