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Abstract

Microbial consortia are an exciting alternative for increasing the performances of biopro-

cesses for the production of complex metabolic products. However, the functional properties

of microbial communities remain challenging to control, considering the complex interaction

mechanisms occurring between co-cultured microbial species. Indeed, microbial communi-

ties are highly dynamic and can adapt to changing environmental conditions through com-

plex mechanisms, such as phenotypic diversification. We focused on stabilizing a co-culture

of Saccharomyces cerevisiae and Escherichia coli in continuous cultures. Our preliminary

data pointed out that transient diauxic shifts could lead to stable co-culture by providing peri-

odic fitness advantages to the yeast. Based on a computational toolbox called MONCKS

(for MONod-type Co-culture Kinetic Simulation), we were able to predict the dynamics of

diauxic shift for both species based on a cybernetic approach. This toolbox was further used

to predict the frequency of diauxic shift to be applied to reach co-culture stability. These sim-

ulations were successfully reproduced experimentally in continuous bioreactors with glu-

cose pulsing. Finally, based on a bet-hedging reporter, we observed that the yeast

population exhibited an increased phenotypic diversification process in co-culture compared

with mono-culture, suggesting that this mechanism could be the basis of the metabolic fit-

ness of the yeast.

Author summary

Being able to manipulate the dynamics of microbial co-cultures is a technical challenge

that need to be addressed in order to get a deeper insight about how microbial communi-

ties are evolving in their ecological context, as well as for exploiting the potential offered

by such communities in an applied context e.g., for setting up more robust bioprocesses

relying on the use of several microbial species. In this study, we used continuous cultures

of bacteria (E. coli) and yeast (S. cerevisiae) in order to demonstrate that a simple nutrient
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pulsing strategy can be used for adjusting the composition of the community with time.

As expected, during growth on glucose, E. coli quickly outcompeted S. cerevisiae. How-

ever, when glucose is pulsed into the culture, increased metabolic fitness of the yeast was

observed upon reconsumption of the main side metabolites i.e., acetate and ethanol, lead-

ing to a robust oscillating growth profile for both species. The optimal pulsing frequency

was predicted based on a cybernetic version of a Monod growth model taking into

account the main metabolic routes involved in the process. Considering the limited num-

ber of metabolic details needed, this cybernetic approach could be generalized to other

communities.

Introduction

Microbial communities have colonized every ecosystem on earth, suggesting that access to an

almost unlimited biotransformation capability can be granted through the assembly of multi-

ple species within the same cultivation device [1]. Microbial consortia, either natural or syn-

thetic, have therefore been considered a promising platform for the production of diverse

metabolites [1–3]. To date, microbial communities have been successfully used for various

industrial purposes, such as increasing crop productivity, bioremediation of soils and water

bodies, and manufacturing food and pharmaceutical products [1,4–7].

Despite these achievements, the dynamics of microbial consortia remain challenging to

control [8], mainly because of the complexity of the mechanisms leading to microbial interac-

tions and their time-dependence on the extracellular conditions [9–12]. In this context, many

studies have focused on the use of simplified co-cultures with engineered microbial interac-

tions mechanisms such as programmed quorum sensing [13], the use of synthetic toxin-anti-

toxin systems [14], or, more commonly, the use of auxotrophic strains [15,16]. More recently,

optogenetics, i.e., the use of light to control the activation of light-sensitive gene circuits, has

been used to efficiently control microbial co-cultures [17,18]. Despite all these advances, there

is still some progress that is needed for the effective manipulation of microbial co-cultures

without the use of the genetic toolbox offered by synthetic biology [19]. In this work, we will

consider the co-culture of Escherichia coli and Saccharomyces cerevisiae in continuous culture.

These microbes have been selected because of their relevance as model organisms and their

widespread use for industrial applications. Since E. coli is a very fast grower, it can be expected

that the yeast will be outcompeted during the exponential phase of growth. However, these

microbes are also able to release side metabolites based on overflow metabolism, i.e., mainly

acetate (ACE) and ethanol (ETH), leading to a diauxic shift when the primary carbon source

(glucose, GLU) is depleted. This diauxic shift can, in turn, promote the growth of the slow

grower yeast, potentially leading to co-culture stability [20]. However, in this case, an essential

requirement for stability is that successive diauxic shifts must occur with a given periodicity

during the continuous culture through, for example, GLU pulsing. Such periodic perturbation

approach has been previously acknowledged as an efficient control strategy for microbial co-

cultures [9,11,12], and typically leads to oscillations in cell number, each strain exhibiting

period of growth and decay according to their respective metabolic capabilities [21–23]. In

order to be able to predict such population behaviour emerging from complex metabolic inter-

actions, mathematical models are needed.

To this end, a Monod-based ODE model was designed in order to capture the main meta-

bolic features of the yeast-bacteria co-culture. The potential fitness advantage offered by dia-

uxic shifts was taken into account based on cybernetic variables reflecting the metabolic
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capabilities of each strain in terms of substrate assimilation (in our case GLU, but also ACE

and ETH) [24]. This model was used for determining the optimal GLU pulsing frequency lead-

ing to population stability, enabling the continuous co-culture of yeast and bacteria. The

model was integrated into a modular computational framework called MONCKS (for

MONod-type Co-culture Kinetic Simulation), allowing the generalization of the approach to

other types of co-cultures. Model predictions were then assessed experimentally in continuous

cultures monitored based on online flow cytometry. A fundamental question behind the fit-

ness offered through metabolic flexibility is to what extent this flexibility is due to phenotypic

diversification. Indeed, phenotypic diversification has been previously observed for E. coli, and

S. cerevisiae grown under fluctuating environmental conditions [10,25,26], the additional fit-

ness advantage provided by such diversification mechanisms is in accordance with the previ-

ously made predictions [21,27]. These diversification mechanisms were experimentally

evaluated based on online flow cytometry with and a fluorescent transcriptional reporter, and

the possible extension of MONCKS to a stochastic framework was discussed accordingly.

Materials and methods

Mathematical modelling: ODEs based on Monod kinetics and cybernetic

approach

In this work, we designed a simplified cybernetic mathematical framework for two microbial

strains exhibiting different substrate/metabolites consumption profiles and production states

[24,28–31]. The basic sets of considered reactions are the assimilation of glucose (GLU)

through the oxidative and respiro-fermentative (overflow metabolism) pathways, as well as the

assimilation of the metabolites produced through overflow metabolism (i.e., mainly acetate

ACE and ethanol ETH in our case). These reactions are modelled based on Monod type equa-

tions (S1 File and Fig 1).

Fig 1. Simplified representation for the construction of the model for the co-culture experiments. Each microbial

species is taken as a compartment and interacts through the pool of metabolite concentrations. The latter metabolites,

along with the biomass concentrations, define the state of the process, while the cybernetic variables that regulate the

participation of the different ODEs related to the metabolic pathways in each cell define the metabolic state of each

microorganism.

https://doi.org/10.1371/journal.pcbi.1010674.g001
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Each microbial species modelled based on a set of ODEs was the and used as a kernel sec-

tion for a co-culture computational framework. In this framework, the metabolic activities

exhibited by each species are optimized based on a cybernetic approach. Briefly, the cybernetic

model was based on establishing a common biochemical reaction for any substrate S that the

biomass X can consume to grow based on a given metabolic pathway. In the context of the co-

cultures between E. coli and S. cerevisiae, three main substrates S can be considered, i.e., GLU,

ACE, and ETH. In the cybernetic approach, the consumption rates of each metabolic pathway

are determined by the number of resources allocated by the cell towards synthesizing its enzy-

matic machinery. The latter is achieved by including an equation accounting for the produc-

tion of a virtual key enzyme (C) required for the assimilation of the main carbon sources. In

this work, the pathways related to substrate consumption can be written as:

X þ Ys
s
S!
Cs X þ Yx

s
X þ Ya

s
Aþ � � � þ Yn

s
N Eq 1

X!S Cs þ X
0 Eq 2

where X’ is the biomass excluding Cσ while A to N are byproducts produced at their Yields

