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Abstract
Heat stress detection in dairy cows has long been connected with production loss.

However, the reduction in milk yield lags behind the exposure to heat stress events
for about two days. Other stress responses, such as physiological and behavioural
changes, are well documented to be activated by dairy cows in the earlier stage of
heat stress compared with production loss. Among all candidate indicators, body
surface temperatures (BST), respiration rate (RR), and relevant behaviours have
been concluded to be the most appropriate indicators due to their high feasibility of
acquisition and early response. Vision-based methods are promising for accurate
measurements while adhering to animal welfare principles. Meanwhile, predictive
models show a non-invasive alternative to obtain these data and can provide useful
insights with their interpretations. Thus, this thesis aimed to provide non-invasive
solutions to the detection of heat stress in dairy cows by using artificial intelligence
techniques. The detailed research content and relevant conclusions are as follows:
An automated tool based on improved UNet was proposed to collect facial BST

from five facial landmarks (i.e., eyes, muzzle, nostrils, ears, and horns) on cattle
infrared images. The baseline UNet model was improved by replacing the traditional
convolutional layers in the decoder with Ghost modules and adding efficient channel
attention modules. The improved UNet outperformed other comparable models with
the highest mean Intersection of Union of 80.76% and a slightly slower but still
good inference speed of 32.7 frames per second (FPS). Agreement analysis reveals
small to negligible differences between the temperatures obtained automatically in
the area of eyes and ears and the ground truth.
A vision-based method was proposed to measure RR for multiple dairy cows lying

on free stalls. The proposed method involved various computer vision tasks (i.e.,
instance segmentation, object detection, object tracking, video stabilisation, and
optical flow) to obtain respiration-related signals and finally utilised Fast Fourier
Transform to extract RR. The results show that the measured RR had a Pearson
correlation coefficient of 0.945, a root mean square error (RMSE) of 5.24 breaths
per minute (bpm), and an intraclass correlation coefficient of 0.98 compared with
visual observation. The average processing time and FPS on 55 test video clips
(mean ± standard deviation duration of 16 ± 4 s) was 8.2 s and 64, respectively.
A deep learning-based model was proposed to recognise cow behaviours (i.e.,

drinking, eating, lying, standing-in, and standing-out) that are known to be
influenced by heat stress. The YOLOv5s model was selected due to its ability to
compress the weight size while maintaining accuracy. It had a mean average
precision of 0.985 and an inference speed of 73 FPS. Further validation
demonstrates the excellent capacity of the proposed model in measuring herd-level
behavioural indicators, with an intraclass correlation coefficient of 0.97 compared
with manual observation.
Critical thresholds were determined by using piecewise regression models with

environmental indicators as the predictors and animal-based indicators as the
outcomes. An ambient temperature (Ta) threshold was determined at 26.1 °C when
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the automated measured mean eye temperature reached 35.3 °C. A Ta threshold of
23.6 °C and a temperature-humidity index (THI) threshold of 72 were determined
when the automated measured RR reached 61.1 and 60.4 bpm, respectively. In
addition, the test dairy herd began to change their standing and lying behaviour at
the earliest Ta of 23.8 ℃ or THI of 68.5.
Four machine learning algorithms were used to predict RR, vaginal temperature

(VT), and eye temperature (ET) from 13 predictor variables from three dimensions:
production, cow-related, and environmental factors. The artificial neural networks
yielded the lowest RMSE for predicting RR (13.24 bpm), VT (0.30 ℃), and ET
(0.29 ℃). The results interpreted with partial dependence plots and Local
Interpretable Model-agnostic Explanations show that P.M. measurements and winter
calving contributed most to high RR and VT predictions, whereas lying posture,
high Ta, and low wind speed contributed most to high ET predictions.
Based on these results, an integrative application of all the proposed measurement,

prediction, and assessment methods has been suggested, wherein RGB and infrared
cameras are used to measure animal-based indicators, and critical thresholds, along
with model interpretation, are used to assess the heat stress state of dairy cows. This
strategy ensures timely and thorough cooling of cows in all areas of the dairy farm,
thereby minimising the negative impact of heat stress to the greatest extent.
Keywords: precision livestock farming, dairy cows, heat stress, thermal comfort,

decision support, artificial intelligence, animal welfare
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Résumé
La détection du stress thermique chez les vaches laitières a longtemps été associée

à des pertes de production. Cependant, la réduction de la production laitière survient
environ deux jours après l'exposition aux événements de stress thermique. D'autres
réponses au stress, telles que les changements physiologiques et comportementaux,
sont bien documentées comme étant activées par les vaches laitières au stade
précoce du stress thermique par rapport aux pertes de production. Parmi tous les
indicateurs potentiels, les températures de surface corporelle (TSC), le taux de
respiration (TR) et les comportements pertinents ont été conclus comme étant les
indicateurs les plus appropriés en raison de leur grande faisabilité d'acquisition et de
leur réponse précoce. Les méthodes basées sur la vision sont prometteuses pour des
mesures précises tout en respectant les principes de bien-être animal. Parallèlement,
les modèles prédictifs offrent une alternative non invasive pour obtenir ces données
et peuvent fournir des informations utiles avec leurs interprétations. Ainsi, cette
thèse visait à fournir des solutions non invasives pour la détection du stress
thermique chez les vaches laitières en utilisant des techniques d'intelligence
artificielle. Le contenu de la recherche détaillée et les conclusions pertinentes sont
les suivants :
Un outil automatisé basé sur un UNet amélioré a été proposé pour collecter la TSC

faciale à partir de cinq points de repère faciaux (c'est-à-dire les yeux, le museau, les
narines, les oreilles et les cornes) sur des images infrarouges de bovins. Le modèle
UNet de base a été amélioré en remplaçant les couches convolutionnelles
traditionnelles dans le décodeur par des modules Ghost et en ajoutant un modules
d'attention aux canaux efficace. L'UNet amélioré a surpassé d'autres modèles
comparables avec la plus haute intersection moyenne de l'union de 80,76 % et une
vitesse d'inférence légèrement plus lente mais toujours bonne de 32,7 images par
seconde (IPS). L'analyse de l'accord révèle de petites à négligeables différences
entre les températures obtenues automatiquement dans la zone des yeux et des
oreilles et la vérité au sol.
Une méthode basée sur la vision a été proposée pour mesurer le TR de plusieurs

vaches laitières couchées sur des stalles libres. La méthode proposée impliquait
diverses tâches de vision par ordinateur (c'est-à-dire segmentation d'instances,
détection d'objets, suivi d'objets, stabilisation vidéo et flux optique) pour obtenir des
signaux liés à la respiration, puis utilisait la transformation de Fourier rapide pour
extraire le TR. Les résultats montrent que le TR mesuré avait un coefficient de
corrélation de Pearson de 0,945, une erreur quadratique moyenne (RMSE) de 5,24
respirations par minute (rpm) et un coefficient de corrélation intraclasse de 0,98 par
rapport à l'observation visuelle. Le temps de traitement moyen et le IPS sur 55 clips
vidéo de test (durée moyenne ± écart type de 16 ± 4 s) étaient respectivement de
8.2 s et 64.
Un modèle basé sur l'apprentissage profond a été proposé pour reconnaître les

comportements des vaches (c'est-à-dire boire, manger, se coucher, se tenir debout et
sortir) qui sont connus pour être influencés par le stress thermique. Le modèle
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YOLOv5s a été sélectionné en raison de sa capacité à comprimer la taille des poids
tout en maintenant la précision. Il avait une précision moyenne moyenne de 0,985 et
une vitesse d'inférence de 73 IPS. Une validation ultérieure démontre l'excellente
capacité du modèle proposé à mesurer les indicateurs comportementaux au niveau
du troupeau, avec un coefficient de corrélation intraclasse de 0,97 par rapport à
l'observation manuelle.
Des seuils critiques ont été déterminés en utilisant des modèles de régression

segmentée avec des indicateurs environnementaux comme prédicteurs et des
indicateurs basés sur les animaux comme résultats. Un seuil précoce de température
ambiante (Ta) a été déterminé à 26,1 °C lorsque la température moyenne des yeux
mesurée automatiquement atteignait 35,3 °C. Un seuil Ta de 23,6 °C et un seuil
d’indice température-humidité (ITH) de 72 ont été déterminés lorsque le TR mesuré
automatiquement a atteint 61,1 et 60,4 rpm, respectivement. Le troupeau laitier de
test a commencé à modifier son comportement debout et couché au Ta le plus
précoce de 23,8 °C ou à l'ITH de 68,5.
Quatre algorithmes d'apprentissage automatique ont été utilisés pour prédire le TR,

la température vaginale (TV) et la température des yeux (TY) à partir de 13
variables prédictives provenant de trois dimensions : production, liées aux vaches et
environnementales. Les réseaux de neurones artificiels ont donné le RMSE le plus
bas pour la prédiction du TR (13,24 rpm), de la TV (0,30 °C) et de la TY (0,29 °C).
Les résultats interprétés avec des tracés de dépendance partielle et des explications
interprétables de modèle agnostique local montrent que les mesures PM et la mise
bas en hiver contribuaient le plus aux prévisions élevées de TR et de TV, tandis que
la posture couchée, la haute Ta et la faible vitesse du vent contribuaient le plus aux
prévisions élevées de TY.
Sur la base de ces résultats, une application intégrée de toutes les méthodes de

mesure, de prédiction et d'évaluation proposées a été suggérée, dans laquelle des
caméras RVB et infrarouges sont utilisées pour mesurer les indicateurs basés sur les
animaux, et des seuils critiques, ainsi que des interprétations de modèle, sont utilisés
pour évaluer l'état de stress thermique des vaches laitières. Cette stratégie assure un
refroidissement opportun et complet des vaches dans toutes les zones de la ferme
laitière, minimisant ainsi au maximum l'impact négatif du stress thermique.
Mots-clés: élevage de précision, vaches laitières, stress thermique, confort

thermique, support à la décision, intelligence artificielle, bien-être animal
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Abstract
In pursuit of precision livestock farming, the automated measurement for heat

stress response has been more and more valued. Efforts have been made recently to
use more sensitive animal-based indicators in the hope of improving decision-
making regarding heat abatement in dairy farms. The present review focuses on the
recent efforts in developing detection methods of heat stress in dairy cows using
animal-based indicators including body temperatures, respiratory dynamics, and
behavioural changes. For every candidate animal-based indicator, state-of-the-art
data acquisition techniques, including both direct measurements and predictive
models, as well as their developed thresholds were summarised. Body surface
temperature, respiration rate, and relevant behaviours were concluded to be the best
indicators due to their ease of acquisition and sensitivity to heat stressors. Future
studies should continue to evaluate thermal indices and customise thresholds at
specific farm locations due to inconsistencies in environmental conditions and
animal information. Wearable and indwelling devices on the market are now
available for real-time measurement of basic behaviours and core body temperature
while vision-based non-contact methods are gaining popularity due to their non-
invasive measurement. The development of measurement methods can accelerate
the development of data-driven predictive models by allowing access to more
relevant parameters, and these models in turn can guide the measurement with their
interpretations. By utilising internet of things technologies, a comprehensive strategy
based on both animal- and environment-based indicators is expected to increase the
precision of detecting heat stress in dairy cows, allowing for more accurately
identifying high-risk animals, implementing targeted interventions, and ultimately
minimising the impact of heat stress.

Keywords: stress response, detection, precision livestock farming, thermal comfort,
animal welfare
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1. Heat stress and on-farm mitigation strategies
1.1. Heat stress
Thermoregulation, defined as the process to keep the balance between heat

production and heat loss, is important for homeotherms to maintain homeothermy
and homeostasis [1]. Heat production in dairy cows mainly comes from basal
metabolism, rumen fermentation, nutrient absorption, growth, lactation, gestation,
immunisation, and exercise, whereas heat loss is mainly through heat transfer
mechanisms: conduction, convection, radiation, and evaporation [2].
Cows can maintain a balance of heat production and heat dissipation in the

thermoneutral zone, in which they perform the lowest physiological and immune
costs, and the highest productivity [1]. When the thermal environment exceeds the
thermoneutral zone and suppresses the efficiency of non-evaporative heat loss,
evaporative heat loss, or both [3,4], various mechanisms are activated in dairy cows
to dissipate excess heat and maintain homeothermy [5]. This demand made by the
environment on animals for heat dissipation is defined as heat stress [6]. Figure 1-1
shows some main indicators representing environmental stimuli and their induced
animal responses.

Figure 1- 1: Relationship between environmental stimuli and induced animal response.

1.2. State-of-the-art solutions for heat stress mitigation
Present-day management of heat stress in dairy farms leans on several

complementary strategies. Environmental regulation, nutritional intervention, and
genetic selection for thermotolerant breeds are the three pillars on which the
prevention and the mitigation of heat stress for cows in dairy farms rely [7,8].
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1.2.1. Environmental regulation
Regulation of the barn environment aims to improve cow comfort by changing

perceived heat stress and by supporting more efficient heat dissipation. These
strategies include providing shade and cooling measures, as well as optimising barn
structures.
Providing shade involves creating shelters or shaded areas where cows can retreat

from direct sunlight which contains direct solar radiation (SR) to increase the heat
balance of cows. These shaded areas have significantly lower ambient temperature
(Ta) compared to areas that are exposed to direct sunlight. Relevant structures can
range from natural trees or artificial shades on the pastures to well-constructed barns
in housing systems. A roof with good insulation and proper slope can not only
reduce the radiation of sunlight on the roof but also promote natural ventilation
which is an effective, least-cost option to refresh indoor air conditions and reduce
the difference between the inside and outside temperature [9].
Additional cooling measures are always required during heat stress seasons when

indoor temperatures surpass the upper critical threshold of the cows’ thermoneutral
zone. Among all cooling measures, active ventilation systems are the most basic one.
These systems promote airflow inside the barn thus affecting both convective and
evaporative heat losses. They can be very efficient when cows are sweating as the
wind can remove body heat while sweeping away the just-evaporated water vapour.
Commonly used ventilation systems range from more affordable panel fans, basket
fans, and ceiling fans to more expensive tunnel ventilation [10]. Techniques such as
low-profile cross ventilation [11] and numerical simulation using computational
fluid dynamics and particle image velocimetry [12] are increasingly applied for
ventilation optimisation.
Evaporative cooling systems combine ventilation systems with droplet-delivering

systems (e.g., sprinklers, soakers, misters) [10] or water-flowed cooling pads [11] to
more effectively reduce indoor temperature. The idea is to lower the temperature
surrounding or on the surface of the cows by delivering water drops into the air or
onto their surface while increasing wind speed (WS) to evaporate the water. Since
the latent heat of water evaporation is provided by the air, this approach decreases
Ta, boosting the thermal gradient between cows and their environment or cows’ core
and their surface, facilitating more efficient heat dissipation. However, the use of
droplet-delivering systems in humid climates (>75% relative humidity (RH)) is not
recommended, as they do not provide any physiological relief [10]. This is because
any potential drop in Ta is offset by the increase in RH. Moreover, excessive
humidity may wet bedding materials thus affecting cow comfort.
For intensive housing systems, proper barn design should be considered to

improve the indoor thermal environment. For example, the layout of the barn should
be designed in consideration of diurnal and seasonal variations in sunlight and wind
direction [13]. In addition, barn optimisation also includes modifying bedding
materials to promote conduction while cows lying down. This can be welcomed
since cows spend most of their daily time lying and lying time can reflect their
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comfort and welfare. Some bedding materials have been studied and sand was found
to have higher heat flux for cows compared with straw and mattresses filled with
rubber granules [14] and dried manure [15]. In addition, water-cooled heat
exchangers which are buried below the bedding surface seem to be an alternative
way to increase the heat flow from cows to the environment and are better used in
conjunction with sand as the bedding material [15].
Additionally, reducing stocking densities is promising to mitigate heat stress

[16,17]. This is because heat can be transferred between animals by radiation and
increases with animal density [18,19]. Evidence has shown that early lactating cows
with a stocking density of 100% had higher oxidative stress status compared with
those with a stocking density of 75% [20]. The provision of additional space for
sheep at high Ta mitigated their physiological and behavioural responses induced by
heat stress [21].
1.2.2. Nutrition management
The effective management of nutrition for heat-stressed dairy cows is a

multifaceted approach crucial for their well-being and productivity. Under heat
stress, cows reduce their feed intake, necessitating an increased nutrient
concentration to maintain an adequate intake of all essential nutrients, which
becomes critical in high-producing cows. Optimal diets should balance high-quality
fibres, proteins, and fats, ensuring adequate rumen functioning and sufficient
nutrient absorption. High-quality forages are more welcomed in this case since they
are digested faster and thus produce less heat compared with low-quality stemmy
forages. Increasing the energy density may require the use of larger amounts of
concentrates. Collectively, increasing the energy density of the diet, using high-
quality forages, and feeding more concentrates can help animals maintain their
energy needs, even if they consume less dry matter. However, care should be taken
to properly balance the diet to avoid digestive system disorders such as rumen
acidosis [22]. Heat stress has been found to increase acidosis prevalence from 0.3 to
4.1% [23]. Moreover, the timing and frequency of feeding play a significant role.
Adjusting feeding schedules to cooler periods of the day and increasing feeding
frequency can help mitigate the reduced appetite associated with heat stress. This
also involves ensuring feed quality, as heat can rapidly degrade nutrients in stored
feed, especially wet ones, like silage.
Furthermore, maintaining adequate fresh water is required during heat stress as it

can help cows dissipate body heat by sweating and breathing. Cold water at 10 °C
has been found to be more effective in reducing cow’s body temperature (0.75 °C)
compared to water at 28 °C (0.46 °C) [24]. Additionally, electrolyte balance is
essential for cellular functions and maintaining body fluid balance. Heat stress can
disrupt electrolyte balance, leading to issues such as dehydration or heat exhaustion.
Supplementing diets with electrolytes, particularly sodium, potassium, and chloride,
can help maintain electrolyte equilibrium, supporting better hydration and heat stress
tolerance. This supplementation can be achieved through mineral licks, water
additives, or directly through the diet. The precise electrolyte requirements may vary
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based on factors such as lactation stage and parity, necessitating a tailored approach
for each herd.
The use of feed additives is increasingly recognised for its potential benefits in

relieving heat stress. These additives include yeast cultures, enzymes, various plant
extracts, neuromodulators, and others. Yeast cultures are known to improve rumen
function and overall gut health and metabolism [25,26], which can be compromised
during heat stress. Enzymes aid in the efficient breakdown of feed components,
ensuring optimal nutrient absorption even when feed intake is reduced [27]. Plant
extracts from bupleurum and honeysuckle or other herbs containing polyphenols and
flavonoids can alleviate heat stress due to their potential functions in lowering
cortisol and modulating relevant signalling pathways such as HSP70/NF-κB and
AMPK/mTOR [28]. Among neuromodulators, γ-aminobutyric acid has been used in
the diet of heat-stressed cows in recent years, achieving good results in many aspects,
such as improving production performance, immune status, and antioxidant levels
[29,30]. Other additives, such as N-carbamylglutamate [31] and L-theanine [32],
have the potential to relieve heat stress to some extent. These additives not only
enhance digestive efficiency but also potentially bolster the immune system, helping
the animals to better withstand the stressors associated with high temperatures. Their
inclusion in the diet, however, must be carefully calibrated to suit the specific needs
of the herd, considering factors like age, lactation stage, and existing dietary
composition.
1.2.3. Genetic selection for thermotolerance
The abovementioned environmental and nutritional interventions are essential but

only short-term solutions. They may be unsustainable due to potential economic
losses for farmers caused by the costs. Also, the needs for changing environments
and feeds may also bring environmental pollution. The dairy industry is turning
towards a more sustainable and long-term solution: breeding cows that are
genetically predisposed to withstand heat stress [33].
Heat tolerance in cattle, defined as the ability to maintain thermal balance under

extreme climatic conditions, is a complex and heritable parameter. Traits for
selection include physiological responses, milk production and composition,
reproduction, and other biomarkers related to heat stress. For example, about 17% of
the variation in rectal temperature (RT) among cows during heat stress can be
attributed to the variation in genetics [34]. In vivo and in vitro heat challenges
indicate that individuals with high heat shock protein 70 concentration may be more
resilient to heat stress [35,36]. In addition, many key genes and pathways associated
with thermal stress have been identified as potential indicators for marker-assisted
selection of both high-yielding and thermotolerant Holstein dairy cattle [37,38].
These findings are pivotal as they open the door to selective breeding programs
aimed at enhancing thermotolerance. By identifying and selectively breeding
individuals with naturally higher heat tolerance, herds that can better maintain
productivity and health in warmer climates can be gradually developed. However,
one drawback of selecting heat-tolerant animals is the antagonism between heat
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tolerance and productivity [39]. Thus, a better understanding of the underlying
genetic mechanisms of heat tolerance is required to develop selection programs
which maintain productivity to some extent.
Additionally, biomarkers for heat tolerance can be detected by using metabolomics.

The idea is to identify which metabolites are produced when animals are heat-
stressed. For instance, studies have identified dozens of specific metabolites affected
by heat stress [40-42], including glucose, lactate, and pyruvate, which aids in
understanding its impact on energy and nucleotide metabolism in dairy cattle.
Combining these findings with physiological parameters can enhance the selection
of thermotolerant genotypes [43]. Therefore, it is of great importance to collect both
physiological and molecular biomarkers properly and accurately.
Moreover, the introduction of heat-tolerance genes from other cattle breeds offers

an intriguing possibility. For instance, the incorporation of the SLICK gene from the
Senepol cattle into Holsteins has shown promising results, with offspring exhibiting
better ability to regulate body temperature [44]. Such crossbreeding strategies not
only enhance thermotolerance but also contribute to genetic diversity within the
breed. Notably, systems with ample resources will benefit more from this approach,
while systems with limited resources may gain more advantages from hybridisation
or breeding with local populations [39].
To sum up, genetic selection for thermotolerance is a forward-thinking strategy

that combines scientific research with practical breeding techniques. While it
presents an opportunity to mitigate the adverse effects of global warming on dairy
farming, it also necessitates careful consideration of potential drawbacks, such as
negative impacts on other traits (e.g., cold stress resistance and productivity) and
adaptation to different environmental conditions.

2. Detection of heat stress using animal-based
indicators
As discussed above, interventions could be taken from the environmental,

nutritional, and genetic perspectives to alleviate the impact of heat stress on animals.
No matter what interventions would be adopted, the detection of heat stress is
necessary to make an evidence-based decision (Figure 1-2). Short-term
interventions (i.e., environmental regulation and nutrition management) should be
adopted when weather changes and animals show resulting responses. Genetic
selection, as a long-term solution, requires a proper, accurate, comprehensive
collection of phenotypic information to identify heat-tolerant animals.
To understand how animals cope with heat stress, the data acquisition of animal-

based indicators is of particular importance [45,46]. Direct measurement and
indirect prediction are two major routes to acquire data from the animal side.
Unfortunately, there has long been a lack of labour- and time-efficient methods to
measure or predict animal responses [47]. As an alternative, thermal indices have
been developed by reducing the dimensionality of thermal stressors (i.e., Ta, RH,
WS, and SR). An example of such indices is the family of temperature-humidity



Chapter 1: Measurement, prediction, and assessment of heat stress in dairy cattle: a review

33

indices (THIs), which is a series of highly correlated indices that were developed by
combining temperature and humidity [48]. These environmental indicators have
been linked to animal-based indicators to assess heat stress indirectly with easily
accessible weather data. Notably, environmental indicators have difficulties dealing
with individual or herd differences in the onset of heat stress and showing whether
animals are being adequately cooled [45,49].

Figure 1- 2: Detection of heat stress and mitigations that could be taken.

For decades, studies focusing on the onset of heat stress have primarily
emphasised production traits [50]. This is understandable since milk quantity and
quality are what dairy practitioners most care about. It is well-known that heat stress
can reduce milk yield and various components such as fat and protein as a result of
reduced dry matter intake and impaired mammary synthesis, especially in high-
producing cows, meanwhile increasing somatic cell count due to impaired immunity
[51]. However, changes in production usually lag the changing environment by
about one to three days [52-54]. Thus, production traits are more like results of
thermoregulation rather than early indicators of heat stress [45].
In fact, heat stress induces a lot of responses at different stages, ranging from

instant vasodilation to genetic adaptations that happen over generations [55].
Recently, many efforts have been made to identify more sensitive animal-based
indicators to detect heat stress in the early stage [45,56]. Candidate indicators
include physiological and behavioural traits (e.g., respiration rate (RR), body
temperature, standing and lying behaviours) [5], as well as other molecular
biomarkers such as milk metabolites, oxidative biomarkers, and specific fatty acids
especially C18:1 [57-59]. Milk traits can indicate the effect of heat stress on milk
mammary synthesis [51], while oxidative biomarkers can indicate the faster
formation of reactive oxygen species against antioxidants during heat stress [60].
Although advances have been made in identifying heat stress-related molecules
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which can help understand the underlying mechanism in metabolic pathways of
carbohydrate, amino acid, lipid, and gut microbiome-derived metabolism [40,41,61],
it is not doubtful that physiological and behavioural indicators are easier to achieve
real-time, continuous, and timely heat stress detection.
Recently, dairy herds in many regions have become more susceptible to heat stress

due to the intentional selection of high-producing dairy cows and the adoption of
animals from the Holstein ascend [45]. Indeed, productivity is inversely proportional
to heat tolerance, as high-producing cows produce more heat while having poor heat
dissipation capacities at the same time [39]. More importantly, global warming is
projected to cause heat wave events to occur more frequently, leading to a
significant increase in economic losses from heat stress in dairy cows [62,63]. All
this information emphasises the importance of improving heat stress detection in
dairy cows by using earlier animal-based indicators to avoid the subsequent
reduction in production and welfare, as well as the increase in disorders and
mortality.
Precision livestock farming (PLF) aims to provide real-time monitoring for

significant events in the animal husbandry sector so that interventions can be
implemented immediately [64]. Recently, many methods and technologies have
been developed to measure or predict heat stress response [46,65]. After data
acquisition, critical thresholds are naturally developed to quantify and assess heat
stress. This process mainly relies on statistical analysis and data mining. As
mentioned earlier, the fact that high-producing dairy cows are raised more highlights
the urgent need to validate and update the current thresholds.
Thus, the present review focuses on the recent efforts in developing detection

methods of heat stress in dairy cattle, with a special emphasis on those based on
body temperatures, respiratory dynamics, and behavioural changes. The primary
objective was to summarise the progress on data acquisition techniques, including
both direct measurement and predictive modelling. The secondary objective was to
summarise the existing thresholds from both animal and environmental viewpoints.

3. Measurement of heat stress in dairy cows
Direct measurements typically provide the most accurate results and are always

regarded as the gold standard or ground truth. This section introduces the recent
progress in measuring animal-based indicators, with a special emphasis on body
temperatures, respiratory dynamics, and behavioural changes.

3.1. Core body temperatures
Core body temperatures (CBT) are the most commonly used animal-based

indicator of heat stress in dairy cows [56]. Normally, the range of CBT of
homeotherms is very narrow with a circadian rhythm due to the effort of
thermoregulation [66]. When cows are exposed to uncomfortably hot environments,
their CBT will increase abnormally if they are unable to dissipate excess body heat.
The increase in CBT can therefore be used as an indicator of heat stress. The most
recent measurement methods of CBT are listed in Table 1-1.
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Table 1- 1: Summary of the state-of-the-art measurement methods for dairy cattle body temperatures.

Indicator Technology Automatic Continuous Real-
time a Accuracy Reference

Rectal
temperature

Digital thermometer No No No ±0.1 °C [67]
A thermistor probe attached to a

recorder No No No Unknown [68]

Radiofrequency-based digital
thermometer No No No ±0.5 °C [69]

An indwelling temperature data logger
supported by a customised tail harness

or piping
Yes Yes No ±0.2 to 0.5 °C [70,71]

Vaginal
temperature

Temperature probe with a finger
anchor Yes Yes No ±0.2 °C [72]

Temperature data loggers and modified
vaginal controlled internal drug release Yes Yes No ±0.1 to 1 °C [73]

A wireless vaginal temperature device Yes Yes Yes ±0.1 °C [74]
An indwelling device with temperature

sensors, a data collector, and a
computer system

Yes Yes Yes
Mean difference of 0.02 °C
with a 95% confidence

interval of -0.23 to 0.26 °C
[75]

Reticulorumen
temperature Ruminal and reticular bolus Yes Yes Yes ±0.25 ℃ [76]

Tympanic
temperature

Infrared ear thermometer No No No ±0.2 °C [77]
Ear-canal sensor Yes Yes Yes ±0.1% °F [78]

Subcutaneous
temperature

Implanted temperature data loggers Yes Yes No ±0.1 to 1 °C [79]
Percutaneous microchips with scanner No No No ±0.1 °C [77]
Implanted thermistors with Bluetooth Yes Yes Yes ±0.05 °C [80]
Percutaneous microchips combined
with wearable scanners, Long-Range,

and Wi-Fi techniques
Yes Yes Yes ±0.1 °C [81]
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Milk
temperature Robotic milking system Yes Yes Yes Unknown [82]

Body surface
temperature

Temperature data loggers Yes Yes No ±0.1 to 1 °C [83]
Thermistor sensor Yes Yes No ±0.07 °C [84]

Handheld infrared camera No No No ±1.5 °C [85]
Handheld infrared gun No No No ±1.5 °C [86]
Fixed infrared camera Yes Yes No ±2% [87]

a Ability to transmit in real time.
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3.1.1. Rectal temperature
Rectal temperature (RT) is the most popular proxy of CBT. Traditionally, RT is

measured with a digital thermometer inserted about 9 and 15 cm into the rectum for
calves and adult cattle, respectively [88]. Spiers et al. [68] measured RT with a
stainless-steel thermistor probe attached to a recorder (Cole Parmer Instruments,
Chicago, IL). Debnath et al. [69] achieved a fast RT measurement in 3 s using a
radiofrequency-based digital thermometer. However, despite their usefulness, these
methods still rely heavily on human operations. As a result, they can be time-
consuming and labour-intensive for herd-level measurement, while also lacking the
capability for continuous measurements [89].
To achieve a continuous measurement, some researchers designed indwelling

devices which typically consisted of a temperature data logger and a carrier for
fixing. For example, Reuter et al. [70] fixed a data logger to a custom-fabricated
aluminium tail harness and measured RT at 1-min intervals for 10 h. However, this
device has been questioned on the potential damage to the tail and the influence of
faecal temperature [46,90]. Lees et al. [71] measured RT at an interval of 20 s for
18.5 h in grazing heifers using a device consisting of a data logger (iButton
DS1922L; Maxim Integrated, San Jose, CA, USA) and a soft polyethylene piping.
As summarised by Burfeind et al. [91], the RT readings could be biased by the

type of thermometer, the depth into the rectum, and the operation itself. Indeed, the
invasive operation puts cattle under additional stress, potentially biasing the results.
3.1.2. Vaginal temperature
Vaginal temperature (VT) is another representative CBT. The measurement of VT

is very similar to that of RT. Various temperature data loggers used in conjunction
with support devices have been fixed into cows’ vaginas. A plastic anchor was first
introduced as a support device by Hillman et al. [72] and further validated by Lee et
al. [92]. It is demonstrated that long-finger plastic anchors were superior due to
better stability when inserted in the vagina [92]. However, the application of these
anchors may be difficult due to inaccessibility [90].
The most popular way nowadays is to use a modified vaginal controlled internal

drug release insert which contains a temperature data logger [90,93,94]. The price of
data loggers varies distinctly, where inexpensive and low-accuracy loggers have
been reported to under- and overestimate VT compared with expensive and high-
accuracy loggers [73]. Notably, none of these methods can monitor VT in real time
due to the lack of wireless transmission. Temperature readings are only accessible
after the sensors have been retrieved.
Sakatani et al. [74] achieved wireless transmission of VT at a measurement interval
of 5 min by using a temperature sensor (Gyuonkei; Remote, Oita, Japan) in
conjunction with Wi-Fi technology. More recently, Wang et al. [75] designed a
wireless measuring system consisting of an indwelling device equipped with
temperature sensors (ADT7320; Analog Devices, Norwood, MA, USA), a data
collector, and a computer system. VT was measured every 30 min, wirelessly
transmitted to the data collector every 2 h, and then uploaded to the computer system.
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All known indwelling devices for measuring VT were placed intravaginally for a
maximum of 24 days (around a week in most applications) [73], possibly due to the
increased concern of irritation and infection [90]. That said, this method may be only
applicable for short-term research purposes. Other than the type of sensors, the
temperatures recorded vaginally can be affected by logger displacement and lying
bouts [94].
3.1.3. Reticulorumen temperature
Rumen and reticulum are also locations of interest to measure CBT. Many boluses

have been designed and applied to measure ruminal and reticular parameters (e.g.,
temperature, pH) [95-99]. A rumen or reticulum bolus is a configured pill placed in
the reticulum or the junction between the rumen and reticulum, consisting of a
temperature sensor, a telemetry system, and a battery [46]. Hicks et al. [96] first
measured the temperature ruminally in three cows using CorTemp sensors (HTI
Technologies, Palmetto, FL, USA). Initially, this method required a fistula or an
implant surgery, which compromises animal welfare. At present, commercially
available boluses can be administered orally via a customised bolus applicator or a
balling gun [100,101]. With the development of wireless and battery technology, the
most recent boluses are administered once and can work for at most 6 years with
adjustable measurement intervals (10-min as default) [102]. SmaXtec bolus (Animal
care GmbH, Graz, Austria), one of the popular products on the market, has shown its
ability in detecting heat stress in grazing dairy cattle [103]. Rumen boluses have
recently been customised for dairy calves to monitor infections, but whether these
devices can be used for heat stress detection in dairy calves remains unknown [104].
The temperatures recorded in the rumen and reticulum are greater than RT by

approximately 0.5 °C due to the heat produced by rumen microorganisms [98]. A
drinking bout can decrease reticulorumen temperature (RET) by 9.2 °C and it would
take up to 3.5 h to return to the original temperature before drinking [98,105]. Thus,
RET can be used to monitor drinking behaviour [106]. Moreover, given that the
reestablishing time depends on both the temperature and amount of water drunk, it
can be further used to predict water intake, which also plays a part in heat stress in
cattle [107]. To mitigate the impact of water intake on RET, Ammer et al. [108]
calculated median and mean RET for 2 h preceding RT and VT measurement and
demonstrated that the median RET was more highly correlated to RT and VT (r =
0.48, 0.53) compared with mean RET (r = 0.43, 0.46) and single RET (r = 0.40,
0.48). Since calves drink less cool water than adult cattle, and their milk or milk
supplements are preheated, the intake of water by calves may not bias RET as much
as it does for adults [104].
3.1.4. Tympanic temperature
Tympanic temperature (TT) was initially measured in beef cattle through data

loggers placed in the ear canal [109-111]. This method has also been used in dairy
cows to measure heat stress [112]. However, the use of this method in adult cattle
has been questioned due to the discomfort caused by foreign objects and the
potential for infections over long-term use [113]. In addition, the probes need to be
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properly located near the tympanic membrane, and any dislocation could result in
inaccurate readings [46,97,114].
To date, wireless temperature sensors that can be fixed in the ear canal have

already been commercialised for dairy calves [114,115]. The latest model of these
temperature-sensing ear tags (TempVerified FeverTag; Amarillo, Texas, USA) has
an accuracy of ±0.1% in °F [78]. Notably, TT is the only validated indicator of CBT
in calves [77]. In addition, for instant use, an infrared ear thermometer provides a
reading of TT in 1 s (Vet-Temp Instant Ear Thermometer, Advanced Monitors, San
Diego, CA, USA) [77].
3.1.5. Subcutaneous temperature
Subcutaneous temperatures (ST) are also candidates to represent CBT since heat-

stressed cows would drive more blood from the core to the peripheral [81]. ST can
vary distinctly among different implantation locations and many efforts have been
made to determine the best locations as the proxy for bovine CBT. Lee et al. [79]
measured ST in seven Holstein steers using data loggers (iButton DS1922L) in three
sites (lateral neck, upper, and lower scapula). Due to the lack of wireless
transmission, temperatures recorded were not available until recovered from an
explant surgery. This method is definitely only suitable for research purposes.
In consideration of animal welfare, wireless transmission is required for ST

measurements to avoid explant or retrieval operations. Commercially available
microchips can now be used to measure bovine ST. For example, Reid et al. [116]
used implantable radiofrequency identification (RFID) microchips (Bio-Thermo;
Digital Angel, Saint Paul, MN, USA) to measure Holstein steers’ ST in three sites,
including the base of the ear, posterior to the poll, and the area beneath the umbilical
fold. In a recent study of dairy calves [77], similar microchips (Bio-Thermo; Allflex,
USA) were implanted to measure ST in three sites (the ear scutulum, the upper
scapula, and intramuscularly in the trapezius muscle of the neck). Moreover, the
nasal submucosal temperature of 20 beef heifers was measured using LifeChip
microchips with Bio-Thermo technology (Destron Fearin, TX, USA) implanted in
the left and right nasal submucosa about 10 cm caudal to the alar cartilages [117]. It
should be noted that the products on market must be used with a reader to collect
temperature readings, meaning that manual operation is still required.
In order to reduce human efforts regarding temperature scanning on the field,

Chung et al. [81] achieved a long-distance transmission by combining the LifeChip
microchips with RFID scanning, long-range wireless communication, and Wi-Fi
technologies. Ear base temperature was measured and transmitted every 30 s. In
addition, Iwasaki et al. [80] implanted Bluetooth-based wireless thermistor sensors
into a Japanese hybrid cow to measure hourly ST in 10 different anatomical
locations. Five receivers were placed in the barn to collect data from the sensors and
further transferred them to a personal computer.
3.1.6. Milk temperature
Milk temperature (MT) has been proposed as an indicator for heat stress in dairy

cows due to the high degree of vascularity in the mammary gland [52]. Strong
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correlations have been reported between MT with other gold-standard CBT [118].
Nowadays, MT can be collected and stored automatically per milking per cow by
the robotic milking system, e.g., LELY T4C (Lely Industries NV, Maassluis, the
Netherlands) [82]. Basically, temperature sensors inside the robot’s arm measure the
MT of each quarter individually and the highest reading measured during the whole
milking event is often recorded in the database.

