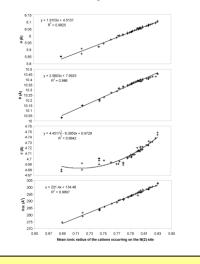
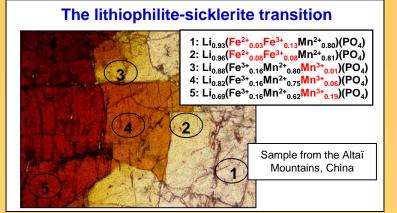
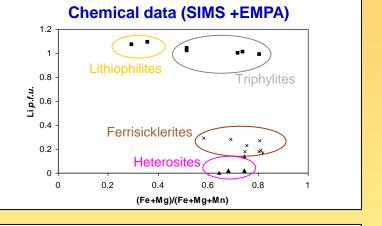
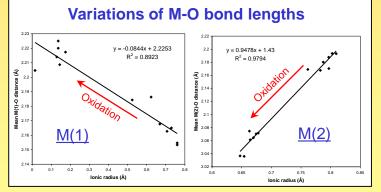

A structural study of natural olivine-type phosphates


Frédéric HATERT¹

Introduction


- Triphylite [Li(Fe²⁺,Mn²⁺)PO₄] and lithiophilite [Li(Mn²⁺, Fe²⁺)PO₄] occur as primary phosphates in granitic pegmatites. Their crystal structure is identical to that of olivine.
- In pegmatites, these phosphates progressively oxidize in ferrisickleritesicklerite [Li_{1-x}(Fe³⁺,Mn²⁺)PO₄-Li_{1-x}(Mn²⁺,Fe³⁺)PO₄], and then in heterositepurpurite [(Fe³⁺,Mn³⁺)PO₄-(Mn³⁺,Fe³⁺)PO₄].
- New chemical analyses and structure refinements were performed, in order to shed some light on the complex crystal chemistry of these phosphates.




Unit-cell parameters

Conclusions

- The chemical analyses indicate a progressive oxidation from lithiophilite to sicklerite, with several intermediate phases.
- The Li contents of ferrisicklerites and heterosites are very close to each other.
- The oxidation from triphylites to heterosites provokes a decrease of the M(2)-O bond lengths, as well as an increase of the M(1)-O bond lengths.
- The unit-cell parameters are correlated with the ionic radius of the cations occurring on M(2), and can consequently be used to estimate the Fe²⁺/Mn²⁺ ratio on this site.