(Y). Therefore, a stoichiometric vector ψσ for any component in the mediaMi (where i = X, S,
A, . . ., N) can be constructed given the consumption of S. The rate of change can therefore be

defined by the product of ψσ and the S consumption rate rσ at the givenCσ concentration,

such that:
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X Eq 3

and the rate of production of Cσ can be described by the following equation:

dCs

dt
¼ εc þ εi

SX
K 0
s
þ S
� dCs � mCs Eq 4

where εc and εi are the constitutive and inducible expression rates, respectively. δ is the degra-

dation rate, and μ is the growth rate. The value of qσCσ is maximized when the organism has

committed to the investment of the maximum amount of resources towards this metabolic

path. Therefore, for the simulations, the value of is not needed to be precisely known, but the

relative value [24,28–31], given that:

qsCs ¼ q
max
s

Cs

Cmax
s

� �

¼ qmax
s
Crel

s
Eq 5

whereCσ
max can be defined by the terms of the maximum production, degradation, and
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dilution rates from Eq 4. Using Eq 5 on Eq 3 and reordering, we obtain:
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whereHσ is a Monod-type hill function for uptake rate reduction at low substrate concentrations.

The later Hill function can be modified to address other types of substrate and metabolites uptake

rate interactions (e.g., product inhibition, competitive inhibition, see S1 File). Eq 6 can be extended

for several known metabolic pathways (E.g., oxidative and fermentative glucose consumption, re-

consumption of byproducts). By extending the matrix and vector dimensions as follows:

dM
dt
¼

Yx
s

Yx
a

� � �Yx
Z

Ys
s

Ys
a

� � �Ys
Z

Ya
s

Ya
a

� � �Ya
Z

..

. ..
. . .

. ..
.

Yn
s

Yn
a

� � �Yn
Z

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

qmax
s
Crel

s
HsX

qmax
a
Crel

a
HaX

..

.

qmax
Z
Crel

Z
HZX

2

6
6
6
6
6
6
4

3

7
7
7
7
7
7
5

Eq 7

where each column represents the stoichiometric behaviour associated with a specific metabolic

pathway. The global metabolic state (F) of the cell is given by the linear combination of all the activi-

ties of the individual metabolic pathways on the metabolite poolM. Finally, to better accomplish the

latter, the cybernetic modeling approach introduces the regulation to the virtual enzymes (Cσ. . .η
rel)

expression and activity. This regulation is achieved by multiplying the rates of enzyme synthesis and

activity by the cybernetic variables υ and ν calculated by matching law equations constructed for spe-

cific metabolic objectives. In this work, the growth rate was used as a metabolic objective as follows:

ui ¼
miPo

j¼1
mj

Eq 8

ni ¼
mi

maxðm1...oÞ
Eq 9

In this way, the physiological behaviour (P) on the cultivation conditions could be under-

stood as a function of the metabolic state and the environment:

PðF;MÞ � hCjMi � hSZ

s
Cðu;nÞjMi Eq 10

Interestingly, this function is approximated by the contributions of the organism’s specific

enzyme content operating on the environmental conditionsM (metabolite concentrations, in
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this work). The latter allows to tie the metabolic behavior and regulation of the cell to fitness if

the performance is attached to the organism’s survival.

Computational toolbox for the simulation of continuous co-cultures

The models obtained for each microbial species were combined for running co-culture simula-

tions in continuous bioreactors. Three different parameters were considered, Dilution rate (D),

frequency of pulsing (w), and time fraction for feed pulse (s). Pulses were applied to the dilution

rate resulting in discontinuous feeding media with 30 g/L of GLU as carbon source. The feeding

regimes were square wave functions where the s determines the symmetry of the pulse wave.

Substrate consumption and biomass/metabolite yield parameters for each strain were approxi-

mated from batch and chemostat experiments. Variables for enzymatic production and degrada-

tion were set according to published cybernetic models for E. coli and S. cerevisiae [24,28] (S1
File). Simulations were performed with the MATLAB-based Monod-type Co-culture Kinetic

Simulation (MONCKS) toolbox that allows using two cybernetic models simultaneously inte-

grated into a bioreactor external metabolite concentration simulation. Briefly, the toolbox allows

the models designed for each microbial species to interact with the environmental variables (i.e.,

GLU, ACE, ETH) at each integration time step. These interactions occur at equal probability for

each species. This toolbox is available at https://gitlab.uliege.be/mipi/published-software/mbms-

toolbox, used databases can be found at https://gitlab.uliege.be/mipi/published-software/mipi-

model-and-simulation-database and further description and a simplified simulation workflow

can be found in the supporting information (S2 File).

Strains and medium composition

Strains used in this study were the Escherichia coli K-12 W3110, Saccharomyces cerevisiae
CEN-PK 117D, and a GFP expressing Saccharomyces cerevisiae strain Pglc3::GFP which grow

on Verduyn minimal media. This strain is derived from the CEN-PK 117D background

expressing GFP under the control of a chimeric promoter which upregulates the expression of

GFP under nutrient-limiting conditions [32,33]. The strains were maintained at -80˚C in work-

ing vials (2 mL) in LB with 30% glycerol (w/v). Precultures and cultures were performed on syn-

thetic media according to Verduyn et al. [34], but with modified phosphate buffer proportions

of potassium dihydrogen phosphate (6.309 g/L) and potassium hydrogen phosphate (9.34 g/L)

at pH 6.8 and supplemented with various glucose concentrations (Sigma-Aldrich, US).

Cultivation tests for determining model parameters

The parameters used for modelling microbial strain dynamics were acquired based on two sets

of experiments: i) Mini-bioreactor batch experiments involving the strains cultivated sepa-

rately at different GLU; ii) Chemostat experiments at three different dilution rates (D). The

mini-bioreactor experiments were performed on a BioLector/RoboLector (M2PLabs, Ger-

many). Six initial GLU concentrations were set in 48-deepwells microplates with values rang-

ing between 20 g/L and 1.25 g/L. Process conditions were set to be constant pH 6.8 and a

shaking frequency of 1000 rpm; total bioprocess time was 30 hours for E. coli experiments and

36 hours for S. cerevisiae. The initial biomass concentration was approximately 0.1 OD for all

experiments. Eight wells were used as a set of parallel fermentations for each condition and

sequentially taken as a sample every 3 hours. Samples were separated into two vials, one was

used for flow cytometry analysis, and the other was immediately filtered and prepared for mea-

suring glucose and organic acids by HPLC.

Chemostat experiments were performed in Dasgip bioreactors with 150 mL of working vol-

ume at constant pH 6.8, 1000 rpm, and 30˚C. Three dilution rates, i.e., 0.1, 0.2, and 0.3 h-1,
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were sequentially imposed on the system, with at least five retention times between each step

change. Three samples were taken at the last retention time and analysed by spectrometry at

OD 600, flow cytometry (FC), and HPLC to account for biomass, GLU, ACE, ETH, GFP fluo-

rescence, and biomass size distribution and concentration by FC analysis. Dasgip experiments

were done by triplicate for the E. coli and the S. cerevisiae Pglc3::GFP strains.

Co-culture experiments in continuous bioreactors

Co-culture experiments were performed in lab-scale stirred bioreactors (Biostat B-Twin, Sar-

torius). The processes were performed with a working volume of 1L at a constant temperature

of 30˚C, pH at 6.8, stirring rate of 1000 rpm, and aeration rate of 1 VVM. Cultures were started

with a population ratio of 1:1 S. cerevisiae: E. coli in g/L units) in the Verduyn modified media.