3.2. Body surface temperatures
When dairy cows first feel discomfort during heat exposure, vasodilation allows

more blood to divert from the core to the skin, which increases BST and allows for
increased heat exchange with the environment [81]. BST have been increasingly
mentioned in recent years as their non-invasive measurement is more in line with
animal welfare and PLF [119-121]. The most recent measurement methods of BST
are listed in Table 1-1.
Body surface temperatures (BST) can be measured in many ways among which

infrared thermography (IRT) is the most popular means due to its non-contact nature
and quick readings [122]. IRT can be used in both portable and fixed ways. For
portable use, an infrared camera or infrared gun can be held to measure data
according to users’ needs [85,86]. However, manual operation limits the frequency
of data collection. For fixed use, an infrared camera can be fixed at a specific
location (e.g., milking parlour, calf feeder, and water trough) [87,123,124]. The
cameras can be integrated with existing systems to achieve automated collection of
infrared data. An example is Schaefer et al. [123] where a FLIR S60 broadband
camera (FLIR, Boston, MA) was interfaced to a control system including RFID
sensors such that the camera shot every time a calf attended the water station.
No matter where and how the infrared camera is used, regions of interest (RoI)

have to be defined to collect specific BST. The common RoI used by dairy studies
include eyes, nostrils, foreheads, ears, muzzles, and udders. The definition of RoI is
often done after data collection by manual localisation using certain shapes on the
processing software. This operation is time- and labour-consuming. Several tricks
have been used to increase the efficiency of RoI definition. In the study by
Hoffmann et al. [124], the RoI (i.e., body and head) were manually defined at the
beginning of videoing, and no replicated operation was needed due to the fixed
position of the calves and the camera. In the study of Jorquera-Chavez et al. [87], the
RoI was also manually defined first by the users and the Kanade-Lucas-Tomasi
algorithm was used to track the selected RoI among sequential frames. In addition,
object detectors based on computer vision and deep learning techniques have been
introduced to achieve automated detection of RoI [125,126].
Generally, top-tier infrared cameras with high accuracy are quite expensive,

whereas affordable infrared guns may produce less reliable results. In addition, the
results of IRT are affected by the dirt on the surface, the skin fold, the direct sun
exposure, the distance and angle to the object animal, etc. [45], indicating that
additional image processing is needed. However, data processing techniques may
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work well for some cameras but not for others due to the different frame rate, image
resolution, and accuracy of the cameras [127].
In addition to IRT, BST can also be measured through wearable devices. Data

loggers (iButton DS1922L) were placed on the skin above the tail vein opposing the
rectum using flexible tape [83]. Thermocouples and thermistors were also fixed to
the skin to measure BST [84,128]. The results of the thermistors (EU-UU-VL5–0,
Grant Instruments, Cambridge, UK) and data loggers (iButton DS1922L) were
demonstrated to have a very good agreement when measuring BST [129]. However,
wearable devices are difficult to fix on the skin surface and prone to displacement,
and the results recorded were easily affected by hair and air movement [80]. To
minimise the influence of wind and hair, Kou et al. [84] designed an automated
measurement for BST by using a shell shape to securely position the thermistor on
the metatarsus of the hind leg, where there is less hair.

3.3. Respiratory dynamics
Respiration-based indicators are relevant indicators of heat stress in dairy cows.

More importantly, the respiratory system is activated before CBT, as measured in
rectal, vaginal, and tympanic areas, begin to rise [130,131]. Respiration-based
indicators may be the most appropriate indicators to early monitor heat stress in
dairy cows due to their high sensitivity in response to heat stressors and cost-
effective measurement [132]. The most recent measurement methods of respiratory
dynamics are listed in Table 1-2.
3.3.1. Respiration rate
The traditional method to measure RR of cattle is to manually count the movement

of the flank and convert it into breaths per minute (bpm). Such a visual observation
is both time- and labour-consuming. In addition, the interaction between observers
and cows may bias the result [133]. Many efforts have been made recently to design
automated measurements for RR. Generally, these new methods can be categorised
into contact and non-contact.
Contact measurements rely on wearable devices which are mounted to specific

locations of cows (e.g., face, flank, chest, neck). These devices collect respiration-
related electrical signals based on different methodologies and further convert them
into RR. Eigenberg et al. [134] developed a thoracic belt for cows based on a device
originally designed for humans. The device consists of a force transducer deriving
electrical signals from rib cage movement and a small battery-powered micro-
computer further converting the signal into RR. Its memory could collect RR data
for four consecutive days under the condition of collecting 1 min every 15 min.
Atkins et al. [135] designed similar devices and equipped them on eight lactating
Holstein cows to detect breathing-related abdominal expansion. Two methods (peak-
to-peak and fast Fourier transform) were used to derive RR from the raw signal.
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Table 1- 2: Summary of the state-of-the-art measurement methods for dairy cattle respiration-related data.

Indicator Methodology Technology Automatic Continuous Real-
time a Accuracy Reference

Respiration
rate

Temperature
changes around

nostrils

Infrared
thermography Yes Yes No 8.4 ± 3.4 (mean ± SD) bpm

lower [87]

Thermistor sensor Yes Yes No ±2 bpm for 80% of the
time [133]

Body movements

Pressure sensor Yes Yes No ±2-3 bpm [134]
±0.47 bpm [135]

Accelerometer-based
collar Yes Yes No Unknown [136]

Laser distance sensor Yes Yes No Mean difference of 6 bpm [137]
Ultra-wideband radar Yes Yes No Unknown [138]

Frequency-
modulated

continuous wave
radar

Yes Yes Yes Root mean square error of
1.582 bpm [139]

RGB camera Yes Yes No
Mean accuracy of 98.58% [140]

Mean accuracy of 93.04% [141]

Pressure changes
around nostrils Pressure sensor No Yes Yes

Mean difference of -0.2,
0.2, and1.4 bpm when
dozing, lying, and

standing, respectively

[142]

Breathing sounds MP3 recorder Yes Yes No Mean bias of 2.75 bpm [143]
Changes in
respiration
volume

Spirometer Yes Yes Yes Unknown [144]
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Colour changes in
facial part RGB camera Yes Yes No Unknown [145]

Panting

Panting scoring
system Visual scoring No No No Not applicable [146-148]

Body movements

Accelerometer-based
collar Yes Yes Yes Unknown [130]

Accelerometer-based
ear tag Yes Yes Yes Positive predictive value of

79% [149]

SD = standard deviation; bpm = breaths per minute.
a Ability to transmit in real time.
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Milan et al. [133] developed a thermistor-based halter to measure RR according to
the temperature changes around nostrils during breathing and found that the results
of the device were slightly lower than that of manual counting in four out of five
cows. However, they did not validate its reliability when cows were heat-stressed,
nor did they achieve a real-time transmission. It can be inferred that this method may
be of limited use when Ta is close to exhaled air temperature since no pulses in
temperature would then be detected. Strutzke et al. [142] also designed a halter that
can detect respiration-related signals based on the pressure difference between
inhalation and exhalation of air. As a preliminary investigation, they did not yet
develop automated processing software or algorithm, thus still requiring manual
counting of the peaks on the signal plot. A wireless local area network was applied
to achieve wireless transmission. The results showed no significant difference (P >
0.05) between manual counting on the video and that on the sensor signal when
cows were dozing or lying, but a potential overestimation by a mean difference of
1.4 bpm when the cows were standing (P < 0.05). The authors explained that this
could be due to incomplete manual counting. Their device also had many limitations,
e.g., short battery life, loss of devices, and the unknown reliability of the device in
hot conditions as well. Moreover, although there was no adverse event observed
during the study, the need to insert a flexible tube 10 cm deep into the nasal cavity
may cause some problems since cattle like to lick their noses [150]. The authors
expected to improve this method by developing processing software and including
information about breath depth. In addition, a facial mask equipped with an indirect
calorimetry system is very important for research purposes due to the ability to
measure comprehensive respiratory characteristics, including RR, tidal volume, and
the composition of the exhaled breath [144].
Recently, an accelerometer-based collar was further developed to measure RR

[136]. Using Fourier transform, respiration-related signals could be distinguished
from those of rumination, and RR could be obtained directly from the frequency
domain. In addition, the amplitude may be indicative of breath depth. More recently,
an acoustic method was developed by using an MP3 audio recorder mounted to the
cow’s halter [143]. However, the RR was retrospectively analysed after data
collection and the battery could only last up to two days. Wearable devices are
expected to continuously measure RR in real-time if battery life, wearing stability,
and remote wireless transmission can be further improved.
The temperature changes around the nostrils during breathing can also be captured

in a non-contact way by using hand-held IRT cameras [151,152]. The mean
difference between IRT and manual counting was 0.83 bpm in adult cattle and 0.02
bpm in calves. More recently, Jorquera-Chavez et al. [87] used a fixed thermal
camera and computer vision algorithms to calculate RR based on the changes in
pixel intensity within the nose area. Again, the systemic defect that the Ta and
exhaled air temperature are difficult to distinguish in a hot environment makes this
method only suitable for specific cool indoor areas. Pastell et al. [137] designed a
novel method based on a laser distance sensor. The laser rangefinder (L-Gage LT3;
Banner, Minneapolis, MN, USA) was fixed on the side of the cow and the RR was
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calculated from the change in the distance to the flank when the cow was breathing.
The mean difference was 6 bpm when the detection frequency was set to 100 Hz.
The signal of displacements from cows’ flank movements can also be detected using
radar sensors. For example, ultra-wideband radar [138] and frequency-modulated
continuous wave radar [139] have been used to extract RR signals from handled or
milking cows. To sum up, non-contact RR measurement methods are generally
costly and not mobile, and therefore would be better to use in specific scenarios
where cows are handled separately (e.g., milking parlours, calf feeders).
In addition, vision-based methods are potentially low-cost solutions which rely

solely on RGB cameras. These methods typically rely on periodic body movements
or changes in facial blood flow during breathing. On the one hand, periodic body
movements can be detected using optical flow methods which estimate the motion
of sparse or dense pixels by measuring the relative speed changes between
consecutive frames. For example, Song et al. [140] developed a RR detection
method for lying cows based on Lucas-Kanade sparse optical flow algorithm and
yielded an average accuracy of 98.58%. The respiration-related body movements
can be weaker while cows are standing. To solve this problem, Wu et al. [141]
combined a phase-based video magnification algorithm with Lucas-Kanade sparse
optical flow and achieved a mean accuracy of 93.04% for 70 video clips (each about
20 s in length) of individual standing cows. In their most recent work, an instance
segmentation method was incorporated to achieve a multi-target measurement for
two cows [153]. On the other hand, methods based on the colour or brightness
changes in facial blood flow typically follow the remote photoplethysmography
principle. For example, Fuentes et al. [145] used a computer vision algorithm to
analyse RR for individually handled cows based on the luminosity changes on the
green to red colour channel from CIELab scale. To sum up, these methods are more
affordable but were only designed for measuring single or very few targets. Further
improvements are needed to increase their applicability in more diverse scenarios.
3.3.2. Panting score
Panting, as an important physiological pathway of evaporative heat loss, has long

been proposed to describe heat stress in dairy cows [6]. Panting is considered a
behavioural change strategy but is introduced here due to its relevance with RR.
With the accumulation of heat in dairy cattle, cows drool first, then open their

mouth and protrude their tongues [154]. Panting score (PS) has been developed in
numerical scales to rate these signs [146-149]. A recent study proposed a new
scoring system to assess heat stress in grazing dairy cows [155]. This score is very
similar to PS, also relying on various behavioural signs to assess heat stress on a
scale of 0 to 4. To measure PS or related scores, trained observers rate a cow’s
respiratory dynamics according to the numerical scale, and the process would take
about 10 s per observation per cow. Although measuring PS is relatively easier than
RR, the inter-observer difference can be an important source of error.
The ability of a commercially available collar to accurately reflect heat stress in

dairy cows has been validated [130]. ‘Heavy breathing’ detected by this tag is
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defined by characteristic movements (e.g., forward-backward heaving and increased
chest movement). An accelerometer-based ear tag from the same manufacturer was
also validated in steers [149]. The sensor was designed to classify each minute
segment into one of five behaviours, probably leading to a high false-negative rate
by rating breathing heavily cows as other more prominent behaviours. As proposed
by both Bar et al. [130] and Islam et al. [149], these accelerometer-based sensors
have difficulties in detecting slight panting and only give a binary result (panting or
not). Although the detection of panting or not is enough for the start of heat
abatement protocol, a more sophisticated classification would be more informative
for customised interventions. Further studies can therefore focus on improving the
sensitivity and classification of the sensors. In fact, the determination of ‘heavy
breathing’ is based on a default threshold of the frequency of respiration-related
movements. Therefore, ‘heavy breathing’ can be seen as an extension of RR.
In addition, computer vision is feasible to measure panting but requires a direct

view of facial areas to detect drooling, mouth opening, and tongue protruding.
Otherwise, measurements relying on other motion characteristics, i.e., forward-
backward heaving and increased chest movement, are equivalent to measuring
changes in RR.

3.4. Behavioural changes
Except for panting, cows take many other behavioural change strategies to cope

with changing thermal environment. For example, they increase water intake and
standing bouts, decrease feed intake, and seek cooling and shade [5,156-158].
Accordingly, agonistic social behaviours, such as replacing others at the water
trough, would increase [159]. The most recent measurement methods of behavioural
indicators are listed in Table 1-3.
The traditional way to measure cow behaviours is through manual observation

either on the field or on video recordings, both of which require massive time and
human effort. Thanks to wearable technology, basic behaviours including lying,
standing, rumination, walking, drinking, and feeding can be accurately measured by
using accelerometer-based sensors. Many commercially available products (such as
collars, ear tags, leg sensors, and boluses) have been validated in dairy research. For
example, Heinicke et al. [160] measured lying behaviour in 196 cows by using
IceTag3D leg sensors (ceRobotics, Edinburgh, UK). In another study, smart collars
(SCR Engineers, Netanya, Israel) were equipped on 864 cows to measure rumination
[161]. More importantly, these devices can provide the daily behavioural duration of
individual cows as an output, allowing for the analysis of individual differences in
dealing with heat stress.
In addition, basic behaviours such as standing, lying, feeding, and drinking can be

easily detected through non-contact vision-based methods due to their representative
postures and relative position with facilities (e.g., drinking at the water trough,
feeding at the feeding trough). For example, Viola-Jones algorithm, a classic object
detector, has been trained for detecting lying, standing, and feeding behaviours from
video recordings [162,163]. Furthermore, the number of detections of the specific
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Table 1- 3: Summary of the state-of-the-art measurement methods for dairy cattle behavioural indicators.

Indicator Data
acquisition

Cow
information Algorithm Sample size Accuracy Reference

Lying and standing Accelerometer-
based leg sensor Not applicable Not applicable Not applicable Unknown [160]

Daily duration of
lying, standing,

rumination, walking,
feeding, drinking

Accelerometer-
based collar, ear
tag, and bolus

Not applicable Not applicable Not applicable Unknown [161,164]

Percentage of cows
lying, standing, and

feeding

Top-view video
recording

15 Holstein
dairy cows

Violae-Jones
algorithm

1145 positive
image samples

Sensitivity of 0.92, 0.87,
0.86 for lying, feeding,

standing
[162,163]

Video recording 51 cows YOLOv3 316 images
Coefficient of

determination of 0.67 for
lying and standing

[165]

A total of 15
individual and social

behaviours

Side-view video
recording

A Hanwoo
herd

YOLOv3 with
spatio-temporal
information

350 videos with
an average
duration of
12 min

Mean average precision
of 0.856 [166]

Drinking Top-view
cameras

25 Holstein
dairy cows Tiny YOLOv3 1000 images F1 score of 0.987 [167]

Drinking,
rumination, walking,
standing, and lying

Side-view video
recording

Individual
Holstein cows

VGG16 feature
extractor and
Bi-LSTM
classifier

4566 videos
with duration of

10 to 55 s

Average recognition
accuracy of 0.976 [168]

Drinking and its
competing

Electronic water
bins

42 Holstein
cows Not applicable 268 events Specificity and sensitivity

of 1 for drinking [169]

20 lactating
Holstein cows Thresholding 669 events Recall and precision

above 0.8 for competing [170]
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behaviour was divided by the total number of cows in the barn to produce herd-level
behavioural indicators, including cow standing index, cow lying index, and cow
feeding index. The measurement of these indicators allows for further analysis on a
herd basis.
Recently, deep learning-based algorithms have significantly increased the

accuracy of cow behaviour recognition. Plus, more detailed and dynamic
behavioural classification can be fulfiled by utilising temporal information [166,168].
The deep learning-based approach reportedly has already achieved an average
accuracy of up to 0.976 in detecting basic cow behaviours (i.e., drinking, ruminating,
walking, standing, and lying) [168]. However, it should be noted that algorithms are
mostly developed for specific purposes on specific farms, often using small datasets
[171]. The lack of external validation raises concerns about the generalisability of
the developed methods in broader real-world scenarios. Important issues, such as the
position and angle of camera mounting, the ability to cover the entire herd, and the
ability to work during day and night, should be further investigated before such
vision-based methods can be extensively used in commercial environments.
Behaviours of accessing environmental resources can also be obtained by

checking the visiting record of electronic devices. For example, drinking can be
measured automatically through Insentec water bins (Marknesse, the Netherlands)
[169]. This process requires a good connection with on-cow fitted identification
devices (e.g., electronic ear tags and neck collars). Agonistic social behaviours,
competing for water bins in this case, can be further obtained by using certain
processing algorithms embedded into the hardware. An event of replacement is often
defined as a brief interval between two consecutive visits at the same waterer. The
optimal threshold was reported at ≤29 s by McDonald et al. [170] and between 22 to
27 s by Foris et al. [172].

4. Prediction of heat stress in dairy cows
Predictive models aim to predict difficult-to-access parameters using easily

accessible ones. They can be simply classified into empirical and mechanistic
methods. The former is driven by data while the latter is driven by theory.

4.1. Empirical models
Typically, empirical modelling is used either to infer rules and relationships within

real-world data or to create a model to predict future observations. That is to say, the
modelling begins from data acquisition and is highly dependent on the quantity and
quality of the datasets. The recent efforts in empirical models are listed in Table 1-4.
The classic and traditional way to construct an empirical model is to use statistical

models, such as linear regression models. Technically, statistical models are more
commonly used to infer relationships between variables. Although these methods
can make predictions, the accuracy of the predictions is not their strength. A recent
statistical model for predicting heat stress in dairy cows is presented by Li et al.
[173], in which herd average RR was predicted from environmental parameters,
previous milk yield, and time block. Although a very good coefficient of
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determination was collected, the use of herd means neglects individual differences
and cannot make a prediction at the individual level.
In recent decades, machine learning (ML) techniques are gaining popularity in

data science. ML techniques can be simply divided into two categories: supervised
and unsupervised learning. On the one hand, supervised learning involves training a
model with known predictors (also called features) and outcomes (also called labels)
to predict future observations. Unsupervised learning (e.g., clustering), on the other
hand, is often used for explorative data mining of the hidden and intrinsic patterns
within new datasets. In the case of heat stress prediction, nearly all relevant works
rely on supervised learning.
Supervised learning is a technique that first trains a model using a subset of data

and then tests the model on a different subset of data to collect its true performance.
Notably, supervised learning can still perform statistical models. For example, linear
regression, a statistical method, can be trained as a linear regressor and produce the
same results as a statistical regression model which aims to minimise the squared
error between observations. In fact, these linear regression models are frequently
used as baselines or controls for other non-linear ML models.
Supervised ML algorithms can be used for regression and classification tasks. As

shown in Table 1-4, the majority of works employed regression models for
predicting physiological responses, whereas only two works used classification
models to predict a four-level heat stress score and panting score, respectively
[155,174]. Overall, the applied algorithms include linear regression, logistic
regression, naïve Bayes, gradient boosted machines, random forests, artificial neural
networks, recurrent neural networks, and neuro-fuzzy networks.
Since different studies used different datasets, the horizontal comparison of their

results is unfair. However, artificial neural networks and random forests performed
always the best when multiple algorithms were compared. This fact at least
demonstrates the advantage of these two algorithms in fitting heat stress responses
and can be used as a reference for future studies to choose appropriate algorithms. In
addition, the number of data points used for training varies dramatically among
studies from 150 to more than 6000. The relationship between sample size and
predictability can be complex and depends on various factors, such as the variability
in the data and the complexity of the underlying patterns. A larger sample size,
however, generally avoids overfitting and increases the chances of obtaining
accurate and reliable predictions. The rule of thumb is that the data points should be
at least ten times as many as the predictors [175,176].
Some studies regard BST as an outcome, such as Fuentes et al. [177] and

Gorczyca and Gebremedhin [178], whereas some other studies treat BST as a
predictor of other gold-standard indicators such as Pacheco et al. [179] and Sousa et
al. [180]. These two routines reflect two viewpoints on the roles that these variables
play in thermoregulation. Theoretically, predictors should at least change before the
outcome to make a temporally logical prediction. To some extent, eye temperature,
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Table 1- 4: Summary of the recent empirical models for predicting dairy cattle body temperatures and respiratory dynamics

Reference Methodology Cow
information

Thermal
condition

Sample
size Predictor Response Accuracy a

[173] Linear regression
45 high-
producing

Holstein cows

Ta ranged from
6.9 to 33.3 °C
and RH ranged
from 31.8% to

99.7%

253
records of

herd
average

Ta, RH, wind
speed, milk yield,
and time block

Respiration
rate R2 of 0.836

[181]
Artificial neural
networks, neuro-
fuzzy networks

Holstein cows Unknown 6676
records Ta and RH Respiration

rate
RMSE of
6.67 bpm

[179] Artificial neural
networks

21 and 14
Holstein

primiparous and
multiparous
cows for

summer and
winter sessions,
respectively

Summer: Ta and
RH averaged
29.2 ± 6.20 °C
and 62.6% ±
20.51%,

respectively.
Winter: Ta and
RH averaged
19.2 ± 4.97 °C
and 70.8% ±
18.73%,

respectively

About
1850
records

Ta, RH, dew point
temperature, and
maximum ocular
temperature

Rectal
temperature

RMSE of
0.40 °C

Ta, RH, and mean
front temperature

Respiration
rate

RMSE of
10.01 bpm

[178]

Penalised linear
regression,

random forests,
gradient boosted
machines, and
artificial neural

networks

19 lactating
Holstein cows
with an average
daily milk yield
of 39 ± 4 kg

Ta and RH
averaged 29.2 ±
6.20 °C and
62.6% ±
20.51%,

respectively

486
records

Ta, RH, wind
speed, and solar

radiation

Vaginal
temperature

RMSE of
0.434 °C

Body surface
temperature

RMSE of
0.334 °C

Respiration
rate

RMSE of
9.695 bpm
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[177] Artificial neural
networks

102 Holstein
cows

Ta from 11 to
13 °C and RH
from 74% to

82%

150
records

Respiration rate,
heart rate, abrupt
movements, and
nine weather
parameters

Body surface
temperature:

eyes
Unknown

[155]

Random forests,
logistic

regression, and
Gaussian naïve

Bayes

18 lactating
Holstein cows
and 9 lactating
Jersey cows

Temperature-
humidity index
averaged 76.81

± 4.99

856
records

18 features
including weather
parameters, cow-
related factors,
production

parameters, and
behavioural
parameters

Heat stress
score based on
respiration rate
and its related
behaviours

Accuracy of
0.888

[80] Artificial neural
networks

A Japanese
hybrid cow

Ta averaged 4.7
± 3.5 °C

342
records

7 subcutaneous
temperatures

Inner flank
wall

temperature

Correlation
coefficient
of 0.93

[81] Long short-term
memory networks 3 Holstein cows Unknown Unknown

Temperature-
humidity index
and ear base
subcutaneous
temperature

Vaginal
temperature

RMSE of
0.081 °C

[174]

Logistic
regression and
long short-term
memory networks

200 and 96
mixed-breed
cattle for

training and
validation sets,
respectively

Ta averaged
23.8 ± 5.56 °C
and 25.84 ±
4.24 °C,

respectively

Unknown

Historic and
forecast weather
data and the
herd’s heat
vulnerability
dilation factor

Heavy
breathing
(panting)

Accuracy of
0.802

Ta = ambient temperature; RH = relative humidity; R2 = coefficient of determination; RMSE = root mean square error; bpm = breaths per
minute.

a When multiple algorithms were compared, only the best one was shown.
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despite being classified as a kind of BST, would be better treated as an outcome
given its close relationship with CBT in both values and temporal sequence [182].
Although ML models typically have good predictive ability, their interpretability

is always sacrificed. Fortunately, some newly developed model-agnostic approaches
are able to extract post-hoc explanations, such as feature importance, partial
dependence plots, Local Interpretive Model-Agnostic Explanations, among others.
These techniques have already been used for interpreting ML models in predicting
milk production [183] and land use [184]. Thus, it is interesting to see if these
techniques can help interpret the nonlinear relationship between the thermal
environment and animal responses.
Another concern of ML models is their external validity and generalisability.

Proper splitting between training and testing sets is crucial for model generalisation
[185]. Traditional random splitting can lead to an over-optimistic estimation of ML
regression model performance by up to 48%, as multiple samples from the same
subject might be present in both sets, leading to data leakage [186,187]. Subject-
wise splitting should provide better generalisation because it can ensure complete
independence between sets and thus better represent real-world applications.
However, all studies adopted random splitting (Table 1-4) and it remains unknown
to what extent the potential overestimation is. Also, appropriate modelling
techniques (e.g., regularisation) can be used to avoid overfitting in the training set
[188]. However, even if all these points have been properly addressed, generalising
trained models to datasets collected elsewhere remains challenging due to significant
differences in environments, animals, and management. To some extent, this
problem can only be solved by training with combined datasets collected from
different settings. Undoubtedly, the more exposure the ML models have to the
overall distribution of data, the better they can adapt to new data samples.

4.2. Mechanistic models
Mechanistic models aim to mimic and predict what will happen in a real-world

system in a deterministic way through the fundamental laws of natural sciences,
such as physical, chemical, and biological principles, [65]. Ideally, mechanistic
models are capable of simulating situations that have not been seen, while empirical
models cannot because their predictions are based on previously trained samples
[189]. In addition, mechanistic models need less experimental data to calibrate the
model and determine unknown model parameters. Another advantage of mechanistic
models is that the model parameters have an actual physical meaning, which allows
for easier scientific interpretation of the results.
Unlike empirical models which start with the data, mechanistic models start by

assuming that a particular set of processes are affecting the outcome of interest. In
the case of modelling humans or animals’ thermal balance, the strategy is to start
with treating humans or animals as a control system, then simulating the heat
transfer process between the body and environment using mathematical equations,
and finally relying on differential equations to solve the unknowns. The recent
works in this respect are listed in Table 1-5.
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Table 1- 5: Summary of the recent mechanistic models for predicting dairy cattle body temperatures and respiratory dynamics.

Reference Structure Input Output Accuracy a

[190]

Three-layer model:
core, skin, and coat with
heat production, solar

radiation, air
temperature, and wind
speed sub-models

Environmental inputs: air temperature, solar radiation,
wind speed, and vapor pressure. Animal inputs: body-
core weight, genotype-specific parameters, dry matter

intake rates, and diet composition

Core body
temperature Unknown

[191] One dimensional model
Environmental inputs: air temperature and wind speed.

Animal inputs: tissue density and specific heat,
metabolic heat production, etc

Body surface
temperature Unknown

[192] One-dimensional model

Environmental inputs: air temperature, relative
humidity, and wind speed. Animal inputs: tissue

resistance, fur thermal conductivity, coat thickness,
hair density, hair diameter, etc

Body surface
temperature Unknown

[193]

Five-layer model: body
core, top and bottom
skin, and top and
bottom coat

Environmental inputs: Julian day number, air
temperature, relative humidity, wind speed, annual

average air temperature, location. Animal inputs: body
mass, milk yield, feed intake, and feed ingredients

Core, skin, and
coat

temperatures

RMSE of 0.4 and
1.16 °C for 2 datasets

[194]

A total of 10 two-layer
and three-layer models
based on existing

models and equations

Environmental inputs: air temperature, relative
humidity, and wind speed. Animal inputs: body mass,

milk yield, coat thickness, tissue resistance, hair
diameter, etc

Body surface
temperature RMSE of 0.649 °C

[195]

Three-layer model:
core, skin, and coat with
physiological regulation

sub-models

Environmental inputs: air temperature, relative
humidity, and wind speed. Animal inputs: body mass,
body core diameter, milk yield, coat thickness, tissue

resistance, hair coat thermal resistance, etc

Core body
temperature RMSE of 0.30 °C

Body surface
temperature RMSE of 1.20 °C

Respiration rate 11 breaths per minute
RMSE = root mean square error.
a When multiple algorithms were compared, only the best one was shown.
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Following the development of mechanistic models in human biometeorology,
mechanistic models were introduced into cattle biometeorology around the 1980s.
McArthur [196] developed a heat-balance model for ruminants that could predict
CBT under static environments. However, the majority of subsequent efforts were
made in estimating heat transfer mechanisms such as evaporative and convective
heat losses [3,197,198] while neglecting physiological responses. In the recent
decade, global attention in mechanistic modelling has again focused on the
prediction of physiological responses, possibly driven by increased interest in
precise heat stress detection.
Specifically, the main assumption of relevant works involves treating the animal

body or part of the body as a number of concentric cylinders with closed ends, e.g.,
the entire cow body can be structured into three layers: core, skin, and coat as per a
classic model developed by McGovern and Bruce [199]. Also, a significant amount
of information is required, such as tissue heat transfer properties, metabolic heat
production, and thermoregulatory mechanisms [65]. However, certain input
variables, including various biophysical parameters that are required for calibrating
and deploying such models, are rather difficult to collect in practical farms.
Many studies [190,199] took advantage of the model structure of McArthur [196]

since it contains physiological responses (i.e., body temperature, sweating, panting,
and vasodilation). Notably, the model of McArthur [196] can only predict body
temperature under a static environment where microenvironmental conditions do not
change. Taking a step further, Thompson et al. [190] developed a dynamic heat
exchange model by connecting the heat flows with body temperature. This model
successfully predicts dynamic CBT in response to constantly changing
environmental factors such as Ta, WS, and SR.
It is crucial to properly incorporate heat transfer and thermoregulation principles

as well as animal-related factors to accurately predict animal responses to heat stress
[200,201]. Mechanistic models have become increasingly complex over time as
researchers continue to incorporate new elements and refine the models to better
capture the complex interactions between environmental factors and animal
physiology. This increased complexity is somehow necessary to ensure that the
models accurately represent the underlying biological and physiological processes
that govern animal health and productivity under various environmental conditions.
For example, Li et al. [193] improved the model of Thompson et al. [190] by
introducing a sub-model for describing conduction between the lying animal and the
ground surface. Also, more layers (i.e., core, muscle, fat, and skin) can be
considered due to different heat transfer mechanisms (e.g., heat generated by
external work occurs only in the muscle layer) as per human studies [65,202].
Moreover, radiation, as another relevant heat transfer mechanism that can happen
between cows and the environment as well as between individual cows, requires
more investigation [65].
Another research hotspot is to validate previously developed model structures with

regard to the interpretation of physiological responses using nowadays high-
producing dairy cows. This is driven by the fact that modern cows are increasingly
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sensitive to heat stress due to increased milk production. For example, Zhou et al.
[195] developed a three-node mechanistic model to predict body core, skin, and coat
temperatures and obtained satisfactory accuracy on recent data from high-producing
Holstein dairy cows. Another study by Yan et al. [194] compared ten thermal
models with different combinations of previous equations and models to predict the
BST of high-producing dairy cows. The two-layer mechanistic model was identified
as the best, however, requires the input of measured CBT.
To sum up, the validation of these models, especially those developed earlier, in

nowadays real-world data is typically insufficient. The complexity of the models
makes this process even harder since more parameters have to be refined [203]. In
addition, the complex equations and parameters may be too technical for frontline
workers who are unfamiliar with the heat transfer process [189]. These reasons may
contribute to mechanistic modelling being less popular in the research community
than empirical modelling [204].

5. Assessment of heat stress in dairy cows
Once relevant data are available, the next step is to assess and quantify heat stress.

Unlike humans, animals are unable to express their subjective feelings of comfort.
Therefore, the assessment of animal thermal comfort relies heavily on physiological
and behavioural indicators. Many studies compared the physiological or behavioural
responses of animals under different THI classes [67,164,205]. Some studies
separated the records according to different climate or management conditions (e.g.,
summer versus spring, cooling versus no cooling) [89,206]. These methods can
identify a strong association between animal- and environment-based variables but
are unable to obtain critical thresholds.

5.1. Development of critical thresholds
The most common methods for describing the relationship between environment-

and animal-based indicators are piecewise and polynomial regression models.
Although polynomial or other nonparametric models (e.g., generalised additive
model) may bring better fitting [207,208], the fact that all data conform to the global
equations makes them easily subject to changes in data distribution. Also, their
results are insufficiently informative. In contrast, piecewise regression models, also
known as segmented or broken-line models, rely on multiple linear regression
models that are fit independently to each segment, allowing for a more flexible fit
compared to a single linear regression model. These models offer helpful
information, including the breakpoint as well as the slope before and after the
breakpoint, which can inform the development of management strategies to better
regulate animal responses to environmental stressors.
Spline regression models combine the advantages of piecewise and polynomial

regression models. They use piecewise polynomial functions, known as splines, to
model the relationship between dependent and independent variables. Splines are
designed to be continuous and have continuous derivatives up to a specified order at
the segment boundaries (known as knots). This allows spline regression models to
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capture smooth changes in the relationship between the variables and provides a
more flexible fit compared with piecewise regression models. The more knots, the
more flexible the model, and the more critical thresholds. However, too many knots
can also lead to overfitting problems. In summary, the key difference between
piecewise and spline regressions lies in the continuity and smoothness of the fitted
function at segment boundaries: piecewise regression models allow for abrupt
changes, while spline regression models enforce smooth transitions.
Despite the abovementioned advantages, spline regression models are rarely used

in dairy cattle heat stress studies. An example of using spline models to fit the effect
of THI on milk yield is Ekine-Dzivenu et al. [205]. The cubic spline model had the
best predictive performance however no thresholds were given. The unpopularity of
spline models is possibly due to the assumed thermoregulation principles, which can
be simply explained by a threshold effect. Below the upper critical threshold,
animals remain comfortably within the thermoneutral zone, while above it, animals
become exposed to a hot zone [1]. This upper critical threshold can be easily
modelled by a simple piecewise regression model, which is particularly suited for
capturing sudden changes in the response variable. Consequently, these models may
offer a more intuitive representation of the underlying biological processes
associated with the thermal comfort of dairy cattle. The recent critical thresholds on
both environmental and animal sides are listed in Table 1-6.
The consideration of the plateau period when using piecewise functions is quite

different among relevant studies, which could have a great impact on the results. For
example, Li et al. [173] and Peng et al. [85] collected data from the same dairy farm
and both used segmented regression to obtain heat stress thresholds for RT in dairy
cows. The former assumed the existence of a plateau while the latter did not. The
THI thresholds were 70 and 74.1, respectively. As the environmental condition and
animal status were almost identical, it can be inferred that the introduction of the
plateau period could lower the THI threshold to some extent. In fact, the decision
should be based on the response pattern of specific physiological indicators. For
example, it is sensible to use a plateau to fit CBT as the normal CBT of
homeotherms fluctuates within a narrow range. In contrast, the plateau may be not
applicable to fit other indicators, such as BST and RR, which consistently change
with the thermal environment. An example can be found in a recent study by Dado-
Senn et al. [209], where RT remained nearly stable with a flat slope before the
breakpoint, while RR increased at a slight slope before the breakpoint.
In addition, the range of thermal conditions during the testing days is important to

the results. For example, Dado-Senn et al. [210] and Kovács et al. [211] both used
piecewise regression models to determine the THI thresholds for RT, RR, and BST
in dairy calves. However, the THI thresholds of the former were between 65 and 69,
while the THI thresholds of the latter were between 82.4 and 88.1. It is mostly
because the former was conducted under a much broader range of thermal exposures
(THI of 60 to 85) than the latter which had an average THI greater than 80 on three
out of four experimental days. Therefore, the thresholds obtained by the latter may
be the point in which heat stress was aggravated rather than triggered.
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Table 1- 6: Summary of heat stress thresholds in dairy cattle based on body temperatures, respiratory dynamics, and behavioural changes.

