Université de Liège Faculté des Sciences Département de Géologie Laboratoire de Minéralogie

Pmp **The IMA-CNMNC dominant-constituent rule** revisited and extended

Chl

Pmp

Frédéric Hatert & Ernst A.J. Burke Mineralogy & Museums 6

Golden, Colorado, September 8th, 2008

<u>Nickel (1992):</u> « ... a complete solid-solution series without structural order of the ions defining the end members is arbitrarily divided at 50 mole %, and the two portions are given different names... for the sake of brevity, this will be called the « 50 % rule ». »

• <u>Nickel & Grice (1998):</u> « In multiple solid-solution series, the 50 % rule is interpreted to mean **predominant occupancy** of a particular structural site...For the purpose of species definition, site **vacancies are to be regarded as atoms**. »

• <u>Wenk & Bulakh (2004)</u>: Introduced the name **« 100%/***n* **rule »**, with *n* being the number of components (not IMA-CNMNC approved).

The « Dominant Constituent » rule

• <u>Hawthorne (2002 and pers. commun.)</u>: Problems in the **nomenclature of certain end-members** in complex mineral groups (*e.g.*, tourmaline and milarite).

• <u>Cámara et al. (2006), Chopin et al. (2006), Armbruster et al. (2006):</u> IMA-CNMNC-approved reports on the nomenclature of the arrojadite and epidote groups of minerals. In these systems, the dominantconstituent rule has been extended by considering « a group of atoms with the same valency state » as a single constituent.

• <u>Hatert & Burke (2008) (Can. Mineral. 46, 717-728)</u>: Revision and extension of the « **Dominant constituent rule** ».

Complete solid solutions Homovalent substitutions at a single site

Diopside Hedenbergite

$CaMgSi_2O_6 \longrightarrow CaFeSi_2O_6$

Homovalent substitutions at a single site Multiple solid-solution series

Preisingerite group

Preisingerite, $Bi_3(AsO_4)_2OOH$ Schumacherite, $Bi_3(VO_4)_2OOH$ Petitjeanite, $Bi_3(PO_4)_2OOH$

33.3 % boundary

Schoenfliesite group

Schoenfliesite,MgSn(OH)₆ Natanite, FeSn(OH)₆ Wickmanite, MnSn(OH)₆ Mushistonite, CuSn(OH)₆ Vismirnovite, ZnSn(OH)₆ Burtite, CaSn(OH)₆

16.6 % boundary

Independant homovalent substitutions at several sites

 $Fa^{5+} \rightarrow Nb^{5+}$

Columbite group

F	Fe ²⁺	→ Mn ²⁺ site MnTa₂Oc	
	Tantalite-(Fe)	Tantalite-(Mn)	B
1211-1201 P = 1111	Columbite-(Fe)	Columbite-(Mn)	site
F	FeNb ₂ O ₆	MnNb ₂ O ₆	

Heterovalent substitutions at a single site

Monazite-(Ce) Cheralite

 $Ce(PO_4) \implies (Ca_{0.5}Th_{0.5})(PO_4)$

Ce³⁺ \longrightarrow 0.5 Ca²⁺ + 0.5 Th⁴⁺

Coupled heterovalent substitutions at two sites

<u>Albite</u>

Anorthite

 $Na(AISi_{3}O_{8}) \Longrightarrow Ca(AI_{2}Si_{2}O_{8})$

 $Na^+ + Si^{4+} \longrightarrow Ca^{2+} + Al^{3+}$

Valency-imposed double site-occupancy

Heterovalent substitutions at one site

<u>Schorl</u>

Elbaite

 $NaFe^{2+}{}_{3}Al_{6}(Si_{6}O_{18})(BO_{3})_{3}(OH)_{4} \longrightarrow Na(Li_{1.5}Al_{1.5})Al_{6}(Si_{6}O_{18})(BO_{3})_{3}(OH)_{4}$

Fe²⁺ > 0.5 Li⁺ + 0.5 Al³⁺

Coupled heterovalent substitutions at two sites

Tremolite, Selleck Road, West Pierrepont, New York, USA (from Webmineral.com) $\frac{\text{Tremolite}}{\mathbb{C}a_2 Mg_5(Si_8 O_{22})(OH)_2} \longrightarrow Na(NaCa)Mg_5(Si_8 O_{22})(OH)_2$