Every experiment batch phase was followed before the feed was started after 10 hours of culti-

vation. A dilution rate of 0.1 h-1 was considered for the chemostat and the GLU pulsed contin-

uous cultivations. For the pulsed cultivations, the pulsing phases were applied as square waves

either at a low-frequency (w = 0.14 and s = 0.28) or a hi-frequency (w = 0.33, s = 0.33) pulsing

regime, resulting in feeds pulses of 2h:5h and 1h:2h (on:off at D = 0.1), respectively. All co-cul-

ture experiments lasted at least 80 hours, and all were performed at least in duplicate.

Sample processing

HPLC. Samples from fermentation experiments were processed for glucose and organic

acid measurement by HPLC with an Aminex HPX-87H column (Bio-Rad, Hercules CA, USA)

at 45˚C and 5 mM Sulfuric acid as mobile phase. An Agilent 1200 Series HPLC system was

used with a refraction index detector at 50˚C (Agilent, Santa Clara, CA, USA).

Flow cytometry. Flow cytometry data were obtained with an Accuri C6 flow cytometer

(BD Accuri, San Jose, CA, USA). The sample was first tested on the C6 FC to measure the

events/L and prepared by dilution until a concentration below 1000. Diluted samples are then

fed into the C6 FC for analysis at an average flow rate of 14 μl/min with a threshold FSC-H set

at 40,000. The analysis ended after collecting at least 40,000 events or 70 μL of the sample. Sam-

ples for Online Flow Cytometry were taken with the help of the online Segregostat device,

which allows for sampling acquisition, dilution, measurement and control on continuous fer-

mentation processes [35,36].

Flow cytometry data was cleaned from electrical noise and doublets before further analysis.

Doublet treatment was performed by linear regression between the area and height of the

front scattering signal and eliminating data points based on Pearson standardized residual val-

ues above 2. All samples with more than 5% of doublets and or with total remaining events of

less than 20,000 were not considered for further analysis. E. coli and S. cerevisiae were clustered

by simple gating based on the forward scattering area signal (FSC-A) (S3 File). For GFP fluo-

rescent measurements, gating was also used. Calculations of fractions of events relative to each

strain and their fluorescence were performed with the MiPI Flow Cytometry Analysis

toolbox (mFCAtoolbox) available at https://gitlab.uliege.be/mipi/published-software/mfca-

toolbox, and further description and a simplified analysis workflow can be found in the sup-

porting information (S3 File).

Microfluidic cultivation and time-lapse microscopy

Cells have been cultivated in microfluidic chips provided by Alexander Grünberger’s lab (ref.

24W, chambers size: 80 μm x 80 μm x ~850 nm) [37], in Verduyn medium with different glu-

cose concentrations (5 μM, 0.1 mM, 0.2 mM, 0.4 mM, 0.6 mM, 1 mM and 3 mM). The temper-

ature was set at 30˚C. The chambers were inoculated with one or two cells by flushing the
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device with a cell suspension (OD600 between 0.4 and 0.5). At least 6 cultivation chambers

were selected manually for each glucose concentration condition. Microscopy images were

acquired using a Nikon Eclipse Ti2-E inverted automated epifluorescence microscope (Nikon

Eclipse Ti2-E, Nikon France, France) equipped with a DS-Qi2 camera (Nikon camera DSQi2,

Nikon France, France), a 100× oil objective (CFI P-Apo DM Lambda 100× Oil (Ph3), Nikon

France, France). The GFP-3035D cube (excitation filter: 472/30 nm, dichroic mirror: 495 nm,

emission filter: 520/35 nm, Nikon France, Nikon) was used to measure GFP. The phase con-

trast images were recorded with an exposure time of 300 ms and an illuminator’s intensity of

30%. The GFP images were recorded with an exposure time of 500 ms and an illuminator’s

intensity of 2% (SOLA SE II, Lumencor, USA). During the first 48 hour, GFP and phase con-

trast images were acquired every hour. During the 24 last hours, phase contrast images were

acquired every 6 minute and GFP images every hour. The optical parameters and the time-

lapse were managed with the NIS-Elements Imaging Software (Nikon NIS Elements AR soft-

ware package, Nikon France, France).

Growth Rate measurement

The instantaneous growth rate has been approximated by the one of the areas of the colonies

in the chambers. Using a homemade Python code, the areas of the colonies were measured

and the instantaneous growth rate has been computed (instantaneous μ = (areati -areati-1)/
areati-1 for at least three chambers per glucose concentration condition, during the firsts hours

until a cell go out of the chamber.

GFP positive fraction

The fraction of GFP positive cells in the chambers were computed for the 24 last hours of the

time-lapse for at least 3 chambers per glucose concentration condition. The cell-segmentation

of the images and the measure of single-cell mean GFP intensity were performed using the

Python GUI of YeaZ [38]. Cells have been considered as GFP positive when their mean GFP

intensity was above 22.5 arbitrary fluorescence units.

Results

Cybernetic modelling reveals differences in metabolic fitness upon the

diauxic shift in mono-cultures

This first section will be focused i) on the calibration of the cybernetic model and ii) on the

characterization of the metabolic phenotypes exhibited by E. coli and S. cerevisiae when grown

separately. For this purpose, we have designed a modular simulation toolbox called MONCKS,

each module being one microbial species involved in the co-culture. Based on this toolbox, the

growth of each strain will be modelled as a set of four ODEs representing the time trajectories

of the biomass and the three main substrates (GLU, ACE, ETH). These three substrates have

been selected as they are the most relevant compounds found during the cultivation of each

strain on a minimal medium with GLU as the main carbon source. ACE and ETH are typically

produced by overflow metabolism and can be further re-consumed as a carbon source when

GLU is limiting, leading to diauxic behaviour. During their growth under these conditions, the

two microbial strains under consideration will have then the possibility to grow on three dif-

ferent carbon sources. The order of assimilation and the resulting substrate consumption rate

will be modelled based on a cybernetic framework. In short, this cybernetic framework allows

cells to make the best decision, in terms of substrates consumption, for optimizing their

growth rate (Fig 1). Before going more into the details of this cybernetic approach, we will
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focus first on the determination of the basic growth parameters for each strain grown sepa-

rately. For this purpose, batch experiments were conducted on minimal medium, and the four

state variables (biomass, ETH, GLU, and ACE) were followed in function of time (Fig 2).

A diauxic effect was observed for the two strains when grown with high GLU concentration

but was more pronounced for S. cerevisiae. This trend can be explained by the fact that S. cere-
visiae is known to favour respiro-fermentative metabolism when growing at near maximum

growth rate or under dissolved oxygen-limited conditions [39]. Interestingly, the diauxic shift

has been recently recognized as an efficient driver for promoting community stability [20].

The data obtained was then further used for parameter estimation (Table 1).

Based on these parameters, it can be concluded that S. cerevisiae exhibits generally higher

biomass yields (Yx/s) and smaller saturation constants (Ks), while E. coli generally exhibits

higher growth rates (μmax) and substrate consumption rates (qsmax). Accordingly, it can be

concluded that E. coli will outgrow S. cerevisiae in most cases. However, a window of opportu-

nity leading to potential stable co-culture is offered by the higher affinity of S. cerevisiae for

low substrate concentration and by its higher metabolic flexibility (diauxic shift) for the con-

sumption of alternative carbon sources, such as ACE and ETH. This feature is particularly

interesting since it is known that metabolic flexibility can promote relevant microbial interac-

tions needed for sustaining the establishment of robust microbial communities [23,40].