Indicator Reference Thermal condition Cow information
Threshold for
animal-based
indicator

Threshold for
environmental

indicator

Rectal temperature

[212] A continental climate with a THI
range of 17.8 to 85.1

High-producing Holstein
dairy cows 38.4 °C THI a 70

[173] A hot climate with a Ta range of
9.5 to 30.8 °C

High-producing Holstein
dairy cows 38.6 °C THI a 70

Ta 20.4 °C

[85]
A temperate continental monsoon
climate with a THI range of 58 to

84

High-producing Holstein
dairy cows 38.55 °C THI a 74.1

[213] BGHI higher than 72 ½ Holstein dairy cows Unknown BGHI 76.44
¾ Holstein dairy cows Unknown BGHI 73.51

[210] A subtropical climate with an
averaged THI of 78 (shade only) 24 preweaning dairy calves Unknown THI a 67

[209] A continental climate with a THI
range of 60.8 to 77.3 63 Holstein dairy calves 38.5 °C THI a 69

Ta 21.5 °C

[211] A hot climate with a THI range of
70.3 to 94

Preweaning Holstein bull
calves Unknown THI b 88.1

[214] A subtropical climate with an
averaged THI of 76.45 111 dry cows Unknown THI a 77

Vaginal temperature

[215]
A temperate continental monsoon
climate with a daily mean Ta
range of 14.7 to 25.8 °C

20 high-producing Holstein
dairy cows 38.7 °C Ta 25.3 °C

[216] THI ranged from 55.8 to 79.9 Multiparous nonpregnant
Holstein cows Unknown THI c 69

[217] A hot-humid climate with an
average THI of 82.4 Dairy cows 38.9 °C Unknown

[135] Unknown Lactating Holstein cows Unknown THI a 70
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Milk temperature [82] A subtropical climate with a Ta
range of 2.0 to 38.0 °C Lactating Holstein cows Unknown Dynamic

thresholds

Body surface
temperatures:

forehead, eye, and
muzzle (mean,
maximum)

[215]
A temperate continental monsoon
climate with a daily mean Ta
range of 14.7 to 25.8 °C

20 high-producing Holstein
dairy cows

30.1 °C (mean
forehead

temperature)
to 37.5 °C
(maximum

eye
temperature)

Ta from 24.1 °C
(maximum
forehead

temperature) to
25.4 °C (mean
and maximum

muzzle
temperature)

Body surface
temperatures: head,
eye, cheek, ear, neck,
trunk, udder, foreleg,
and hindleg (mean,

maximum)

[218] A temperate climate 233 high-producing
Holstein cows Unknown

THI a from 69.1
(mean cheek
temperature) to
77.9 (maximum

udder
temperature)

Body surface
temperatures:
forehead (mean,
maximum)

[85]
A warm temperate semi-humid
continental monsoon climate with

a THI range of 58 to 84

488 high-producing
Holstein cows

30.05 °C,
30.34 °C THI a 71.4, 66.8

Body surface
temperatures: eye,
hindquarter, nose,
horn, and ear

[219] THI ranged from 75.1 to 84.7 Hanwoo heifers Unknown THI a 65 (eye) to
70 (hindquarter)

Body surface
temperature: ear [211] A hot climate with a THI ranging

from 70.3 to 94
Preweaning Holstein bull

calves Unknown THI b 83.0

Respiration rate

[173] A hot climate with a Ta range of
9.5 to 30.8 °C

High-producing Holstein
cows 48 bpm THI a 70

Ta 20.4 °C

[215]
A temperate continental monsoon
climate with a daily mean Ta
range of 14.7 to 25.8 °C

20 high-producing Holstein
dairy cows 53.8 bpm Ta 24.4 °C
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[212] A continental climate with a THI
range of 17.8 to 85.1

Standing and lying high-
producing Holstein cows 37, 39 bpm THI a 70, 65

[213] BGHI higher than 72 ½ Holstein dairy cows 30 bpm BGHI 73.61
¾ Holstein dairy cows 45 bpm BGHI 72.29

[135] Unknown Lactating Holstein cows Unknown THI a 70
[220] Unknown Dry cows 61 bpm Unknown

[210]

A subtropical climate with an
averaged THI of 78 (shade only) 24 preweaning dairy calves Unknown THI a 65

A subtropical climate with an
averaged THI of 78.25 (shade

plus fans)
24 preweaning dairy calves Unknown THI a 69

[209] A continental climate with a THI
range of 60.8 to 77.3 63 Holstein dairy calves 40 bpm THI a 69

Ta 21 °C

[211] A hot climate with a THI range of
70.3 to 94

Preweaning Holstein bull
calves Unknown THI b 82.4

[214] A subtropical climate with an
averaged THI of 76.45 111 dry cows Unknown THI a 75 to 77

Average drinking
length [167] A THI range from 68 to 93 25 lactating Holstein cows Unknown THI a 84

Daily lying time [160] A moderate climate with a THI
range of 42 to 77

196 lactating high-
producing Holstein cows 660 min/d Daily average

THI a 67
Daily rumination

time [161] A temperate climate with a THI
range of 25.6 to 84.8 864 lactating Holstein cows 554 to 542

min/d
Daily average
THI c 63

Daily rumination
time [221] A moderate climate with a THI

range of 20.4 to 85.9
183 lactating high-

producing Holstein cows 535 min/d Daily average
THI a 52

Milk replacer intake [210] A subtropical climate with an
averaged THI of 78 (shade only) 24 preweaning dairy calves Unknown THI a 82

THI = temperature-humidity index; Ta = ambient temperature; BGHI = black globe-humidity index; bpm = breaths per minute.
a THI equation from National Research Council [222]. b THI equation from Bianca [223]. c THI equation from Mader et al. [146].
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Many studies only measured animal-based data once or twice a day. This sampling
frequency, however, may affect the accuracy of the developed threshold. If the
indicators of interest change more frequently than the frequency of measurements, it
is difficult to observe the real effect [70]. For example, VT should be measured
every 120 min or more to reflect daily average CBT [73]. In addition, RR should be
measured every 90 min to provide an accurate reflection of heat stress [154].
Various factors have an impact on the sensitivity of dairy cows to their thermal

environments, including internal cow-related factors (e.g., age, breed, production
level, lactation stage, parity, body posture, previous thermal exposure, acclimation)
[1,68,212] and external management factors (e.g., milking, cooling, nutrition,
shading) [93,210,224]. Therefore, it is insensible to assess the heat stress state of
cows based on a generic threshold.
To deal with these dilemmas, efforts have been made to adjust or customise the

thresholds according to various animal and management factors. The heat load index
was developed for feedlot beef cattle by Gaughan et al. [147]. Genotype, coat colour,
health status, acclimatisation, shade, days on feed, manure management, and
drinking water temperature were considered for adjustment when determining the
threshold for reference animals. Other studies tried to customise thresholds
according to different levels of productivity [82], posture [212], cooling strategy
[210], and lactation number and stage [225]. Further studies are required to
continuously customise heat stress thresholds for internal and external factors that
have an impact on the sensitivity to heat stress.
Notably, the difference in the sensitivity of heat stress manifests both on

environmental and physiological sides. For instance, high-producing cows may enter
heat stress at a lower THI and a higher RT [82,226]. However, many studies did not
report the threshold and its confidence interval of animal-based indicators, which
might have been discouraged by the lack of automated measurement for animal-
related data in actual farms.
Most of the present critical thresholds assume a simultaneous change of

physiological indicators with the thermal environment. For the detection of early
signs of heat stress, the high sensitivity of the indicators to environments may render
the time effect negligible. However, when predicting long-term effects, such as milk
production, the duration of heat exposure becomes a strong influencing factor [53].
In addition, when dairy cows have been exposed to long-term heat stress, some of
them may enter a new physiological state and can better dissipate excess body heat,
manifesting as increased RR and BST as well as restored milk yield [227]. Therefore,
existing RR and BST thresholds might be biased upward to some extent if too much
thermotolerant data were used for threshold development.

5.2. Sensitivity of animal-based indicators in response to heat
stress
As discussed above, many physiological and behavioural indicators can reflect

heat stress in dairy cows, but they function in different stages. Indeed, it has long
been recognised that some indicators like RR represent the effort made by
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thermoregulation while an increased CBT is more like the result of thermal
equilibrium [228].
From a thermodynamics point of view, homeotherms take two ways to dissipate

body heat: sensible heat loss (non-evaporation) and latent heat loss (evaporation).
The former consists of conduction, convection, and radiation while the latter consists
of respiratory and cutaneous evaporation. Cutaneous evaporation can account for up
to 80% of latent heat loss in a tropical environment [4], but it is rather difficult to
measure. When Ta increases beyond the upper critical temperature of the
thermoneutral zone, the non-evaporative ways of heat loss appear to be far less
efficient [195]. When Ta is close to 32 °C, Holstein cows even start to gain heat
from the environment through sensible heat transfer [3]. As the thermal environment
continues to deteriorate, cows can succumb to hyperthermia with an increased CBT
at some point where they fail to maintain thermoneutrality [1].
From a physiological point of view, when Ta rises in the first place, homeotherm

will take three major physiological procedures to increase heat dissipation:
vasodilatation, sweating, and panting [5]. Vasodilatation is to drive more blood from
the core to the skin and peripheral to increase BST so that promotes sensible heat
loss. The remaining two procedures are to promote evaporation. At the same time,
cows will adopt a series of behavioural change strategies in response to heat stress
[5]. Strategies for promoting heat loss include increasing standing time to promote
convection through increased surface area, as well as increasing water intake to
promote evaporation. Strategies for reducing heat production include decreasing
physical activity, feed intake, rumination time, etc. Only when these preliminary
efforts fail to dissipate excess body heat would CBT increase abnormally [196,220].
When the increase in BST and RR is effective to keep thermoneutrality, RT can
remain unchanged [229].
As summarised in Table 1-6, the temporal sequence of animal responses to heat

stress is supported by many studies, with BST and RR increasing at lower THI or Ta
thresholds relative to CBT, and BST responding even before RR due to direct
contact with the ambient environment [85,209,210,212,213,215]. RR was reported
to increase approximately an hour earlier than RT [131], and panting was found to
respond about 15 min earlier than VT both when increasing and decreasing [130].
This evidence supports the increase in CBT as a consequence of insufficient
thermoregulation.
Although MT is a time- and labour-saving way to detect heat stress in dairy cows,

it is only accessible to lactating cows [79]. Also, MT may be less effective to inform
early cooling decisions due to infrequent measurements. At the same time, MT
cannot provide suggestions for an intensive cooling session in the waiting room
prior to milking. Instead, MT is more like a quality controller to assure that the
intensive cooling protocol implemented before milking truly works. It should also be
mentioned that bringing cows to the milking parlour may cause additional stress and
thus biasing the use of MT in indicating heat stress [230].
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In addition, behavioural indicators often detect the onset of heat stress at lower
THI thresholds compared with physiological indicators, yet they are less frequently
used for this purpose (Table 1-6). Of note, THI thresholds for basic behaviours are
often summarised by daily average since the categorical outcome (presence or
absence of certain behaviour) cannot be linked to environmental indicators directly
with a piecewise model. One possible solution is to summarise these behaviours in
herd proportions, thereby converting categorical data into numeric. This may allow a
fairer comparison of behavioural and physiological indicators based on their
associated THI thresholds. Anyway, automated behavioural recognition, especially
non-contact methods based on deep learning, should be better leveraged to improve
decision-making in managing heat stress.
Greater energy demanded by preliminary thermoregulatory efforts (e.g., panting

and sweating) combined with lower energy intake (decreased feed intake) results in
a decrease in the energy used for production [231,232]. Cooling measures are used
to reduce the extra energy used by cows to maintain thermoneutrality, thereby
consistently maximising their production performance. Cooling support may be
more efficient when cows are still able to dissipate heat through their
thermoregulation system. It has been reported that providing convective cooling
could better reduce heat stress response and yield higher milk production when the
temperature gradient from the skin to the surrounding environment was larger [233].
Recently, there has been a trend to use more sensitive animal-based indicators to

inform heat stress management [210,212], probably driven by the increased interest
in PLF. Since BST are highly linearly related to Ta, it may be difficult to find a
valuable inflection point. Linking BST to other indicators like RR may help
determine the best time at which interventions should be implemented. In addition,
herd-level behavioural indicators may provide new solutions for heat stress detection
and should thus be considered in future studies.

5.3. Selection of thermal indices for specific environments
As pointed out by other reviews, there is no recognised best thermal index at

present [234,235]. This means that environmental indicators should be selected to
find the one that best represents the specific thermal environment. Thermal indices
mentioned in this review are summarised in Table 1-7.
The selection of environmental indicators often relies on the relationships with

animal-based indicators [236,237]. In a recent study by Yan et al. [238], nine typical
cattle thermal indices were compared using 273 lactating Holstein-Friesian dairy
cows raised in a naturally ventilated commercial barn. Their results revealed that
comprehensive climate index correlated most with BST (r = 0.849) while some
indices even showed no significant correlation at all. However, in another recent
study where the correlations of daily milk yield and MT with ten thermal indices
were compared, THI or Ta alone showed the best results [239]. Interestingly, Ta
showed the best correlation with animal-based indicators than other more
complicated thermal indices in many studies [48,136,209,239,240].
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Table 1- 7: Summary of the thermal indices mentioned in this review.

Thermal index Formula Resource

Temperature-
humidity

indices (THIs)

THI = 1.8 × Ta + 32 − (0.55 − 0.0055 × RH) × (1.8
× Ta − 26) [222]

THI = (0.35 × Ta + 0.65 × Tw) × 1.8 + 32 [223]
THI = 0.8 × Ta + (RH/100) × (Ta − 14.4) + 46.4 [146]

Black globe-
humidity index

(BGHI)
BGHI = Tbg + 0.36 × Tdp + 41.5 [241]

Comprehensive
climate index

(CCI)

CCI = Ta + Eq. [1] + Eq. [2] + Eq. [3]
Eq. [1] = e(0.00182×RH+1.8×10−5×Ta×RH)

× 0.000054 × Ta2 + 0.00192 × Ta
− 0.0246 × (RH − 30)

Eq. 2

=
−6.65

e
1

2.26×WS+0.23 0.45× 2.9+1.14×10−6×WS2.5−log0.3 2.26×WS+0.33 −2

− 0.00566 × WS2 + 3.33
Eq. 3 = 0.0076 × SR − 0.00002 × SR × �� + 0.00005

× Ta2 × SR + 0.1 × Ta − 2

[242]

Heat load index
(HLI)

HLI(Tbg < 25) = 10.66 + 0.28 × RH + 1.9 × Tbg–WS
HLI Tbg > 25 = 8.62 + 0.38 × RH + 1.55 × Tbg − 0.5

× WS + e2.4−WS
[147]

Ta = ambient temperature (°C); RH = relative humidity; Tw = wet bulb temperature (°C);
Tbg = black globe temperature (°C); Tdp = dewpoint temperature (°C); WS = wind speed
(m/s); SR = solar radiation (W/m2).

The different performances of thermal indices in different studies could be
attributed to the different conditions under which they were originally modelled. For
example, THIs with larger weights on humidity are more suitable for use in areas
with higher humidity, and vice versa [243]. In addition, the source of weather data
varies among studies. Most studies use on-farm measurements or data from a nearby
weather station. In the study of Ji et al. [239], the thermal indices calculated using
data from on-farm measurements and the local weather station had similar
correlations with MT. However, the THI calculated from on-farm data was
significantly higher than those calculated from the closest weather station in the
study of Shock et al. [244]. Ideally, environmental measurements should be in close
proximity to animals to better represent their microenvironments.
To summarise, all of these inconsistencies highlight the need for future studies to

compare and select thermal indices for specific farm locations, or at least to use
thermal indices that were developed in a similar environment. Plus, on-farm
measurements should be used to provide precise representations of
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microenvironments. After all, inappropriate use of thermal indices may obscure true
animal responses and bias latter-developed thresholds.

6. Future development of heat stress detection
methods
This section discusses the extent to which a comprehensive data acquisition

strategy, including both direct measurement and predictive modelling, as well as
internet of things (IoT) technologies, can facilitate precise heat stress assessment.

6.1. Better acquisition of animal-based indicators by PLF
techniques
In pursuit of PLF and animal welfare, an ideal measurement method for heat stress

response should be automatic, accurate, continuous, non-invasive, low-cost, and
real-time [49,120,121].
Indwelling devices measuring CBT rectally and vaginally cannot work for a long

time due to interference with normal physiological activities. These devices are
better used for short-term research purposes. Ear-canal sensors and rumen boluses
may be more appropriate as they are less invasive. Implantable devices can measure
CBT subcutaneously, but their cost and long-term safety should be further examined.
In addition, wearable devices can accurately measure basic behaviours with little to
no invasion and have shown a possibility to measure BST and RR, and further
estimate CBT. Especially, wearable devices equipped with wireless transmission and
positioning technologies are of particular importance in the setting of grazing
pastures due to their ability to remotely monitor the thermal comfort of individual
animals. Battery life, biocompatibility, stability, remote transmission, and accuracy
should be improved for these devices targeting grazing situations [245].
Non-contact measurements based on IRT are non-invasive to dairy cows but are

too expensive and difficult to achieve real-time measurement at the herd level. They
are more suitable for quick monitoring at specific locations such as calf feeders and
pathways to milking. RGB camera-based methods provide a low-cost solution for
measuring heat stress response. With the help of advanced computer vision and deep
learning algorithms, both physiological and behavioural data can be detected from
RGB images and video streams. Further work in this regard should increase the
number of animals covered by the camera’s view to measure, evaluate, and relieve
heat stress at the herd level.
Identification is necessary when individual-level analysis and management are of

interest. Wearable sensors are easier to obtain individual-level measurements due to
their inherent one-to-one relationship with animals. In contrast, non-contact methods
need to be integrated with identification algorithms or companion wearables in order
to map individual information. For example, cow drinking behaviour can be
recognised with non-contact antennas at water bins and contact identifiers on cows
[169]. In fact, non-contact methods typically hold the advantage of measuring social
behaviour since their broader measurement scale can cover more animals. An
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example of combining cow identities and their social behaviour is the study of Ren
et al. [246], in which ultra-wideband technology was used for cow identification and
location, alongside computer vision for social behaviour recognition.
In addition, behavioural dynamics can be measured and analysed not only at the

individual level but also at the herd level. An interesting demonstration is the work
of Laurindo et al. [165] where cow lying and standing behaviours were recognised
and analysed by herd percentages. The herd-level seasonal pattern was thus obtained.
Another example is the study of Xu et al. [247] where group behaviours were
connected with herd thermal comfort. The behaviour of pigs was classified through
the clustering and deep learning method and their aggregation degree showed a
positive association with indoor temperature.
Predictive models are always expected as a non-invasive way to obtain heat stress

response. In fact, predictive models have a two-way relationship with measurement
and can do more than just acquire data (Figure 1-3). The accuracy of a predictive
model is always highly dependent on the quality and quantity of the measurements
used to train or tune it, and the model can in turn guide the measurement. For
example, the interpretation of a model can help infer which variables are of greater
importance for making an accurate prediction. Understanding the complex
interactions between these factors allows practitioners to develop more effective and
tailored interventions against heat stress and maximise cow health and productivity.

Figure 1- 3:Measurement, prediction, and assessment of heat stress in dairy cows.

Some ideas about connecting ML and mechanistic models have been proposed
[189]. For example, mechanistic models are able to create data to feed ML models
[65], and ML outputs may also be used as inputs to mechanistic models [248].
However, these ideas remain in the data acquisition stage and do not alter the nature
of modelling techniques. The more prospective way is to combine the advantages of
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both methods to create a so-called grey-box model. This hybrid model is supposed
to train the black-box model (i.e., ML model) while taking into consideration
specific prior knowledge from the white-box model (i.e., mechanistic model). For
example, some advanced grey-box models make use of Bayesian approaches [249],
which rely more on the data when data is reliable and fall back to a theory-based
method when the data is unreliable. This strategy should improve the accuracy and
interpretability, as well as reduce the amount of data required for training. However,
it requires developers to have a higher level of mathematical expertise.
To summarise, wearable devices were developed earlier and thus are more readily

available in today’s market. With the advancement of deep learning algorithms,
vision-based non-contact methods are gaining popularity in the research community
and have particular advantages in measuring interactive behaviours. The
development of contact and non-contact measurement methods can accelerate the
development of data-driven predictive models by allowing access to more relevant
parameters. Plus, mechanistic models can also benefit from high-quality
measurements when refining parameters or validating theories.

6.2. IoT technologies help with precision management
Once the thresholds are determined, it is crucial to assess how to use them in

practice. Currently, the prevalent method is to indirectly evaluate the heat stress
level of the entire herd through the thermal indices calculated from easily accessible
meteorological data, such as data from nearby weather stations, or average values
from temperature and humidity sensors placed in the barn. Considering the
significant variation in microclimates to which individual dairy cows are exposed
[250], a more precise approach would involve deploying more sensors to divide the
barn into smaller measurement and control units. By leveraging IoT technology, the
cooling facilities within specific units can be continuously monitored, enabling more
effective and efficient management of heat stress.
It is always important to remember that environmental indicators neither truly

reflect how animals respond to the changes in the thermal environment nor show
whether animals are being adequately cooled [49]. Stress responses were reported to
remain at a high level when THI was low at night [135], which provides a good
temperature gradient supporting heat dissipation from the animals to the
environment. Indeed, cooling sessions at night have been demonstrated to be
effective in relieving cows’ accumulated heat during the day [251], but they can be
ignored by farms relying solely on the thresholds of environmental indicators. In
addition, individual differences in the sensitivity of heat stress response exist even
within the same subgroup of cows [68,149], meaning that cooling measures may be
wasted on low-risk animals. Therefore, direct monitoring of animal-based indicators
at the individual level should help better manage heat stress.
At present, many large-scale commercial dairy farms have used smart ear tags or

collars to monitor several daily behaviours of individual cows. Combined with
positioning or detection technologies, the nearby cooling facilities can be turned on
automatically when a large proportion of cows breathe heavily [252]. Such an IoT
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system is very promising not only because it can detect heat stress response more
accurately and earlier based on animals’ feelings, but also because it can save energy.
Another location to integrate such technologies is on the way to the parlour, where
heat-stressed cows can be automatically detected and directed to a separate room for
heat abatement [253].
Integrating both environment- and animal-based indicators for a comprehensive

assessment of heat stress also has a good prospect. Due to different response
dynamics, it is possible to distinguish heat stress from other events that may lead to
increased body temperatures and accelerated breathing, such as exercise [69],
diseases (e.g., infections [116]), physiological processes (e.g., oestrous [254]), and
management factors (e.g., bringing cows to the milking parlour [230]). Plus,
considering that thermal comfort is essentially a highly ambiguous concept, some
efforts have been made to build a comprehensive index by using fuzzy mathematical
methods [255,256]. These works fused parameters monitored by both on-farm and
on-animal sensors to obtain a comprehensive assessment of thermal comfort.
However, the determination of weights, fuzzy sets, and membership functions in
fuzzy mathematics often rely on expert experience and researchers’ subjective
judgment, which may lead to uncertainty and instability of the results.

7. Conclusion
Some key conclusions can be drawn from this review:
- BST, RR, and relevant behaviours are the most appropriate animal-based

indicators for the detection of heat stress in dairy cows due to their ease of
acquisition and sensitivity to heat stressors.

- Many studies that relied on piecewise regression models did not report
thresholds for animal-based indicators probably due to the lack of automated
measurement for animal-related data in actual farms.

- The existing environmental thresholds should be used carefully due to the
differences in environmental conditions and animal information. Future
studies should evaluate thermal indices and customise thresholds for specific
locations.

- Commercially available collars and boluses can measure basic behaviours and
CBT in real time while vision-based non-contact methods are gaining
popularity in the research community due to their potential for non-invasively
measuring various heat stress responses.

- The development of measurement methods can accelerate the development of
data-driven predictive models, and these models can in turn guide the
measurement with their interpretations.

- Combined with IoT technologies, a comprehensive strategy based on both
animal- and environment-based indicators is expected to increase the precision
of heat stress detection in dairy cows.
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1. Problematic
Heat stress detection in dairy cows has long relied on the relationship between

environmental and production indicators. However, the reduction in milk yield lags
behind the exposure to heat stress events for about two days. Plus, environmental
indicators can neither capture the true need for a response by the animals nor deal
with differences between individuals. Other stress responses, such as physiological
and behavioural changes, are well documented to be activated by dairy cows in the
earlier stage dealing with heat stress compared with production loss. Among all
candidate indicators, body surface temperatures (BST), respiration rate (RR), and
relevant behaviours have been concluded to be the most appropriate indicators due
to their ease of acquisition and high sensitivity to heat stressors. Vision-based
methods are promising for accurate measurements while adhering to animal welfare
principles. Meanwhile, predictive models show a non-invasive alternative to obtain
these data and can provide useful insights with their interpretations. Thus, this
project was conducted to deal with the following research question: how can vision-
based methods and predictive models be effectively utilised to improve heat stress
detection in dairy cows?

2. Research aim
This project aimed to leverage artificial intelligence techniques, specifically

computer vision and machine learning, to develop non-invasive solutions for the
detection of heat stress in dairy cows. To accomplish this aim, the thesis was
fractionated into several objectives from various research scopes:
- developing non-contact measurement methods for the selected animal-based

indicators of heat stress (i.e., BST, RR, and relevant behaviours);
- developing critical thresholds for the onset of heat stress based on automated

measurements from the developed measurement methods;
- predicting and interpreting physiological responses of dairy cows by using

machine learning methods.

3. Thesis outline
This thesis was organised into seven chapters. The first chapter provided a

comprehensive review of the progress in the measurement, prediction, and
assessment of heat stress in dairy cattle. In light of the insights obtained, the second
chapter defined the problem, aim, outline, and experimental design of this thesis.
The following experimental chapters were designed in order to fill the identified

gaps in methodological approaches for the automated detection of heat stress. The
third chapter was a semantic segmentation mission aiming to collect facial
temperatures from cattle infrared images. The fourth chapter involved an instance
segmentation mission aiming to detect RR for multiple cows in video clips. The
fifth chapter focused on an object detection mission aiming to recognise cow
behaviours and determine the onset of heat stress at the herd level. The sixth
chapter was a predictive modelling study aiming to predict the physiological
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responses of dairy cows using easily acquired data and help identify cows at the
highest risk through model interpretation.
Finally, the seventh chapter was devoted to general discussion and conclusions

of all the notable findings and contributed to future research on heat stress detection
in dairy cows through some recommendations and perspectives.

4. Experimental design
As shown in Figure 2-1, field experiments were first conducted to collect various

animal and environmental data. Next, raw data were processed manually to obtain
the ground truth on which the subsequent works were done. Then, on the one hand,
vision-based measurement methods were developed for the selected animal-based
indicators (i.e., BST, RR, and relevant behaviours) following different machine
vision methodologies. On the other hand, machine learning-based predictive
modelling was performed, with animal and environmental information as predictors
and ground-truth physiological indicators as outcomes. After that, the automated
measurements, along with the predictions from the predictive models, were
examined for their agreement with the ground truth. Finally, critical thresholds were
determined using piecewise regression models with automated measured animal-
based indicators as outcomes and environmental indicators as predictors. High-risk
animals were identified through the interpretation of the predictive models. Together,
these two elements constituted a comprehensive assessment of heat stress in dairy
cows.

Figure 2- 1: Technical route of the project ‘Advancing heat stress detection in dairy cows
through machine learning and computer vision’.
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Context – Chapter 3
According to the findings reported in the first chapter, body surface temperatures

are promising indicators of heat stress in dairy cows due to their ease of acquisition
and sensitivity to heat stressors. The infrared thermography-based non-contact
measurement method is becoming increasingly popular because of its welfare-
friendly nature. However, traditional temperature collection requires massive
manual operations on professional software. Therefore, the third chapter aimed to
propose a tool for automated temperature collection from cattle facial landmarks (i.e.,
eyes, muzzle, nostrils, ears, and horns) and to determine critical thresholds for the
onset of heat stress based on automated measurements.
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Adapted from:

Shu, H., Wang, K., Guo, L., Bindelle, J., Wang, W. Automated collection of facial
temperatures in dairy cows via improved UNet. Computers and Electronics in
Agriculture, 2024. https://doi.org/10.1016/j.compag.2024.108614
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Abstract
In cattle, facial temperatures (FT) captured by infrared thermography provide

useful information from physiological aspects for researchers and local practitioners.
Traditional temperature collection requires massive manual operations on relevant
software. Therefore, this paper aimed to propose a tool for automated temperature
collection from cattle facial landmarks (i.e., eyes, muzzle, nostrils, ears, and horns)
and to determine critical thresholds for the onset of heat stress based on automated
measurements. An improved UNet was designed by replacing the traditional
convolutional layers in the decoder with Ghost modules and adding Efficient
Channel Attention (ECA) modules. The improved model was trained on our open-
source cattle infrared image dataset. The results show that Ghost modules reduced
computational complexity and ECA modules further improved segmentation
performance. The improved UNet outperformed other comparable models on the
testing set, with the highest mean Intersection of Union of 80.76% and a slightly
slower but still good inference speed of 32.7 frames per second. Further agreement
analysis reveals small to negligible differences between the temperatures obtained
automatically in the areas of eyes and ears and the ground truth. The piecewise
regression models based on the automated FT measurements determined an ambient
temperature threshold at 26.1 °C when the mean eye temperature reached 35.3 °C.
Collectively, this study demonstrates the potential of the proposed method for
automated FT collection and heat stress detection through infrared thermography.
Further modelling and correction with data collected in more complex conditions are
required before it can be integrated into on-farm monitoring of animal health and
welfare.

Keywords: precision livestock farming, animal welfare, deep learning, body
surface temperatures, heat stress
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1. Introduction
Infrared thermography (IRT) is the technique of detecting infrared radiation from

an object, converting it to temperature, and visualising the temperature distribution
with an image [257]. Due to its non-contact advantage, IRT has been widely used in
human fever detection and health evaluation. In husbandry, IRT can contribute to
precision livestock farming which aims to provide an automated protocol for
monitoring animal health and welfare parameters [258].
In cattle, temperatures obtained from specific facial landmarks (e.g., eyes,

forehead, nostril, ears, horns, cheek) have been widely used as indicators or
predictors of health conditions such as physiological state [259], bovine respiratory
disease [123], and foot-and-mouth disease [260]; animal welfare issues such as
temperament [261], emotions [262], and heat stress [85]; and productivity issues
such as feed efficiency [263] and meat quality [264].
In order to collect the temperature of the abovementioned facial landmarks, facial

regions of interest (RoI) must first be defined. In most literature, RoI are defined
manually in infrared images using relevant processing software due to the lack of
reliable detection tools for cattle facial landmarks [127,265]. Thus, there has been a
growing interest among researchers to develop such a tool to increase the efficiency
of dealing with cattle infrared images. In previous studies, RoI such as eyes, ear base,
cheek, and nose have been localised in infrared images for specific purposes
[87,125,266,267]. However, very limited effort has been contributed yet to a
comprehensive method for separating multi-class facial RoI in cattle infrared images.
This method should be robust against usual interfering factors such as camera angle
and changing microenvironment.
Of note, most previous works use traditional image processing techniques for

detecting facial landmarks in cattle infrared images, such as Haar cascade classifiers
[125] and thresholding [268]. The recent development of deep learning provides
alternative solutions. For example, recent studies have achieved automatic ocular
temperature collection using an object detection method based on improved
YOLOv4 [126], YOLOv5 [269], and YOLOv7 [270]. In addition, semantic
segmentation, as another central computer vision task that separates each pixel into
pre-defined classes [271]. Its usefulness is particularly evident in the field of face
parsing, which aims to create pixel-wise segmentation maps for facial parts in
human RGB images [272]. It can be therefore imagined that this pixel-wise outlining
can lead to more accurate and comprehensive temperature assessments from infrared
images. However, no relevant work or attempts have been found yet.
Semantic segmentation in infrared images has to deal with some challenges [273].

One of the main challenges is the lower resolution of infrared images compared with
RGB images, which can result in less detailed information and difficulty in
accurately delineating object boundaries. Another challenge is the phenomenon of
thermal crossover, where objects at similar temperatures blend into the background,
making it harder to distinguish them. Advancements of more sophisticated
algorithms and deep learning models, such as convolutional neural networks (CNN),
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Vision Transformer, and other attention mechanisms, have markedly improved
accuracy in recognition across various data, such as speech [274] and image [275].
Therefore, it is of great interest to explore to what extent these techniques can help
in segmenting facial landmarks in cattle infrared images.
Thus, the primary objective of this study was to propose a semantic segmentation-

based tool for automated facial temperature collection from cattle infrared images.
Specifically, a baseline semantic segmentation network, namely UNet, was modified,
trained, and compared its performance with other state-of-the-art models in
segmenting cattle facial landmarks. Then, the temperatures obtained from the
predictions of the improved UNet were compared with those obtained from the
ground-truth annotations. Additionally, the secondary objective was to determine
critical heat stress thresholds based on automated measurements from appropriate
facial landmarks.

2. Materials and methods
Since there is no public infrared image dataset appropriate for the semantic

segmentation of cattle facial landmarks, a field experiment was conducted for data
acquisition. The experimental protocol was approved by the Experimental Animal
Care and Use Committee of Institute of Animal Sciences, Chinese Academy of
Agricultural Sciences (approval number IAS2021-220).

2.1. Data acquisition
The experimental farm is located in Shandong, China (34◦50’37”N and

115◦26’11”E), and belongs to a temperate continental monsoon climate with hot and
humid summers. It is worth noting that the temperature difference between the
background and animals would change dramatically from non-heat-stressed months
to heat-stressed months. Ignoring this fact would definitely affect the robustness of
the trained network in practice. Thus, the experiment was conducted from May to
August 2021 to cover a wide range of thermal environments from warm to hot. The
free-stall pen was covered by a double-pitched roof, and therefore, most of the solar
radiation was prevented from reaching the cows inside the barn. Electronic fans (1.1
m in diameter; capacity: 25000 m3/h each) and sprinklers (flow rate: 1.5 L/min each;
1 min on and 4 min off) were automatically turned on when the indoor temperature
reached 20 °C and 25 °C, respectively. Indoor microenvironmental parameters
including ambient temperature (Ta) and relative humidity (RH) were measured by
using six Kestrel 5000 and 5400 environment meters that were equally spaced in the
barn (measurement interval: 10 min, accuracy: ± 0.4 °C Ta and ± 1% RH; Nielsen-
Kellerman, Boothwyn, PA, USA). The temperature-humidity index (THI) was
calculated according to Eq. (1) [222].
��� = (1.8 × �� + 32) − (0.55 − 0.0055 × ��) × (1.8 × �� − 26) (1)
A total of 59 primiparous and multiparous Holstein dairy cows were selected for

infrared thermal imaging. The infrared images were taken with a portable infrared
camera (VarioCAM HR, InfraTec, Dresden, Germany) which has a spectral range
from 7.5 to 14 μm, a temperature measuring range from -40 to 2000 °C, an accuracy
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of ± 1.5 °C, and a resolution of 640 × 480 pixels. All images were taken at a
distance of approximately 1 to 1.5 m from the cow. To increase the robustness of the
proposed method in actual farms, cows were not restrained during photography and
a wide range of situations including heterogeneous postures were covered. Thermal
imaging was carried out between 08:00 and 17:00 h. All cows were healthy during
the entire experiment.

2.2. Data pre-processing
Infrared images were initiated with IRBIS 3 Standard software (YSHY, Beijing,

China). Before formal processing, images with low quality and multiple faces were
manually eliminated, contributing to a dataset with 1000 images. All images were
calibrated by setting the emissivity to 0.98 [276], and by inputting the averaged Ta
record from the sensors corresponding to the time when they were taken. The
images were outputted into greyscale JPEG format (640 × 480 pixels) with the
temperature scale set to 295 to 315 degrees Kelvin. The temperature matrices were
also outputted into CSV format for further temperature collection from
segmentations. For a given greyscale image, facial landmarks that have been
frequently used in dairy research (i.e., eyes, muzzle, nostrils, ears, horns) were
annotated with polygons using Labelme (https://github.com/wkentaro/labelme.git)
(Figure 3-1).

Figure 3- 1: Examples of cattle infrared images and their ground-truth annotations for
facial landmarks.

Two splitting strategies were used to prepare the training, validation, and testing
sets: (1) image-level splitting, where different images of the same cow were pooled
together and then randomly split at a ratio of 8:1:1, and (2) cow-level splitting,
where all cows were randomly allocated at a rough ratio of 8:1:1 to make sure that
images from the same cow were always in the same set, thus making the three sets
completely independent (Table 3-1). These two splitting strategies were compared
to evaluate the magnitude of the overestimation induced by a simple random
splitting since evidence has shown that it can lead to an overestimation of the
model’s performance when applied to unseen subjects [277].
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Table 3- 1: Overview of the datasets split using two strategies.

Strategy
Training Validation Testing

No. images No. cows No. images No. cows No. images No. cows

Image-level 800 59 100 59 100 59

Cow-level 782 46 125 6 93 7

The training sets were used to train the networks, the validation sets to tune the
hyperparameters and obtain an initial assessment of accuracy, and the testing sets to
collect the final performance. Data augmentation methods, such as flipping, rotation,
brightness changing, contrast changing, sharpening, Gaussian noise adding, and
elastic deformation, were performed in the training sets to improve the accuracy and
generalisation capacity of the trained network (see Appendix 1. Supplementary
material Figure A3-1). Thus, the training sets were seven-fold augmented. The
images were resized to 512 × 512 pixels before they were fed to the networks.

2.3. Segmentation network architectures
2.3.1. UNet model
UNet, as a popular semantic segmentation network, has a symmetric U-shaped

architecture of a contracting path for capturing global context and an expansive path
for precise localisation, and uses skip connections between two paths to transfer
context information to higher resolution layers [278]. In this study, the UNet with a
VGG16 [279] encoder was used as the baseline (Figure 3-2). The downsampling
block is repeated by two or three 3 × 3 convolutions (activated by ReLU functions)
and one 2 × 2 max-pooling operation. Thus, the image is halved in size after each
block, compensated with a doubled number of feature map channels. In the decoder
part, repeated blocks including an upsampling (bilinear method), a concatenation
with the corresponding feature map from the encoder, and two repeated 3 × 3
convolutions (each followed by a ReLU function) are used to fuse and reconstruct
feature maps from both local details and global context. Finally, a 1 × 1 convolution
with the number of channels set to the number of classes is used to generate class-
wise classification results for each pixel.
2.3.2. Improved UNet model
The idea for improving the baseline UNet architecture was to lighten the network

by reducing the number of parameters brought by 3 × 3 convolution while
introducing an attention mechanism to suppress the transmission of irrelevant
features. Specifically, as shown in Figure 3-2, the modification on the baseline
UNet model happened to the decoder where two consecutive 3 × 3 convolutional
layers are replaced by a combination of a Ghost with Efficient Channel Attention
(GhostECA) module and a Ghost module. The detailed structure of the improved
UNet is shown in Table 3-2.
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Figure 3- 2: Architecture of the baseline UNet model and the improved UNet model by
replacing convolutions in the decoder with Ghost and GhostECA modules (shown in dashed
boxes, where C and C’ represent the input and output channel numbers, respectively, and

C_=C’/4).

