Université de Liège Faculté des Sciences Département de Géologie Laboratoire de Minéralogie

The structural complexity of phosphates in the Na-Fe²⁺-Fe³⁺ (+PO₄) system

Frédéric Hatert ECM-24

Marrakech, August 23rd, 2007

Alluaudite, Buranga pegmatite, Rwanda

The Na-Mn-Fe²⁺-Fe³⁺-P-O system

Experimental

- Hydrothermal synthesis
- Tuttle-type cold-seal bombs
- T = 400-700 °C
- P = 1 kbar
- Oxygen fugacity: close to Ni/NiO (NNO)

Phase diagram at 400°C / 1 kbar

- <u>Center</u> \Rightarrow alluaudite
- <u>Fe³⁺ part</u> \Rightarrow Fe³⁺₄(PO₄)₃(OH)₃
- $\underline{Fe^{2+} part} \Rightarrow Fe^{2+}_{3}(PO_{4})_{2}$ (sarcopside)
- <u>Na-rich part</u> \Rightarrow Na₂HPO₄.nH₂O

 $\bullet \blacktriangle \Rightarrow Fe^{3+}{}_{4}Fe^{2+}{}_{3}(PO_{4})_{6}$ $\bullet \Delta \Rightarrow Na_{2}Fe^{3+}(HPO_{4})_{2}(OH) \text{ (Phase A)}$ $\bullet \diamond \Rightarrow Na_{7}Fe^{3+}{}_{3}Fe^{2+}(PO_{4})_{6}$

UNIVERSITÉ de Liège

• + \Rightarrow NaFe²⁺(PO₄) (maricite)

Alluaudite-type phosphates

Alluaudite-type phosphates

Maricite-type phosphates

Length of the photograph: 3 mm

l2/m *a* = 14.605(4) Å *b* = 7.144(2) Å *c* = 15.490(4) Å $\beta = 90.06(2)^{\circ}$ $R_1 = 5.34 \%$

Chains of corner-sharing octahedra

Length of the photograph: 2 mm

R3 a = 8.954(1) Å c = 21.280(4) Å **R**₁ = 3.28 %

 $Na_4Fe^{3+}Fe^{2+}(PO_4)_3$ (Na/Fe = 2)

Length of the photograph: 2 mm

P-1 a = 5.3141(6) Å b = 8.5853(9) Å c = 8.7859(8) Å $\alpha = 114.429(9)^{\circ}$ $\beta = 92.327(9)^{\circ}$ $\gamma = 106.08(1)^{\circ}$ $R_1 = 2.77 \%$

Structural domains

Conclusions

- <u>Alluaudite-type phosphates</u> cover a wide compositional field in the centre Na-Fe²⁺-Fe³⁺ (+PO₄) diagram
- In the Na-rich portion of the diagram, three phosphates with new crystal structures were synthesized
- With increasing Na content, the FeO₆ octahedra become progressively diluted in the framework
- Progressive transition from crystal structures based on octahedral chains, to structures based on heteropolyhedral units.

Acknowledgements

- A.-M. Fransolet from the University of Liège
- W. Maresch, M. Burchard, T. Fockenberg, H. Graetsch and H.-J. Bernhardt from the Ruhr-Universität Bochum
- The Alexander von Humboldt Foundation, for a research fellowship at the RUB.