Ground-breaking theoretical works established that cell-to-cell differences in gene expres-

sion can split a clonal population of cells into two or more subpopulations exhibiting different

phenotypic/metabolic functions [21,27]. More importantly, it has been suggested that cells are

able to switch between these different phenotypic states according to a rate correlated to the

environmental changes [35,36,41]. Therefore, it should be possible to modify the distribution

of cells into different phenotypic/metabolic states based on controlled environmental fluctua-

tions. However, before being able to verify this hypothesis, we need to incorporate the possibil-

ity for the cell to occupy different phenotypic/metabolic states into the model. The latter is

exactly the purpose of the cybernetic approach that will be used in this work in order to find

environmental conditions leading to co-culture stability. Briefly, the cybernetic algorithm

allows for the determination of cybernetic variables corresponding to the main metabolic

pathways used by the microbial strains for consuming the different substrates. These variables

regulate the quantity of key enzymes (C) used for the assimilation of the main substrate

(GLU) and the alternative carbon sources (ACE and ETH) (Fig 1). Please note that GLU can

be assimilated based on the oxidative or the fermentative pathway. Via these variables, the dif-

ferent substrate assimilation quantities are dynamically adjusted for the strains to optimize the

growth rate in function of the environmental variables. These cybernetic model parameters

were then determined based on the dataset gathered from mono-culture experiments (Fig 3),

confirming the fact that E. coli exhibits less metabolic flexibility/fitness than S. cerevisiae.
Indeed, E. coli exhibits a clear diauxic profile from GLU to ACE (Fig 3A). The cybernetic

variable associated with glucose fermentation starts at its maximum value readily after the

beginning of the culture and remains as such if the GLU is non-limiting (Fig 3A and 3B).

Between the range of initial concentration tested (20 to 1.25 g/L), the maximum growth rate

achieved by E. coli is reduced by only 12.4% (Fig 3B), while the model Ks was found to be near

0.11 g/L, where we expect a 50% growth rate decrease. The reduction observed in Fig 3 B on

growth rate was found on times with GLU at least below to approx. 0.5g/L, where this substrate

limitation becomes stringent (Figs 2 and 3B). Upon GLU limitation, the cybernetic variable

associated with ACE consumption increases and peaks at approximately 17 hours. However,

the contribution of this cybernetic variable to the global growth of E. coli is quite low compared

to the one provided by GLU consumption (Fig 3A and 3C). On the other hand, S. cerevisiae
displays higher metabolic flexibility, given the fact that ETH consumption occurs even before
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Fig 2. Biomass growth and metabolite profiles for E. coli and S. cerevisiae grown in microplate Mini-bioreactors at different initial glucose

concentrations ([GLU]i). Experimental data set concentrations shown are: 20 g/L, 10 g/L,5 g/L, 2.5 g/L and 1.25 g/L. Lines represent model results

for Biomass in green, glucose in blue, acetate in yellow, and ethanol in purple.

https://doi.org/10.1371/journal.pcbi.1010674.g002

PLOS COMPUTATIONAL BIOLOGY Controlling microbial co-culture

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010674 October 31, 2022 10 / 27

https://doi.org/10.1371/journal.pcbi.1010674.g002
https://doi.org/10.1371/journal.pcbi.1010674


the exhaustion of GLU, probably due to a weaker catabolite repression effect (Fig 3B). The

time profiles of the cybernetic variables show faster accumulation and decay, suggesting higher

flexibility for the temporal allocation of resources (Fig 3B and 3D). The latter results in a more

efficient growth under GLU limiting conditions and on the overflow metabolites ACE and

ETH. These observations altogether point out that the metabolic flexibility of S. cerevisiae
could be exploited to provide a fitness advantage to this strain through the manipulation of the

environmental variables, further ensuring its co-cultivation with E. coli.

Fitness disparity between metabolic phenotypes leads to population

imbalances during continuous cultures with constant environmental

conditions

Continuous cultivation is a mode of operation known to promote the appearance of cells exhib-

iting different metabolic states [42]. Since we want to challenge the fact that stable co-culture

can be obtained based on the active metabolic diversification of microbial species, continuous

cultivation has been selected as a relevant device for our experiments. E. coli and S. cerevisiae
were then co-cultivated in continuous bioreactors (D = 0.1 h-1), and the cultures were moni-

tored by on-line flow cytometry (Fig 4A) and sampled for metabolites quantification (S4 File).
The evolution of the relative FC events fraction indicates that E. coli rose rapidly during the

first cultivation phase (from 0 to 10 hours) and outcompeted S. cerevisiae. Upon GLU exhaus-

tion (after approx. 10 hours of cultivation), the fraction of S. cerevisiae increased based on the

consumption of the ACE and ETH released during the initial phase of the culture. However,

this effect was only transient, and S. cerevisiae was outcompeted again upon the exhaustion of

the overflow metabolites (after approx. 40 hours), impairing the stability of the co-culture. The

cybernetic model was also used for simulating the time trajectories of the different cybernetic

variables for E. coli (Fig 4B) and S. cerevisiae (Fig 4C), and the values obtained reflect the

higher metabolic fitness of the yeast upon by-products reassimilation (ETH and ACE). Stable

co-culture is an essential requirement for the efficient exploitation of microbial resources

through, for example, advanced bioprocessing [40,43,44]. Besides the tools offered by synthetic

biology, there is actually a lack of efficient actuators for ensuring microbial stability in continu-

ous bioreactors [45]. Interestingly, these data suggest that the transient effect observed in a

basic chemostat setup could be extended and maintained in continuous cultures based on

GLU pulsing (Fig 5). This specific feature will be challenged in the next section based on the

cybernetic modelling framework developed in this work.

Fluctuating environmental conditions provide periodic fitness advantage

and can lead to population stability in continuous cultures

We previously observed a transient diauxic effect promoting co-culture stability in continuous

culture, and the idea is to extend this effect based on GLU pulsing. We then challenged this

Table 1. Biomass maximum growth rates, saturation constants, maximum substrate consumption rates and biomass/substrate yields obtained from modelling

approximation to mono-culture fermentations.

Substrate μmax Ks qs
max Yx/s

E. coli S. cer E. coli S. cer E. coli S. cer E. coli S. cer
GLU (ferm) 0.437 0.299 0.112 0.082 -2.640–1.648 0.165 0.182

ACE 0.077 0.017 0.108 0.007 -0.630–0.058 0.122 0.285

ETH ——— 0.080 ——— 0.055 ——— -0.276 ——— 0.287

GLU(Ox) 0.234 0.221 1.000 1.469 -1.745–3.175 0.134 0.070

https://doi.org/10.1371/journal.pcbi.1010674.t001
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hypothesis based on our cybernetic modelling framework. The goal here is to extend the tran-

sient fitness advantage provided by the diauxic shift by pulsing glucose according to specific

frequencies and amplitudes during continuous cultivation (Fig 5). Pulse profiles were defined

by square waves with dilution rates (D), frequencies (w) and pulse duration fraction (s).

Fig 3. Time evolution of Crel for each metabolic pathway at different starting GLU concentrations for E. coli (A) and S. cerevisiae (C). Time evolution of the

corresponding contribution of the different metabolic pathways to the growth rate for E. coli (B) and S. cerevisiae (D). Metabolic pathways are colour coded as

follows: GLU fermentative/unbalanced consumption in light blue, ACE consumption in yellow, ETH consumption in purple, and GLU oxidative/balanced

consumption in green.

https://doi.org/10.1371/journal.pcbi.1010674.g003
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It has indeed been previously shown that environmental perturbations can promote stabil-

ity in microbial communities [9,11,12,46]. The search for optimal stabilization conditions is a

hot topic in the field of microbial ecology [47,48]. We then simulated different co-culture

Fig 4. A) Time evolution of the FC events fraction of E. coli (blue) and S. cerevisiae (red) during continuous co-culture at a dilution rate of 0.1 h-1.