The Ghost module is a plug-and-play component that can be used to replace
common convolutional operations in any classical CNN [280]. The idea of Ghost
modules came from the observation of the intermediate feature maps calculated by
mainstream CNN. The authors found redundancy in feature maps, in which some
feature maps are very similar in pairs as if one of the pair is a ‘ghost’ of the other.
This means that one feature map of the pair can be obtained by transforming the
other feature map with cheap operations. Therefore, Ghost modules aim to generate
more feature maps with fewer parameters and cheaper operations.
The applied Ghost module, as shown in Figure 3-2, consists of two consecutive

convolutions. In the first convolution, the number of input channels is reduced to
one-quarter, using a kernel size of 3 and a stride of 1. This reduction in channel
dimensions helps reduce model complexity and computational cost. The second
convolution expands the reduced channels by three times, using a larger kernel size
of 5 and a stride of 1. Finally, the output of the second convolutional operation is
concatenated with that of the first convolution to ensure that the number of output
channels equals the number of original input channels.
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Table 3- 2: Structure of the improved UNet.

Layer Kernel size & stride Output shape Connect to

Input - 512 × 512 × 3 Convolution1

Convolution1 3 × 3, 1 512 × 512 × 64 Convolution2

Convolution2 3 × 3, 1 512 × 512 × 64 Max-pooling1 & Concatenate4

Max-pooling1 2 × 2, 2 256 × 256 × 64 Convolution3

Convolution3 3 × 3, 1 256 × 256 × 128 Convolution4

Convolution4 3 × 3, 1 256 × 256 × 128 Max-pooling2 & Concatenate3

Max-pooling2 2 × 2, 2 128 × 128 × 128 Convolution5

Convolution5 3 × 3, 1 128 × 128 × 256 Convolution6

Convolution6 3 × 3, 1 128 × 128 × 256 Convolution7

Convolution7 3 × 3, 1 128 × 128 × 256 Max-pooling3 & Concatenate2

Max-pooling3 2 × 2, 2 64 × 64 × 256 Convolution7

Convolution8 3 × 3, 1 64 × 64 × 512 Convolution8

Convolution9 3 × 3, 1 64 × 64 × 512 Convolution9

Convolution10 3 × 3, 1 64 × 64 × 512 Max-pooling4 & Concatenate1

Max-pooling4 2 × 2, 2 32 × 32 × 512 Convolution9

Convolution11 3 × 3, 1 32 × 32 × 512 Convolution10

Convolution12 3 × 3, 1 32 × 32 × 512 Convolution13

Convolution13 2 × 2, 2 32 × 32 × 512 Upsampling1

Upsampling1 - 64 × 64 × 512 Concatenate1

Concatenate1 - 64 × 64 × 1024 GhostECA1

GhostECA1 - 64 × 64 × 512 Ghost1

Ghost1 - 64 × 64 × 512 Upsampling2

Upsampling2 - 128 × 128 × 512 Concatenate2

Concatenate2 - 128 × 128 × 768 GhostECA2

GhostECA2 - 128 × 128 × 256 Ghost2
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Ghost2 - 128 × 128 × 256 Upsampling3

Upsampling3 - 256 × 256 × 256 Concatenate3

Concatenate3 - 256 × 256 × 384 GhostECA3

GhostECA3 - 256 × 256 × 128 Ghost3

Ghost3 - 256 × 256 × 128 Upsampling4

Upsampling4 - 512 × 512 × 128 Concatenate4

Concatenate4 - 512 × 512 × 192 GhostECA4

GhostECA4 - 512 × 512 × 64 Ghost4

Ghost4 - 512 × 512 × 64 Convolution14

Convolution14 1 × 1, 1 512 × 512 × 6 -

However, most of the redundant feature maps generated by the Ghost module are
not related to the useful features. Therefore, an attention mechanism was further
integrated to make the network pay more attention to the most relevant features. It is
well known that adding attention mechanisms to CNN can improve their
performance. The attention mechanism in deep learning works similarly to human
selective visual attention in that both aim to identify and emphasise the most
important information from large amounts of data. Efficient channel attention (ECA)
is an extremely efficient and lightweight channel attention mechanism proposed by
Wang et al. [281]. The applied ECA module consists of three main steps (Figure 3-
3). Firstly, a global average pooling operation is applied to the input feature maps,
squeezing the spatial dimensions W × H to 1 × 1 while retaining channel-wise
information. Next, a one-dimensional convolution with a kernel size of 3 is
performed to achieve local cross-channel interaction and capture channel-wise
dependencies. A sigmoid activation function is then used to compute channel-wise
attention weights. Finally, the attention weights are multiplied element-wise with the
input feature maps, allowing the network to selectively emphasise relevant
information.
In this study, an ECA module is integrated into the first Ghost module of each

upsampling block in the decoder to enhance its performance (Figure 3-2). The
integrated GhostECA module has one more convolutional operation after
concatenating the outputs of the first two convolutions and the ECA module in order
to adjust the number of output channels.
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Figure 3- 3: Architecture of the efficient channel attention (ECA) module.

2.4. Segmentation network training
The training was performed in Python 3.7 language with Pytorch 1.13.0 on a 64-

bit Windows 11 computer with NVIDIA GeForce RTX 3090 GPU. Transfer
learning can significantly reduce the number of required images and increase
training efficiency compared with training from scratch with randomly initialised
weights. In this study, the initialised weights of all encoders were transferred from
the networks pre-trained on the ImageNet dataset [282]. The epoch was set to 300,
the batch size to 16, and the learning rate to 0.0001 with an Adam optimiser. A
combination of cross-entropy and dice coefficient was used as the loss function (LCE

+ LDice), as defined in Eqs. (2 and 3). Dice loss was used because it can effectively
handle the pixel imbalance between foreground and background.
��� =− �=1

� �� log ��� (2)

����� = 1 − 2��
2��+��+��

(3)
The C takes 5, indicating five classes of interest (i.e., ‘eye’, ‘muzzle’, ‘nostril’,

‘ear’, ‘horn’), ti and pi are the ground truth and the Softmax probability of each pixel
for each class i, respectively, TP denotes true positive (pixels correctly classified as
a class of interest), FP denotes false positive (pixels incorrectly classified as a class
of interest), TN denotes true negative (pixels correctly classified as the background),
and FN denotes false negative (pixels incorrectly classified as the background or a
wrong class). The model from the epoch with the lowest validation loss was used for
testing.

2.5. Ablation and comparison studies
Ablation tests were conducted: (1) UNet with VGG16 as the backbone was used as

the baseline model; (2) based on the baseline model, the convolutional layers in the
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decoder were replaced by Ghost modules. This model is referred to UNet+Ghost;
and (3) based on UNet+Ghost, ECA was integrated into the first Ghost module of
each decoder. This is the proposed model to be compared, which is referred to
UNet+GhostECA.
To show the competitiveness of the improved UNet model, it was compared with

other popular semantic segmentation models in the field, including FCN [283] with
VGG16 as the backbone (FCN-VGG16), PSPNet [284] with MobileNetV2 [285]
and ResNet50 [286] as the backbone, respectively (PSPNet-MobileNetV2 and
PSPNet-ResNet50), DeepLabV3+ [287] with MobileNetV2 [285] and Xception
[288] as the backbone, respectively (DeepLabV3+-MobileNetV2 and DeepLabV3+-
Xception), UNet with ResNet50 as the backbone (UNet-ResNet50), as well as
SegFormer [289] with B5 as the backbone (SegFormer-B5).

2.6. External validation
Since the testing sets of the two splitting strategies are different, an external

validation based on the data collected from another farm in 2017 [85] was performed
to fairly compare the generalisability between the two splitting strategies. A total of
100 infrared images from 95 cows, taken with the same camera and annotated
following the same procedure, were used for comparing only the proposed
architecture.

2.7. Performance evaluation
The per-class segmentation results were shown using the Intersection over Union

(IoU), Recall, and Precision, as expressed in Eqs. (4-6). The IoU is the intersection
of the prediction and ground truth divided by their union. The Recall indicates the
proportion of all positive labels that are classified correctly. The Precision indicates
the proportion of all positive predictions that are classified correctly.
��� = ��

��+��+��
× 100% (4)

������ = ��
��+��

× 100% (5)

��������� = ��
��+��

× 100% (6)
The overall segmentation performance was evaluated by the mean Intersection

over Union (mIoU) and mean pixel accuracy (mPA) where mIoU was the primary
metric. The mIoU is the mean IoU of the background and five classes of interest,
whereas the mPA is the average of their pixel accuracy, as expressed in Eqs. (7)
and (8), respectively:
���� = 1

�+1 �=0
� ��� × 100%� (7)

��� = 1
�+1 �=0

� ���

�=0
� ����

× 100%� (8)

where C + 1 equals 6 indicating the background and five classes of interest. Pii and
Pij are the total numbers of pixels belonging to class i that are predicted to belong to
i and j, respectively.
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In addition, secondary metrics included number of parameters, model size, and
floating-point operations (FLOPs) to show model complexity and computational
requirements, and frames per second (FPS) to indicate the inference speed (Eq. (9)).
��� = �

��
(9)

where tN is the total inference time (s) on N images.

2.8. Data analysis
2.8.1. Agreement with ground truth
Agreement analysis was done using the images from the testing set. The predicted

segmentations by the improved UNet as well as the ground-truth annotations were
used for generating temperature parameters (i.e., mean and maximum) of the RoI.
This was done by using a self-written program in Python that maps the coordinate
matrices of the segmentations and annotations with the original temperature matrices.
The results of the ground-truth annotations were regarded as ground truth.
Additionally, the baseline UNet model with VGG16 encoder was used as a control
for temperature collection to investigate how much the proposed model has
improved the results. Moreover, the temperature parameters were also generated by
the traditional method with RoI manually defined on the software using appropriate
shapes such as ellipses and rectangles (see Appendix 1. Supplementary material
Figure A3-2). This was to represent the common practice in relevant studies. This
method was denoted as manual collection.
Finally, the results obtained by the three methods, namely the proposed improved

UNet model, the baseline UNet model, and the traditional method based on manual
collection, were examined for their agreement with the ground truth using Bland-
Altman plots [290].
2.8.2. Threshold development
In order to explore to what extent cattle facial temperatures (FT) can indicate the

onset of heat stress, piecewise regression models were used to fit their response to
Ta and THI, and locate the breakpoint at which this response changed in trend. This
was done by using the ‘segmented’ package which determines the breakpoint based
on the Davies test [291]. Note that the analysis relied on the whole dataset (n =
1000). Specifically, a simple linear regression was first modelled to fit the response
of certain FT to an environmental variable (i.e., Ta or THI) using the lm function.
The piecewise model was then built to update the simple linear regression model,
written as follows:

�� = �0 + �1�� + �2(�� − ���)�� + ��, �� =
0 �� � ≤ ���
1 �� � > ���

(10)

where Y is certain FT, β0 is the population intercept, X is the environmental
variables (i.e., Ta and THI), Xbp is the breakpoint, Xk is the dummy variable, β1 is
the left slope, β2 is the difference between right slope and left slope, and εi is the
random residual for the i-th observation.
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3. Results and discussion
3.1. Overview of the datasets
During the experimental period, Ta averaged 30.1 °C (range from 22.4 to 37.6 °C),

RH averaged 61.1% (range from 19.5% to 94%), and THI averaged 79.8 (range
from 70.3 to 85.9). The standard deviation of daily mean Ta, RH, and THI were
2.7 °C, 16.3%, and 3.2, respectively. The THI distribution shown in Figure 3-4
indicates a good consistency between training and testing sets as well as wide
coverage of thermal environments in both image- and cow-level datasets. According
to the THI threshold customised for high-producing dairy cows, heat stress occurs at
a THI of 68, mild-moderate at 72, moderate-severe at 80, and severe at 90 [50]. Thus,
our test cows experienced no to moderate-severe heat stress during observations.

Figure 3- 4: Distribution of temperature-humidity index (THI) during photography in (a)
image-and (b) cow-level datasets, summarised by training (including validation and before

augmentation) and testing sets, respectively.

3.2. Results of training and ablation study
To the best of our knowledge, this is the first attempt at pixel-level facial landmark

segmentation in cattle infrared images. As shown in Figure 3-5, there was a rapid
increase in validation mIoU as loss decreased at the early stage of the training of the
proposed architecture on the cow-level dataset, and the model converged at the
middle stage. The lowest loss (0.137) on the validation set was obtained at epoch
153. The training curve of the proposed architecture on the image-level dataset can
be found in Appendix 1. Supplementary material Figure A3-3.
The ablation study on the cow-level dataset showed a performance gain by

introducing Ghost and GhostECA modules (Table 3-3). By replacing convolutions
in the decoder with Ghost modules, the UNet+Ghost model had an increased mIoU
and mPA by 0.91% and 0.46%, respectively, compared with the baseline UNet
model. This can be explained by the enlarged receptive field as a result of the
addition of larger convolutional kernels in the decoder. Plus, its number of
parameters, model size, and FLOPs decreased by 30.49%, 31.25%, and 47.49%,
respectively, resulting in a slight increase in FPS by 3.89%. These results are
consistent with previous reports that Ghost modules can reduce computational
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complexity by exploiting redundancy in intermediate feature maps calculated by
mainstream CNN [126,292].

Figure 3- 5: Loss and mean Intersection over Union (mIoU) curve of the proposed
architecture trained using the cow-level dataset. The dashed lines show the epoch (153) with

the lowest validation loss (0.137).

Table 3- 3: Performance of ablation study trained using the cow-level dataset (n = 93).

Model Backbone mIoU
(%)

mPA
(%)

Number of
parameters

(M)

Model
size
(MB)

FLOPs
(G) FPS

UNet VGG16 79.17 87.82 24.89 96 451.81 36

UNet+Ghost VGG16 80.08 88.28 17.3 66 237.24 37.4

UNet+GhostECA
(proposed)

VGG16 80.76 88.92 18.43 70.3 269.63 32.7

mIoU = mean Intersection over Union; mPA = mean pixel accuracy; FLOPs = floating-
point operations; FPS = frames per second.

By further integrating the ECA module into Ghost modules, the UNet+GhostECA
model further increased mIoU by 0.68% at the basis of the UNet+Ghost model,
compensated by an increased number of parameters, model size, and FLOPs by
6.53%, 6.52%, and 13.65%, respectively. Still, the proposed UNet+GhostECA
model outperformed the baseline model in all metrics except for FPS, which
decreased by 9.17%. These results are as expected, as the integration of attention
mechanisms increases performance by suppressing the gradient transmission of
irrelevant information, but often requires more computational resources due to the
more complex structure. Collectively, the UNet+GhostECA model should be
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considered a successful improvement due to its leading mIoU, smaller
computational requirements, and good inference speed.
The results of the ablation study, which was trained using the image-level dataset,

are listed in Appendix 1. Supplementary material Table A3-1. As expected, these
models shared the same trend but had generally better performance since image-
level splitting mixed all cows’ images in training and testing sets, which could have
led to data leakage between both sets.

3.3. Segmentation results of the improved UNet
The detailed performance of the improved UNet model illustrated in Figure 3-6
shows robust segmentations against usual interfering factors including camera angle
and extreme ambient environment. More importantly, all RoI yielded an IoU higher
than 50% which is a commonly used threshold above which a result is considered to
be accurate. The IoU, Recall, and Precision shared a similar trend, with the best
performance obtained by ‘ear’ and ‘eye’, while the worst by ‘muzzle’, ‘horn’, and
‘nostril’. The misclassification of eyes was primarily due to partially open or closed
eyes. Unfortunately, this is hard to solve due to relatively limited negative samples
in the current datasets. The relatively poor segmentation in the nose areas was most
likely due to the misclassification of pixels between nostrils and muzzles. Since the
nose area of cattle is often covered by foreign matter such as mud, water, and saliva,
especially during hot seasons [293], the detection of nostrils and muzzle is more
difficult than other RoI. However, a better segmentation can be speculated by
combining ‘muzzle’ and ‘nostril’ as one unified label class of nose areas.
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Continued

Figure 3- 6: Detailed segmentation results on the cow-level testing set (n = 93). (a)
Predictions on some example images against varying thermal conditions classified by

temperature-humidity index (THI), shown at camera angles ranging from -90° to 90°. (b)
Per-class Intersection over Union (IoU), Recall, and Precision.

The worse results of horns can be explained by relatively fewer training instances
since not all cows had horns. Also, their misclassification is partially due to
incomplete horn removal. Calves were disbud using hot iron on the experimental
dairy farm at around 40 days of age. If the horn bud remained subdermal, such skin
surface would show a blurred region on the infrared image and could be
misclassified as a horn, especially from certain side views. This finding suggests a
novel method for veterinarians to confirm the effectiveness of horn removal and
determine whether a second operation is required.

3.4. Comparison with other semantic segmentation models
The results of the comparison study based on the cow-level dataset demonstrate

the highest mIoU (80.76%) by the proposed UNet+GhostECA model (Table 3-4).
The trade-off between segmentation performance and inference speed is obvious.
Overall, more complex and deep networks (such as UNet and DeepLabV3+) and
backbones (such as Xception and ResNet50) had better performance metrics but
lower inference speed compared with lightweight networks (such as PSPNet) and
backbones (such as MobileNetV2). The only exception was SegFormer-B5 which
had the largest model size and complexity but performed almost the worst results. It
should be noted that SegFormer, as a transformer-based framework, was pre-trained
on a dataset with cityscapes as classes of interest. On the contrary, UNet was
primarily designed for segmenting medical images which are similar to our grey-
scale images. This may explain why SegFormer performed worse than UNet on our
infrared dataset. Moreover, DeeplabV3+, as a recent network, typically has better
segmentation results when dealing with challenging tasks but performed poorly than
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UNet on our dataset. The poor performance of more recent and complex models
(such as DeeplabV3+ and SegFormer) could be attributed to our relatively few and
simple images. Indeed, UNet architecture has been reported to be more appropriate
for training with limited training images and fewer deep-level features [294].

Table 3- 4: Performance of comparison study trained using the cow-level dataset (n = 93).

Model Backbone mIoU
(%)

mPA
(%)

Number of
parameters

(M)

Model
size
(MB)

FLOPs
(G) FPS

FCN VGG16 76.64 84.38 19.17 73.1 204.34 45.2

PSPNet MobileNetV2 73.73 83.38 2.38 9.3 6.03 141.4

PSPNet ResNet50 78.82 87.4 46.7 178 118.43 85.1

DeepLabV3+ MobileNetV2 77.84 88.76 5.81 22.4 52.9 88.1

DeepLabV3+ Xception 79.14 90.33 54.71 209 166.88 28.8

UNet VGG16 79.17 87.82 24.89 94.9 451.81 36

UNet ResNet50 78.85 90.94 43.93 167 184.23 46.8

SegFormer B5 70.93 81.49 84.6 969 986.48 21.8

Proposed VGG16 80.76 88.92 18.43 70.3 269.63 32.7

mIoU = mean Intersection over Union; mPA = mean pixel accuracy; FLOPs = floating-
point operations; FPS = frames per second.

The results of the comparison study, which was trained with the image-level
dataset, are listed in Appendix 1. Supplementary material Table A3-2. Similarly,
they shared the same trend but outperformed cow-level models due to data leakage.
The segmentation examples shown in Figure 3-7 confirm the better performance

of the proposed UNet+GhostECA model. It can be seen that all models have good
segmentation ability when the Ta was much lower than cattle FT and the contour of
the RoI was obvious. However, when the Ta increased closely to cattle FT and the
boundary between cattle and their environments became blurry, some comparable
models became less effective in segmenting the pixels at the edge while the
UNet+GhostECA model still had smooth and precise segmentation.
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Figure 3- 7: Segmentation results of different semantic segmentation models on the cow-
level testing set (n = 93). (a) FCN-VGG16; (b) PSPNet-MobileNetV2; (c) PSPNet-ResNet50;
(d) DeepLabV3+-MobileNetV2; (e) DeepLabV3+-Xception; (f) UNet-VGG16; (g) UNet-

ResNet50; (h) SegFormer-B5; (i) Proposed.
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3.5. Comparison of the generalisability of the two splitting
strategies
When comparing the performance of the improved UNet models by the two

splitting strategies on their testing sets, image-level mIoU is 4.31% higher than cow-
level mIoU (Table 3-5).

Table 3- 5: mean Intersection over Union of the improved UNet models, trained separately
using the (a) image- and (b) cow-level datasets, on the testing and external testing sets,

respectively.

Splitting strategy Testing set External testing set

Image-level 85.07 (n = 100) 73.74 (n = 100)

Cow-level 80.76 (n = 93) 73.97 (n = 100)

mIoU = mean Intersection over Union; mPA = mean pixel accuracy; FLOPs = floating-
point operations; FPS = frames per second.

Detailed IoU shown in Figure 3-8(a) indicates comparable results in most RoI
except for ‘horn’ where cow-level IoU is lower by 21.74%. However, the external
validation shows comparable mIoU (Table 3-5) and detailed IoU in all RoI between
the models trained with two splitting strategies Figure 3-8(b). These results
demonstrate that image-level splitting had an overestimated result for segmenting
horns on the testing set. This is because the test cows had different horn shapes and
image-level splitting contained images from all cows in its training and testing sets,
while cow-level splitting had independent cows in each set. This advantage,
however, disappeared when applied to unseen cows with unseen horn shapes in the
external testing set.

Figure 3- 8: Per-class Intersection over Union of the improved models, trained separately
using the image- and cow-level datasets, on the (a) testing and (b) external testing sets,

respectively.

The performance reduction when applying to new images from different cows,
farms, and years is consistent with the reality that cows from different farms have
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greater variation. The detailed performance shows that the IoU of ‘eye’, ‘muzzle’,
and ‘nostril’ are comparable between testing and external testing sets, and the
performance reduction of both models is mainly due to worse results of ‘ear’ and
‘horn’. Ears were segmented worse in the external testing set because these new
cows wore two ear tags (Figure 3-9), but old cows only one. In addition, horns were
segmented much worse in the new cows by both models due to much fewer training
instances. To reiterate, cows can have different shapes of horns, thus having enough
number of cows during training is necessary for a good generalisability of horns.

Figure 3- 9: Predictions of two example images from the external testing set with cows
wearing two ear tags.

Interestingly, other facial landmarks were not overestimated by image-level
splitting, with comparable results between both splitting strategies in both internal
and external testing. This could be explained by the fact that these facial landmarks
(i.e., eyes, muzzles, and nostrils) have relatively identical shapes among cows of the
same breed. Consequently, their features have been learned sufficiently, making
them easier to generalise to new cows. To some extent, the similarity in features in
these facial landmarks across different cows allows them to be regarded as one,
thereby ensuring good generalisability regardless of which data-splitting strategy
was employed.

3.6. Agreement of automated and manual methods with
ground truth
The UNet+GhostECA model trained with the cow-level dataset was used for

further automated temperature collection due to its outperforming segmentation
performance as well as realistic and unbiased generalisation. The temperature results
of the proposed automated method show that eye temperature (ET) always had the
highest values (Figure 3-10). This is consistent with previous knowledge that ET is
the closest proxy of core body temperatures among other candidate body surface
temperatures [260,295].
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Figure 3- 10: Overview of the (a) maximum and (b) mean temperatures of ground-truth
annotation, predicted segmentation by the proposed model, and manual collection on the

cow-level testing set (n = 93).

As shown in Figure 3-11, the mean differences between the temperatures obtained
automatically by the proposed model and the ground truth are small, particularly in
eyes and ears. More importantly, the differences between the temperatures obtained
by the proposed model and the ground truth (Figure 3-11) had generally narrower
limits of agreement compared with those between the temperatures obtained by the
baseline UNet model and the ground truth (Figure 3-12), indicating a general better
agreement.

Figure 3- 11: Bland-Altman plots showing the agreement between the predicted
segmentation of the improved UNet model and ground-truth annotation on the cow-level
testing set (n = 93) in terms of the maximum and mean temperatures (Tmax and Tmean) of
five facial landmarks. The solid and dashed lines represent mean difference and 95% limits
of agreement, respectively. Datapoints are coloured by temperature-humidity index (THI).
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Figure 3- 12: Bland-Altman plots showing the agreement between the predicted
segmentation of the baseline UNet model and ground-truth annotation on the cow-level

testing set (n = 93) in terms of the maximum and mean temperatures (Tmax and Tmean) of
five facial landmarks. The solid and dashed lines represent mean difference and 95% limits
of agreement, respectively. Datapoints are coloured by temperature-humidity index (THI).

In addition, the differences between the temperatures obtained by the proposed
model and the ground truth (Figure 3-11) had narrower limits of agreement in most
cases compared with those between the temperatures obtained manually and the
ground truth (Figure 3-13), indicating a general better agreement. This is reasonable
since manual collection using professional software can only achieve rough
coverage of the RoI rather than pixel-wise segmentation. This common practice of
collecting temperatures manually may work for maximum temperatures due to being
less impacted by the overall pixels, as well as for landmarks with fewer obstacles
and typical outlines (e.g., eyes). However, it can suffer when collecting mean
temperatures at other irregularly shaped landmarks (e.g., ears being seriously
influenced by ear tags). Thus, the common practice of using manual collection in
relevant studies may obtain under- or over-estimated temperatures.
Besides, the differences between the proposed model and the ground truth (Figure

3-11) show a homogeneous distribution around their mean differences in most cases,
indicating no visible proportional error of one method versus the other. A THI-
related colour code was added to confirm whether ambient environments had
affected the agreement between the results and their ground truth. It is obvious that
the temperature difference stayed homogeneous over the THI range we observed,
demonstrating the good robustness of the proposed method against extreme thermal
conditions.
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Figure 3- 13: Bland-Altman plots showing the agreement between manual collection and
ground-truth annotation on the cow-level testing set (n = 93) in terms of the maximum and
mean temperatures (Tmax and Tmean) of five facial landmarks. The solid and dashed lines

represent mean difference and 95% limits of agreement, respectively. Datapoints are
coloured by temperature-humidity index (THI).

Other studies compared automated measured and manually collected temperatures.
For example, Lowe et al. [125] reported an average difference between automated
measured and manually collected maximum ET of 0 ± 0.001 °C. Wang et al. [126]
obtained an average difference of 0.051 °C and 0.042 °C between the automated
measured and manually collected temperatures of the left and right maximum ET,
respectively. We did not compare automated measurements with manual collections,
and thus cannot compare our results with theirs. As discussed before, manually
collected maximum eye temperature can be a good proxy of ground truth. Therefore,
it is sensible to admit that the present study, as well as the abovementioned studies,
all work for automated maximum ET collection. However, our proposed semantic
segmentation model can provide more valuable information about mean
temperatures which have been determined to more appropriately reflect core body
temperatures [218].

3.7. Response of FT to heat stress
Since the temperatures measured at eyes and ears showed negligible differences

with the ground truth, piecewise regression models were used to fit their response to
Ta and THI. Piecewise regression models were converged in all cases (Figure 3-14).
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Figure 3- 14: Automated measurements of the maximum temperature (Tmax) and mean
temperature (Tmean) of eyes and ears (n = 1000) and their fitted profiles from linear
regression (dashed line) and piecewise regression (solid line) models with (a) ambient
temperature and (b) temperature-humidity index as the predictor, respectively. The

breakpoints are marked as a black triangle above the x-axis.

As detailed in Table 3-6, the earliest Ta threshold (26.1 °C) was obtained by mean
ET. The corresponding mean ET threshold was 35.3 °C. In the case of THI, all
breakpoints unsurprisingly occurred where THI datapoints were most intensively
gathered. It seems that THI is less representative of the current environment than Ta
due to the inability to show environmental differences. This finding was also
identified by our previous pilot study in the same environment where Ta showed a
higher correlation with animal-based indicators than THI [215]. Generally, mean
temperatures had lower thresholds than maximum temperatures which is consistent
with the study of Yan et al. [218]. However, their determined THI thresholds were
77.3 and 77.2 for maximum and mean ET, and 75.6 and 70.2 for maximum and
mean ear temperature, much lower than ours. This is potentially because they turned
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off sprinklers during the experimental period making their subject cows more easily
stressed. The presence of cooling measures in the current study appeared to
effectively cool the animals and delayed their onset of heat stress.

Table 3- 6: Parameter estimates (mean ± standard error) of the piecewise regression
models predicting eye and ear temperatures with ambient temperature (Ta, °C) and

temperature-humidity index (THI) as the predictor, respectively (n = 1000).

Predictor Outcome Intercept Breakpoint Left
slope ∆Slope AIC

Linear Piecewise

Ta

Eye
Tmax

37.1 ±
0.3 27.7 ± 1.1 0.02 ±

0.01
0.04 ±
0.01 566.8 555.7

Eye
Tmean

34.5 ±
0.8 26.1 ± 0.4 0.03 ±

0.03
0.18 ±
0.03 1044.9 1003.8

Ear Tmax 36.1 ±
0.5 26.9 ± 0.7 0.03 ±

0.02
0.10 ±
0.02 1109.7 1088.9

Ear
Tmean

31.8 ±
0.8 26.9 ± 0.3 0.05 ±

0.03
0.37 ±
0.03 1543.4 1398.0

THI

Eye
Tmax

35.5 ±
0.3 82.1 ± 0.4 0.03 ±

0.004
0.09 ±
0.04 623.6 619.3

Eye
Tmean

32.6 ±
3.0 72.8 ± 1.4 0.03 ±

0.04
0.10 ±
0.04 1298.8 1295.6

Ear Tmax 33.0 ±
0.5 82.0 ± 0.4 0.05 ±

0.006
0.15 ±
0.05 1248.0 1241.2

Ear
Tmean

20.9 ±
0.8 81.9 ± 0.7 0.17 ±

0.01
0.13 ±
0.09 2073.5 2072.9

∆Slope = difference between right and left slopes; AIC = Akaike information criterion;
Tmax = maximum temperature; Tmean = mean temperature.

3.8. Limitations and perspectives
Infrared images taken under a thermoneutral environment were limited since the

data was originally collected for a heat stress study. Thus, our method should be
prioritised for studies in heat stress evaluation. For example, automated heat stress
recognition can be achieved by inputting our segmentation results into a deep
learning-based thermal level classification [296]. For applications under a thermally
comfortable situation, we speculate that our model would remain robust since the
larger temperature difference between the animals and their environments in such a
situation should increase the separability of RoI in the infrared images. However,
further studies should be conducted in which more data from thermoneutral
environments are collected to validate and improve the generalisability of the
proposed network.
The facial IRT measurements were used as a proxy of FT. However, the measured

facial infrared radiation is a function of actual FT and certain measurement setups,
e.g., camera performance, distance to camera, angle of view, as well as ambient
wind speed (WS), temperature, and humidity. Although Ta was calibrated, other
undealt factors might have affected the representativeness of IRT measurements to
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actual FT. The images used for modelling were taken at a fixed distance (i.e., 1 to
1.5 m) from the cows to produce a consistent size of cattle faces. This distance is
aligned with the recommendation of previous studies which validated IRT as a
means to measure bovine temperatures [85,276]. However, it may be difficult to
reach such a close distance to the cows in practice, except for specific locations like
feeding stations [125] and the entry to the milking parlour [266]. Direct application
of the proposed network to a real-world situation with a greater distance between the
cows and the camera should result in a lower segmentation accuracy as well as
lower temperature results since facial landmarks in the image taken from a greater
distance will be represented by a lower number of pixels [297].
Plus, the angle of view between the camera and the object is known to influence

the infrared emissivity and thus affect the IRT temperature [298]. Although we have
successfully segmented specific facial landmarks in infrared images taken from
different camera angles to the cows, the variation in the angle of view would
definitely lower the measured temperature in general [299]. This effect should be
homogeneous among cases thus the determined environmental thresholds should be
robust with the FT thresholds being underestimated. A slightly lower threshold is
good for increasing Recall (i.e., the ability to detect a heat-stressed cow).
Temperature correction is not the focus of this study but should be investigated in
future studies in order to obtain reliable temperature readings in challenging
practical cases. A recent study is a promising step forward, in which a response
surface method was developed for correcting the effect of distance and the angle of
view on the IRT temperature of pigs [299].
In addition, many other parameters would affect the results of IRT, such as

sunlight exposure, WS, coat colour, hair thickness, dirt, and the resolution and
accuracy of the camera [300]. For example, direct sunlight can increase ET by 0.56
± 0.36 °C [297]. This would lead to a false positive alert of heat stress, but should
not be a problem in an indoor scenario with adequate shading from direct sunlight.
WS over 3.3 m/s can decrease ET by 0.78 ± 0.33 °C [297]. The average WS was 1.3
± 0.9 m/s during this study. Thus, the developed FT thresholds should be used
carefully in environments with different levels of WS. Wang et al. [301] proposed a
signal processing flow to reduce the effect of WS and other ambient factors.
The emissivity does not need to be changed based on an individual’s skin tone

according to a human study [302]. This is because the infrared spectrum emissivity
depends on surface structure and composition, unlike the visible spectrum which
depends on colour (wavelength) [297]. Still, darker-coated cows should have
slightly higher BST and CBT because they naturally absorb more heat [303].
Interestingly, no differences were found between black and white cows in BST
measurements across multiple RoI in the study of Anzures-Olvera et al. [304]. A pig
study found hairy skin areas or skin with no blood perfusion had slightly lower
emissivity by 0.018 ± 0.010 and 0.012 ± 0.006, respectively [305]. Collectively, the
proposed tool and thresholds may not be directly applicable to different parameter
settings. These gaps highlight the need for further studies based on data collected
under more complex and practical conditions.
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4. Conclusions
Collectively, our work provides relevant studies with an automated tool for

collecting FT from cattle infrared images and determining their heat stress states.
This method is robust against usual interfering factors including camera angle and
extreme ambient environment. However, additional training with data supplemented
on a variety of influencing factors (e.g., the distance between the camera and the
cows, coat colour) and temperature correction against these factors are required
before it can be integrated into on-farm automated monitoring of animal health and
welfare.
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Context – Chapter 4
According to the findings reported in the first chapter, respiration rate (RR) is a

promising indicator of heat stress in dairy cows due to its ease of acquisition and
sensitivity to heat stressors. Traditional visual observation requires massive labour
and is impractical for large-scale commercial farms. With the help of advanced
computer vision and deep learning algorithms, RR can be detected from RGB video
streams. However, recently developed vision-based RR measurement methods are
highly limited to measuring a small number of animals in a controlled environment.
Therefore, the fourth chapter aimed to propose a vision-based multi-object RR
measurement method for dairy cows lying on free stalls and to determine critical
thresholds for the onset of heat stress based on automated measurements.
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Chapter 4
Non-contact respiration rate

measurement of multiple cows using
computer vision
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Adapted from:

Shu, H., Bindelle, J., Gu, X. Non-contact respiration rate measurement of multiple
cows in a free-stall barn using computer vision methods. Computers and Electronics
in Agriculture, 2024. https://doi.org/10.1016/j.compag.2024.108678
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Abstract
In cattle, respiration rate (RR) provides researchers and practitioners with valuable

physiological information. However, traditional visual observation requires massive
labour and is impractical for large-scale commercial farms. Recently developed
vision-based RR measurement methods are highly limited to measuring a small
number of animals in a controlled environment. Therefore, this paper aimed to
propose a vision-based multi-object RR measurement method for dairy cows lying
in free stalls. An RGB camera was aimed at the lying zone and was able to cover
about 16 stalls. The proposed framework first utilised two YOLOv5-based networks
to segment cow instances and detect cow flank objects. Next, an object tracker was
used to link the predictions of each cow throughout the video clip. The Lucas-
Kanade optical flow was then calculated specifically on the overlapped area of the
cow mask and the flank bounding box. Finally, RR was extracted using Fast Fourier
Transform. The results show that the proposed method had a precise RR
measurement with a correlation coefficient of 0.945, a root mean square error of
5.24 breaths per minute, and an intraclass correlation coefficient of 0.98 when
compared to visual observation. The piecewise regression models identified a
change in RR when the ambient temperature reached 23.6 °C or the temperature-
humidity index reached 72. The corresponding RR thresholds were 61.1 and 60.4
breaths per minute, respectively. Collectively, these results can be used to inform an
automated local cooling system, e.g., fans in the lying area. However, more
experiments and calibration with data collected using more cost-effective video
recording systems are required before this technology can be applied on farms.

Keywords: precision livestock farming, animal welfare, deep learning, multi-
object measurement, heat stress
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1. Introduction
Respiration rate (RR) is a basic vital sign of animals that indicates their

physiological state and overall health condition. For example, an abnormal RR in
cattle can be used as an alert for the onset of common events of interest, such as
respiratory disease [306], transport stress [307], and heat stress [131], among others.
However, traditional RR measurement by manually counting flank movements over
a set period of time and converting them to breaths per minute (bpm) can be tedious
and time-consuming in frontline practice and is also prone to biased results due to
the lack of professionals [308].
In order to solve the abovementioned problems, many precision livestock farming

techniques have recently been put forward to achieve an automated RR
measurement. These techniques rely on different methodologies to collect
respiration-related signals, which are then processed to determine RR using proper
signal processing methods or more advanced deep learning methods. Depending on
whether physical contact with animals is required, these methods can be divided into
two categories: contact and non-contact methods.
On the one hand, contact methods typically involve placing devices on the cows’

bodies to collect respiration-related signals. For example, an MP3 recorder on a
halter can collect the acoustic signal of breathing [143], while pressure sensors
mounted to a belt [134] or a harness [135] can measure RR relying on chest and
abdomen movements. Pressure sensors [142] or thermistors [133] can also be
mounted to halters making use of the pressure and temperature difference between
inhaled and exhaled air, respectively. More recently, accelerometers contained in a
collar [130,136] or an ear tag [149] have been validated to be able to detect small
movements during heavy breathing.
On the other hand, non-contact methods for measuring RR are drawing increased

interest since they better meet animal welfare requirements by eliminating the stress
and discomfort of cows. In cattle studies, various techniques and devices have been
applied to measure RR, such as radar [139], laser [137], infrared cameras [265], and
RGB cameras [177]. Radar and laser methods rely on respiration-related movements,
while the infrared method relies on the changes in skin or air temperature around
nose areas caused by breathing, all of which require expensive devices and thus may
be unaffordable for most farms.
Also, respiration-related body movements can be detected more cost-effectively

through an RGB camera and processed further by cattle segmentation, optical flow
calculation, and statistical analysis to generate RR estimation [141,153]. However,
the reported method was only designed for a controlled scenario in which a single or
two targeted cows were held in a fixed sideway pose in the field of view. Moreover,
respiration-related body movements also result in periodic fluctuations in the
brightness of colour channels [309]. Consequently, RR can be directly estimated
from the variations in pixel intensity of the RGB channels of certain regions of
interest (e.g., chest and abdomen). This method has shown its effectiveness in a
multi-animal environment for measuring up to five pigs [310] and four cows [311],
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but has yet to be tested in cows raised in a larger-scale free-stall pen. In addition, the
colour or brightness changes in the skin due to changes in blood volume during
respiration cycles can be measured in proper colour channels using the remote
photoplethysmography (rPPG) principle. This method, however, requires a closer
distance between the camera and the animal in order to capture the subtle
respiration-related blood flow changes in veins. rPPG-based method has been used
to measure RR for hairless animals like pigs [312]. However, in the case of dairy
cows, which typically have longer hair, the requirement of a direct view of body
areas with less hair (e.g., facial area) by rPPG [145], renders the large-scale
measurement in free stalls impossible.
In summary, the existing RR measurement methods for dairy cows require

improvement as they are either too expensive, require physical contact with the
animal, or are limited to measuring very few animals in a controlled scenario. For a
larger-scale application in a practical farm, it is necessary to further integrate certain
automated technologies such as cow and regions of interest recognition, multi-object
tracking, and RR calculation. Thus, this paper aimed to (1) propose a vision-based
multi-object RR measurement pipeline for dairy cows housed in an uncontrolled
scenario, i.e., a commercial free-stall barn, and (2) further investigate its feasibility
in indicating heat stress. By leveraging deep learning and traditional computer vision
techniques, the proposed method was expected to provide a more cost-effective and
non-invasive solution for farmers and veterinarians to detect significant events, such
as heat stress, in an early stage.

