Université de Liège Faculté des Sciences Département de Géologie Laboratoire de Minéralogie

Natural and synthetic alluaudite-type phosphates: Crystal chemistry and applications

Frédéric Hatert & André-Mathieu Fransolet

BCS-4

Brussels, October 19th, 2005

Alluaudite, Buranga pegmatite, Rwanda

StructureNaturalSyntheticApplications1. The alluaudite structure•Moore (1971)
$$C2/c, Z = 4$$
 $X(2)X(1)M(1)M(2)_2(PO_4)_3$ •Hatert et al. (2000) $[A(2)A(2)'][A(1)A(1)'A(1)''_2]M(1)M(2)_2(PO_4)_3]-A(2)': gabled disphenoid-A(2)': gabled disphenoid-A(1): distorted cube-M(1): very distorted octabedron$

-M(1): very distorted octahedron -M(2): distorted octahedron

Natural

Synthetic

Applications

2. Crystal chemistry of natural alluaudites

Moore & Ito (1979)

 $\begin{array}{l} A(2)' \Rightarrow \operatorname{Na^{+}}, \, {}^{\bullet} \operatorname{K^{+}} \\ A(1) \Rightarrow \operatorname{Na^{+}}, \, \operatorname{Mn^{2+}}, \, \operatorname{Ca^{2+}}, \, {}^{\bullet} \\ M(1) \Rightarrow \operatorname{Mn^{2+}}, \, \operatorname{Fe^{2+}}, \, \operatorname{Ca^{2+}}, \, \operatorname{Mg^{2+}} \\ M(2) \Rightarrow \operatorname{Fe^{3+}}, \, \operatorname{Fe^{2+}}, \, \operatorname{Mn^{2+}}, \, \operatorname{Mg^{2+}}, \, \operatorname{Li^{+}} \end{array}$

• Fransolet et al. (1985, 1986, 2004)

Oxidation mechanism:

Na⁺ + Fe²⁺ ⇒ •+ Fe³⁺

 $Na_{2}MnFe^{2+}Fe^{3+}(PO_{4})_{3} \Rightarrow NaMnFe^{3+}_{2}(PO_{4})_{3}$ $Na_{2}Fe^{2+}_{2}Fe^{3+}(PO_{4})_{3} \Rightarrow NaFe^{2+}Fe^{3+}_{2}(PO_{4})_{3}$

Hagendorfite and alluaudite, Kibingo pegmatite, Rwanda

2.2. Correlation between Fe³⁺

Synthetic

and vacancies

Natural

Structure

Applications

 $Na^+ + Fe^{2+} \Rightarrow \bullet + Fe^{3+}$

Applications

2.3. Correlation between H₂O and the Na-content

H₂O occurs in the channels of the structure, when the Na-content is low Applications

3. Crystal chemistry of synthetic alluaudite-type compounds

- Solid state synthesis in air
- T = 800-950 °C
- P = 1 bar

Na-Mn-Fe³⁺ (+ PO₄) system Role of Li⁺ Role of Cd²⁺ and Zn²⁺ Role of In³⁺ and Ga³⁺

Experimental

- Hydrothermal synthesis
- Tuttle-type cold-seal bombs
- T = 400-800 °C
- P = 1-5 kbar

Na-Mn-Fe²⁺-Fe³⁺ (+ PO₄) system
Stability of alluaudites
Stability of alluaudite + triphylite

Structure

Natural Synthetic

Applications

Oation						
Cation	ionic radius (A)		Site			
	[VI]		A(2)'	A(1)	<i>M</i> (1)	<i>M</i> (2)
Ag⁺	1.15	1.28	Х	Х		
Na⁺	1.02	1.18	Х	Х	Х	
Cu⁺	0.77	-	р	р		
Li⁺	0.76	0.92	р	р		
Ca ²⁺	1.00	1.12	р	р	р	
Cd ²⁺	0.95	1.10		р	Х	р
Mn ²⁺	0.830	0.96	р	р	Х	Х
Fe ²⁺	0.780	0.92			Х	Х
Co ²⁺	0.745	0.90			Х	Х
Zn ²⁺	0.740	0.90			Х	Р
Cu ²⁺	0.73	-		р		
Mg²⁺	0.720	0.89		·	Х	Х
In ³⁺	0.800	0.92			q	Х
Fe ³⁺	0.645	0.78		p		Х
Ga³⁺	0.620	-				р
Cr ³⁺	0.615	-				Ď
Al ³⁺	0.535	-				р

X : Complete occupancy of the site p : Partial occupancy of the site

3.2. The role of lithium

• (Na_{1-x}Li_x)MnFe³⁺₂(PO₄)₃

Single-crystal structure refinements Variations of the unit-cell parameters Mössbauer spectroscopy

 (Na_{1-x}Li_x)Cdln₂(PO₄)₃ X-ray Rietveld refinements

(Na_{1-x}Li_x)_{1.5}Mn_{1.5}Fe³⁺_{1.5}(PO₄)₃
X-ray Rietveld refinements

Structure

Synthetic Applications

Number of electrons on A(1) and A(2)'

Li localized on the large A(1) site

⇒ Catalytic activity comparable to that of nasicon-type phosphates

Kacimi et al. (2005), Materials Research Bulletin, 40, 682-693

Richardson (2003), J. Power Sources, 119-121, 262-265

- The alluaudite structure is extremely flexible, and accommodate trivalent cations on *M*(2), divalent cations on *M*(1) and *M*(2), and monovalent cations in the channels
- In natural alluaudites, two main substitution mechanisms were observed, and small amounts of H₂O probably occur in the channels of the structure
- The insertion of Li, Ag and Cu in the channels of synthetic alluaudite-type compounds makes possible their use as electrode materials for Li-batteries or as catalysts