Experimental data are represented by markers and simulation data by dashed lines. B) and C) Time evolution of the relative enzyme (Crel) corresponding to

each metabolic pathway for E. coli and S. cerevisiae, respectively. Metabolic paths are colour coded as follows: GLU fermentative/unbalanced consumption

in blue, ACE consumption in yellow, ETH consumption in purple, and GLU oxidative/balanced consumption in green.

https://doi.org/10.1371/journal.pcbi.1010674.g004
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scenarios in continuous systems for a range of dilution rates (D, between 0.025 h-1 and 0.3 h-1)

and for different GLU pulsing parameters (frequencies w and step times s). Based on the cyber-

netic model, we simulated the time evolution of the relative fraction of E. coli and S. cerevisiae

Fig 5. Simplified representation of the MONCKS simulation framework used for various intermittent feeding

profiles. The feeding profiles are considered as input square waves with dilution rate (D), (w) as the frequency, and (s)

as the pulse duration. Model outputs comprised the metabolite availability in the system. The environmental

conditions will impact the transitions ofCrel for both competing strains. The latter would create a temporary fitness

advantage for each strain, which is expected to stabilize the biomass fraction through fermentation. S. cerevisiae in red

and E. coli in dark blue.

https://doi.org/10.1371/journal.pcbi.1010674.g005
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for different dilution rates (Fig 6A) and for multiple combinations of GLU pulsing parameters

(Fig 6B). A general feature is that E. coli tends to outcompete S. cerevisiae as D increases, due

to the higher global growth rate observed for the bacteria.

However, the model predicts that for a range of D comprised between 0.025 and 0.1 h-1,

there are some GLU feeding profiles (resulting from a combination of w and s parameters)

promoting the growth of the yeast and leading to the potential conservation of the species in

the co-culture. We then focused on the scenario involving the highest D leading to the poten-

tial conservation of the species in the co-culture, i.e., D = 0.1 h-1. We then computed the time

evolution of growth rate for E. coli and S. cerevisiae according to different sets of GLU pulsing

parameters s and w (Fig 6B). These simulation data clearly point out that S. cerevisiae can ben-

efit from a transient fitness advantage during the periods of GLU exhaustion and when diauxic

shift is occurring. Indeed, under these conditions, the yeast is able to increase its enzymatic

pool related to ETH reassimilation, as shown based on the time evolution of the growth contri-

bution of the different cybernetic variables (Fig 6B). Interestingly, this periodical fitness

advantage was increased when the GLU pulsing frequency (w) increased and when the step

time (s) decreased. The fact that cell populations can respond better to some stimulation fre-

quencies has been previously explained from the perspective of information transmission

through gene circuits [49,50], as well as from the perspective of phenotypic switching and fit-

ness optimization [21,27]. More recently, it has also been demonstrated that the stability of

microbial communities can also be strengthened by applying environmental perturbations at

given frequencies [4,9,11]. In a similar way, our simulation data sets pointed out that it is

Fig 6. A) Simulations of the fraction for each microorganism found for the pulsed continuous cultures at different feeding profiles. E. coli (red) and S.

cerevisiae (blue). B) Growth rate contributions related to eachCrel for each strain, E. coli left column, S. cerevisiae right column. Four simulations at different

frequencies (w) and step-times (s) are shown. Metabolic paths are color coded as follows: GLU fermentative/unbalanced consumption in blue, ACE

consumption in yellow, ETH consumption in purple, and GLU oxidative/balanced consumption in green.

https://doi.org/10.1371/journal.pcbi.1010674.g006
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possible to ensure the stability of bacteria-yeast co-cultures by applying GLU pulsing at specific

frequencies. This result will be challenged experimentally in the next section.

Population stability resulting from intermittent feeding is frequency-

dependent

Based on the simulated GLU pulsing profiles, we then run two other types of continuous cul-

ture, i.e., one at a high-frequency GLU pulsing of 0.33 h-1 and the other at a low-frequency

GLU pulsing of 0.14 h-1. As for the chemostat experiment, these two other types of cultivation

were also followed based on on-line flow cytometry (Fig 7). As predicted, environmental puls-

ing led to an oscillating profile at the level of the relative biomass fraction during co-cultivation

(Fig 7A and 7D). This effect is promoted, after each pulse and upon GLU exhaustion, by the

metabolic fitness increase of the yeast population due to diauxic shifting. This effect is clearly

depicted through the time evolution of the cybernetic variables associated with ETH reassimi-

lation (Fig 7C and 7F). This effect can be extended upon GLU pulsing during the whole culti-

vation period, i.e., approximately 80 hours. It is important to note that the population

oscillations predicted by the model exhibit smaller amplitudes than the ones observed during

the experiments. This difference suggests that cells in the co-culture are even more responsive

than predicted by the model. The latter can be explained by the fact that the model simulates

the dynamic behaviour of the co-cultures based on the individual behaviour of the microbial

strains cultivated alone (Fig 2). Accordingly, faster changes associated with microbial social

interactions, such as commensalism, predatory behaviour or symbiosis among others are not

taken into account. Nevertheless, the model is very useful for determining the global behaviour

of co-cultures under fluctuating environmental conditions. Probably, the most interesting fea-

ture of the model is the ability to determine the systemic property of the co-culture system to

enter a state of dynamic stability, in which both microbial strains reach quasi-stable propor-

tions and concentrations.

The results also point out that the stability of the co-culture is frequency-dependent.

Indeed, for the experiment run at low-frequency, better control over the co-culture is achieved,

as denoted by the regular population oscillating profile (Fig 7A). However, even if the fraction

of yeast cells is higher in the experiment conducted with low-frequency fluctuations than in

the reference chemostat (15% of yeast cells with low-frequency fluctuations, by comparison

with 7% of yeast cells for the reference chemostat experiment shown at Fig 4, it remains below

the value observed for the continuous culture with high-frequency fluctuations, i.e., 18% Fig

7B). Indeed, the continuous culture run with high-frequency perturbations exhibits a higher

global biomass concentration, but also a noisier oscillatory profile, possibly impairing co-cul-

ture stability on the long run. The analysis of the simulations based on the cybernetic model

points out that periodic diauxic shifts occur during the cultivation with GLU pulsing (Fig 7C–

7F). This phenomenon has been quantified based on the relative enzyme variables, and the

data points out that the yeast can beneficiate from growing on the ETH released during the

main growth phase of GLU. This is particularly obvious for the cultivation carried out at low

frequency pulsing (Fig 7E).

Cell agglomeration was observed based on the forward scatter profile of the on-line flow

cytometry data (S3 File). This effect was quantified, but no significant differences between the

three types of cultivation were observed, suggesting that this effect is independent of the feed-

ing profile (S3 File). Cell aggregation has been previously observed during co-culture studies,

but its origin and function are still unclear [51]. Another interesting feature is that, under GLU

pulsing conditions, the model predicted more simultaneity in the occurrence of the different

metabolic states based on the evolution of the cybernetic variables (Fig 7C–7F). This could be
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Fig 7. A) and D) Time evolution of the FC events fraction for E. coli (blue) and S. cerevisiae (red) at low- and high-frequency feeding profiles, respectively. B)

and E) Time evolution of the relative enzyme (Crel) corresponding to each metabolic pathway for E. coli at low- and high-frequency feeding profiles,

respectively. C) and F) Time evolution of the relative enzyme (Crel) corresponding to each metabolic pathway for S. cerevisiae at low- and high-frequency

feeding profiles, respectively. Metabolic paths are colour coded as follows: GLU fermentative/unbalanced consumption in blue, ACE consumption in yellow,

ETH consumption in purple, and GLU oxidative/balanced consumption in green.

https://doi.org/10.1371/journal.pcbi.1010674.g007
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traduced to yeast cells being able to switch quickly from one metabolic state to another, such

as glycolytic to gluconeogenic, or that phenotypically different subpopulations of yeast cells are

generated during the process. This hypothesis will be challenged in the next section.

Co-culture dynamics involves the active phenotypic diversification of the

yeast population

We validated the fact that successive diauxic shifts promoted the maintenance of the yeast popu-

lation in the co-culture. However, the commitment to diauxic shift is known to be a mechanism

exhibiting a high variability from one yeast cell to another, and this mechanism has been

reported to be a major determinant of yeast fitness in carbon fluctuating environments [52,53].

Indeed, previous observations pointed out that some cells are able to switch quickly from one

carbon source to another (e.g., from GLU to ETH), while other cells switch more slowly or

never commit to the utilization of the alternative carbon source. This mechanism is closely

related to what is often termed as bet-hedging and involves the distribution of metabolic tasks

among microbial populations, e.g., by choosing between either the active investment in growth

or the reduction of growth to the benefit of alternative survival strategies (use of gluconeogenic

carbon sources such as ETH, accumulation of reserve carbohydrates such as glycogen) [54–56].