2. Materials and methods
All protocols involving animals were approved by the Experimental Animal Care

and Use Committee of Institute of Animal Sciences, Chinese Academy of
Agricultural Sciences (approval number 2016IAS018).

2.1. Experimental design
The field experiment was carried out on a free-stall dairy farm in Beijing, China

for 35 days from late August to early October, 2017. The location is characterised by
a temperate continental monsoon climate with hot and humid summers.
The experimental barn (oriented along the north–south axis) had four pens with a

typical 4-row head-to-head design and was covered by a roof. All four pens were
used in this experiment, housing 79, 70, 80, and 60 lactating Holstein-Friesian dairy
cows, respectively. For each pen, ambient temperature (Ta, ℃) and relative
humidity (RH, %) were measured at an interval of 5 min using three Kestrel 5000
environment meters (accuracy: ± 0.4 °C Ta, ± 1% RH; Nielsen-Kellerman,
Boothwyn, PA, USA). The sensors were fixed at a height of 2 m and were evenly
placed at one-fourth, one-half, and three-fourths of the total length of the pen,
respectively. The temperature-humidity index (THI) was calculated as per Eq. (1)
[222].
��� = (1.8 × �� + 32) − (0.55 − 0.0055 × ��) × (1.8 × �� − 26) (1)
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A Sony HDR-CX405 camera (Sony, Tokyo, Japan) was fixed on a telescopic
camera stick with an angle of approximately 45° downward. The frame rate of the
recordings was set to 30 frames per second (FPS). In order to cover as many cows as
possible, the camera was placed at a height of 4 m along the feeding alley. The
camera was aimed at the lying zone and was able to cover approximately 16 stalls.
The reason for focusing on lying cows is that the RR of standing cows is rather
difficult to detect due to their extremely subtle breathing movements and frequent
accompanying interfering movements. Lying cows, on the contrary, reflect heat
stress response to the ambient environment earlier [212], and thus provide a good
representative of the herd. The video clips of 10-25 s were captured seven times
daily, from 07:30 to 17:30 h, for the four pens sequentially.

2.2. Data preparation
A video frame was randomly extracted from each video clip by using a self-

written Python program. This was done to avoid duplicating similar frames since
cows had relatively small and slow displacements in the video clips. The extracted
frames were in JPG format with a resolution of 1920 by 1080 pixels. Low-quality
frames, such as those blurred or covered by flies, were discarded. Finally, a total of
750 images were chosen.
All images were annotated using the popular annotation tool Labelme

(https://github.com/wkentaro/labelme.git). On the one hand, the pixel-level cow
masks were annotated with polygons, after which they were labelled either
‘Standing’ or ‘Lying’ according to their body postures. Cow instances were
discarded when their posture was unable to recognise, e.g., being at the edges of the
image or being too obscured (more than 75% pixels) by other cows or facilities. On
the other hand, the flanks of lying cows were annotated as a new flank object
detection dataset by using rectangles. When lying down, cows position their hind
legs to one side, either stretched or not [313]. Thus, the flank on the side where the
hind legs were placed was labelled as ‘Flank_up’ and the flank on the other side as
‘Flank_down’. Flanks with strong occlusion (more than 75% pixels) were discarded.
Some examples of annotation in both datasets are visualised in Figure 4-1.

Figure 4- 1: Example annotations for cow instances (top) and flank objects (bottom).
Polygons in red and green represent standing and lying cow instances, respectively.
Rectangles in yellow and blue represent the flank objects on the hind leg side and the

opposite side, respectively.
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Two splitting strategies were used to prepare the training, validation, and testing
sets for both datasets: (1) image-level splitting, where different images of the same
pen were pooled together and then randomly split at a ratio of 6:2:2, and (2) pen-
level splitting, where four pens were allocated at a ratio of 2:1:1 to make sure that
images from the same pen were always in the same set, thus making the three sets
completely independent in cows. These two splitting strategies were compared since
evidence has shown that a simple random splitting can lead to an overestimation of
the model’s performance [277]. Training and validation sets were used to train the
networks while the testing sets were used to evaluate the final performance of the
trained models. A detailed description of the datasets with regard to the number of
instances or objects per class is given in Table 4-1 and Table 4-2.

Table 4- 1: Overview of the cow segmentation datasets split using two strategies.

Dataset Number of images Number of pens Number of cow instances
Standing Lying Total

Image-level
Training 450 4 1187 2476 3663
Validation 150 4 411 808 1219
Testing 150 4 407 788 1195
Pen-level
Training 451 2 1252 2144 3396
Validation 148 1 387 964 1351
Testing 151 1 366 964 1330
Total 750 4 2005 4072 6077

Table 4- 2: Overview of the flank detection datasets split using two strategies.

Dataset Number of images Number of pens Number of flank objects
Flank-up Flank-down Total

Image-level
Training 432 4 1989 1417 3406
Validation 145 4 693 501 1194
Testing 145 4 734 508 1242
Pen-level
Training 429 2 1885 1285 3170
Validation 144 1 657 474 1131
Testing 149 1 874 667 1541
Total 722 4 3416 2426 5842

2.3. Muti-target RR measurement for lying cows based on deep
learning and optical flow method
The overall working flow of the proposed computer vision-based RR measurement

for multiple lying cows is shown in Figure 4-2. All operations to be presented in
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this section were done in Python. Two programs were written, and ran in parallel,
with the first one running two trained YOLO (You Only Look Once) models and the
second one tracking predictions and calculating RR. Multithreading was used to
speed up. The YOLO models were set to make inferences once every second to fulfil
real-time measurements. All source code is available at https://github.com/Kaiwen-
Robotics/CattleRR.git.

Figure 4- 2: Pipeline for muti-target respiration rate (RR) measurement for lying cows
based on deep learning and optical flow method. Lucas-Kanade = LK.

2.3.1. Architecture, training, and evaluation of deep learning networks
The YOLO series of algorithms is a popular framework for object detection that is

well known for excellent performance and inference speed. YOLOv5, as a recent
release, has gained significant attention in the computer vision community. Notably,
its latest 7.0 version has been supported with instance segmentation and has been
reported as a new state-of-the-art benchmark [314]. Instance segmentation, as an
extension of object detection, focuses not only on localising an object but also on
generating a pixel-level mask for each object detected. As emphasised by the authors,
these off-the-shelf models are roughly easy to train and deploy. Thus, YOLOv5 was
used for object detection and instance segmentation tasks in this study. For clarity,
instance segmentation networks were noted as YOLOv5-seg.
The training was performed in Python 3.7 language with Pytorch 1.7.1 on a

computer with a 64-bit Windows 11 system and an NVIDIA GeForce RTX 3090
GPU. Transfer learning was used to accelerate the training process. The initialised
weights used in this study were transferred from the network pre-trained on the
Microsoft COCO benchmark [315]. During the training process of the instance
segmentation networks, a batch size of 4 was used, which was the maximum
allowed by the hardware. In addition, a batch size of 16 was used for the object
detection networks. In both cases, three sizes of the architecture were trained (i.e.,
YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5s-seg, YOLOv5m-seg, and YOLOv5l-
seg) and the epoch was always set to 100. Other hyperparameters were set as default.
The mean average precision (mAP), as the most commonly used performance

metric for object detection and instance segmentation tasks, was used in this study. It
builds on top of some basic concepts, including the Intersection of Union (IoU),
precision (Pr), and recall (R). The IoU measures the intersection area between two
bounding boxes or, two masks in the case of instance segmentation, as expressed in
Eq. (2):
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(2)
As a convention, an IoU threshold of 0.5 was used to qualify the prediction. For

example, if the IoU between the ground-truth bounding box (or mask) and the
predicted bounding box (or mask) was greater than 0.5, the predicted bounding box
(or mask) was determined to be true positive (TP), otherwise it was false positive
(FP). Additionally, a ground-truth bounding box (or mask) presented but not
predicted was determined to be false negative (FN). Following that, Pr and R were
determined, which represent how many positive predictions are actual positives and
how many actual positives are correctly predicted as positive, respectively. Their
equations are shown in Eqs. (3 and 4):
�� = ��

��+��
(3)

� = ��
��+��

(4)
Subsequently, average precision (AP) was used to summarise Pr and R by

computing the area under the Pr-R curve, and mean average precision (mAP) was
used to summarise the AP over all classes. Their equations are shown in Eqs. (5 and
6):
�� = 0

1 ��(�)� �� (5)

��� = 1
� �=1

� ���� (6)
where C always takes 2, indicating 2 classes in both cases, i.e., ‘Lying’ and
‘Standing’ in the case of cow segmentation and ‘Flank_up’ and ‘Flank_down’ in the
case of flank detection. The higher the mAP, the better the object detection or
instance segmentation network. In addition, FPS was used to indicate the inference
speed, as expressed in Eq. (7):
��� = �

��
(7)

where tN is the total inference time (s) on N images.
2.3.2. Optical flow
In this study, the optical flow method was used to track YOLO predictions, deal

with camera shake, and extract respiration-related signals. Optical flow refers to the
motion pattern of pixels in an image sequence resulting from either object or camera
movement. It is represented as a two-dimensional vector field, with each vector
representing the displacement of pixels from one frame to the next. Optical flow can
be calculated using either sparse or dense methods. Sparse optical flow focuses on
tracking a chosen set of pixels across frames, whereas dense optical flow aims to
compute motion vectors for all pixels in the frame. The sparse optical flow was
adopted in this study in consideration of efficiency.
Optical flow relies on several assumptions: (i) the pixel intensities of an object do

not change between consecutive frames; (ii) the movement of the pixels over time is
small.
Assumption (i) can be written as:

� �, �, � = �(� + ��, � + ��, � + ��) (8)
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where I(x,y,t) represents the pixel intensity of a pixel with a coordinate of (x, y) at
the frame t and it moves by (dx, dy) in the next frame after dt time.
According to assumption (ii), the image constraint at I(x,y,t) to the right side of Eq.

(8) can be expanded by the Taylor series as:
� � + ��, � + ��, � + �� = � �, �, � + ��

��
�� + ��

��
�� + ��

��
�� (9)

that is to say, it follows:
��
��

�� + ��
��

�� + ��
��

�� = 0 (10)

divided by dt and results in:
��
��

�� + ��
��

�� + ��
��

= 0 (11)

where Vx and Vy represent the x and y components of the optical flow of I(x,y,t),
respectively, and ∂I/∂x, ∂I/∂y, and ∂I/∂t are the derivatives in the corresponding
directions. Let Ix=∂I/∂x, Iy=∂I/∂y, and It=∂I/∂t, Eq. (11) can be further written as:
���� + ���� + �� = 0 (12)
To solve the two unknowns (i.e., Vx and Vy), the Lucas-Kanade (LK) sparse

optical flow introduces another assumption that neighbouring pixels have similar
motions. A search window is used to find neighbouring pixels around the target
point, from which equations are then created, as shown in Eq. (13). Finally, Vx and
Vy are solved by using the least squares principle. The LK optical flow was
calculated by using the OpenCV function calcOpticalFlowPyrLK().
��1 ��1
��2 ��2
⋮
���

⋮
���

��
��

=

−��1
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⋮
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(13)

2.3.3. Object tracking and stabilisation
Object tracking is necessary to link the predictions of each cow throughout the

video clip. Tracking was done in a series of steps. First, the predictions of cow
masks and their bounding boxes as well as those of the flank bounding boxes were
obtained in each frame. To ensure reliable tracking, a minimum bounding box size
threshold of 100 pixels was set to discard small objects. Next, the LK Optical Flow
was used to track these detected objects across consecutive frames, mainly focusing
on specific feature points of the objects identified by using the Shi-Tomasi corner
detection method. At the same time, the flank mask was extracted by cropping the
flank bounding box with the cow mask if the inclusion rate of the flank bounding
box in the cow bounding box reached more than 90%. The inclusion rate was
calculated with Eq. (14):
��������� ���� (� �� �) = �∩�

�
(14)

where a and b represent flank and cow bounding boxes, respectively. Tracks that
were shorter than 10 frames were regarded as false positives and eliminated. Tracks
with a missing flank mask for at least 10 frames were considered occluded and thus
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dropped. Tracks were split when labels were switched for at least 10 frames. Only
tracks of ‘Lying’ labels were entered into the following analysis.
Due to camera motion, there is some unwanted video shake existing in the current

clips. Thus, an optical flow-based stabilisation was performed along with object
tracking. First, the frames were initialised by converting to greyscale images, which
simplified subsequent processing. Next, the Shi-Tomasi corner detection method
was used to select feature points on the background area which was extracted by
removing the cow mask from the bounding box, and the LK optical flows were
calculated for the selected feature points. A transformation matrix was then
computed based on the mean optical flows. Finally, the object was subjected to an
affine transformation based on the translation matrix to obtain a stabilised alignment
map as the output. In summary, the tracker tracked the motion of an object in a
sequence of frames while the stabiliser aligned the object.
2.3.4. Optical flow calculation at abdominal areas
Previous studies have demonstrated that removing noise from the background and

uninterested body areas increases the efficiency and accuracy of subsequent RR
calculations [316]. Wang et al. [310] used oriented bounding boxes to localise
animals in order to include animal pixels more accurately while excluding irrelevant
background pixels. Our study adopted a different strategy to completely eliminate
background noise by taking advantage of the instance segmentation technique.
Specifically, the abdomen areas were obtained by intersecting the flank detections
(from a YOLOv5 model) with the cow segmentations (from a YOLOv5-seg model)
(Figure 4-3).

Figure 4- 3: Three regions of interest to compute sparse optical flows: (a) cow bounding
box, (b) cow mask, and (c) cow mask overlapped by flank bounding boxes. The schematic of
the regions of interest and the computed optical flows are shown in the top and bottom rows,

respectively.
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Preliminary investigations show that the optical flow calculated by using the LK
sparse optical flow method specifically at the abdomen areas could better reflect
respiration-related pixel movements (Figure 4-3). LK sparse optical flow was used
because it has shown better efficiency and accuracy in extracting respiration-related
motions compared with dense methods [140]. Indeed, sparse optical flow is more
computationally efficient, less susceptible to noise and occlusions, and requires less
memory than dense optical flow.
Similarly to the processing of the stabiliser, the video frames were initialised by

converting them to greyscale images. The difference is the location for calculating
optical flows. Specifically, the gradient map of the greyscale images was first
obtained and the background of the regions of interest (i.e., the intersections of cow
masks and flanks) were excluded from the gradient map by setting them to zero.
Next, grid points were obtained at a specified interval. LK sparse optical flow
analysis was then performed between consecutive greyscale images using only grid
points with a non-zero gradient.
2.3.5. Signal processing for extracting RR
The sinusoidal values of the resulting optical flow vectors were derived from the

Vx and Vy. These sinusoidal values were then appended to a list that contained the
sinusoidal values of all grid points across multiple frames. Subsequently, a Fast
Fourier Transform was performed on each grid point’s 120-frame sinusoidal values.
A band-pass filtering of 0.4 to 2.4Hz (i.e., 24 to 144 bpm) was applied to focus
specifically on the respiration-related frequency range and remove unwanted noisy
signals (e.g., occasional body wiggle and high-frequency abdominal twitching).
The frequency spectrums obtained from all grid points were then summed together.

The instantaneous RR was determined by using peak detection on the summed
spectrum, i.e., identifying the frequency with the maximum magnitude. This
frequency was constantly updated and appended to a list of RR while processing the
clip. The final RR across all frames was calculated by averaging the list of RR
values at the end of the processing.

2.4. Performance analysis
A total of 55 video clips were randomly selected to measure RR by visual

observation (Figure 4-4). These clips had a mean ± standard deviation duration of
16 ± 4 s and contained a total of 241 cow instances. First, lying cows were selected,
that is 220 instances. Then, two trained observers with an intraclass correlation
coefficient of 0.91 measured RR by manually counting the flank movement of the
tracks over the clips and converting it to bpm. The results from the two observers
were averaged. Cases with frequent and large unwanted movements, as well as those
with visual occlusion of the abdomen, were discarded due to the inability to obtain
ground-truth RR. As a result, ground-truth RR was obtained for a total of 180 tracks
of lying cows. The mean ± standard deviation number of available tracks per video
clip was found to be 3.3 ± 1.7, with a range between 1 and 8.
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Figure 4- 4: Description of the dataset for the development of respiration rate
measurement. The 55 video clips are sorted by datetime (mm-dd hh:mm).

The statistical relationship between automated and manual RR measurements was
evaluated through linear regression, with the Pearson correlation coefficient
calculated using the cor function (R version 3.4.4; https://R-project.org). The
agreement between automated and manual RR measurements was explored using a
Bland-Altman plot [290] and further quantified using the intraclass correlation
coefficient calculated with the icc function from the ‘irr’ package. Additionally, the
overall inference speed was evaluated by using the average processing time and FPS
of RR calculation on the 55 clips. Plus, an investigation was conducted to explore
how the number of objects to be processed affected processing time and FPS.
The potential effects of flank occlusion and flank colour on the calculated RR

were examined using one-way analyses of variance with the aov function. To do so,
all cases were classified by flank occlusion into two classes: flank partially occluded
by cubicles or pillars (at least one pixel of such obstacles existed), and no occlusion;
and by flank colour into three classes: no texture but with clear sand or ribs, no
texture and no clear reference, with textures. Furthermore, the potential effect of
location on the RR accuracy was examined by plotting the coordinates of all cow
bounding boxes with their measurement error.
In addition, a colour-based method was applied to extract respiration-related

signals, as a comparison to the state of the art. The detailed methodology was
adapted from Mantovani et al. [311] which focused on non-contact RR measurement
of group-housed lying cows. More specifically, the same object tracker and video
stabiliser were used. The extraction of respiration-related signals was based on the
averaged pixel intensity of the colour channels (R, G, B) of all pixels on the flank
areas (i.e., intersection areas of flank detections and cow segmentations). RR was
calculated using the same signal processing method.
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2.5. Threshold development for heat stress
Piecewise regression models were used to fit the response of RR to heat stress (i.e.,

Ta and THI) and locate the breakpoint at which this response changed in trend. This
was done by using the ‘segmented’ package which determines the breakpoint based
on the Davies test [291]. Note that the analysis was based on the RR measured by
the proposed framework on 55 video clips (n = 180). Specifically, simple linear
regression models were first modelled to fit the response of RR to environmental
variables (i.e., Ta and THI) using the lm function. Piecewise models were then built
to update the simple models, written as follows:

�� = �0 + �1�� + �2(�� − ���)�� + ��, �� =
0 �� � ≤ ���
1 �� � > ���

(15)

where Y is the RR, β0 is the population intercept, X is the environmental variables
(i.e., Ta and THI), Xbp is the breakpoint, Xk is the dummy variable, β1 is the left slope,
β2 is the difference between right slope and left slope, and εi is the random residual
for the i-th observation.

3. Results and discussion
3.1. Performance of cow segmentation and flank detection
The results on the testing sets demonstrate extremely good performance in

segmenting cow instances with all three architectures trained with both image- and
pen-level datasets achieving a bounding box mAP and a mask mAP exceeding 0.98
(Table 4-3).

Table 4- 3: Performance of the three YOLOv5-seg architectures for segmenting cow
instances, each trained separately using the image- and pen-level datasets.

Model
AP (bounding

box) mAP AP (mask) mAP FPS Model
size (MB)

Standing Lying Standing Lying
Image-level
YOLOv5s-

seg 0.993 0.994 0.993 0.993 0.988 0.991 53 15.3

YOLOv5m-
seg 0.993 0.995 0.994 0.993 0.995 0.994 36 42.6

YOLOv5l-
seg 0.993 0.995 0.994 0.993 0.995 0.994 24 364

Pen-level
YOLOv5s-

seg 0.981 0.99 0.985 0.985 0.984 0.985 49 15.3

YOLOv5m-
seg 0.984 0.991 0.988 0.984 0.987 0.986 35 42.6

YOLOv5l-
seg 0.991 0.993 0.992 0.989 0.993 0.991 24 364

AP = average precision; mAP = mean average precision; FPS = frames per second.
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Additionally, all six object detection models trained with image- and pen-level
datasets, respectively, had an mAP greater than 0.92 in detecting flank objects
(Table 4-4). Notably, models trained on the image-level dataset always had a
slightly higher mAP (at most 0.03) on the testing set compared with those trained on
the pen-level dataset.

Table 4- 4: Performance of the three YOLOv5 architectures for detecting flank objects,
each trained separately using the image- and pen-level datasets.

Model AP (bounding box) mAP FPS Model size (MB)Flank-up Flank-down
Image-level
YOLOv5s 0.967 0.924 0.945 108 13.6
YOLOv5m 0.971 0.942 0.956 85 40.1
YOLOv5l 0.978 0.936 0.957 77 88.4
Pen-level
YOLOv5s 0.957 0.885 0.921 103 13.6
YOLOv5m 0.961 0.891 0.926 83 40.1
YOLOv5l 0.975 0.904 0.94 75 88.4
AP = average precision; mAP = mean average precision; FPS = frames per second.

The similar performance between image- and pen-level splitting may suggest that
data leakage of cow information is not a critical issue when multiple cows are
present in the view and a sufficiently large sampling interval is maintained. Even if
the images containing the same cows showed up across training, validation, and
testing sets, they can be regarded as independent of each other as the same cows can
have completely different postures and locations. The slightly higher mAP of the
models trained with image-level datasets is mostly likely due to prior knowledge
about pen facilities since they have already seen images from all four pens during
training.
As expected, larger models had higher mAP but lower inference speed (Table 4-3

and Table 4-4). In the case of cow instance segmentation by pen-level splitting, the
YOLOv5s-seg model had a 0.7% lower box mAP and 0.6% lower mask mAP, but
104.2% faster speed compared with the YOLOv5l-seg model. In the case of flank
object detection by pen-level splitting, the YOLOv5s model had a 1.9% lower mAP
and 37.3% faster speed compared with the YOLOv5l model. The cases with image-
level splitting shared the same trend. Therefore, the smallest models in both cases
with cow-level splitting (i.e., the YOLOv5s-seg and YOLOv5-s models) were
selected for further RR measurement due to their sufficiently good performance and
fastest speed, as well as realistic and unbiased performance when generalising to
new pens. Some example predictions of the trained YOLOv5s-seg and YOLOv5s
models on the pen-level testing set are shown in Figure 4-5.
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Figure 4- 5: Example predictions of cow segmentation (top) and flank detection (bottom)
on the pen-level testing set. Predictions in red and green represent standing and lying cow

instances, respectively. Predictions in yellow and blue represent the flank objects on the hind
leg side and the opposite side, respectively.

Many previous works have segmented pixel-level masks for cattle. For example,
Salau and Krieter [317] trained a Mask R-CNN network to segment Holstein-
Friesian dairy cows housed in a similar free-stall barn. Their results showed a
bounding box AP of 0.91 and a mask AP of 0.85. In addition, Xu et al. [318] trained
several Mask R-CNN networks to segment cattle in different outdoor scenarios.
They reported a bounding box AP of 0.95 and a mask AP of 0.94 for cattle on
pastures, and a bounding box AP of 0.91 and a mask AP of 0.90 for cattle in feedlots.
It should be noted that the instance segmentation performance obtained by YOLOv5
in this study is much better than that obtained by Mask R-CNN in the
abovementioned studies, suggesting YOLOv5 or its more recent release as a new
benchmark for instance segmentation in cattle research.

3.2. Performance of RR measurement based on optical flow
method
This study aimed to develop a computer vision-based framework for measuring

RR in dairy cows lying in free stalls. As shown in Figure 4-6(a), the RR measured
by the proposed optical flow-based method had a higher Pearson correlation
coefficient (r = 0.945) and a lower root mean square error (5.24 bpm; RMSE) with
the ground truth, outperforming the colour-based method. In addition, the proposed
method had a narrower 95% limits of agreement (-8.97 to 11.13 bpm) on the Bland-
Altman plot with the differences distributed homogeneously along the mean
difference-mean axis (Figure 4-6(b)), suggesting the absence of proportional error.
The mean difference of 1.08 bpm means that the proposed method generally counted
1.08 more bpm than visual observation. Additionally, the proposed method’s
intraclass correlation coefficient with the visual observation (0.98) outperformed
that of the colour-based method (0.867) by 11.3%, confirming its superior
agreement with the ground truth.
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Figure 4- 6: Statistical analysis between automated and manual respiration rate
measurements (breaths per minute (bpm), n = 180). Automated measurements relied on
optical flow- and colour-based methods. (a) Linear regression plot, where the Pearson

correlation coefficient of 0.945 and 0.787, respectively, and the root mean square error of
5.24 and 9.79 bpm, respectively. (b) Bland-Altman plot, where the solid lines represent the
mean difference: 1.08 and 1.58 bpm, respectively, and the dashed lines represent 95% limits

of agreement: -8.97 to 11.13 bpm and -17.35 to 20.51 bpm, respectively.

As for the overall inference speed, the optical flow-based method had an average
processing time of 8.2 s and an average FPS of 64 per test video clip, which is 6.9 s
and 26 FPS faster than the colour-based method, respectively (Figure 4-7(a)). Both
methods had a processing time positively related to the number of objects to be
processed, with the proposed method being affected less, as indicated by the lower
slope in Figure 4-7(b). Additionally, both methods had much lower processing FPS
when handling a greater number of animals (Figure 4-7(c)). Anyway, all clips
processed with the optical flow-based method had an average FPS over 30,
demonstrating the achievement of real-time measurement. As a control, 23 clips
processed with the colour-based method had an average FPS below 30.
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Continued

Figure 4- 7: Inference speed of the automated respiration rate measurements relied on
optical flow- and colour-based methods. (a) Processing time of the 55 clips sorted by

datetime (mm-dd hh:mm). (b) Relationship between the number of available cows to be
processed and processing time. (c) Relationship between the number of available cows to be

processed and average frames per second.

It should be acknowledged that previous studies have achieved optical flow-based
RR measurement for an individual lying [140] or standing [141] cow. However,
these methods require the field of view to be filled with the region of interest (i.e.,
abdomen) which is less efficient for a large-scale dairy farm. Wu et al. [153]
achieved a multi-target RR measurement for cows in the exercise area by
incorporating an instance segmentation network. However, their dataset only
contained videos of two resting cows and the robustness of their method in free
stalls and heat stress conditions remains unknown. Although our RMSE (5.24 bpm)
is slightly higher than that of Wu et al. [153] (3.74 bpm), our study covered much
broader thermal conditions and achieved multi-object RR measurement for cows
lying in an area of approximately 16 free stalls. It should also be noted that the
abovementioned studies did not apply object tracking techniques since they used a
pre-selected dataset with only fixed and limited objects. For such a real-world
scenario in our study, we included an object tracker into the proposed framework to
deal with the identity disorder due to changing positions of interfering objects, as
well as a video stabiliser to deal with unwanted video shakes. In addition, the control
method using the averaged pixel intensity of R, G, and B channels had a slightly
higher RMSE of 9.79 bpm than 8.3 bpm in the original study of Mantovani et al.
[311], which may suggest that the current dataset is more challenging for colour-
based methods, possibly due to a larger distance between animals and the camera.
Theoretically, both optical flow- and colour-based methods may have issues where

the estimated signal may not accurately represent body motions when being
overexposed or having less body texture. However, the colour-based method was
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witnessed to suffer more since its calculation was based on the entire abdomen area
which contained a bunch of pixels that did not change periodically with respiration.
In contrast, optical flow-based methods pre-selected pixels in the abdomen area
where the gradient was not zero. These pixels often belonged to the edges of patterns
or dirt on the body, which had a higher amplitude of periodic changes, resulting in
more stable RR estimation. In addition, the colour-based method’s higher
computational costs due to using all pixels for signal processing always led to lower
processing speed. On the contrary, optical flow-based methods were faster since
they only performed calculations on pixels with a non-zero gradient. It should be
noted that our results do not necessarily indicate the superiority of optical flow
methods over colour-based methods in all cases. It can only be concluded that
colour-based methods require sophisticated filtering to select periodically changed
pixels which can represent respiration. A possible solution, as suggested by Wang et
al. [310], is to filter the pixels by using standard deviation. However, it was not
adopted as it failed to filter non-periodic noise in our case.

3.3. Factors that might have affected the results
As shown in Figure 4-8, no clear evidence was found that flank colour has

decreased the accuracy of RR calculation. Nine cases are outside the 95% limits of
agreement, among which three (33.3%) were found to suffer from no texture. With
good illumination and camera pixels, the flank areas which had no texture were still
able to be clearly seen by sand or ribs. These provided enough pixels for reliable
optical flow-based RR calculation. However, if being less illuminated or
overexposed, flank pixels can be totally black and white and no details can be seen
(that is no texture and no clear reference). Seven cases had this issue, and most
pixels of the flank areas were excluded due to having a zero gradient while only
pixels on the edge of the flank were kept due to having a non-zero gradient. Luckily,
six out of the seven cases lay in the 95% limits of agreement since the pixels on the
edge of the flank were effectively selected to support a precise RR calculation.

Figure 4- 8: The effect of flank colour on measured respiration rate (RR, breaths per
minute (bpm)). (a) Bland-Altman plot between automated measurements and manual

observations. (b) Bar plot of one-way analysis of variance. No texture 1 = No texture but
with clear sand or ribs (n = 34), No texture 2 = No texture and no clear reference (n = 7),

With textures = with clear textures (n = 139).
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In addition, three of the nine cases (33.3%) outside the 95% limits of agreement
were found to suffer from partial occlusion (Figure 4-9(a)). No significant
difference was found in measured RR between cases with partial occlusion and
those without occlusion (P = 0.756; Figure 4-9(b)). Only partial occlusion was
analysed since strong occlusion was not annotated at the beginning. It should be
noted that this manual determination and removal of strong occlusions can be
arbitrary, since there may be still some breathing-related pixels left. A more precise
annotation and segmentation of cows which excludes all occlusion is expected to
achieve RR measurement in more difficult cases.

Figure 4- 9: The effect of flank occlusion on measured respiration rate (RR, breaths per
minute (bpm)). (a) Bland-Altman plot between automated measurements and manual
observations. (b) Bar plot of one-way analysis of variance. Partially occluded = Flank

partially occluded by cubicles or pillars (n = 52), No occlusion = Flank not occluded (n =
128).

Similarly, no evidence shows that location has decreased the accuracy of RR
calculation (Figure 4-10). This is expected since cows showing up to the edge of the
view with incomplete and strange postures were not annotated on their flank areas at
first and thus were not taken into account for RR calculation. Therefore, no
measurement was actually affected by the location.

Figure 4- 10: Visualisation of all cow bounding boxes in the last video frame, coloured by
the difference between automated measured and manual observed respiration rate (breaths

per minute, bpm).
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Additionally, four of the five cases with the highest measurement error were
observed to experience a sudden cessation of breathing-related movements in the
abdomen for about 2 to 3 s. Due to the use of FFT, the current results reflected
cyclical changes over a period of time, instead of counting the exact number of flank
movements, thus overestimating the ground-truth manual observation. However, to
some extent, the result from FFT can better represent actual RR because abdominal
stillness due to the onset of rumination does not affect the cow’s normal breathing.
In other words, manual observation of RR by counting flank movements in this case
may have underestimated the actual RR.

3.4. Response of RR to heat stress
The linear and piecewise regression models with Ta and THI as predictors are

illustrated in Figure 4-11 and detailed in Table 4-5. The slope of the model
indicates a slow increase in RR of 0.4 bpm per unit increase in Ta below 23.6 °C
and a much steeper increase in RR by 1.82 bpm per unit increase in Ta above
23.6 °C. This Ta threshold is slightly lower than the Ta threshold of 24.4 °C
determined by Shu et al. [215]. It is probably because the current study included
only lying cows which are more sensitive to heat stress [212].

Figure 4- 11: Automated measurements of respiration rate (RR; breaths per minute (bpm),
n = 180) and their fitted profiles from linear regression (dashed line) and piecewise

regression (solid line) models with ambient temperature (Ta, °C) and temperature-humidity
index (THI) as the predictors. The breakpoints are marked as black triangles above the x-axis.

Table 4- 5: Parameter estimates (mean ± standard error) of the piecewise regression
models predicting respiration rate with ambient temperature (Ta, °C) and temperature-

humidity index (THI) as the predictor, respectively (n = 180).

Predictor Intercept Breakpoint Left slope ∆Slope AIC
Linear Piecewise

Ta 51.8 ± 11.2 23.6 ± 2.1 0.40 ± 0.55 1.82 ± 0.81 1453.8 1452.7
THI 56.0 ± 27.5 72.0 ± 1.4 0.06 ± 0.42 2.91 ± 0.71 1457.1 1444.7
∆Slope = difference between right and left slopes; AIC = Akaike information criterion.
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Additionally, RR increased slowly by 0.06 bpm per degree below 72 THI, and
more steeply by 2.91 bpm per degree above 72 THI. This result is much higher than
that of Pinto et al. [212], who determined a THI threshold of 65 for RR in lying
cows. We speculate that the difference in the determined THI thresholds among
studies can be attributed to the difference in production level since high productivity
is well-known as a risk factor for heat stress [55]. The cows in the four experimental
pens had an average milk yield of 32.3 kg/d during the study, which is much lower
than the herd in the study of Pinto et al. [212] which had an average milk yield of
41.1 kg/d.
In addition, the determined THI threshold is lower than the threshold of 77

determined for dry cows [214]. This is sensible since the lactating state of our
experimental cows made them more sensitive to heat stress than dry cows. Other
cow-related factors, such as body condition score, coat colour, and breed, can all
have an effect on animals’ heat tolerance [319]. However, body condition and coat
colour were not considered as grouping factors in this study, and no THI thresholds
for RR for other breeds of dairy cows were found in previous studies. Thus, it is
impossible to make a comparison with the current results.
The corresponding RR thresholds determined by the piecewise regression models

were 61.1 and 60.4 bpm by Ta and THI, respectively (Table 4-5), which are
consistent with Collier et al. [50] who determined the onset of heat stress when RR
exceeded 60 bpm. In addition, the determined RR threshold is higher than those
determined by Dalcin et al. [213] for ½ Holstein × Girolando dairy cows (30) and ¾
Holstein × Girolando dairy cows (45). This can be explained by the higher
physiological states of pure-bred Holstein cows compared with mixed cows.

3.5. Limitations and perspectives
No sensitivity or comparison study was conducted to explore the impact of camera

resolution and frame rate on the calculated RR. It is also notable that high-end
cameras are too expensive to provide a complete view of the barn. Network
recording cameras, although more economically accessible in commercial farms, do
suffer from practical issues such as more severe camera shake and lens distortion. In
the next step, we will test and improve our method on a video recording system.
It should be noted that the proposed method was only trained and tested on the

data collected from one free-stall barn with one specific herd and breed. Although
pen-level splitting was used to improve generalisability, further targeted training and
testing are required before applying it to other facilities, herds, and breeds given the
potentially significant environmental and animal differences. Anyway, this can be
accelerated by using transfer learning techniques.
Additionally, night data was not collected in this study. Note that cows would take

advantage of the greater temperature gradients from their bodies to the environment
at night to relieve their accumulated heat load during the daytime [320]. It is,
therefore, necessary to complete 24-h measurements for continuous monitoring of
cows’ stress state. Although lights are turned on at night in the barn, the change in
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environmental illumination should have an impact on the robustness of the proposed
method, which should be refined by further studies.