 $\Box_A + \mathbf{Ca}^{2+}_B \longrightarrow \mathbf{Na}^+_A + \mathbf{Na}^+_B$

Coupled heterovalent-homovalent substitutions

Albite Anorthite $Na(AISi_3O_8) \longrightarrow Ca(AI_2Si_2O_8)$ Coupled heterovalent substitution $Na^+ + Si^{4+} \implies Ca^{2+} + Al^{3+}$ $(Na_{0.6}Ca_{0.4})AI_{1.4}Si_{2.6}O_{8}$ (Albite) Homovalent substitution Na⁺ \Longrightarrow K⁺ $(Ca_{0.4}Na_{0.35}K_{0.25})AI_{1.4}Si_{2.6}O_{8}$

CaAlSi₃O₈ = New mineral species? NO! Ca- and K-rich albite!

The dominant-valency rule

A group of atoms with the same valency state has to be considered as a single constituent

Arrojadite group

- Arrojadite-(KNa) = KNaNa₂CaNa₂Fe₁₃AI(PO₄)₁₁(PO₃OH)(OH)₂
- (Ba_{0.40}K_{0.35}Na_{0.25})(Na_{0.6},_0,4)Na₂CaNa₂Fe₁₃AI(PO₄)₁₁(PO₃OH)(OH)₂

arraojadite-(KNa), not arrojadite-(BaNa)!

Epidote group

- Clinozoisite = CaCaAIAIAI(Si₂O₇)(SiO₄)O(OH)
- A2 occupancy (Ce_{0.35}La_{0.05}Ca_{0.30}Sr_{0.20}Pb_{0.10})

clinozoisite subgroup, not allanite subgroup!

Clinozoisite, Alchuri, Shigar Skardu district, Pakistan (from Webmineral.com)

The dominant-valency rule

Pumpellyite group

- Pumpellyite-(Al) end member = Ca₂AlAl₂(SiO₄)(Si₂O₇)(OH)₃
- (Ca_{1.99}Na_{0.01})(Al_{0.42}Fe²⁺_{0.33}Mg_{0.24}Mn_{0.01})Al₂(SiO₄)(Si₂O₇)(OH)_{2.42}•0.58H₂O

Triploidite group

- Staněkite = Mn²⁺Fe³⁺(PO₄)O
- Triploidite = Mn²⁺₂(PO₄)(OH)
- (Mn²⁺_{1.60}Fe³⁺_{0.40})(PO₄)[O_{0.40}(OH)_{0.35}F_{0.25}] triploidite, not « oxytriploidite »!

Grouping of crystallographic sites

Amphibole group

• Nomenclature based on the formula $AB_2C_5T_8O_{22}W_2$

 \frown C represents the group of five *apfu* in the M(1), M(2), and M(3) sites

Olivine group

- Fayalite = Fe_2SiO_4
- Forsterite = Mg_2SiO_4

The *M*(1) and *M*(2) sites are considered as a whole for nomenclature purpose

Necessary to avoid the proliferation of mineral species in complex groups

Conclusions

- Nomenclature of minerals in complete solid-solutions series remains determined by the dominant constituent rule.
- For coupled heterovalent-homovalent substitutions, the "dominant valency rule" has to be applied. This rule is an extension of the dominant constituent rule in which a group of atoms with the same valency state is considered as a single constituent.
- Coupled heterovalent substitutions at a single or at two sites may produce end-member formulae with valency-imposed double site-occupancy.
- <u>A grouping of crystallographic sites</u> may be required for complex crystal structures, in order to avoid the proliferation of new mineral species.

- Frank Hawthorne, Christian Chopin, and Thomas Armbruster, who initiated the discussion on the application of the dominant-constituent rule.
- Several CNMNC members who helped to improve the text of this revision, especially Gunnar Raade, Paul Keller and André-Mathieu Fransolet.

Binary partial solid-solution series

Hematite – Ilmenite

 $Fe_2O_3 - FeTiO_3$

Solid solution limited to small ranges near the end members

Sphalerite – Rudashevskyite

Solution of FeS in ZnS ending at 66 mol. % FeS

- Sphalerite: ZnS to (Zn_{0.50}Fe_{0.50})S
- Rudashevskyite: (Zn_{0.50}Fe_{0.50})S to (Zn_{0.34}Fe_{0.66})S

Binary partial solid-solution series

Pentlandite, Frood Stobie Mine, Sudbury District, Ontario, Canada (from Webmineral.com)

Pentlandite

Fe(Fe,Ni)₈S₈

Compositions centered around Fe:Ni = 1:1

Ternary partial solid-solution series