We then decided to use a bet-hedging fluorescent reporter to investigate the different growth/

metabolic strategies exhibited by yeast cells during the continuous co-culture at low GLU puls-

ing frequency. In this work, we decided to use a variant of the glc3 promoter designed to be a

fluorescent reporter of the trade-off between growth and stress response. The initial glc3 pro-

moter was fused with HSE elements of the hsp26 promoter to enhance the solubility of the fluo-

rescent protein transcripts and to obtain a more reliable signal [33]. The choice of this

transcriptional reporter was driven by the fact that its activation involves a growth trade-off.

Indeed, a systematic analysis of the genes exhibiting an induction profile anti-correlated with

the cellular growth rate has revealed a set of about 70 genes with such behaviour [55]. Among

them, genes related to the synthesis of reserve carbohydrates, such as trehalose (tsl1) and glyco-

gen (glc3), were identified. However, the correlation between the response of the bet-hedging

reporter and the metabolic activities of cells is not straightforward.

In this work, we decided to consider these metabolic activities based on the use of the cyber-

netic model variables, i.e., relative C values accounting for the pool of enzymes involved in

GLU respiration, GLU fermentation, ACE assimilation, and ETH assimilation, respectively. A

higher C value means more enzymes invested in the corresponding pathway and, therefore,

an increased metabolic flux through this pathway. Accordingly, we can reasonably assume that

if the bet-hedging reporter shows a level of expression anti-correlated to growth, its response is

also anti-correlated to the carbon flux invested in growth, directly linked with theCGLUoxidative

value (Fig 8A, see also Eq 1 and Eq 7). What is less clear is the possible correlation between the

response of the biosensor and the reassimilation of ETH and ACE.

We then challenged the response of the bet-hedging reporter in microfluidics (Fig 8B) and

chemostat (Fig 8E). The microfluidics data pointed out that, indeed, our bet-hedging reporter

exhibited anti-correlation between the level of expression and the growth (Fig 8B and 8C and

8D). More precisely, we observed a threshold effect when the amount of GLU perfused in the

microfluidics was decreased, with a significant increase of the GFP positive fraction of cells when

GLU concentration was switched from 0.15 to 0.1 mM. At this concentration range, the carbon

flux is redirected from growth to an alternative direction, such as stress response [54–56]. The

molecular component of this stress response was not analysed in detail, but it can be assumed that

growth-arrested cells displaying a high GFP content, when cultivated in microfluidics at 0.1 and

0.05 mM, could be more adapted to exhibit diauxic shift upon consumption of alternative carbon
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source. This hypothesis will be challenged later based on co-culture experiments. Additional che-

mostat experiments were also carried out with the reporter strain and pointed out an anti-correla-

tion between the global growth rate (as determined based on the dilution rateD) and the

accumulation of GFP-positive cells in the population (Fig 8E). Reduction in growth rate was also

accompanied by an increase of the phenotypic diversity of the population.

Based on this bet-hedging reporter, co- and mono-cultures were performed based on con-

tinuous cultivation at low-frequency GLU pulsing. On-line flow cytometry allowed us to keep

track of the population composition and the degree of heterogeneity for the expression of the

bet-hedging reporter for the yeast. The first observation is that the phenotypic heterogeneity of

the yeast cultivated alone was far below the one observed during yeast-bacteria co-cultures, as

observed based on the standard deviation of the GFP distribution inside the yeast population

(Fig 9A–9D), suggesting that microbial competition upon co-culture drives the yeast into an

active diversification process. We then computed the Crel values accounting for the pool of

enzymes involved in GLU respiration, GLU fermentation, ACE assimilation, and ETH assimi-

lation, respectively (Fig 9E and 9F). These values were fitted to the experimental growth rates

recorded based on on-line flow cytometry (S4 File). Again, strong differences were observed

between mono- and co-cultures. Indeed, in mono-culture, the diauxic shift exhibited sequen-

tial order with a peak in CGLUfermentative first, followed by a peak inCETH and, finally, a peak in

CACE (Fig 9E). This succession was not observed in the case of the co-culture, where the

changes associated with the enzymatic pools occurred more simultaneously (Fig 9F). In this

case, the higher phenotypic diversity experimentally observed based on the bet-hedging

reporter could be at the origin of the appearance of several subpopulations of cells with given

metabolic activities. Taken altogether, the data pointed out that co-culture stability could be

ensured by active diversification of the yeast population giving it more metabolic flexibility

and fitness under fluctuating environmental conditions.

Discussion

The stability of microbial co-cultures is a major line of research in systems and synthetic biology,

as well as in microbial ecology. Advances in systems and synthetic biology have led to the design

of synthetic genetic parts dedicated to maintaining species balance during cultivation. Most of

these systems are based on cross-feeding [3,57], and quorum sensing modules [58,59], and

requires the genetic engineering of the co-cultured microbial species. However, several types of

cross-feeding (e.g., Substrate, metabolite, mutual, augmented cross-feeds) can be found even

between wild type organisms, an thus defining their social interactions [60]. In this work, we have

focused our effort on the stabilization of wild-type strains of E. coli and S. cerevisiae considering

substrate competition and possible overflow metabolite cross-feeding. While these strains exhibit

very different growth properties, it has been possible to ensure their stable co-culture in continu-

ous bioreactor based on the generation of successive diauxic shifts through GLU pulsing. Based

on a microbial growth model relying on a cybernetic optimization routine of Monod-type equa-

tions, we were able to predict the existence of environmental scenarios leading to population sta-

bility. For this purpose, the analysis of the cybernetic variables was crucial since it led to the

generation of a transitory periodical effect allowing the yeast to coexist with the bacteria. More

precisely, upon GLU exhaustion, the yeast was able to increase its metabolic fitness based on the

reassimilation of the overflow metabolites ETH and ACE. Such diauxic effect has been previously

reported as a key driver leading to the stabilization of microbial communities [20,61,62].

Another aspect to be considered for stabilizing the microbial co-culture is the frequency at

which it is exposed to diauxic shifts. For this purpose, we applied GLU pulsing at different fre-

quencies (i.e., low and high) to the continuous co-cultures. As predicted based on the cybernetic
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Fig 8. A) Scheme representing the relationship between the stress response associated to substrate limitation and the

GFP fluorescence and growth rate, with several stress-to-growth intermediate states for S. cerevisiae. B) Microscopy

pictures corresponding to three microfluidic chambers at different GLU feed concentrations after 48 h of cultivation.

C) GFP positive cell fraction for each glucose concentration presented above (paired t-test results are shown: ����

p<0.0001). D) Instantaneous growth rate, calculated from time-lapse following individual cells in the above-presented

chambers, for all the GLU feed concentrations (paired t-test results are shown: ���� p<0.0001; �� p< 0.01). E)

relationship of the GFP fraction found in chemostat cultures at three increasing dilution rates (growth rates). The

horizontal line marks the GFP positive threshold found on flow cytometry data.

https://doi.org/10.1371/journal.pcbi.1010674.g008
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Fig 9. A) and C) Time evolution of the probability density functions for a low-frequency feeding regime continuous culture (A) S. cerevisiae and B) S.

cerevisiae in co-culture with E. coli. Time is color-coded from blue at 24h to red at 80h. B) and D) Time evolution of the mean (green line) and standard

deviation (grey bars) for the S. cerevisiae and S. cerevisiae in co-culture with E. coli, respectively. C) and E) Time evolution of the relative enzyme (Crel)

corresponding to each metabolic pathway for the S. cerevisiae and S. cerevisiae in co-culture with E. coli, respectively.

https://doi.org/10.1371/journal.pcbi.1010674.g009
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model, both frequencies led to co-culture stabilization. However, the co-cultures run at lower

GLU pulsing frequencies exhibited higher controllability on the co-cultivated strains, as deduced

based on the sustained oscillations observed for the abundance of each species. This result con-

firms that the frequency of the environmental perturbations is a critical determinant of microbial

stability, as suggested in the literature [9,11,12,63,64]. Also, biological oscillations have been previ-

ously observed in other microbial systems exposed to periodic stimulations in order to control

either cell density [14] or the expression of target genes [41,65].