4. Conclusions
Collectively, our work represents an important step towards a non-contact RR

measurement for dairy cows lying in free stalls. The proposed method can cover a
lying area of approximately 16 free stalls and provide a precise and real-time RR
measurement with a correlation coefficient of 0.945, an RMSE of 5.24 bpm, and an
intraclass correlation coefficient of 0.98 when compared to visual observation, as
well as an FPS of 64. Automated local cooling is promising by combining RR
measurements and the critical thresholds to inform possible cooling systems at
different places in the barn. However, further experiments and calibration with data
collected by using low-cost video recording systems, recording during day- and
night-time, are required before this technology can be applied on farms.
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Context – Chapter 5
According to the findings reported in the first chapter, some behavioural changes

are promising indicators of heat stress in dairy cows due to their ease of acquisition
and sensitivity to heat stressors. RGB camera-based methods provide a low-cost
solution for measuring behavioural dynamics. Especially, these behavioural changes
can be measured and analysed not only at the individual level but also at the herd
level, for instance by herd percentage. Therefore, the fifth chapter aimed to propose
a deep learning-based model for recognising cow behaviours and to determine
critical thresholds for the onset of heat stress at the herd level.
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Chapter 5
Determining heat stress in a dairy herd
via automated behaviour recognition
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Adapted from:

Shu, H., Bindelle, J., Guo, L., Gu, X. Determining the onset of heat stress in a dairy
herd based on automated behaviour recognition. Biosystems Engineering, 2023.
https://doi.org/10.1016/j.biosystemseng.2023.01.009
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Abstract
Dairy cows have various strategies for dealing with heat stress, including a change

in behaviour. The aim of this study was to propose a deep learning-based model for
recognising cow behaviours and to determine critical thresholds for the onset of heat
stress at the herd level. A total of 1000 herd behaviour images taken in a free-stall
pen were allocated with labels of five behaviours that are known to be influenced by
the thermal environment. Three YOLOv5 architectures were trained by the transfer
learning method. The results show the superiority of YOLOv5s with a mean average
precision of 0.985 and an inference speed of 73 frames per second on the testing set.
Further validation demonstrates excellent agreement in herd-level behavioural
parameters between automated measurement and manual observation (intraclass
correlation coefficient = 0.97). The analysis of automated behavioural measurements
during a 10-day experiment with no to moderate heat stress reveals that lying and
standing indices were most responding to heat stress and the test dairy herd began to
change their behaviour at the earliest ambient temperature of 23.8 ℃ or
temperature-humidity index of 68.5. Time effects were observed to alter the
behavioural indicators values rather than their corresponding environmental
thresholds. The proposed method enables a low-cost herd-level heat stress alert
without imposing any burden on dairy cows.

Keywords: smart livestock farming, animal welfare, thermal comfort, group
measurement, behavioural index
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1. Introduction
Homeotherms, including dairy cows, constantly maintain thermal equilibrium with

their environments through thermoregulation [1]. Heat stress is defined as the
demand made by the environment for heat dissipation [6]. It is triggered when the
thermal environment exceeds the upper critical threshold of the thermoneutral zone,
inducing a variety of physiological and behavioural responses to reduce heat
production and increase heat dissipation [5]. Due to the lack of real-time, large-scale,
and automated measurement of animal-based indicators, heat mitigation in practice
has long depended on environmental indicators and their critical thresholds [308].
Environmental indicators, however, do not reflect the actual response of the animal,
making it difficult to evaluate the effectiveness of cooling measures [321].
Dairy cows take a series of behavioural changes to cope with heat stress. As

environmental temperature increases, cows will spend more time standing to
increase surface area for better heat dissipation [322]. However, this may result in a
significant reduction in sleeping time, posing a potential risk to cow welfare [5].
Cows will drink more frequently under heat stress but with less water each time [56].
Cows will also reduce feed intake and subsequent rumination to reduce metabolic
heat production [323]. Therefore, recognising changes in behavioural patterns
ascribable to heat stress can help quantify the true response of cows.
Recently, deep learning-based methods have allowed the automated recognition of

basic cow behaviours such as lying, standing, and drinking with an accuracy of up to
0.976 [166,168]. Further quantification of the results with association to animal
growth, health, and welfare, and the extent to which they can be used to improve
decision making have been highlighted for future work [324]. Tsai et al. [167]
analysed how drinking time and frequency were affected by heat stress after
detecting drinking behaviour with a convolutional neural network. Still, further
application of deep learning techniques is required so that the detection of multiple
behaviours enables a more comprehensive analysis of when heat stress is triggered.
Although progress has been made in computer vision-based individual

identification in free-stall barns [325], issues such as lack of colour pattern and
occlusion still lead to poor identification. In addition, detections from deep learning
methods provide an opportunity to calculate herd-level behavioural indices which
have been commonly used for evaluating cow comfort. For example, cow lying
index, which is defined as the number of cows lying in the stall divided by the total
number of cows, has been calculated automatically with a computer vision-based
system [162]. Other indices related to free-stall usage and cow comfort would
require knowing whether the cow is standing on the stall bed and whether the cow is
eating or drinking. Therefore, a detailed behavioural recognition method that
addresses the above questions is still required to compute these indices in an
automated way.
Scan sampling, as a common method in animal research, is often used to record

herd-level behavioural indices at predetermined intervals. Traditionally, scan
sampling requires manual checks through direct observations or video recording,



Chapter 5: Determining heat stress in a dairy herd via automated behaviour recognition

133

both of which are time- and labour-consuming. With the help of automated
behaviour recognition, video frames can be processed in real time. However,
continuous processing and storing of data would be a waste of time and memory.
Scan sampling is still of great value, especially for behaviours that basically follow
continuous and diurnal patterns, such as lying and standing. The sampling interval
should always be determined in accordance with specific purposes. For example,
studies or regular checks aimed at ascertaining standing and lying patterns may use
sampling intervals of 30 or even 60 min [326].
By combining deep learning and scan sampling methods, the onset of heat stress is

promising to be determined at the herd level with the memory and power of local
devices greatly saved. Therefore, the aim of this study was (1) to train and validate a
deep learning-based model to recognise cow behaviours and further calculate herd-
level behavioural indicators, and (2) to develop critical thresholds of heat stress at
herd level based on behavioural indicators.

2. Materials and methods
All protocols involving animals were approved by the Experimental Animal Care

and Use Committee of Institute of Animal Sciences, Chinese Academy of
Agricultural Sciences (approval number IAS2021-220).

2.1. Experimental design
The experiment was conducted on a free-stall dairy farm in May 2021 in

Shandong, China, which has a temperate continental monsoon climate with hot and
humid summers. The experiment consisted of two periods, in which the first three
days in early May were designed to collect data for training behaviour recognition
models while the other ten days during mid-May when the environment got warmer
were designed to explore how the onset of heat stress can be determined through
automated behaviour recognition.
2.1.1. Housing, animals, and management
The barn had four pens with a 4-row head-to-head design and was covered by a

double-pitched roof (gradient 15%). The experimental pen (11 m × 96 m, oriented
along the north–south axis) housed 79 lactating Holstein-Friesian dairy cows with
128 stalls and 128 headlocks. The pen could be evenly divided into eight areas, with
each having a feeding zone of 16 headlocks and a parallel resting zone of 10 to 20
stalls with or without a water trough (see Appendix 1. Supplementary material
Figure A5-1). At the beginning of the experiment, the cows had a mean ± SD milk
yield of 30.4 ± 11.8 kg/day, parity of 2.8 ± 1.4, and days in milk of 273.1 ± 117.3.
The cows were milked three times daily at 08:30, 16:30, and 00:00 h in a parlour
that was about 20 m away from the barn. All cows were observed to return to the
pen within 1 h of departure. A total mixed ration was delivered three times daily
after milking. Clean drinking water was delivered in five troughs. Both feed and
water were provided ad libitum to all cows. Electronic fans (1.1 m in diameter;
capacity: 25000 m3/h each; see Figure A5-1) were turned on when the indoor
temperature reached 20 °C whereas sprinklers remained closed during the
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experiment. Stalls were sand-bedded to a depth of about 150 mm and raked once
daily while the cows were away for morning milking.
2.1.2. Behavioural and environmental measurement
Cow behaviour was recorded using eight closed-circuit video cameras (DS-IPC-

K14L-WT; Hikvision, Hangzhou, China) which were evenly spaced and placed
opposite the pen’s longitudinal axis at a height of about 6 m and an angle of about
45° downward (see Figure A5-1). Each camera was able to capture a feeding zone
with 16 headlocks and a parallel resting zone, allowing the complete side view of the
pen to be captured. The eight cameras were linked, synchronised, and controlled
using a Wi-Fi router (DS-3WR23-E; Hikvision, Hangzhou, China) and an eight-
channel video recording system (DS-7808NB-K1/W; Hikvision, Hangzhou, China).
It is recommended that video recordings taken between 08:00 and 15:00 h is best for
representing daily behavioural pattern in summer [327]. Besides, behavioural
assessment should be performed at least 1 h after cows return from morning milking
to avoid being affected by intensive feeding [328]. Accordingly, video recording
was performed from 10:30 to 15:00 h on each test day as adapting the previous
recommendations to the actual schedule.
Environmental parameters including ambient temperature (Ta, ℃) and

relative humidity (RH, %) were measured at an interval of 10 min using a total of
six Kestrel 5000 environment meters and Kestrel 5400 heat stress trackers (accuracy:
± 0.4 °C Ta, ± 1% RH; Nielsen-Kellerman, Boothwyn, PA, USA; see Figure A5-1).
These sensors were evenly distributed in the pen and were fixed at a height of 2.2 m.
The measurements from all sensors were averaged for representing the global
environment inside the pen. The temperature-humidity index (THI) was calculated
according to Eq. (1) [222].
��� = (1.8 × �� + 32) − (0.55 − 0.0055 × ��) × (1.8 × �� − 26) (1)

2.2. Development of behaviour recognition model
2.2.1. Data preparation
Video frames from the first three-day experiment were extracted at an interval of 6

min by using a self-written program in Python. This interval was set for increasing
the heterogeneity of the training data since the cows changed their behaviour less
frequently. The extracted frames were in JPG format and were further corrected for
distortion and cropped using OpenCV. The final images for training and evaluation
had a resolution of 1920 by 1080 pixels. Finally, a total of 1000 images were chosen
after eliminating low-quality frames (e.g., lens covered by flies).
To maintain the good quality of training data, all cows presented in all images

were annotated as per the definition presented in Table 5-1. Five target behaviours
known to be influenced by the thermal environment were carefully defined to be
exclusive, meaning that the cows were not able to perform two behaviours
simultaneously. ‘Standing-in’ was previously subdivided into ‘perching’ and
‘standing’ based on whether all four feet or just two feet touched a stall [329].
However, this was abandoned due to insufficient data in each subgroup. The
annotation tool LabelImg (https://github.com/tzutalin/labelImg) was used to allocate
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the appropriate class to each cow per image with a bounding box. A total of 1000
annotated images were randomly split into a training set (60%), a validation set
(20%), and a testing set (20%). A detailed description of the behaviour recognition
dataset with regards to the number of labels per class is given in Table 5-2.

Table 5- 1: Definition of the target cow behaviours.

Behaviour Definition
Drinking Standing by a water trough with mouth in the trough
Eating Standing with neck in a feeding rack
Lying Lying in total lateral or sternal recumbency within a stall

Standing-in Standing with two or more feet touching a stall bed
Standing-out Standing or walking outside the stall but not eating

Table 5- 2: Overview of the behaviour recognition dataset. Images were extracted using 6-
min scan sampling from 10:30 to 15:00 h during the three-day experiment.

Dataset
Number of cow labels

Drinking Eating Lying Standing-
in

Standing-
out Total

Training (600 images) 164 269 3326 509 2682 6950
Validation (200

images) 49 73 1237 170 836 2365

Testing (200 images) 40 103 1152 186 769 2250
Total 253 445 5715 865 4287 11565

2.2.2. Deep learning algorithm and transfer learning
YOLO (You Only Look Once) is a popular one-stage framework for object

detection. Unlike two-stage methods (e.g., Faster R-CNN), one-stage methods skip
the region proposal stage, and regard object detection as a regression task with class
probability and coordinates of the bounding box as the outcome. As a result, one-
stage methods have much higher inference speeds and relatively lower accuracy.
YOLOv5 is a recent popular version of the YOLO-series of algorithms. Adapting

from YOLOv4, YOLOv5 uses Focus structure with CSPdarknet53 as the backbone
and introduces Spatial Pyramid Pooling method, mosaic training, self-adversary
training, and multi-channel feature. It has been reported that YOLOv5 has a much
higher inference speed and smaller size compared with its previous versions without
sacrificing accuracy [330]. Thus, YOLOv5 was chosen to recognise cow behaviour
in the present study. Specifically, three architectures were trained, with size
increasing from YOLOv5s, YOLOv5m, to YOLOv5l.
Deep learning methods require a lot of time and memory to train on a large

number of images. Transfer learning, which involves transferring previously learned
knowledge from a related task, is expected to accelerate the training process and
usually produce better results than training from scratch. The pre-trained weights
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used in this study were provided by the authors of YOLOv5 based on the COCO
dataset which is a benchmark object detection dataset published by Microsoft [315].
The training of the different YOLOv5 architectures was performed in Python 3.8

language with Pytorch 1.8.0. on a 64-bit version Windows 11 laptop with NVIDIA
GeForce RTX 3060 GPU and 6 GB video memory. The batch size was set to 8 and
the epoch was set to 100. Hyperparameters were set as default.
2.2.3. Performance evaluation
In object detection tasks, an Intersection over Union (IoU) threshold has to be

given first to determine whether a predicted bounding box should be classified as
positive or negative. The IoU is the overlap of the predicted and ground-truth
bounding boxes divided by their union, as expressed in Eq. (2):
��� = ���������� ∩ ������ ����ℎ

���������� ∪ ������ ����ℎ
(2)

In this study, an IoU threshold of 0.5 was adopted by convention. Thus, a
detection with an IoU ≥0.5 was classified as true positive (TP), a detection with an
IoU <0.5 was classified as false positive (FP), and a ground truth presented but
failed to be detected is classified as false negative (FN).
Afterward, the precision (Pr), recall (R), and average precision (AP) were

calculated according to Eqs. (3 - 5). The Pr indicates the proportion of the predicted
bounding boxes being correctly detected whereas the R indicates the proportion of
the ground-truth bounding boxes being correctly detected. The ideal object detector
should have high Pr and R at the same time. However, there is a trade-off between
the two metrics depending on the confidence threshold. Confidence represents the
probability (0 to 1) of a bounding box containing an object and the predictions with
class probabilities lower than a given confidence threshold will be removed. A very
high confidence threshold will discourage the model from making positive
predictions, thus increasing Pr and decreasing R, and vice versa. The AP is a
commonly recommended metric since it summarises the Pr along with the R at all
possible confidence thresholds. This was done by default setting the confidence
threshold to 0.001.
�� = ��

��+��
(3)

� = ��
��+��

(4)

�� = 0
1 ��(�)� �� (5)

In such a multi-class task, the mean average precision (mAP) was used to evaluate
the overall performance, as expressed in Eq. (6):
��� = 1

� �=1
� ���� (6)

where C takes 5, indicating 5 classes (i.e., ‘Drinking’, ‘Eating’, ‘Lying’, ‘Standing-
in’, ‘Standing-out’). In addition, frames per second (FPS) was used to indicate the
inference speed, as expressed in Eq. (7):
��� = �

��
(7)

where tN is the total inference time (s) on N images.
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Unlike AP calculations, where all potential confidence thresholds are required, the
confidence threshold for actual inference must be tuned and specified for better
detection. The confidence threshold for inference on the testing set was determined
by checking the global maximum on the F1 confidence curve. The F1 score is the
harmonic mean of Pr and R, as expressed in Eq. (8):
�1 ����� = 2 × ��×�

��+�
(8)

2.3. Behavioural indicator calculation and heat stress
determination
2.3.1. Behaviour recognition
The video frames were further extracted using 30-min scan sampling from 10:30

to 15:00 h since this method has been validated to be effective and efficient for
analysing cow behaviour [327,331]. Consequently, 10 scan samples were obtained
for each of the 13 test days, each containing eight images from eight cameras. The
proposed behaviour recognition model was applied to all images per scan sample.
2.3.2. Detection filtering
The eight cameras captured all 128 headlocks in the feeding zone, but partially

overlapped at the far end of the view (i.e., resting zone) due to the fact that faraway
objects naturally appear smaller than closer ones. However, it is important to count
each cow only once when calculating herd-level behavioural indicators. Thus,
processing had to be done to filter each detection per image per camera to ensure
that only the detections located within the area of interest were counted. As shown in
Figure 5-1, the area of interest was predetermined for each camera by using a
polygon that covered the entire floor of the feeding zone and its parallel resting zone.
The filtering was based on Jordan Curve Theorem [332]. For each predicted
bounding box, a ray was first drawn horizontally to the right of the centre of its
lower boundary line. This was to ensure that the cows stood or lied within the area.
If the number of intersections was odd then the centre was inside the polygon and
the predicted bounding box was kept. This filtering was based on the coordinates of
the polygon and those of the lower centres of the bounding boxes using a self-
written program in Python. The filtered number of detections per class per image
was therefore obtained.

Figure 5- 1: Schematic of detection filtering taking one camera for example. The
predefined red polygon represents the area of interest and only the bounding boxes with their

lower centres in the area are kept.
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2.3.3. Behavioural parameters
The number of detections for each behavioural class per scan was determined after

merging the results into each scan sample. The herd-level behaviour distribution of
each scan was naturally calculated by dividing the number of detections for each
behavioural class by the total number of detections. Except for the percentage of
cows lying, several herd-level behavioural indices have often been used for
characterising lying and standing behaviours. With the automated measurements,
comfort index (CI), stall-use index (SUI), and cow stress index (CSI) were
calculated according to Eqs. (9 - 11) [328,331]:
�� = �����/(����� + ��������–��) (9)
��� = �����/(����� + ��������–�� + ��������–���) (10)
��� = (��������–�� + ��������–���)/� (11)
where n denotes the total number of cows.
To further evaluate the proposed behaviour recognition model, the scan samples

from the first three-day recording were manually observed to count the frequency of
each behaviour. The manual results of behavioural parameters including the
percentage of all five target behaviours as well as advanced lying and standing
indices (i.e., CI, SUI, and CSI) were then calculated. The intraclass correlation
coefficient was computed to assess the agreement between manual and automated
methods using the icc function from the ‘irr’ package (R version 3.4.4; https://R-
project.org).
2.3.4. Threshold development
Since the proposed model worked well in recognising herd-level behavioural

parameters, the remaining 10-day data were further used to explore the herd-level
behavioural pattern with respect to the onset of heat stress. A total of six herd-level
behavioural parameters, including the percentages of cows drinking (drinking%),
eating (eating%), and lying (lying%), as well as CI, SUI, and CSI, were used as
animal-based indicators, whereas Ta and THI were used as environmental indicators.
Data from 11:00 to 14:30 h were used for further analyses since their behavioural
results show a clear association with environmental indicators.
All statistical analyses in this section were performed using R software.

Spearman’s rank correlation analysis was performed using the cor function to
explore how these indicators were associated with each other. Piecewise regression
models were used to fit the response of animal-based indicators to environmental
indicators and locate the breakpoint at which this response changed in trend. The
piecewise models were built with the ‘segmented’ package which works by updating
the existing models with two or more breakpoints based on Davies test [291].
Therefore, basic piecewise models were built by updating simple linear regression
models fitted with the lm function. The models are written as Eq. (12):

�� = �0 + �1�� + �2(�� − ���)�� + ��, �� =
0 �� � ≤ ���
1 �� � > ���

(12)

where Yi is the animal-based indicators, β0 is the population intercept, β1 is the left
slope, Xi is the environmental indicators, β2 is the difference between the right slope
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and left slope, Xbp is the breakpoint, Xk is the dummy variable, and εi is the random
residual for the i-th observation.
If the basic piecewise models converged, advanced piecewise models with the

random effect of time of day were built to separate the profiles of different hours.
Otherwise, the results would be shown with simple linear regression models.
Advanced piecewise models were built by updating linear mixed models fitted with
the lme function included in the ‘nlme’ package. The random effect of time of day
was included for every model parameter, including intercept, slope difference, and
breakpoint. For j-th time of day, the model can be written as Eq. (13):

��� = �0� + �1���� + �2�(��� − ����)�� + ���, �� =
0 �� � ≤ ����
1 �� � > ����

(13)

where each parameter is given by the sum of fixed and random effects (e.g., β0j is the
sum of fixed term β0 and random term dj).

3. Results and discussion
3.1. Performance of behaviour recognition
Figure 5-2 showing the training process of three YOLOv5 architectures indicates

a faster convergence always in the validation mAP than the training loss. As
expected, the training converged earlier as the network deepens in size. As shown in
Table 5-3, the mAP on the testing set was roughly close among YOLOv5 models, in
which ‘Drinking’ was consistently the most difficult to detect, probably due to the
most limited data to train. This is somehow inevitable when using such an
imbalanced dataset with ‘Standing-out’ being almost 16 times more represented than
‘Drinking’. In the case of FPS, models with smaller sizes show much higher
inference speed, with YOLOv5s increasing by 32.7% compared with YOLOv5m,
and by 65.9% compared with YOLOv5l. Other algorithms commonly used for
object detection were not compared since the YOLOv5 algorithms have already
shown extremely good performance. In fact, YOLOv5 has been reported to have a
dramatic increase in inference speed compared with YOLOv3 and YOLOv4 [333].
Our results show that all three YOLOv5 architectures should be effective and
capable of being deployed on mobile terminals. Anyway, we simply chose the
YOLOv5s model for further application due to its ability to further compress the
weight size while maintaining accuracy.
The F1 confidence curve indicates that the F1 score of all behavioural classes

peaked at a confidence threshold of 0.696 (Figure 5-3(a)). Thus, further evaluation
and application were performed with confidence threshold set to 0.696. The
confusion matrix shown in Figure 5-3(b) indicates that the major misclassification
was marked between drinking and standing-out behaviours and between standing-in
and lying behaviours, with 1 out of 40 ‘Drinking’ labels being misclassified as
‘Standing-out’ and 4 out of 186 ‘Standing-in’ labels being misclassified as ‘Lying’,
respectively. The example results shown in Figure 5-3(c) demonstrate a good ability
in dealing with occlusion caused by facilities or other cows.
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Figure 5- 2: Comparison of training loss and validation mean average precision (mAP) for
three YOLOv5 architectures.

Table 5- 3: Performance comparison of three YOLOv5 architectures.

Model
Average precision

mAP FPS Size
(M)Drinking Eating Lying Standing-

in
Standing-

out
YOLOv5s 0.944 0.995 0.995 0.995 0.994 0.985 73 13.7
YOLOv5m 0.963 0.995 0.995 0.995 0.995 0.988 55 40.2
YOLOv5l 0.956 0.995 0.995 0.994 0.995 0.987 44 88.5
mAP = mean average precision; FPS = frames per second.

When calculating herd-level behavioural parameters for the 30 scan samples from
the first three-day recording, the intraclass correlation coefficient between manual
and automated methods was 0.97. Moreover, the overall linear relationship shows
that only 11 out of 240 observations were classified to be outliers by the 95%
prediction limits (Figure 5-4). Collectively, these results demonstrate an excellent
agreement between manual and automated methods in obtaining herd-level
behavioural parameters. Of note, given that the view provided by our cameras might
be difficult to show the relationship between a cow’s head and the trough when there
was a strong occlusion, both the ground truth and detections could have
underestimated the incidence of drinking, thereby affecting the calculated
behavioural parameters. For example, the drinking% and the SUI would be
underestimated whereas the CSI would be overestimated. This bias should cause
negligible effects on the current results since such occlusion happened in only five
scan samples (a total of eight occluded cows) during the entire 13 test days and
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drinking played a limited role in the equation compared with standing and lying.
However, it may have a stronger impact on behavioural parameter calculation when
facing a higher farming density and more occlusions. A top-view camera, as
presented by Tsai et al. [167], could be a solution to eliminating this measurement
bias. Another possible way is to introduce new labels describing cow behaviour in
the drinking area. This is of interest since it can be very crowded in drinking areas
during hot seasons and cows would even compete for troughs [159].

Figure 5- 3: Detailed performance of the YOLOv5s model. (a) F1 confidence curve with
the black vertical dashed line indicating the best F1 score at a confidence threshold of 0.696.
(b) Confusion matrix (normalised by column) with confidence threshold set to 0.696. (c)

Example results of behavioural recognition with confidence threshold set to 0.696.

3.2. Behavioural pattern under heat stress conditions
As shown in Figure 5-5, the 10-day experiment conducted in mid-May well

captured the beginning of heat stress with daily mean Ta rising from 14.7 to 25.8 ℃
and daily mean THI rising from 58.4 to 74.4. The heat stress threshold for high-
producing dairy cows (≥35 kg/day) has been updated to a daily mean THI of 68 by
Collier et al. [50]. According to their revised THI thresholds, the study herd first
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stayed within the thermoneutral zone and then experienced mild to moderate heat
stress during the 10-day experiment.

Figure 5- 4: Comparison of herd-level behavioural parameters measured half-hourly by
manual and automated methods from 10:30 to 15:00 h during the three-day experiment.

Drinking% = percentage of cows drinking; Eating% = percentage of cows eating; Lying% =
percentage of cows lying; Standing-in% = percentage of cows standing-in; Standing-out% =
percentage of cows standing-out; CI = comfort index; SUI = stall-use index; CSI = cow

stress index.

The 100% bar chart presents the herd-level behavioural pattern from 10:30 to
15:00 h (Figure 5-6). The complete statistics used for plotting can be found in
Appendix 1. Supplementary material Table A5-1. As expected, lying consistently
occupied the largest proportion. Lying has long been used for indicating cow
comfort and welfare, and cows should spend most idle time lying [334]. Besides,
cows had the lowest lying% and a relatively high eating% at 10:30 h compared with
other scan samples, indicating that the effect of intensive feeding was still lasting 2 h
after leaving for the morning milking which was scheduled at 08:30 h. Afterward,
the lying% raised dramatically until it peaked at 11:00 h when the majority of cows
were resting on their stall beds. The lying% then followed a decreasing trend from
11:00 to 14:30 h, which was right opposite to the rising Ta and THI. These patterns
are consistent with Overton et al. [328] and Mattachini et al. [331], who found that a
herd needs 2 to 3 h after leaving for milking to finish feeding and return to rest, and
increasing environmental temperature will decrease the lying% during idle time.
Therefore, the eight scan samples from 11:00 to 14:30 h were used for further
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analyses exploring the effect of heat stress on cow behaviour due to a clear
relationship between cow behaviour and thermal environment during this period.

Figure 5- 5: Overall variation of indoor ambient temperature (Ta, ℃), relative humidity
(RH, %), and temperature-humidity index (THI) during the 10-day experiment with a

measurement interval of 10 min.

Figure 5- 6: Herd-level behaviour distribution measured half-hourly by the proposed
automated method, as well as the corresponding ambient temperature (Ta, ℃) and

temperature-humidity index (THI), averaged during the 10-day experiment.

The spaghetti plot shows the temporal pattern of six herd-level behavioural
indicators with regard to two environmental indicators (Figure 5-7). The complete
statistics used for plotting can be found in Appendix 1. Supplementary material
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Table A5-1. Consistent with lying%, indices describing lying behaviour (i.e., CI and
SUI) increased to a peak at 11:00 h and followed an overall decreasing trend until
14:30 h. The only difference between lying%, CI, and SUI was the calculation of the
denominator. Neither CI nor SUI takes eating into account for calculation. An
increasing eating% would therefore lower the denominator and finally increase their
results. This leads to fluctuations in CI and SUI from 11:30 to 12:00 h and from
13:30 to 14:00 h. Moreover, CSI, as an index describing idle standing behaviour,
showed an almost horizontally symmetrical trajectory to SUI. These trends of
lying%, SUI, and CSI are comparable with Mattachini et al. [331] who manually
observed cow behaviour through video recording with a 60-min scan sampling.
Once again, this demonstrates the effectiveness of our proposed automated method
for behaviour recognition.
Generally, lying and standing indices (i.e., lying%, CI, SUI, and CSI) and

drinking% had strong correlations with Ta and THI (all P < 0.01), whereas eating%
did not appear to have any correlation (both P > 0.05) (Figure 5-8). Of note, Ta had
a stronger correlation with cow behaviour than THI with exception of drinking%
and eating%. A better correlation of Ta with animal-based indicators was also
observed in our previous study when physiological indicators were used [215]. To
some extent, Ta seems to better describe environmental stress than THI in this
specific environmental condition, probably because the effect of RH not yet playing
an important role at the very beginning of summer.

Figure 5- 7: Herd-level behavioural indicators measured half-hourly by the proposed
automated method, as well as the corresponding ambient temperature (Ta, ℃) and

temperature-humidity index (THI), averaged during the 10-day experiment. Drinking% =
percentage of cows drinking; Eating% = percentage of cows eating; Lying% = percentage of

cows lying; CI = comfort index; SUI = stall-use index; CSI = cow stress index.
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Figure 5- 8: Spearman’s rank correlation coefficients between herd-level behavioural
indicators measured half-hourly by the proposed automated method from 10:30 to 15:00 h
during the 10-day experiment and ambient temperature (Ta, ℃) and temperature-humidity
index (THI). Drinking% = percentage of cows drinking; Eating% = percentage of cows

eating; Lying% = percentage of cows lying; CI = comfort index; SUI = stall-use index; CSI =
cow stress index.

Among lying and standing indices, CI correlated the weakest with Ta (r = -0.360,
P < 0.001) and THI (r = -0.322, P = 0.002), whereas SUI correlated the strongest
with Ta (r = -0.744, P < 0.001) and THI (r = -0.673, P < 0.001). Similarly, CI was
found less susceptible to environmental temperature compared with lying% and SUI
by Overton et al. [335], and the strongest correlation coefficient was found between
SUI and Ta (-0.762) by Mattachini et al. [331]. It is well known that cows will
change their drinking and feeding patterns to better coping with heat stress [1]. The
positive correlation of drinking% with Ta (r = 0.357, P < 0.001) and THI (r = 0.393,
P < 0.001) observed in this study might be attributed to increased visit to the trough
and increased time per visit, as previously identified by Tsai et al. [167] and
McDonald et al. [159]. Moreover, eating patterns can change through different
strategies by cows with different production stages [336] or social ranks [337]. Thus,
the small to no effect of heat stress on eating% is probably due to heterogeneous
strategies taken among the herd. Indeed, some cows may reduce their feed intake
with a longer eating time [158,336]. Anyway, eating% alone appears to be
insufficient to quantify eating behaviour, and more data from longer duration or
smaller sampling intervals are required to evaluate its ability as a herd-level heat
stress indicator.

3.3. Critical threshold for determining the onset of heat stress
The basic linear and piecewise models visualised in Figure 5-9 show the benefit

of using lying%, SUI, and CSI for indicating the onset of heat stress. Their statistical
results presented in Table 5-4 indicate that the lowest upper critical Ta was
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associated with SUI and CSI (both 23.8 ℃), and the lowest upper critical THI was
associated with lying% (68.5). The slope differences were always higher with Ta
than with THI, once again suggesting the superiority of Ta in representing the stress
imposed by the current environment. As for the behavioural indicators that were not
converged in the piecewise regression, drinking% and CI were positively and
negatively related to environmental indicators, respectively, whereas eating%
appeared to be independent of Ta and THI. These results are consistent with those
from the correlation analysis.

Figure 5- 9: Automated measurements of herd-level behavioural indicators and their fitted
profiles from linear regression (green) and piecewise regression (red) models with (a)
ambient temperature and (b) temperature-humidity index as the predictor, respectively.
Breakpoints are marked as a black triangle above the x-axis. Drinking% = percentage of
cows drinking; Eating% = percentage of cows eating; Lying% = percentage of cows lying;

CI = comfort index; SUI = stall-use index; CSI = cow stress index.

Several studies have compared cow behaviour in different environmental classes
(e.g., THI classes), and the upper limit of the class at which significance occurred
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was stated as a critical point. For example, a THI of 68 was determined since the
THI class <68 had a significantly lower percentage of cows standing compared with
other predetermined THI classes [320]. However, this method may be arbitrary and
can lose information. Moreover, piecewise or segmented models, are used for
developing critical thresholds due to their indicative parameters (i.e., slope and
breakpoint). For example, Heinicke et al. [160] determined a THI threshold (67) for
total lying/standing time, number of lying/standing bouts, and lying bout duration.
Our results, however, cannot be compared directly with theirs since THI and
behavioural indicators were summarised as daily averages in their study.

Table 5- 4: Parameter estimates (mean ± standard error) of basic piecewise regression
models with ambient temperature (Ta, ℃) and temperature-humidity index (THI) as the
predictor, respectively. Behavioural indicators were measured half-hourly by the proposed

automated method from 11:00 to 14:30 h during the 10-day experiment. a

Predictor Outcome Intercept Breakpoint Left
slope ∆Slope AIC

Linear Piecewise

Ta

Drinking% -1.1 ± 1.1 N/A 0.12 ±
0.04 N/A 309.6 N/A

Eating% 8.1 ± 2.9 N/A -0.01
± 0.12 N/A 464.9 N/A

Lying% 84.0 ± 7.9 24.0 ± 1.3 -0.43
± 0.37

-2.21 ±
0.42 534.0 527.8

CI 98.4 ± 3.0 N/A -0.44
± 0.12 N/A 471.3 N/A

SUI 89.5 ± 6.7 23.8 ± 1.0 -0.33
± 0.32

-2.35 ±
0.36 516.0 502.2

CSI 9.7 ± 6.2 23.8 ± 1.0 0.29 ±
0.29

2.07 ±
0.31 499.3 486.4

THI

Drinking% -6.1 ± 2.4 N/A 0.11 ±
0.03 N/A 306.1 N/A

Eating% 7.1 ± 6.5 N/A 0.01 ±
0.09 N/A 464.9 N/A

Lying% 85.2 ±
35.6 68.5 ± 3.3 -0.14

± 0.56
-1.32 ±
0.23 544.4 542.4

CI 110.8 ±
6.8 N/A -0.32

± 0.09 N/A 472.5 N/A

SUI 105.5 ±
20.8 70.7 ± 2.1 -0.35

± 0.31
-1.43 ±
0.27 534.0 530.9

CSI -5.1 ±
18.9 70.7 ± 2.3 0.32 ±

0.28
1.23 ±
0.24 517.9 515.8

∆Slope = difference between right and left slopes; AIC = Akaike information criterion;
Drinking% = percentage of cows drinking; Eating% = percentage of cows eating; Lying% =
percentage of cows lying; CI = comfort index; SUI = stall-use index; CSI = cow stress index.

a N/A indicates that piecewise regression failed to converge. Intercept and left slope, in this
case, represent the parameters of simple linear regressions.
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Figure 5- 10: Automated measurements of the percentage of cows lying and their fitted
profile from advanced piecewise regression with ambient temperature as the predictor.
Random effects of time of day (h) were introduced for intercept, slope difference, and

breakpoint. Breakpoints are marked as a black triangle above the x-axis.

The advanced piecewise models with THI as the predictor all failed to converge.
The profiles of the advanced piecewise models with Ta as the predictor and lying%,
SUI, and CSI as the outcomes are shown in Figure 5-10, Figure 5-11, and Figure
5-12. For each behavioural indicator, Ta breakpoints were roughly the same at
different times of day, with differences only being observed since the ten thousandth
place. The rounded Ta breakpoints among times of day were 23.88, 23.70, and
23.65 ℃, for lying%, SUI, and CSI, respectively. The behavioural pattern can be
found on the Y-axis with standing increasing and lying decreasing from 11:00 to
14:30 h. According to these findings, accumulated heat load over the observed
period of time did not make cows more sensitive to heat stress at a particular time
point. In a recent chamber study, the critical Ta threshold of respiration rate was
found to be lower in the afternoon than in the morning, indicating that cows were
more sensitive after longer exposure to heat stress [338]. Anyway, more data is
required to confirm our results since the subgroup sample size used in the analysis
might not support a precise localisation of breakpoints. To sum up, any attempt to
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integrate behavioural indicators for heat stress evaluation should carefully consider
the temporal pattern.

3.4. Strength and limitations
To the best of our knowledge, this is the first study to determine heat stress based

on herd-level behavioural recognition. Although individual measurements can help
identify animals with the greatest risks and thereby customise heat abatement, this
can be costly in free-stall barns since individual measurement and abatement require
a lot of improvement on the existing facilities. In many cases, even if individual
measurements have been done, the data have to be summarised to reflect the herd
mean [76]. Indeed, as long as heat abatement is implemented at the herd level,
information on the individual level is not necessary for decision making [339].

Figure 5- 11: Automated measurements of stall-use index and their fitted profile from
advanced piecewise regression with ambient temperature as the predictor. Random effects of
time of day (h) were introduced for intercept, slope difference, and breakpoint. Breakpoints

are marked as a black triangle above the x-axis.

With the help of computer vision and scan sampling, our work offers a low-cost
herd-level heat stress alert without imposing any burden on dairy cows. Besides, the
effectiveness of heat abatement can be tracked by introducing more flexible scan
sampling or even continuous measurement when necessary. It should be noted that
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cows would take advantage of nights when the temperature is thermally comfortable
to relieve their accumulated heat load throughout the daytime [320]. However, such
nighttime behavioural data is missing in this study. Future works with reliable
nighttime recording and transfer learning techniques are required to develop a
behavioural recognition model that can work day and night as well as to customise
heat stress thresholds for nighttime hours. By doing so, it is promising to develop a
comprehensive protocol for heat stress detection, mitigation, and evaluation.

Figure 5- 12: Automated measurements of cow stress index and their fitted profile from
advanced piecewise regression with ambient temperature as the predictor. Random effects of
time of day (h) were introduced for intercept, slope difference, and breakpoint. Breakpoints

are marked as a black triangle above the x-axis.

Our method is best suited for intensive farms where facilities and animals are
highly standardised. From the facility perspective, our method for camera mounting
can be directly applied in similar settings, but further evaluation in other designs
(e.g., 4-row tail-to-tail) is required. In addition, our solution requires fewer cameras
than the top-view method [163], because it includes more cattle in each view. Top-
view cameras, as stated before, can also be supplemented in specific areas (e.g.,
troughs) to provide more reliable recordings. From the animal perspective, cows
raised on intensive farms are typically grouped by common influencing factors (e.g.,
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productivity, lactation stage, and parity) and thus behave relatively homogeneously
against heat stress. This will help to shrink within-herd variation, allowing
abatement measures based on herd means to be useful for the majority of cows. This
also allows precision management by customising herd-level heat stress thresholds
with respect to different levels of heat sensitivity. Of note, any extrapolation and
interpretation of the determined critical thresholds should carefully consider the
impact of different management or facility conditions on cow behaviour, such as
overstocking, milking frequency, and bedding materials [340,341].