Generally speaking, the presence of E. coli in the co-culture led to a decrease in the fitness

of S. cerevisiae during GLU utilization but to have a metabolic advantage during diauxic shifts.

Indeed, the comparison of the phenotypic diversity between the mono- and co-cultures with

GLU pulsing pointed out a higher heterogeneity of the yeast population when co-cultured

with E. coli, probably due to the scarcity of carbon sources under these conditions. The latter

resulted in higher flexibility for the yeast population for the consumption of ACE and ETH

upon diauxic shifts. We then further analysed one possible source for this metabolic fitness

and focused on the phenotypic diversity of the yeast population in mono- and co-culture. For

this purpose, we used a yeast transcriptional reporter of bet-hedging, i.e., the cellular decision-

making process driving the yeast into an actively growing state or to alternative states exhibit-

ing reduced growth but enhanced survival. The heterogeneity in growth and stress response

capability of the yeast population seemed to be at the origin of the higher fitness upon diauxic

shifts. Indeed, our data point out that, upon GLU pulse, the phenotypic diversity of the yeast

population increases as a direct consequence of the competition for the substrate with the bac-

teria. Since the role of phenotypic diversification on co-culture stability is still unclear with

contradictory results found in the literature [66–68], our approach could be used in the future

in order to investigate more in detail the relevance of such mechanisms.

Besides the technical challenges associated with the stabilization of microbial co-culture in

continuous bioreactor and the more fundamental aspects related to the impact of phenotypic

diversification, one other interesting point of this work is the possible generalization of our

findings to other species. For this purpose, we developed a modelling toolbox called

MONCKS, allowing us to assemble multiple ODEs-based metabolic models accounting for

individual microbial species. The only requirement for the application of MONCKS to the

simulation of microbial co-culture is the determination of the main metabolic pathways

involved in the assimilation of the primary substrates used for the growth of the individual spe-

cies (i.e., in our case GLU, but also all the side metabolites released upon overflow metabo-

lism). This metabolic pathway determination can be performed by product yield

characterization on single substrate growth experiments or by yield analysis from stoichiomet-

ric matrices reconstructed from partial (e.g., core-metabolism) or genome-scale annotations

[24,30,31,69,70]. It is relevant to state that the model can be extended within the same frame-

work to address more complex metabolite functions, internal fluxes, specific inhibitions, and

interactions using the same cybernetic modelling approach. Therefore, the presented frame-

work could be extended and refined with further experimental data to account for different

characteristics of specific microbial interactions. The model presented contributes towards the

construction of modular frameworks and virtual co-culture strains databases to understand,

design and control microorganism populations during continuous bioprocesses.
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4. Escalante A, Elena Rodrı́guez M, Martı́nez A, López-Munguı́a A, Bolı́var F, Gosset G. Characterization

of bacterial diversity in Pulque, a traditional Mexican alcoholic fermented beverage, as determined by

16S rDNA analysis. FEMS Microbiology Letters. 2004. https://doi.org/10.1016/j.femsle.2004.04.045

PMID: 15183874

5. Wang L, York SW, Ingram LO, Shanmugam KT. Simultaneous fermentation of biomass-derived sugars

to ethanol by a co-culture of an engineered Escherichia coli and Saccharomyces cerevisiae. Biore-

source Technology. 2019; 273: 269–276. https://doi.org/10.1016/j.biortech.2018.11.016 PMID:

30448678

6. Ly S, Bajoul Kakahi F, Mith H, Phat C, Fifani B, Kenne T, et al. Engineering Synthetic Microbial Commu-

nities through a Selective Biofilm Cultivation Device for the Production of Fermented Beverages. Micro-

organisms. 2019; 7: 206. https://doi.org/10.3390/microorganisms7070206 PMID: 31330825

7. Fifani B, Steels S, Helmus C, Delacuvellerie A, Deracinois B, Phalip V, et al. Coculture of Trichoderma

harzianum and Bacillus velezensis Based on Metabolic Cross-Feeding Modulates Lipopeptide Produc-

tion. Microorganisms. 2022;10. https://doi.org/10.3390/microorganisms10051059 PMID: 35630500

8. Grandel NE, Reyes Gamas K, Bennett MR. Control of synthetic microbial consortia in time, space, and

composition. Trends in Microbiology. 2021; 29: 1095–1105. https://doi.org/10.1016/j.tim.2021.04.001

PMID: 33966922

9. Rodrı́guez-Verdugo A, Vulin C, Ackermann M. The rate of environmental fluctuations shapes ecological

dynamics in a two-species microbial system. Ecology Letters. 2019; 22: 838–846. https://doi.org/10.

1111/ele.13241 PMID: 30790416

10. Dal Co A, Ackermann M, van Vliet S. Metabolic activity affects the response of single cells to a nutrient

switch in structured populations. Journal of The Royal Society Interface. 2019; 16: 20190182. https://

doi.org/10.1098/rsif.2019.0182 PMID: 31288652

11. Mancuso CP, Lee H, Abreu CI, Gore J, Khalil AS. Environmental fluctuations reshape an unexpected

diversity-disturbance relationship in a microbial community. Shou W, Walczak AM, Shou W, editors.

eLife. 2021; 10: e67175. https://doi.org/10.7554/eLife.67175 PMID: 34477107

12. Abreu CI, Andersen Woltz VL, Friedman J, Gore J. Microbial communities display alternative stable

states in a fluctuating environment. PLOS Computational Biology. 2020; 16: 1–17. https://doi.org/10.

1371/journal.pcbi.1007934 PMID: 32453781

13. Kylilis N, Tuza ZA, Stan G-B, Polizzi KM. Tools for engineering coordinated system behaviour in syn-

thetic microbial consortia. Nature Communications. 2018; 9: 2677. https://doi.org/10.1038/s41467-018-

05046-2 PMID: 29992956

14. Liao MJ, Din MO, Tsimring L, Hasty J. Rock-paper-scissors: Engineered population dynamics increase

genetic stability. Science. 2019; 365: 1045–1049. https://doi.org/10.1126/science.aaw0542 PMID:

31488693

15. Zengler K, Zaramela LS. The social network of microorganisms—how auxotrophies shape complex

communities. Nature Reviews Microbiology. 2018; 16: 383–390. https://doi.org/10.1038/s41579-018-

0004-5 PMID: 29599459

16. Burmeister A, Hilgers F, Langner A, Westerwalbesloh C, Kerkhoff Y, Tenhaef N, et al. A microfluidic co-

cultivation platform to investigate microbial interactions at defined microenvironments. Lab Chip. 2019;

19: 98–110. https://doi.org/10.1039/C8LC00977E PMID: 30488920

17. Lalwani MA, Kawabe H, Mays RL, Hoffman SM, Avalos JL. Optogenetic Control of Microbial Consortia

Populations for Chemical Production. ACS Synthetic Biology. 2021;10. https://doi.org/10.1021/

acssynbio.1c00182 PMID: 34351122

18. Burmeister A, Akhtar Q, Hollmann L, Tenhaef N, Hilgers F, Hogenkamp F, et al. (Optochemical) Control

of Synthetic Microbial Coculture Interactions on a Microcolony Level. ACS Synthetic Biology. 2021; 10:

1308–1319. https://doi.org/10.1021/acssynbio.0c00382 PMID: 34075749

19. Delvigne F, Baert J, Sassi H, Fickers P, Grünberger A, Dusny C. Taking control over microbial popula-

tions: Current approaches for exploiting biological noise in bioprocesses. Biotechnology Journal.

2017;12. https://doi.org/10.1002/biot.201600549 PMID: 28544731

20. Bloxham B, Lee H, Gore J. Diauxic lags explain unexpected coexistence in multi-resource environ-

ments. Molecular Systems Biology. 2022; 18: e10630. https://doi.org/10.15252/msb.202110630 PMID:

35507445

21. Kussell E, Leibler S. Phenotypic Diversity, Population Growth, and Information in Fluctuating Environ-

ments. Science. 2005; 309: 2075–2078. https://doi.org/10.1126/science.1114383 PMID: 16123265

PLOS COMPUTATIONAL BIOLOGY Controlling microbial co-culture

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010674 October 31, 2022 24 / 27

https://doi.org/10.1021/acssynbio.9b00316
https://doi.org/10.1021/acssynbio.9b00316
http://www.ncbi.nlm.nih.gov/pubmed/31751122
https://doi.org/10.1016/j.femsle.2004.04.045
http://www.ncbi.nlm.nih.gov/pubmed/15183874
https://doi.org/10.1016/j.biortech.2018.11.016
http://www.ncbi.nlm.nih.gov/pubmed/30448678
https://doi.org/10.3390/microorganisms7070206
http://www.ncbi.nlm.nih.gov/pubmed/31330825
https://doi.org/10.3390/microorganisms10051059
http://www.ncbi.nlm.nih.gov/pubmed/35630500
https://doi.org/10.1016/j.tim.2021.04.001
http://www.ncbi.nlm.nih.gov/pubmed/33966922
https://doi.org/10.1111/ele.13241
https://doi.org/10.1111/ele.13241
http://www.ncbi.nlm.nih.gov/pubmed/30790416
https://doi.org/10.1098/rsif.2019.0182
https://doi.org/10.1098/rsif.2019.0182
http://www.ncbi.nlm.nih.gov/pubmed/31288652
https://doi.org/10.7554/eLife.67175
http://www.ncbi.nlm.nih.gov/pubmed/34477107
https://doi.org/10.1371/journal.pcbi.1007934
https://doi.org/10.1371/journal.pcbi.1007934
http://www.ncbi.nlm.nih.gov/pubmed/32453781
https://doi.org/10.1038/s41467-018-05046-2
https://doi.org/10.1038/s41467-018-05046-2
http://www.ncbi.nlm.nih.gov/pubmed/29992956
https://doi.org/10.1126/science.aaw0542
http://www.ncbi.nlm.nih.gov/pubmed/31488693
https://doi.org/10.1038/s41579-018-0004-5
https://doi.org/10.1038/s41579-018-0004-5
http://www.ncbi.nlm.nih.gov/pubmed/29599459
https://doi.org/10.1039/C8LC00977E
http://www.ncbi.nlm.nih.gov/pubmed/30488920
https://doi.org/10.1021/acssynbio.1c00182
https://doi.org/10.1021/acssynbio.1c00182
http://www.ncbi.nlm.nih.gov/pubmed/34351122
https://doi.org/10.1021/acssynbio.0c00382
http://www.ncbi.nlm.nih.gov/pubmed/34075749
https://doi.org/10.1002/biot.201600549
http://www.ncbi.nlm.nih.gov/pubmed/28544731
https://doi.org/10.15252/msb.202110630
http://www.ncbi.nlm.nih.gov/pubmed/35507445
https://doi.org/10.1126/science.1114383
http://www.ncbi.nlm.nih.gov/pubmed/16123265
https://doi.org/10.1371/journal.pcbi.1010674


22. Yurtsev EA, Conwill A, Gore J. Oscillatory dynamics in a bacterial cross-protection mutualism. Proceed-

ings of the National Academy of Sciences. 2016; 113: 6236–6241. https://doi.org/10.1073/pnas.

1523317113 PMID: 27194723

23. Winkle JJ, Karamched BR, Bennett MR, Ott W, Josić K. Emergent spatiotemporal population dynamics

with cell-length control of synthetic microbial consortia. PLOS Computational Biology. 2021; 17: 1–23.

https://doi.org/10.1371/journal.pcbi.1009381 PMID: 34550968

24. Ramkrishna D, Song H-S. Dynamic Models of Metabolism: Review of the Cybernetic Approach. Bioen-

gineering,Food, and Natural Products. 2012; 58: 986–997. https://doi.org/10.1002/aic

25. Schreiber F, Littmann S, Lavik G, Escrig S, Meibom A, Kuypers MMM, et al. Phenotypic heterogeneity

driven by nutrient limitation promotes growth in fluctuating environments. Nature Microbiology. 2016; 1:

16055. https://doi.org/10.1038/nmicrobiol.2016.55 PMID: 27572840

26. Delvigne F, Zune Q, Lara AR, Al-Soud W, Sørensen SJ. Metabolic variability in bioprocessing: Implica-

tions of microbial phenotypic heterogeneity. Trends in Biotechnology. 2014; 32: 608–616. https://doi.

org/10.1016/j.tibtech.2014.10.002 PMID: 25457387

27. Thattai M, van Oudenaarden A. Stochastic Gene Expression in Fluctuating Environments. Genetics.

2004; 167: 523–530. https://doi.org/10.1534/genetics.167.1.523 PMID: 15166174

28. Kompala DS, Ramkrishna D, Jansen NB, Tsao GT. Investigation of bacterial growth on mixed sub-

strates: Experimental evaluation of cybernetic models. Biotechnology and Bioengineering. 1986; 28:

1044–1055. https://doi.org/10.1002/bit.260280715 PMID: 18555426

29. Varner J, Ramkrishna D. Metabolic Engineering from a Cybernetic Perspective Aspartate Familiy of

Amino Acids. Metabolic engineering. 1999; 1: 88–116. https://doi.org/1096-7176/99

30. Song H-S, Ramkrishna D, Pinchuk GE, Beliaev AS, Konopka AE, Fredrickson JK. Dynamic modeling of

aerobic growth of Shewanella oneidensis. Predicting triauxic growth, flux distributions, and energy

requirement for growth. Metabolic Engineering. 2013; 15: 25–33. https://doi.org/10.1016/j.ymben.2012.

08.004 PMID: 23022551

31. Aboulmouna L, Raja R, Khanum S, Gupta S, Maurya MR, Grama A, et al. Cybernetic modeling of bio-

logical processes in mammalian systems. Current Opinion in Chemical Engineering. 2020; 30: 120–

127. https://doi.org/10.1016/j.coche.2020.100660

32. Garcı́a-Timermans C, Props R, Zacchetti B, Sakarika M, Delvigne F, Boon N, et al. Raman Spectros-

copy-Based Measurements of Single-Cell Phenotypic Diversity in Microbial Populations. mSphere.

2020; 5: e00806–20. https://doi.org/10.1128/mSphere.00806-20 PMID: 33115836

33. Zid BM, O’Shea EK. Promoter sequences direct cytoplasmic localization and translation of mRNAs dur-

ing starvation in yeast. Nature. 2014; 514: 117–121. https://doi.org/10.1038/nature13578 PMID:

25119046

34. Verduyn C, Postma E, Scheffers WA, Van Dijken JP. Effect of benzoic acid on metabolic fluxes in

yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast.

1992; 8: 501–517. https://doi.org/10.1002/yea.320080703 PMID: 1523884

35. Delvigne F, Goffin P. Microbial heterogeneity affects bioprocess robustness: Dynamic single-cell analy-

sis contributes to understanding of microbial populations. Biotechnology Journal. 2014; 9: 61–72.

https://doi.org/10.1002/biot.201300119 PMID: 24408611

36. Sassi H, Nguyen TM, Telek S, Gosset G, Grünberger A, Delvigne F. Segregostat: a novel concept to

control phenotypic diversification dynamics on the example of Gram-negative bacteria. Microbial Bio-

technology. 2019; 12: 1064–1075. https://doi.org/10.1111/1751-7915.13442 PMID: 31141840
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