4. Conclusions
This study has proposed a YOLOv5-based method for recognising cow behaviour

with excellent mAP and inference speed. The ability of the proposed model in
measuring herd-level behavioural indicators has been validated in comparison to
manual observation. The automated measurements taken during the 10-day
experiment reveal that lying and standing indices (i.e., lying%, SUI, and CSI) were
most responding to heat stress and the test dairy herd began to change their
behaviour at the earliest Ta of 23.8 ℃ or THI of 68.5. Collectively, the model and
results presented in this paper have achieved a low-cost heat stress alert for the study
herd without imposing any burden on dairy cows. Further study using multiple herds
with varying characteristics is promising to customise herd-level heat stress
thresholds.
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Context – Chapter 6
According to the findings reported in the first chapter, data-driven predictive

models can not only offer a non-invasive way to obtain heat stress-related data but
also provide insights for decision-making through their interpretations. Previous
studies used limited variables as predictors of physiological responses, and the
developed models poorly predict animal responses in evaporatively cooled
environments. Therefore, the sixth chapter aimed to build machine learning models
using comprehensive variables to predict the physiological responses of dairy cows
raised on an actual dairy farm equipped with sprinklers.
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Chapter 6
Predicting physiological responses of
dairy cows using machine learning
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Adapted from:

Shu, H., Li, Y., Bindelle, J., Jin, Z., Fang, T., Xing, M., Guo, L., Wang, W.
Predicting physiological responses of dairy cows using comprehensive variables.
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Abstract
Heat stress is increasingly affecting the production, health, and reproduction of

dairy cows. Previous studies used limited variables as predictors of physiological
responses, and the developed models poorly predict animal responses in
evaporatively cooled environments. The aim of this study was to build machine
learning models using comprehensive variables to predict the physiological
responses of dairy cows raised on an actual dairy farm equipped with sprinklers.
Four algorithms including random forests, gradient boosting machines, artificial
neural networks (ANN), and regularised linear regression were used to predict
respiration rate (RR), vaginal temperature (VT), and eye temperature (ET) with 13
predictor variables from three dimensions: production, cow-related, and
environmental factors. The classification performance of the predicted values in
recognising individual heat stress states was compared with commonly used thermal
indices. The performance on the testing sets shows that the ANN models yielded the
lowest root mean square error for predicting RR (13.24 breaths per min), VT
(0.30 ℃), and ET (0.29 ℃). The results interpreted with partial dependence plots
and Local Interpretable Model-agnostic Explanations show that P.M. measurements
and winter calving contributed most to high RR and VT predictions, whereas lying
posture, high ambient temperature, and low wind speed contributed most to high ET
predictions. When determining the ground-truth heat stress state by the actual RR,
the best classification performance was yielded by the predicted RR with an
accuracy of 77.7%; when determining the ground-truth heat stress state by the actual
VT, the best classification performance was yielded by the predicted VT with an
accuracy of 75.3%. This study demonstrates the ability of ANN in predicting the
physiological responses of dairy cows raised on actual farms with access to
sprinklers. Adding more predictors other than meteorological parameters into
training could increase predictive performance. Recognising the heat stress state of
individual animals, especially those at the highest risk, based on the predicted
physiological responses and their interpretations can inform better heat abatement
decisions.

Keywords: precision livestock farming, animal welfare, predictive modelling,
thermal comfort, interpretability
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1. Introduction
In the dairy industry, heat stress is increasingly affecting the production, health,

and reproduction of dairy cows [342]. Thermal indices have long been developed
and applied to describe the amplitude and duration of heat stress [235]. However,
environmental indicators can neither reflect the true response of animals nor address
individual variation within a herd [46,130].
Heat stress induces acute responses which are driven by the autonomic nervous

system to maintain homeostasis, as well as chronic responses which are driven by
the endocrine system to achieve a new physiological state [55]. Physiological
responses, such as respiration rate (RR), core body temperatures (CBT), and body
surface temperatures (BST), can be obtained by direct measurement or predictive
modelling, and further used for determining the heat stress state of animals.
Although the direct measurement of such responses can provide the most accurate
results, it is difficult to achieve continuous alarms since traditional manual
measurements are invasive, tedious, and time-consuming [308]. Predictive
modelling offers a non-invasive alternative to predict physiological responses from
more easily accessible data such as meteorological parameters [48,210].
Machine learning (ML) models have gained much interest in animal science

research due to their advantage in predicting nonlinear relationships and being less
subject to assumptions about data distribution [178]. Tree-based algorithms and
neural networks are two typical methods that have been extensively used in
regression (e.g., prediction of productivity, energy consumption, physiological state)
and classification (e.g., behaviour recognition, disease detection, body condition
scoring) tasks [343,344]. For such a regression task predicting physiological
responses, random forests (RF), gradient boosting machines (GBM), and artificial
neural networks (ANN) have shown much better predictive ability than traditional
linear models in broilers [345], dairy cows [179,181], beef cattle [180,346], sheep
[307], and pigs [248].
The choice of predictors is of particular importance for the predictive ability of the

model. Many studies relied solely on meteorological parameters to predict
physiological responses [178,181,347]. Some studies used subcutaneous
temperatures [80,81] or BST [179,346] as predictors since vasodilation during heat
stress drives more blood from the core to the periphery. Li et al. [173] incorporated
previous milk yield and time block into their predictive model, reflecting production
level and diurnal changes in cow physiology, respectively. Moreover, lots of cow-
related factors are well documented to have an impact on cows’ susceptibility to heat
stress, including age, breed, lactation stage, parity, and body posture [5,68,105].
Accordingly, inputting cow-related factors is supposed to better deal with individual
variation in heat stress predictions [348]. Days in milk (DIM) and parity have been
incorporated into ML models for predicting milk productivity and quality [253,349].
However, few attempts have been made to incorporate cow-related factors into ML
models for predicting physiological responses of dairy cows exposed to heat stress.
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The other concern about using ML methods is that the models can only be applied
and interpreted in the environment similar to where they were originally developed
due to their data-driven nature. Dairy farms employ a variety of cooling strategies to
alleviate heat stress, the most efficient and widely used of which is electric fans
coupled with evaporative cooling (e.g., misters and sprinklers) [350]. Fans plus
misters systems produce small droplets and cool the air through evaporation as they
disperse, whereas fans plus sprinklers systems produce much larger droplets to wet
the skin surface of cows and cool the surface directly through evaporation of the
water [351,352]. All these microenvironmental changes can be captured by ambient
sensors and their effect on cow thermal comfort can still be explained. However, the
fact that the large droplets delivered by sprinklers wet the surface of cows making
them more efficiently cooled by fans would be neglected by previous models which
were developed in the absence of sprinklers. The lack of these data makes it
unknown whether ML methods would remain useful in such a complex environment
in order to guide decision making with regards to cow management.
To explore the abovementioned questions, this study aimed to build and compare

ML models for predicting physiological responses (RR, CBT, and BST) of dairy
cows from previous milk yield, cow-related factors, microenvironmental parameters,
and time block on an actual farm which was equipped with sprinklers. We
hypothesised that ML models developed using comprehensive variables would
perform well in this real-world environment.

2. Materials and methods
The experimental protocols were approved by the Experimental Animal Care and

Use Committee of Institute of Animal Sciences, Chinese Academy of Agricultural
Sciences (approval number IAS2021-220).

2.1. Location, facilities, and animals
The experiment was conducted from May to August 2021 at an intensive dairy

farm, located in Shandong, China (coordinates: 34◦50’37”N, 115◦26’11”E; altitude:
52 m), characterised by a temperate continental monsoon climate with hot and
humid summers. The experiment was conducted over three different phases, firstly
during 20 days in late spring and early summer (May to June), secondly during 10
days in mid-summer (July), and thirdly during 10 days in late summer (August).
These phases were expected to cover a wide range of thermal environments, thus
facilitating the training of ML models.
For each experimental phase, a new group of 19 to 20 primi- and multiparous

Holstein dairy cows reared in a free-stall pen (11 m × 96 m) were selected based on
similar parity, lactation stage, and body condition score [353], so that cows were
comparable at the beginning of each phase (Table 6-1). The barn was covered by a
double-pitched roof, and therefore, most of the solar radiation was prevented from
reaching the cows inside the barn. The pen was equipped with a total of 22 fans
(diameter: 1.1 m; capacity: 25000 m3/h each; installation height: 2.8 m) and 46
sprinklers (flow rate: 1.5 L/min each; installation height: 2 m; 1 min on and 4 min



Advancing heat stress detection in dairy cows through machine learning and computer vision

158

off). Fans and sprinklers were automatically turned on when the indoor temperature
reached 20 °C and 25 °C, respectively. Cows were milked three times per day at
08:30, 16:30, and 00:00 h, and were fed a total mixed ration three times per day after
milked. Cows had free access to drinking water but no access to outdoor pasture.
One cow in phase 1 and another in phase 3 were withdrawn from the experiment due
to health issues, namely high somatic cell count and gastroenteritis, respectively.

Table 6- 1: Summary of the cows at the beginning of each phase.

Variable
First phase (n = 20) Second phase (n = 20) Third phase (n = 19)

Mean ± SD Min,
Max Mean ± SD Min,

Max
Mean ±
SD

Min,
Max

Parity 2.7 ± 0.9 1, 5 2.5 ± 1.1 1, 5 2.5 ± 1.2 1, 5

Days in milk 150.2 ± 21.1 109,
179 150.9 ± 16.9 113,

178
150.0 ±
15.9

119,
178

Body condition
scorea 3.0 ± 0.2 2.8,

3.5 3.1 ± 0.3 2.8,
3.5 3.1 ± 0.2 2.8, 3.5

Daily milk
yield (kg/day) 43.0 ± 5.3 30.9,

52.9 39.3 ± 5.0 30.4,
50.4 37.4 ± 5.5 28.8,

50.4
SD = standard deviation; Min = minimum; Max= maximum.
a Body condition score was measured using a 1 (severe undercondition) to 5 (severe

overcondition) scale as per Wildman et al. [353].

2.2. Variables
Respiration rate (RR), vaginal temperature (VT), and eye temperature (ET) were

the three response variables for predictive modelling, while candidate predictor
variables were determined along three dimensions: production factors, cow-related
factors, and environmental factors (Figure 6-1).
Production factors included the single daily milk yield (DMY) of three days before

the test day. The use of DMY was initially motivated by the fact that high-producing
cows typically suffer more from heat stress [50]. The milk yield in the last few days
could represent the mean production level of individual cows. Besides, the changing
dynamics or accumulated response [53] of DMY over previous days was intended to
show how the animals were coordinated by acclimatisation. This information is
important since exposure to heat stress would induce stress responses in either acute
(minutes to days) or chronic (days to weeks) ways, manifesting into different
physiological states [55]. For example, cows showed a much steeper increase in RR
and VT during acute stress than during chronic stress [354]. Given that acute stress
takes at least three days to achieve thermal balance [355], the previous three days’
DMY was finally nominated.
Cow-related factors including birth season, calving season, DIM, parity, age in

months (AIM), and posture were nominated since they have long been identified as
influencing factors of individual sensitivity to heat stress [5,68,105]. Environmental
factors included ambient temperature (Ta), relative humidity (RH), and wind speed
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(WS) which represented indoor microenvironments, as well as time block which
represented time effect.

Figure 6- 1: Flow chart showing the strategic plan of the present study. RF = random
forests; GBM = gradient boosting machines; ANN = artificial neural networks; RLR =
regularised linear regression; RR = respiration rate; VT = vaginal temperature; ET = eye

temperature.

2.3. Data collection
Vaginal temperature (VT) was recorded automatically at an interval of 5 min by

using data loggers (DS1922L, accuracy: ± 0.5 °C, resolution: ± 0.0625 °C; Maxim
Integrated, San Jose, CA, USA) attached to modified vaginal controlled internal
drug releases (Pfizer Animal Health, New York, NY, USA). The devices were
removed after a week in vivo for each cow per phase to avoid interfering with
artificial insemination and risking harming the foetuses. Meteorological parameters
were measured automatically at an interval of 10 min by using six Kestrel
environmental data loggers (model: 5000 and 5400; accuracy: ± 0.4 °C Ta, ± 1% RH,
± 1.66% WS; Nielsen-Kellerman, Boothwyn, PA, USA) which were evenly placed
in the pen at a height of 2.2 m. These readings were used for describing the overall
thermal condition throughout the entire experiment.
The manual field measurement of physiological (RR and ET) and

microenvironmental variables (Ta, RH, and WS) was conducted twice on each test
day, once during A.M. (08:00-11:30 h) and once during P.M. (13:30-16:30 h). For
each measurement, each cow was expected to be measured twice, once while lying
and once while standing, with at least a 30-min gap between the two observations.
However, due to their unconstrained nature, the number of times the cows were
measured varied for each measurement, with mean ± standard deviation
observations of 2.0 ± 0.9, 2.4 ± 0.9, and 2.3 ± 0.8 per cow per measurement for three
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periods, respectively. For each observation, RR was recorded by two trained
observers (intra-class correlation coefficient: 0.91) by timing 15 flank movements
(and converting to breaths per min); ET was measured from the cows’ side with an
angle of approximately 90° and a distance of approximately 1.5 m by a photographer
using a portable infrared camera (VarioCAM HR, accuracy: ± 1.5 °C, resolution:
640 × 480 pixels; InfraTec, Dresden, Germany) which was fully warmed up as per
Howell et al. [356]; and microenvironmental parameters (i.e., Ta, RH, and WS) were
manually collected from the closest Kestrel data logger.
Previous DMY (kg/day) and cow-related factors including birth season, calving

season, DIM, parity, and AIM were acquired from the automatic milking system
(Afimilk, Kibbutz Afikim, Israel). Birth season and calving season were coded to
spring (March to May), summer (June to August), autumn (September to November),
and winter (December to February). Body posture (lying or standing) was recorded
manually for every observation. Time block (A.M. or P.M.) was recorded for two
separate field measurements on each test day.

2.4. Data processing
The infrared images were interpreted using IRBIS 3 Standard software (YSHY,

Beijing, China). Low-quality images, specifically those that were blurred or had
closed eyes, were manually removed. ET was determined using the maximum
temperature of the medial canthus area, as per Shu et al. [357]. The data of the two
sick cows on the day they were withdrawn from the experiment were removed from
the dataset for data quality control.
Further data processing was done using R software (version 4.1.0; https://www.R-

project.org/). To ensure a high-quality prediction, it is important that the
observations used for training and testing are included in the same distribution and
are not subject to outliers. This can be done by calculating Mahalanobis distance
which is an effective distance metric that measures the distance between an
observation and the barycenter defined in the multi-dimensional space [358]. Thus, a
principal component analysis was first performed using the PCA function from the
FactoMineR package to reduce the dimensionality of the predictor matrix. The
Mahalanobis distances between observations were then calculated, referring to the
method described in Soyeurt et al. [359]. The presence of outliers among
observations was detected using a Mahalanobis distance threshold of 5 as
convention. Moreover, although multicollinearity does not typically affect accuracy,
it can be a problem when interpreting the results, and thus should be carefully dealt
with. Multicollinearity was detected using variance inflation factors with a threshold
of 5 [360]. This was done by first building a regression model that included all
predictor variables using the lm function, and then applying the vif function of the
car package to the regression model. Besides, correlation matrices were built to
visualise the correlations among 13 candidate predictor variables using the cor
function.
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2.5. Predictive modelling
Predictive modelling was performed using the h2o package. For each response

variable, the h2o.splitFrame function was used to randomly divide 85% of the data
as the training set and 15% as the testing set (Figure 6-1). In addition, a cow-level
splitting was performed as a control where cows were randomly split at a rough ratio
of 85:15 and their observations were allocated to training and testing sets,
respectively.
The training set was used to fit the model and the testing set was used to collect

the final performance. Moreover, 5-fold cross-validation was performed to enhance
the model reliability and avoid issues with ‘lucky’ data split. Four ML algorithms,
including RF, GBM, ANN, and linear regression with elastic net regularisation, were
used for modelling (Figure 6-1). The reason for choosing these algorithms was that
they are typical methods in such a regression task and are easily accessible from
popular software. The grid search was performed to identify the best combination of
hyperparameters using the h2o.grid function. For RF, GBM, and ANN, a random
grid search was performed with the parameter max_models setting to 2000. For
regularised linear regression, a cartesian grid search was performed due to much
fewer options of hyperparameters. For each algorithm, the model with the lowest
cross-validation root mean square error (RMSE) was selected as the best performing
model. These selected models were further evaluated for their performance on the
testing set, and the one with the lowest RMSE and the highest coefficient of
determination (R2) was selected as the overall best model.
To interpret and visualise the results, partial dependence plots which are available

in the h2o package were built to understand how the response variables changed
with the predictor variables. Understanding which variables are most influential and
how different levels of variables affect animal response to heat stress is important to
make an accurate prediction at the individual level. The state-of-the-art post-hoc
local interpretability technique, Local Interpretable Model-agnostic Explanations
(LIME), was performed using the lime package to gain further insight into individual
predictions. The top five influential predictor variables that best explained the linear
model were used for plotting LIME heatmaps.
2.5.1. Random forests
Random forests (RF) is a powerful tree-based algorithm that is commonly used in

both classification and regression tasks [361]. RF is a kind of ensemble algorithm,
adopting the method of bagging in which decision trees are trained with replacement
sampling and the mean prediction of all trees is the output. The hyperparameters
randomly searched included the number of trees (10 to 250, increased by 10), the
maximum tree depth (10 to 100, increased by 10), the number of variables to
consider at each split (3 to 13, increased by 1), and the minimum number of
observations for a leaf (1, 2, 10, 20, and 30).
2.5.2. Gradient boosting machines
Gradient Boosting Machines (GBM) is another tree-based ensemble method [362].

Unlike RF, GBM uses the method of boosting in which the weights of all training
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samples are adjusted according to the residual gradient so that the next base learner
pays more attention to the wrongly classified samples. The hyperparameters
randomly searched included the number of trees (10 to 250, increased by 50), the
maximum tree depth (10 to 100, increased by 10), the minimum number of
observations for a leaf (1, 2, 10, 20, and 30), and the learning rate (0.0001, 0.001,
0.01, 0.1, 0.2, 0.3, 0.4, and 0.5).
2.5.3. Artificial neural networks
Artificial neural networks (ANN) can fit arbitrary nonlinear functions through

reasonable network architecture configuration [363]. In the present study, the
feedforward ANN model with a multi-layer architecture was trained with stochastic
gradient descent using back-propagation. The hyperparameters randomly searched
included the activation function (ReLU or Tanh), the number of hidden layers (1, 2,
and 3) with the number of neurons (20, 50, 100, and 200) in each hidden layer, the
dropout rate (0 to 0.5, increased by 0.05), and the epochs (5 to 500, increased by 5).
2.5.4. Regularised linear regression
Multiple linear regression can suffer from multicollinearity and overfitting,

especially on small datasets. Hence, several regularisation methods have been
introduced to deal with these problems by shrinking the regression coefficients
toward zero. The regularisation method used in this study was elastic net which
combines L1 (LASSO) and L2 (RIDGE) regularisation [364]. The hyperparameters
were α (0 to 1, increased by 0.01) and λ (searched automatically by setting the
parameter lambda_search to ‘TRUE’) in which α controls the weights of L1 and L2
regularisation, and λ controls the strength of regularisation.

2.6. Recognition of heat stress state
The predicted values of RR and VT making use of the revised thresholds for high-

producing (> 35kg/day) dairy cows (RR of 60 breaths per min and VT of 38.5 ℃)
[50] were further tested for their ability to serve as classifiers for recognising the
cows’ heat stress state (Figure 6-1). The predicted ET was not considered here due
to the lack of commonly recognised threshold. These proposed classifiers were
compared with the most commonly used temperature-humidity index (THI)
classifiers: 68 [50], 70 [365], 72 [366]; adjusted temperature-humidity index
(THIadj) classifier: 74 [146]; and more recent equivalent temperature index for
cattle (ETIC) classifier: 23 [367]. The THI was calculated according to Eq. (1) as
recommended by National Research Council [222]:
��� = (1.8 × �� + 32) − (0.55 − 0.0055 × ��) × (1.8 × �� − 26) (1)
THIadj and ETIC were calculated according to Eq. (2) and Eq. (3), respectively:
������ = 0.8 × �� + ��

100
× �� − 14.4 + 46.4 + 4.51 − 1.992 × WS +

0.0068 × SR (2)
���� = �� − 0.0038 × �� × 100 − RH − 0.1173 × ��0.707 × 39.2 − Ta +
1.86 × 10−4 × �� × ��) (3)
where SR represents solar radiation and was set to zero as per the original authors’
instructions for use in indoor situations.
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The ground truth of individual heat stress states (heat-stressed or non-heat-stressed)
was determined by using measured values (RR and VT) and the corresponding
thresholds (60 breaths per min and 38.5 ℃), respectively. The classification
performance was evaluated using four metrics: recall, precision, F1-score, and
accuracy. Recall measures how many cows that are truly heat-stressed can be
correctly classified as being heat-stressed whereas precision measures how many
cows that are classified as being heat-stressed are truly heat-stressed. F1-score is a
comprehensive measure that strikes a balance between recall and precision, while
accuracy indicates the overall rate of correctly classified cows. The equations are as
follows:
������ = ��

��+��
× 100% (4)

��������� = ��
��+��

× 100% (5)

�1 − ����� = 2��
2��+��+��

× 100% (6)

�������� = ��+��
��+��+��+��

× 100% (7)
where TP denotes true positive (heat-stressed cows correctly classified as heat-
stressed cows), FP denotes false positive (non-heat-stressed cows incorrectly
classified as heat-stressed cows), TN denotes true negative (non-heat-stressed cows
correctly classified as non-heat-stressed cows), and FN denotes false negative (heat-
stressed cows incorrectly classified as non-heat-stressed cows).

3. Results and discussion
The daily patterns of meteorological variables during the entire experimental

period are shown in Figure 6-2. Ta and RH had opposite trajectories, while THI
began to increase in May and remained stably high from June to August.
Additionally, all three variables showed a shrinking diurnal change from May to
early August. These facts indicate an increased intensity and duration of daily
exposure to heat stress during the experimental phases. In addition to acute
responses, heat stress is well documented to induce chronic responses in dairy cows,
even during temperature drops in Autumn [227]. Our results indicate that this
experiment well covered the onset and development of heat stress. Thus, the induced
physiological responses in dairy cows including both acute and chronic responses
were expected to be well collected. This heterogeneous data would definitively
contribute to better training of ML algorithms in terms of the non-linear response of
dairy cows to heat stress.
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Figure 6- 2: Daily patterns of (a) ambient temperature (Ta), (b) relative humidity (RH),
and (c) temperature-humidity index (THI). Zones in green, purple, and yellow represent three
experimental phases, respectively. Ta_mean, Ta_max, and Ta_min are the mean, maximum,
and minimum of daily Ta, respectively; RH_mean, RH_max, and RH_min are the mean,

maximum, and minimum of daily RH, respectively; THI_mean, THI_max, and THI_min are
the mean, maximum, and minimum for daily THI, respectively.

3.1. Data cleaning and descriptive statistics
After removing outliers, a total of 2910, 1561, and 1866 observations were

obtained for the datasets modelling RR, VT, and ET, respectively. The variance
inflation factors among the 13 candidate predictor variables in RR, VT, and ET sets
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were all below 5. The correlation matrices (see Appendix 1. Supplementary
material Figure A6-1, Figure A6-2, and Figure A6-3) show that none of the
correlations between candidate predictor variables was higher than 0.75. These
findings support that multicollinearity was not present in the datasets, and therefore,
all candidate variables were used for modelling. The descriptive statistics of the
three datasets are summarised in Table 6-2.

Table 6- 2: Summary of the datasets for predicting respiration rate (RR), vaginal
temperature (VT), and eye temperature (ET). Continuous variables are summarised as mean

± standard deviation, categorical variables are summarised as n (%).

Predictor RR set (n = 2910) VT set (n = 1561) ET set (n = 1866)
DMY1D (kg/day) 39.3 ± 7.0 38.4 ± 6.8 39.1 ± 7.1
DMY2D (kg/day) 39.5 ± 7.1 38.3 ± 6.8 39.2 ± 7.2
DMY3D (kg/day) 39.5 ± 7.1 38.5 ± 7.0 39.2 ± 7.1
Birth season

Spring 1411 (48.5) 883 (56.6) 926 (49.6)
Summer 377 (13.0) 150 (9.6) 213 (11.4)
Autumn 287 (9.9) 130 (8.3) 183 (9.8)
Winter 835 (28.7) 398 (25.5) 544 (29.2)

Calving season
Spring 273 (9.4) 219 (14.0) 186 (10.0)
Autumn 514 (17.7) 122 (7.8) 293 (15.7)
Winter 2123 (73.0) 1220 (78.2) 1387 (74.3)

Days in milk 168.0 ± 20.1 167.4 ± 18.9 168.4 ± 19.7
Parity
1 629 (21.6) 349 (22.4) 389 (20.8)
2 960 (33.0) 527 (33.8) 619 (33.2)
3 814 (28.0) 468 (30.0) 525 (28.1)
4 402 (13.8) 193 (12.4) 271 (14.5)
5 105 (3.6) 24 (1.5) 62 (3.3)

Age in months 48.4 ± 12.7 46.7 ± 13.1 48.4 ± 13.1
Posture
Standing 1503 (51.6) 786 (50.4) 1103 (59.1)
Lying 1407 (48.4) 775 (49.6) 763 (40.9)

Ambient temperature (℃) 28.9 ± 4.0 28.5 ± 3.9 29.6 ± 3.4
Relative humidity (%) 61.4 ± 17.8 68.1 ± 10.1 61.0 ± 17.6
Wind speed (m/s) 1.3 ± 0.9 1.3 ± 0.9 1.3 ± 0.9

Time block
A.M. 1417 (48.7) 781 (50.0) 840 (45.0)
P.M. 1493 (51.3) 780 (50.0) 1026 (55.0)

DMY1D = daily milk yield of the day before the test day (kg/day); DMY2D = daily milk
yield of the 2nd day before the test day (kg/day); DMY3D = daily milk yield of the 3rd day
before the test day (kg/day).
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3.2. Model performance
The predictive performance of the four candidate algorithms on the testing sets is

shown in Table 6-3. ANN always performed the best on the testing set with the
lowest RMSE of 13.24 breaths per min, 0.30 ℃, and 0.29 ℃, and the highest R2 of
0.56, 0.45, and 0.45 when predicting RR, VT, and ET, respectively. Besides, ANN
had similar results between the training and testing sets, indicating no overfitting
occurred. Although GBM had roughly good results on the testing sets, an obvious
decrease was always observed between the training set and cross-validation, as well
as between the training and testing sets, suggesting the occurrence of overfitting.
GBM reportedly has a higher potential for overfitting compared with RF, especially
on small datasets [368]. Collectively, our results suggest that ANN is more
appropriate to predict physiological responses of dairy cows managed with
sprinklers. The linear regressions between measured and predicted values are shown
in Figure 6-3. In all cases, the regression line between measured and predicted
values was close to the regressed diagonal line, indicating a good correlation
between predictions and actuals. The data points from different experimental phases
show no obvious differential distribution around the diagonal. This is confirmed by
the partial results for the three different experimental phases (Table 6-4), which
show similar performance relative to the overall results (Table 6-3).

Table 6- 3: Performance of four candidate algorithms in predicting respiration rate (RR,
breaths per min), vaginal temperature (VT, °C), and eye temperature (ET, °C) on the training

sets, 5-fold cross-validation, and testing sets.

Response Algorithm Training Cross-validation (SD) Testing
RMSE R2 RMSE R2 RMSE R2

RR

RF 14.59 0.43 14.54 (0.58) 0.44 (0.03) 14.36 0.45
GBM 11.99 0.62 14.40 (0.49) 0.45 (0.02) 13.34 0.55
ANN 12.86 0.57 13.26 (0.49) 0.55 (0.02) 13.24 0.56
RLR 15.79 0.35 15.89 (0.57) 0.34 (0.04) 15.42 0.40

VT

RF 0.35 0.26 0.35 (0.03) 0.26 (0.03) 0.31 0.43
GBM 0.26 0.59 0.35 (0.02) 0.25 (0.06) 0.31 0.44
ANN 0.31 0.43 0.35 (0.01) 0.42 (0.05) 0.30 0.45
RLR 0.36 0.21 0.36 (0.01) 0.19 (0.05) 0.36 0.22

ET

RF 0.28 0.46 0.33 (0.02) 0.44 (0.02) 0.34 0.42
GBM 0.25 0.68 0.33 (0.02) 0.43 (0.03) 0.31 0.44
ANN 0.29 0.58 0.33 (0.01) 0.44 (0.03) 0.29 0.45
RLR 0.35 0.38 0.35 (0.02) 0.36 (0.01) 0.31 0.33

RF = random forests; GBM = gradient boosting machines; ANN = artificial neural
networks; RLR = regularised linear regression; SD = standard deviation; RMSE = root mean
square error; R2 = coefficient of determination.
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Figure 6- 3:Measured and predicted (a) respiration rate (RR), (b) vaginal temperature
(VT), and (c) eye temperature (ET) from the overall best models (artificial neural networks)
on the testing sets. The data points in green, purple, and yellow belong to three experimental
phases, respectively. The red lines represent the linear regression. The dotted lines represent
the diagonal line with a slope of 1. RMSE = root mean square error; R2 = coefficient of

determination.

Table 6- 4: Performance of the overall best models (artificial neural networks) in
predicting respiration rate (RR, breaths per min), vaginal temperature (VT, °C), and eye
temperature (ET, °C) on the testing sets summarised by three experimental phases.

Response Phase 1 Phase 2 Phase 3
n RMSE R2 n RMSE R2 n RMSE R2

RR 214 12.09 0.58 113 12.82 0.53 99 13.75 0.52
VT 54 0.32 0.53 85 0.33 0.47 96 0.32 0.49
ET 125 0.27 0.51 82 0.30 0.42 81 0.28 0.44

RMSE = root mean square error; R2 = coefficient of determination.

The predictive performance of the four candidate algorithms on the cow-level
testing sets is shown in Table 6-5. Similarly, ANN consistently outperformed other
algorithms but were systematically worse compared with random splitting. The R2

values decreased by 19.6%, 57.8%, and 17.8%, for RR, VT, and ET, respectively.
The over-optimistic predictive performance of random splitting over subject-wise
splitting has been reported in studies using ML for predicting human disease
outcomes [369] and cattle milk traits [186]. Interestingly, all relevant studies found
to use ML in predicting physiological responses in livestock have previously
adopted random splitting [145,177-180,248,345,347]. This means that existing ML
models are not ready for generalisation but only for the population included in each
specific study. One important reason is that relevant animal studies are rather limited
in animal numbers. Our number of cows (n = 59) is in line with previous studies but
definitely does not support good representative training samples by using subject-
level splitting, therefore affecting the generalisation on testing samples.
Consequently, the models trained with random splitting were continuously used for
the following analyses despite their predictably poor generalisation.
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Table 6- 5: Performance of four candidate algorithms in predicting respiration rate (RR,
breaths per min), vaginal temperature (VT, °C), and eye temperature (ET, °C) on the cow-

level training sets, 5-fold cross-validation, and testing sets.

Response Algorithm Training Cross-validation (SD) Testing
RMSE R2 RMSE R2 RMSE R2

RR

RF 14.44 0.46 14.13 (0.24) 0.48 (0.02) 16.11 0.29
GBM 13.17 0.55 14.25 (0.33) 0.48 (0.03) 15.47 0.35
ANN 14.78 0.45 14.91 (0.56) 0.44 (0.04) 14.16 0.45
RLR 15.62 0.37 15.73 (0.19) 0.36 (0.02) 16.47 0.26

VT

RF 0.35 0.29 0.34 (0.01) 0.33 (0.07) 0.32 0.10
GBM 0.32 0.41 0.35 (0.01) 0.28 (0.08) 0.32 0.15
ANN 0.32 0.40 0.35 (0.01) 0.26 (0.07) 0.31 0.19
RLR 0.37 0.22 0.37 (0.01) 0.20 (0.05) 0.33 0.04

ET

RF 0.33 0.42 0.33 (0.01) 0.44 (0.04) 0.34 0.31
GBM 0.20 0.78 0.32 (0.01) 0.45 (0.02) 0.32 0.37
ANN 0.32 0.48 0.38 (0.01) 0.26 (0.06) 0.32 0.37
RLR 0.35 0.37 0.35 (0.01) 0.36 (0.04) 0.33 0.33

RF = random forests; GBM = gradient boosting machines; ANN = artificial neural
networks; RLR = regularised linear regression; SD = standard deviation; RMSE = root mean
square error; R2 = coefficient of determination.

The advantage of ANN in predicting physiological responses of dairy cows has
been reported in previous studies. Under a free-stall barn without evaporative
cooling, Pacheco et al. [179] developed ANN models for predicting RR and rectal
temperature of 35 Holstein dairy cows. The best model that they selected had an
RMSE of 10.01 breaths per min and an R2 of 0.74 for predicting RR, and an RMSE
of 0.40 ℃ and an R2 of 0.71 for predicting rectal temperature. Another recent study
compared different ML algorithms in predicting physiological responses using
historical data collected from 20 Holstein dairy cows restrained in outdoor headlocks
and deprived of sprinklers [178]. RF models produced the lowest RMSE for
predicting RR (9.70 breaths per min) and BST (0.33 °C), while an ANN model
produced the lowest RMSE for predicting VT (0.43 °C). However, efforts have not
been done yet to predict physiological responses of dairy cows managed with
sprinklers. The RMSE of the overall best models proposed in this study was close to
those of the abovementioned studies, particularly VT, which had the lowest RMSE
among relevant studies. Our results extend the advantage of non-linear models over
linear regression models to situations equipped with sprinklers. More importantly,
the gains in performance from non-linear models over linear models are greater than
the previous studies. This fact highlights the non-linear effect induced by sprinkler
systems and the ability of advanced ML algorithms to fit it.

3.3. Model interpretation
In this study, 13 predictors from both animal and environmental perspectives were

used for modelling. This provided a basis for further mining the effects of



Chapter 6: Predicting physiological responses of dairy cows using machine learning

169

comprehensive predictors on physiological responses by applying state-of-the-art
post-hoc interpretability methods. The global interpretation of the overall best
models shown in Figure 6-4 helps to understand the relationships between response
and predictor variables by visualising the change in predicted values as the specified
predictor changes assuming the remaining predictors fixed at their mean value.
The mean response in predicted RR, VT, and ET along with changing DMY of the

three days before the test day is shown in Figure 6-4(a-c). The positive association
between production level and RR prediction reported by Janni [370] and Li et al.
[173] is not clear in our results, probably because the test cows had similar high
production levels when entering the study and thus the difference in heat sensitivity
between production levels was not discernible. In fact, it is rather difficult to
interpret these variables separately because they contained dynamic information as a
pattern of response. Acclimatisation manifests in different physiology and
production dynamics depending on the intensity and duration of heat stress exposure.
Cows typically lose milk production when they enter the acute phase of heat stress,
but their productivity can be restored to some extent during chronic stress [55]. Thus,
the input of these production variables should contribute to a better prediction
because they function like sensors, recording the results of cows’ acclimatisation to
heat stress and its mitigation.
Cows born in summer had much lower RR and VT compared with those born in

other seasons (Figure 6-4(d)). This result is consistent with previous knowledge that
in-utero heat stress would affect thermoregulation during the entire life of newborn
cattle [371]. Lower RR and VT, in this case, could represent a better ability to
maintain thermal homeostasis, which benefits from foetal heat acclimatisation [372].
Autumn calving cows had the lowest mean predicted RR and VT compared with
cows calving in winter and spring (Figure 6-4(e)). The lower RR and VT of autumn
calving cows are probably because they were more advance in their lactation thus
having less heat load due to lower milk production during heat waves [373]. This is
confirmed by a decreased VT since approximately 170 DIM (Figure 6-4(f)).
Similarly, a decreased VT was reported during late lactation (> 150 DIM) in a recent
study using 826 Holstein cows [225]. It is hard to say why RR stayed at a high level
during late lactation (Figure 6-4(f)), possibly due to its more primary function in
thermoregulation or simply because the effect of DIM was masked by that of calving
season. Indeed, an increase in RR is used by cows to reduce heat load and hence
prevent an increase in CBT [131].
Parity was found to have a positive relationship with predicted RR and VT

(Figure 6-4(g)), and possibly masked the effects of AIM (Figure 6-4(h)). Older
cows are known to be more susceptible to heat stress [208]. A trend of RR
increasing with parity was also found in the study of Yan et al. [225]. In addition,
Choukeir et al. [374] reported that multiparous cows had a higher VT than
primiparous cows. Lying cows had higher RR, VT, and ET than standing cows
(Figure 6-4(i)). Similarly, lying was related to increased RR and CBT in the study
of Atkins et al. [135]. Increasing standing time is well known as a behavioural
change strategy taken by heat-stressed cows to dissipate excessive heat [375]. The
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Figure 6- 4: Partial dependence plots of the overall best models (artificial neural networks)
on the testing sets showing the effect of production (a-c), cow-related (d-i), and

environmental factors (j-m) on respiration rate (RR), vaginal temperature (VT), and eye
temperature (ET). The 95% confidence intervals for continuous and categorical variables are
shown with dotted lines and error bars, respectively. DMY1D = daily milk yield of the day
before the test day (kg/day); DMY2D = daily milk yield of the 2nd day before the test day

(kg/day); DMY3D = daily milk yield of the 3rd day before the test day (kg/day).
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THI threshold for RR was found to be 65 in lying cows and 70 in standing cows,
suggesting that lying cows are more susceptible to heat stress [212]. The inapparent
association of ET with the abovementioned cow-related factors is most likely due to
its direct exposure to external environments and thus being less connected with
internal animal factors.
The predicted physiological responses had a clear positive relationship with Ta

(Figure 6-4(j)). The predicted RR and VT increased with a gradually decreasing
slope until around 30 °C, after which they increased at a much steeper slope. These
results demonstrate the effectiveness of sprinklers in alleviating heat stress in dairy
cows by delaying the upper critical temperature of 25 °C [1] to about 30 °C. In
addition, ET increased almost linearly with Ta, suggesting that BST is a better
representation of microenvironments and a dominant front-line heat dissipator. In
the case of RH, ET and VT increased sequentially at around 45% and 70% RH,
respectively, whereas RR increased almost linearly with RH within the measured
range (Figure 6-4(k)). These findings are not surprising since high RH would
significantly inhibit latent heat dissipation and result in a high physiological level [4].
In the case of WS, RR and ET had an overall decreasing trend with WS, whereas VT
stayed relatively stable (Figure 6-4(l)). These results are consistent with previous
knowledge that RR and ET respond much more promptly to microenvironmental
changes than VT [215]. As expected, observations measured in P.M. had higher RR,
VT, and ET than those measured in A.M. (Figure 6-4(m)), which is consistent with
previous studies on the circadian rhythm of physiological indicators related to heat
stress [86]. Again, the above results re-emphasise the non-linear relationship
between environmental parameters and physiological responses of dairy cows
managed with sprinklers and the ability of ML algorithms to fit it.
The R2 (mean ± standard deviation) obtained for the local interpretation of the

overall best models were 0.81 ± 0.14, 0.78 ± 0.15, and 0.82 ± 0.09 for RR, VT, and
ET, respectively, indicating good quality of the interpretations of LIME. As shown
in Figure 6-5, Figure 6-6, and Figure 6-7, time block and calving season were
common features that strongly influenced RR and VT predictions, whereas posture,
Ta, and WS had consistently strong influences on ET predictions. The cases with the
highest predicted RR and VT were marked by P.M. measurements plus certain
levels of cow-related factors (e.g., births in autumn and spring calving for RR,
winter calving for VT, and multiparity for both) (Figure 6-8), whereas the cases
with the lowest predicted RR and VT were marked by A.M. measurements plus
other levels of cow-related factors (e.g., autumn calving, births in summer, and
standing posture for RR) (Figure 6-9). In the case of ET, Ta was the factor that
consistently had a strong positive influence on the predictions, whereas WS and
standing posture always had the greatest negative influence (Figure 6-8 and Figure
6-9). These results are consistent with those from the partial dependence plots,
suggesting that cow-related factors had a greater impact on RR and VT than on ET,
which was more determined by microenvironmental factors. Identifying common
contributing features among the most extreme cases can provide useful information
for targeted cooling. Collectively, our results suggest herd homogeneity in response
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to heat stress as well as a potential for customised heat abatement in different
subgroups of cows.

Figure 6- 5: Local interpretation heatmap of the overall best respiration rate model (an
artificial neural network) showing the influence of different predictor variables on the

prediction of 426 observations of the testing set. The top five influential predictor variables
that best explained each observation were used for plotting. DMY1D = daily milk yield of
the day before the test day (kg/day); DMY2D = daily milk yield of the 2nd day before the
test day (kg/day); DMY3D = daily milk yield of the 3rd day before the test day (kg/day).

3.4. Recognition of heat stress state
The classification performance of the proposed classifiers (i.e., predicted RR and

VT), THI classifiers, THIadj classifier, and ETIC classifier in recognising heat stress
state is listed in Table 6-6. As expected, the F1-score and accuracy of the predicted
values were the highest, indicating a good ability in recognising the actual heat
stress state. In general, the predicted RR and VT had lower recall than the
environmental classifiers, implying a worse ability for detecting heat-stressed
animals. However, the better recall of THI and ETIC thresholds was compromised
by the lower precision and accuracy, with a huge number of non-heat-stressed cows
being misclassified as heat-stressed cows. In fact, THI (68) and ETIC (23) almost
classified all the cows as being heat-stressed. Accordingly, environmental classifiers
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performed poorly on the RR set where 49.1% of the cases were truly heat stressed,
but performed very well on the VT set where most cases were truly heat stressed
(69.4%). It can be reasonably speculated that the proposed classifiers would perform
much better than environmental classifiers when processing on a more balanced
dataset. Similarly, the high recall of THI thresholds was balanced by the low
precision in the study of Li et al. [173]. These facts demonstrate the deficiency of
environmental thresholds in dealing with individual variation since different animals
behave differently under identical thermal environment. Our findings highlight that
heat abatement strategies controlled by environmental thresholds can be abused by
wasting unnecessary efforts on non-heat-stressed animals. A better way is to make
heat abatement decisions according to the predicted heat stress state of animals.

Figure 6- 6: Local interpretation heatmap of the overall best vaginal temperature model
(an artificial neural network) showing the influence of different predictor variables on the
prediction of 235 observations of the testing set. The top five influential predictor variables
that best explained each observation were used for plotting. DMY1D = daily milk yield of
the day before the test day (kg/day); DMY2D = daily milk yield of the 2nd day before the
test day (kg/day); DMY3D = daily milk yield of the 3rd day before the test day (kg/day).
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Figure 6- 7: Local interpretation heatmap of the overall best eye temperature model (an
artificial neural network) showing the influence of different predictor variables on the

prediction of 288 observations of the testing set. The top five influential predictor variables
that best explained each observation were used for plotting. DMY1D = daily milk yield of
the day before the test day (kg/day); DMY2D = daily milk yield of the 2nd day before the
test day (kg/day); DMY3D = daily milk yield of the 3rd day before the test day (kg/day).

3.5. Limitations and perspectives
One of the biggest limitations of the present study is that data were collected over

one single summer. Besides, only mid-lactating cows were included. These
limitations resulted in inadequate heterogeneity of DMY and some cow-related
factors (i.e., DIM, calving season). Although most interpretations are rational and
consistent with previous knowledge, it should be noted that the interpretations could
be arbitrary at certain ranges when there was insufficient training data to make a
meaningful prediction. Increasing sample size and balancing data distribution, in this
respect, is of great importance to improve the interpretations. The dilemma between
prediction and interpretation should also be noticed. Although multicollinearity was
not detected mathematically, some predictors correlated logistically, e.g., DIM and
calving season, AIM and parity. Certain predictors would have to be removed to get
more reliable interpretations. However, accuracy would be sacrificed to some extent
as a result of information loss.
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Figure 6- 8: Local interpretation heatmaps of the overall best models (artificial neural
networks) plotting the top five influential predictor variables of five observations with the

highest prediction selected from the testing set of (a) respiration rate, (b) vaginal temperature,
and (c) eye temperature. DMY1D = daily milk yield of the day before the test day (kg/day);
DMY2D = daily milk yield of the 2nd day before the test day (kg/day); DMY3D = daily

milk yield of the 3rd day before the test day (kg/day).
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Figure 6- 9: Local interpretation heatmaps of the overall best models (artificial neural
networks) plotting the top five influential predictor variables of five observations with the

lowest prediction selected from the testing set of (a) respiration rate, (b) vaginal temperature,
and (c) eye temperature. DMY1D = daily milk yield of the day before the test day (kg/day);

DMY2D = daily milk yield of the 2nd day before the test day (kg/day).
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Table 6- 6: Performance of the proposed classifiers, temperature-humidity index (THI)
classifiers, adjusted temperature-humidity index (THIadj) classifier, and equivalent

temperature index for cattle (ETIC) classifier in recognising heat stress state on the testing
sets based on measured respiration rate (RR) and vaginal temperature (VT), respectively.

Response Classifier (threshold) Recall
(%)

Precision
(%)

F1-score
(%)

Accuracy
(%)

RR (n =
426)

Predicted RR (60
breaths per min) 85.6 73.4 79 77.7

THI (68) 99.5 50.7 67.2 52.3
THI (70) 98.6 53 68.9 56.3
THI (72) 97.1 55.9 71 61

THIadj (74) 93.8 58.9 72.3 64.8
ETIC (23) 100 49.1 65.8 49.1

VT (n =
235)

Predicted VT (38.5 ℃) 89.6 78.1 83.4 75.3
THI (68) 97.5 69.4 81.1 68.5
THI (70) 91.4 69.3 78.8 66
THI (72) 85.9 69.7 76.9 64.3

THIadj (74) 82.2 70.5 75.9 63.8
ETIC (23) 100 69.4 81.9 69.4

The moderate R2 might indicate that there is still room for improvement in the fit
of the current dataset. This could be done by introducing more variables that
contribute to explaining the variance of cow physiological responses [347]. In this
respect, sprinkler-related parameters (e.g., flow rate) and other variables that could
reflect the interaction between cows and sprinklers (e.g., how much and how long
cows receive watering) should be considered in further studies. These variables may
be collected by future sprinklers equipped with cow sensing systems. Another
possible way to increase the fit is to increase the data size since ANN would perform
better when training with sufficiently large data [155]. Collectively, further studies
with data collected over different seasons and years, as well as more useful variables
with more reasonable combinations, are required to confirm the results of this study
and further improve the model fit and interpretation.
Additionally, although the use of simple random splitting has provided acceptable

predictive performance, it has inevitably decreased the probability to generalise the
trained models to new unseen cows. Thus, additional work is required to enhance the
generalisation and robustness. This includes collecting data from more cows across a
variety of application scenarios and then modelling based on cow-level splitting.

4. Conclusions
The proposed models provide acceptable prediction errors and are reliable in a

real-world farm equipped with sprinklers. Our work highlights the benefits of
inputting more contributing variables in predicting the physiological responses of
dairy cows under heat stress. The attempt at global and local interpretation using the
state-of-the-art method was basically in line with previous knowledge in this field,
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and therefore, will help future studies to deeply explain the non-linear relationships
between physiological responses and their influencing factors as well as to identify
the most vulnerable animals taking into account individual variations in response to
heat stress. Furthermore, recognising the heat stress state of animals based on the
predicted physiological responses can inform better heat abatement decisions by
saving efforts from non-heat-stressed to heat-stressed. Further studies on larger cow-
level datasets with more influencing factors are warranted to improve model fit and
generalisation.
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1. General discussion
The interaction between cows and their thermal environments has been studied for

decades. Environment-based indicators and their critical thresholds have long been
used to inform cooling decisions in practice. However, environmental indicators
cannot reflect true animal responses or show whether a cooling measure has
effectively cooled the animals. The better solution is to use the data collected from
the animal aspect which directly indicates their true response to heat stress and its
alleviation.
The research plan contemplated improving heat stress detection in dairy cows

through the development of measurement, prediction, and assessment methods using
animal-based indicators and artificial intelligence techniques. The first chapter,
which is a literature review, determined body surface temperatures (BST),
respiration rate (RR), and relevant behaviours as the most appropriate animal-based
indicators due to their high feasibility of measurement and high sensitivity to heat
stressors.
Next, non-contact measurements were developed for the selected animal-based

indicators (i.e., BST, RR, and relevant behaviours) in the third, fourth, and fifth
chapters, respectively. All the developed methods involved data collection through
the use of cameras and data processing using computer vision techniques. The BST
on cattle faces were collected using an infrared camera and then processed using
semantic segmentation. The RR measurement utilised videos that were collected by
an RGB camera, and processed with techniques including instance segmentation,
optical flow, and signal processing. The behaviour recognition relied on video
collected by a network video recording system, coupled with object detection.
Following that, machine learning-based predictive models were trained in the

sixth chapter. The outcome variables included BST and RR, as well as the gold
standard indicator frequently used by previous studies, i.e., vaginal temperature. The
predictors were determined from both animal- and environment- sides. The results
were interpreted using state-of-the-art post-hoc interpretability methods.

1.1. The effect of data-splitting strategies on model
performance
Machine learning, and especially deep learning tasks, always involve three stages,

namely training, validation, and testing. The training stage is the one where the
algorithm learns which patterns in the features correlate with the labels, and the data
used in this stage is called the training set. The validation stage is the one where the
patterns learned during the training stage are tuned to maximise a preset metric (e.g.,
mean average precision) on a different set of data, which is called the validation set.
Finally, the testing stage is where the final performance of the model learned is
collected on some new data which is called the testing set. Since models are already
tuned towards the validation set, the testing set is important to avoid selection bias
and to report an unbiased performance.
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When splitting the data into these three sets, random allocation is often the easiest
and most commonly used way to avoid bias. However, lots of evidence has shown
that simple blind randomisation may lead to an overestimation of the model’s
performance [186,187,376,377]. This is a kind of data leakage which is defined as
information from outside the training set being used to create the model [376].
Therefore, it is always emphasised that the data in different sets should be
independent of each other. For example, multiple images from the same subjects
should always be in the same set. This awareness is especially emphasised in certain
interdisciplinary fields like disease diagnosis [369], medical imaging segmentation
[378] and prediction using milk infrared spectral data [185], but very little is
mentioned and paid attention to in other popular precision livestock farming (PLF)
tasks, such as deep learning-based animal recognition and machine learning-based
phenotype prediction [277]. In computer vision tasks, this oversight may be due to
the tendency to treat farm animals of the same breed as identical entities, thereby
neglecting their independence. However, this may lead to data leakage and
overfitting for animals with distinct morphometric and biometric features, such as
body condition and colour pattern. In machine learning-based regression modelling,
this oversight may be a strategy taken as a last resort to ensure predictive
performance due to the limited number of animals and observations.
To explore to what extent this issue can bias the performance and generalisation of

the trained deep learning models, simple random splitting has been compared with
cow-level splitting and pen-level splitting in Chapters 3 and 4, respectively. In
addition, to explore to what extent the same issue can bias the predictive
performance of the trained machine learning-based regression models, simple
random splitting has been compared with cow-level splitting in Chapter 6.
In Chapter 3, better performance in segmenting horns in cattle infrared images

was obtained on the testing set by random splitting than cow-level splitting (by
10.27%), but actually they had the same performance on the external testing set.
This demonstrates the occurrence of overestimation by using random splitting.
However, this effect was not seen in the other facial landmarks. It is most likely due
to the different levels of difficulty in segmenting these landmarks since horns can be
in different shapes in different cows but the other facial landmarks like ears and eyes
are relatively similar among cows. Moreover, the much smaller sample size of horns
increased the difficulty of learning their features [188].
Theoretically, a better cow-based splitting strategy to avoid overfitting and data

leakage should lead to a better generalisation in new cows but is unseen in
Chapter 3. This can happen when the training data is not representative enough for
the target application. For example, it is impractical to expect a cow detection model
trained exclusively on images of Holstein cows to effectively extrapolate what it has
learned to a completely different context, such as Jersey cows. The dataset in
Chapter 3 is too small and can only represent the dairy herds in the study farm.
However, there were no images of new cows in the original dataset that could be
used to make a fair comparison of the two splitting strategies. Instead, an external
testing set which contained data collected from another farm in another year was
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used. The performance was reduced significantly for segmenting horns and ears due
to different contexts (i.e., different numbers of ear tags and diverse horn shapes).
Although eyes and nose areas remain the same accuracy in the external testing, this
can be easily inverted when future tested in another new context, e.g., where eye
diseases are present or nose rings are worn. Thus, the data for testing generalisability
should be chosen in line with the research purposes as different data used during this
process can lead to different challenging levels for the model and finally lead to
different conclusions [185,379]. Meanwhile, training data should be well collected
with enough cow numbers to be a good representative of the study population. In
other words, it is critical to collect data with the target application in mind.
In Chapter 4, random image-level splitting was found to slightly inflate the

model’s performance, with a maximum increase of 3% in mean average precision.
The trained models should have learned no prior knowledge of the specific cows
even if the images casually containing the same cows showed up across training,
validation, and testing sets. This is because the same cows had completely different
postures and locations in the images to the point where their multiple occurrences
can be regarded as independent of each other. The slightly higher performance is
most likely due to prior knowledge about pen facilities since the models trained with
image-level splitting have already seen images from all four pens during training.
Therefore, pen-level splitting more accurately represents realistic and unbiased
performance when generalising to new pens although with slightly reduced
performance. It is speculated that the models trained with random splitting should
have slightly reduced performance but are similar to those with pen-level splitting
when applying to a new pen’s data due to the challenges of the new environments
(e.g., different flooring and bedding materials). However, such external validation
like what was done in Chapter 3 is missing to make a final evaluation of its
generalisability.
In Chapter 5, images were split randomly since only one pen was used which

made it impossible to separate images by pens or cows. However, this should not
pose a problem since the results of Chapter 4 have already demonstrated that
images casually containing the same cows can be considered independent of each
other, provided they are sampled at a sufficiently large time interval. This
independence arises due to the heterogeneity in the compositions of cow identities
and behaviours. In addition, the objective was to apply the trained model to the same
pen as a demonstration of herd-level heat stress detection. When further applied to
other pens, the trained models will undoubtedly experience a performance decline,
varying in degree based on their dissimilarity from the study pen. Transfer learning,
in this case, could be used to accelerate the retraining process.
In Chapter 6, random splitting was used to split the datasets for machine learning-

based predictive modelling. This has yielded acceptable predictive performance but
has inevitably reduced the generalisability for new unseen cows. Cow-level splitting
was also executed as a control but had substantially worse performance. This is
understandable since such a small number of cows (n = 59) does not allow a
successful cow-level splitting as the training set was not even able to include all
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combinations of the different levels of predictors. Unlike image recognition tasks in
Chapters 3, 4, and 5, which had small numbers of classes and high numbers of
instances in single images, and could take advantage of appropriate data
augmentation [188], machine learning regression modelling requires a relatively
larger sample size depending on the number of predictors. In fact, it is impossible to
expect machine learning regression models trained with data of about 40 cows only
to make reliable predictions for a few new cows. This can explain the fact that all
relevant studies have adopted random splitting instead of cow-level splitting
[145,155,177-180,248,345,347]. Anyway, cow-level splitting should still provide
strong predictive performance and generalisation and should be adopted when there
are enough cow numbers and observations. However, this requires the assistance of
advanced measurement methods to collect animal data more massively.

1.2. Choice of individual and herd-level heat stress detection
In this thesis, animal-based heat stress detection has been developed, focusing

specifically on the non-contact measurements for individual BST and RR, as well as
behaviours at the herd level. Such technologies support cow-centred management by
providing helpful information about animal responses to heat stress and its
mitigations. One question that can be raised is how to choose between individual
and herd-level monitoring.
Precision livestock farming (PLF) ultimately aims to achieve the monitoring of

animal key issues at the individual level to fulfil precise management. This goal is in
line with the significant individual variabilities despite regular grouping and genetic
selection to increase herd uniformity. Therefore, the primary advantage of individual
monitoring systems lies in their precision and sensitivity. By closely monitoring
variables such as BST and RR, we can gain insights into the health status of each
animal or sentinel animals, allowing for early detection of diseases, stress, and other
issues. Furthermore, individual data can contribute to a deeper understanding of
animal physiology and behaviour under various environmental conditions, aiding in
genetic selection and breeding programs aimed at enhancing resilience and
productivity. However, individual monitoring systems are not without their
drawbacks. The most significant challenge is the logistical and financial burden of
implementing and maintaining these systems across large numbers of animals. The
complexity of data collection and analysis can also be overwhelming, requiring
sophisticated software and skilled personnel. It should be also noted that individual
information may still have to be summarised at a herd level to inform decision-
making, as environmental regulations like cooling and ventilation in free-stall barns
are always operated at the group or herd level.
Herd-level monitoring, on the other hand, offers direct control over the initiation

and cessation of environmental regulations based on herd behaviour and welfare.
This method is particularly useful in detecting environmental stressors that affect the
group as a whole, such as heat stress. Specifically, the proposed method can be used
to understand the normal circadian rhythm of each herd and to identify deviations
from this norm under different levels of heat stress. Herd monitoring is also more
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cost-effective on resource-limited farms compared with individual monitoring. The
downside of herd monitoring is its lack of sensitivity. While it excels in identifying
general trends and issues affecting the group, it may miss subtler signs of distress or
illness in individual animals. This could lead to delayed interventions for some high-
risk individuals. Moreover, the interpretation of behavioural data can be subjective
and requires careful analysis to avoid misinterpretations.
Looking forward, the integration of individual and herd-level monitoring systems

appears to be a promising approach. Combining the BST and RR data from
individual monitoring with the broader insights from the herd-level behavioural
analysis could provide a more comprehensive assessment of heat stress. This
approach not only captures the overall welfare but also ensures attention to high-risk
individuals.

1.3. A promising integration of the proposed measurement
methods
A detailed discussion from a systematic perspective is provided below, in which a

promising system is imagined with all the proposed measurement, prediction, and
assessment methods integrated to automatically detect heat stress in dairy cows.
Vision-based measurements have been developed for the determined early

indicators (i.e., BST, RR, and relevant behaviours). Note that the scale and method
of measurement vary, ranging from individual level measurements for BST and RR
to herd level measurements for behaviours, and from handheld infrared cameras for
BST to fixed RGB cameras for RR and behaviours. This depends on the technical
parameters of the applied cameras. BST relied on an infrared camera with a
resolution of 640 × 480 pixels. Thus, a close distance had to be made for an accurate
temperature reading. In contrast, RGB cameras were used to record cows for
measuring RR and behaviours. Their much higher resolution and wider field of view
made it possible to cover more cows in the image. The different measurement scale
of these indicators can decide their further application scenarios in commercial
farms.
The proposed automated facial BST collection was originally designed to process

infrared images already collected for research purposes. It can very much accelerate
temperature collection. For an automated measurement of BST, infrared cameras
must be fixed somewhere that cows go through on a daily basis and can be captured
one by one. One potential location is on the way to the milking parlour or milking
robot where cows can be captured good infrared images in order. An example
application can be found in a recent study by Wang et al. [126]. This may be the
only way to separate cows on their way to milking, as it is too challenging to capture
respiration-related signals while cows are walking.
In addition, the proposed measurement methods can be divided into different deep

learning tasks. Behavioural recognition relied on object detection, BST on semantic
segmentation, and RR on a combination of instance segmentation, object detection,
and object tracking. It would be of very interest to integrate some of these tasks
together to fulfil a multi-task model. For example, a basic object detection model in
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conjunction with an optical flow method is promising to detect RR and behaviour at
the same time by using RGB frames as the only input.
Collectively, a systematic application can be imagined as shown in Figure 7-1,

where RGB cameras are fixed and used to measure RR and behaviours of animals in
pens. These measurements can inform the start of local or global cooling measures.
At the same time, infrared cameras can be fixed on the way to be milked so that heat
stress can be confirmed instantly and stressed cows can be redirected to a holding
room for extra cooling (Figure 7-1). This strategy ensures that cows with different
heat stress states can be milked separately, avoiding mixing milk from stressed cows.
One thing that needs to pay attention to is that pushing cows to be milked is a
stressful experience and may potentially lead to a higher physiological state [230].
Thus, further studies should investigate the effect of heat stress and moving cows on
their physiology and behaviour. In contrast, dairy farms equipped with milking
robots might not have this problem due to the achievement of free cow traffic, which
has been reported to reduce the stress caused by milking [380].

Figure 7- 1: A systematic application of the proposed measurement methods, predictive
models, and assessment. (a) Vision-based cow behaviour and respiration rate measurement
informing the initiation and cessation of cooling measures; (b) infrared thermography-based
facial temperature measurement at the selection gate before milking, allocating heat-stressed

cows to (c) an intensive cooling session, and non-heat-stressed cows to (d) the milking
parlour.
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Moreover, precision tools are required to continue working at night in order to
inform night cooling decisions. Nighttime is an important chance for cows to relieve
their body heat and night cooling has shown its effectiveness in assisting this process
[381]. Meanwhile, night data are also necessary for studying thermodynamic diurnal
rhythm and evaluating cooling effects. However, this cannot be fulfiled in this thesis
due to the lack of night data collection. It can be speculated that infrared images and
further BST can still be collected during the night even without illumination due to
the technical advantage of infrared thermography. As for RR and behaviours which
rely on RGB cameras, infrared supplement light or illumination during the night, or
both, is necessary to have a clear vision of cows. If new data collected at night are
ready, transfer learning can be utilised to accelerate the training process. Anyway,
future studies should investigate the robustness of the proposed methods at night.
1.3.1. Role of predictive models in this integrative system
The proposed predictive models provide an alternative way to obtain animal-based

data. This alternative is totally non-contact and does not require any human work.
The results demonstrate comparable root mean square error (RMSE) and coefficient
of determination (R2) compared with relevant studies. However, R2 is still not good
enough, suggesting that although the predictors in the current models were
correlated with the outcome variables, they were unable to explain more variability
in the outcome variables. Therefore, the model prediction should be further
improved.
One possible solution is to increase the training sample size, which can be

expected from the proposed measurement methods. By obtaining a larger dataset,
the performance of the model can be significantly improved, as it can better capture
the underlying patterns and relationships in the data. Another solution can be to
include other variables that may provide more informative explanations for the
variability. These variables potentially include the duration and amplitude that cows
have received sprinkling. It can be expected that these variables can be collected by
using a vision-based cow-sensing system. This can be integrated into the
abovementioned multi-task model so that more data with more variables will be
available to update and improve predictive models. More importantly, including
sprinkler-related variables in the model can also make it possible to assess and
compare the effectiveness of different sprinkling strategies.
Moreover, the interpretations of the models are relevant with regard to previous

knowledge from the field, which demonstrates the feasibility of using machine
learning-based predictive models to explore the underlying relationship of heat
stress-related variables. Collectively, the proposed models are therefore better used
for identifying the most vulnerable animals rather than for precisely obtaining
animal-based data. Recognising risk factors that contribute most to heat stress can
inform a precise grouping, allowing farmers to tailor their management to address
individual needs and mitigate potential risks as early as possible.
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1.3.2. Heat stress assessment based on comprehensive information
One might ask which animal-based indicator is the best to determine heat stress.

There may not be a clear and common answer to this question. Indeed, thermal
comfort is a rather ambiguous concept and animals can take different strategies as
initial responses to heat stress. Among the indicators investigated in the first
Chapter, BST, RR, and relevant behaviours have been concluded to be generally
more sensitive to heat stress compared with core body temperatures (CBT).
Therefore, we suggest these variations to be considered as much as possible in order
to capture the potential activation of intensive heat dissipation in response to heat
stress. Ideally, physiological, behavioural, and environmental information should be
taken into account together for a better understanding of how animals interact with
their thermal environments.
To summarise, the assessment of heat stress in this system will mainly rely on

automated measurements and their corresponding critical thresholds. A series of
thresholds have been developed based on the data from the proposed measurement
methods and the on-farm environmental sensors. These customised thresholds could
better represent the relationship between the animals and their environments
specifically in the experimental farm. The critical ambient temperature (Ta) or
temperature-humidity index (THI) thresholds were determined as follows: 23.8 ℃
Ta or 68.5 THI for relevant behaviours, 23.6 °C Ta or 72 THI for RR, and 26.1 °C
Ta for mean eye temperature. This order somehow reflects the sensitivity of these
indicators, with relevant behaviours and RR functioning as frontline indicators and
eye temperature as a final examiner. Therefore, comprehensive heat stress detection
without blind spots is promising by applying suitable technologies in different
scenarios, where much earlier indicators (i.e., relevant behaviours and RR) inform
the cooling decision for free-stall barns, and the relatively later indicator (i.e., eye
temperature) measured at the selection gate before milking confirms the
effectiveness of previous cooling sessions and provides information on any
additional cooling needs.
In addition, the assessment of heat stress can also take advantage of the

interpretation from the proposed predictive models. For example, animals at the
highest risk can be identified based on variable importance. This knowledge allows
for targeted interventions to be implemented, with a focus on the specific factors
contributing most to heat stress. Through timely and appropriate interventions, such
as optimising ventilation and adjusting feed and water availability, the impact of
heat stress on the animals can be minimised. Another advantage could be the
assessment of the performance and efficiency of the building design and cooling
measures by identifying the areas where cows systematically experience more heat
stress. This, in turn, allows for improved barn conception.
1.3.3. Pros and cons from a sustainable agriculture perspective
When discussing the application of such proposed PLF technologies in heat stress

detection for dairy cows, it is necessary to consider their impacts on sustainable
agriculture comprehensively, both from the advantages and potential limitations.
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Precision Livestock Farming (PLF) technologies play an important role in
promoting agricultural sustainability. Environmentally, the proposed PLF
technologies enable more precise detection of dairy cows’ heat stress states, guiding
more efficient cow-centred management from non-heat-stressed cows to heat-
stressed cows and from low-risk cows to high-risk cows. This approach not only
reduces resource wastage but also minimises unnecessary ecological impacts from
aimless heat abatement strategies. Economically, such PLF technologies can reduce
production losses as well as power and energy costs through timely and efficient
management, simultaneously promoting health in high-risk animals and thereby
cutting costs related to potential disease treatment. With the rising consumer demand
for sustainable products, farms utilising PLF technologies are positioned to achieve
wider market recognition and enhanced economic benefits. Socially, these non-
contact technologies enhance animal welfare and milk quality, aligning with
growing public consciousness about sustainable agriculture. Furthermore, the
application of PLF technologies can reduce the workload for dairy practitioners,
benefiting their welfare and potentially improving job satisfaction.
However, these technologies also face several challenges. Environmentally, while

the proposed PLF technologies may help reduce resource consumption and pollution
caused by unlimited cooling measures, their operation also relies on energy and
resources, potentially impacting the environment. Additionally, the manufacturing
and maintenance of vision sensors may involve energy consumption and waste
production, necessitating further consideration of their overall environmental impact.
Economically, the high initial investment costs of PLF technologies could be
burdensome for small-scale or resource-limited farms [382]. The complexity of
technologies requires farmers to possess certain technical knowledge and operational
skills, potentially leading to additional training and education investments [383].
Furthermore, potential system errors or inaccuracies may lead to production loss
[203]. Socially, the implementation of PLF technologies could widen the digital gap
in agriculture, potentially sidelining farmers and communities who rely on
conventional practices. In addition, over-reliance on technological interventions
might raise concerns about the welfare of animals, as the time farmers spend with
animals would be reduced and their observational skills would be diminished [384].
In summary, PLF technologies hold significant value in promoting agricultural

sustainability, yet they also come with challenges related to economic costs,
technical complexity, potential environmental impact, and social and ethical issues.
Future developments need to balance these technologies’ advantages and limitations,
ensuring their application aligns not only with productivity and profit improvements
but also with environmental protection, social justice, and ethical principles.

2. Conclusions
This project aimed to leverage artificial intelligence techniques, specifically

computer vision and machine learning, to develop non-invasive solutions for the
detection of heat stress in dairy cows. By developing edge-cutting models via on-
farm collected data and applying them to actual farming, this thesis has shown how
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the developed vision-based measurement methods and data-driven predictive models,
as well as the further developed critical thresholds, can be effectively utilised to
facilitate automated heat stress detection in dairy cows.
The main contributions fitted with the specific objectives of this research are

three-fold:
- Three non-contact measurement methods were proposed for BST, RR, and

relevant behaviours in dairy cows.
- A series of critical thresholds were determined for the onset of heat stress

based on the data measured by the proposed methods.
- Three predictive models were proposed for predicting RR, BST, and vaginal

temperature. The interpretation of the models showed the risk factors of heat
stress.

Based on these results, an integrative application of all the proposed measurement,
prediction, and assessment methods has been suggested, wherein RGB and infrared
cameras are used to measure animal-based indicators, and critical thresholds, along
with model interpretation, are used to assess the heat stress state of dairy cows. This
strategy ensures timely and thorough cooling of cows in all areas of the dairy farm,
thereby minimising the negative impact of heat stress to the greatest extent.
It should be acknowledged that certain targeted improvements are required due to

the limitations of the current research, such as fusing a multi-task network,
addressing the problem of night work, and improving model prediction. Furthermore,
additional validation or transfer learning of the proposed methods in a broader real-
world context is needed considering the significant differences across dairy farms.
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‘If I have seen further, it is by standing on the shoulders of giants.’
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Appendix 1. Supplementary materials

Figure A3- 1: Data augmentation examples. (a) Original image, (b) flipping, (c) rotation,
(d) brightness changing, (e) contrast changing, (f) sharpening, (g) Gaussian noise adding, and

(h) elastic deformation.

Figure A3- 2:Manual temperature collection in infrared image processing software
(IRBIS 3 Standard software by YSHY, Beijing, China in this case), illustrated in (a) frontal

and (b) side views.
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Figure A3- 3: Loss and mean Intersection over Union (mIoU) curve of the proposed
architecture trained using the image-level dataset. The dashed lines show the epoch (188)

with the lowest validation loss (0.096).
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Table A3-1: Performance of ablation study trained using the image-level dataset (n = 100).

Model Backbone mIoU
(%)

mPA
(%)

Number of
parameters

(M)

Model
size
(MB)

FLOPs
(G) FPS

Image-level

UNet VGG16 83.38 90.65 24.89 96 451.81 35.4

UNet+Ghost VGG16 84.18 92.12 17.3 66 237.24 36.1

UNet+GhostECA
(proposed)

VGG16 85.07 92.01 18.43 70.3 269.63 32.6

mIoU = mean Intersection over Union; mPA = mean pixel accuracy; FLOPs = floating-
point operations; FPS = frames per second.

Table A3-2: Performance of comparison study trained using the image-level dataset (n =
100).

Model Backbone mIoU
(%)

mPA
(%)

Number of
parameters

(M)

Model
size
(MB)

FLOPs
(G) FPS

FCN VGG16 81.33 88.83 19.17 73.1 204.34 44.2

PSPNet MobileNetV2 77.73 88.25 2.38 9.3 6.03 125.6

PSPNet ResNet50 81.16 90.01 46.71 178 118.43 80.7

DeepLabV3+ MobileNetV2 82.36 90.9 5.82 22.4 52.9 87.2

DeepLabV3+ Xception 83.17 92.12 54.71 209 166.88 28.3

UNet VGG16 83.38 90.65 24.89 96 451.81 35.4

UNet ResNet50 83.03 90.88 43.93 167 184.23 53.6

SegFormer B5 79.89 87.93 84.6 969 986.48 20.9

Proposed VGG16 85.07 92.01 18.43 70.3 269.63 32.6

mIoU = mean Intersection over Union; mPA = mean pixel accuracy; FLOPs = floating-
point operations; FPS = frames per second.
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Figure A5- 1: (a) Cross-section and (b) plan of the experimental free-stall pen with side-
view video cameras.
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Table A5- 1: Descriptive statistics (mean ± standard deviation) of herd-level behaviour distribution and behavioural indicators obtained
by applying the best performing model (YOLOv5s) on half-hourly scan samples collected during the 10-day experiment as well as the

corresponding ambient temperature (Ta, ℃) and temperature-humidity index (THI).

Parameter Time of day (h)
10:30 11:00 11:30 12:00 12:30 13:00 13:30 14:00 14:30 15:00

Drinking% 4.82 ±
2.18

2.28 ±
2.72

1.12 ±
1.11

1.77 ±
1.71

1.23 ±
0.99

1.01 ±
1.00

2.75 ±
1.32

2.47 ±
2.12

2.75 ±
1.18

3.23 ±
2.08

Eating% 10.23 ±
4.01

3.82 ±
2.70

5.73 ±
3.60

8.83 ±
2.39

4.99 ±
1.70

7.68 ±
3.62

7.25 ±
4.12

12.72 ±
3.68

11.08 ±
4.17

10.63 ±
3.69

Lying% 58.34 ±
12.33

76.93 ±
4.56

74.72 ±
5.45

73.81 ±
4.04

74.48 ±
8.01

69.31 ±
7.41

65.44 ±
8.59

61.77 ±
7.40

61.09 ±
6.30

62.59 ±
13.38

Standing-
in%

10.17 ±
4.75

7.50 ±
2.92

9.00 ±
3.00

8.33 ±
2.24

11.02 ±
4.63

10.57 ±
3.77

10.71 ±
3.45

9.41 ±
3.76

11.54 ±
3.71

10.66 ±
4.98

Standing-
out%

16.44 ±
8.13

9.47 ±
5.39

9.42 ±
5.60

7.26 ±
5.35

8.29 ±
5.10

11.43 ±
4.95

13.85 ±
8.77

13.62 ±
7.58

13.54 ±
7.80

12.89 ±
9.39

CI 84.54 ±
8.09

91.10 ±
3.53

89.24 ±
3.46

89.94 ±
2.52

86.98 ±
5.69

86.65 ±
5.15

85.86 ±
4.80

86.80 ±
5.27

84.20 ±
4.73

84.62 ±
9.60

SUI 68.44 ±
13.46

82.08 ±
6.30

80.31 ±
6.34

82.59 ±
4.50

79.39 ±
8.26

75.91 ±
7.53

72.75 ±
9.18

72.93 ±
9.02

70.96 ±
7.13

72.54 ±
14.71

CSI 26.61 ±
10.42

16.97 ±
6.43

18.42 ±
6.17

15.59 ±
4.16

19.31 ±
7.66

22.00 ±
6.88

24.57 ±
8.43

23.03 ±
7.99

25.09 ±
6.65

23.55 ±
12.21

Ta 23.05 ±
4.33

23.45 ±
4.22

23.96 ±
4.27

24.35 ±
4.10

24.56 ±
4.27

25.10 ±
4.48

25.19 ±
4.44

25.41 ±
4.18

25.44 ±
4.36

25.71 ±
4.12

THI 70.45 ±
6.05

70.96 ±
5.77

71.55 ±
5.87

71.99 ±
5.59

72.09 ±
5.70

72.63 ±
5.83

72.56 ±
5.68

72.71 ±
5.13

72.63 ±
5.36

72.94 ±
4.96

Drinking% = percentage of cows drinking; Eating% = percentage of cows eating; Lying% = percentage of cows lying; Standing-in% =
percentage of cows standing-in; Standing-out% = percentage of cows standing-out; CI = comfort index; SUI = stall-use index; CSI = cow
stress index.



Advancing heat stress detection in dairy cows through machine learning and computer vision

234

Figure A6- 1: Correlation heatmap of the respiration rate set (n = 2910). DMY1D = daily
milk yield of the day before the test day; DMY2D = daily milk yield of the 2nd day before

the test day; DMY3D = daily milk yield of the 3rd day before the test day.



Appendix 1. Supplementary materials

235

Figure A6- 2: Correlation heatmap of the vaginal temperature set (n = 1561). DMY1D =
daily milk yield of the day before the test day; DMY2D = daily milk yield of the 2nd day

before the test day; DMY3D = daily milk yield of the 3rd day before the test day.
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Figure A6- 3: Correlation heatmap of the eye temperature set (n = 1866). DMY1D = daily
milk yield of the day before the test day; DMY2D = daily milk yield of the 2nd day before

the test day; DMY3D = daily milk yield of the 3rd day before the test day.
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