

Sur les suites de quadriques attachées aux points d'une surface Lucien Godeaux

Résumé

Détermination des cas où une quadrique des suites est fixe ou dépend d'un paramètre.

Citer ce document / Cite this document :

Godeaux Lucien. Sur les suites de quadriques attachées aux points d'une surface. In: Bulletin de la Classe des sciences, tome 59, 1973. pp. 121-124;

doi: https://doi.org/10.3406/barb.1973.60670

https://www.persee.fr/doc/barb_0001-4141_1973_num_59_1_60670

Fichier pdf généré le 04/06/2020

COMMUNICATIONS DES MEMBRES

GÉOMÉTRIE PROJECTIVE DIFFÉRENTIELLE

Sur les suites de quadriques attachées aux points d'une surface par Lucien GODEAUX

par LUCIEN GODEAUX

Membre de l'Académie

Résumé. — Détermination des cas où une quadrique des suites est fixe ou dépend d'un paramètre.

Dans une note déjà ancienne (1), nous avons attaché à nu point d'une surface (x) une suite de quadriques Φ , Φ^1 , ..., Φ^u , ... dont la première est la quadrique de Lie, deux quadriques consécutives de la suite se touchant en quatre points caractéristiques pour chacune des quadriques. D'un autre côté, Terracini a déterminé les surfaces dont les asymptotiques appartiennent à des complexes linéaires (2). Il se fait que pour ces surfaces, la quadrique Φ^1 est fixe. Dans cette note, nous recherchons dans quels cas la quadrique Φ^n est fixe, ou dépend d'un seul paramètre.

1. Soient (x) une surface non réglée rapportée à ses asymptotiques u, v et U, V les points qui représentent les droites xx_u , xx_v sur l'hyperquadrique Q de Klein de S_5 . Supposons que les asymptotiques u appartiennent à des complexes linéaires et les asymptotiques v à des complexes linéaires.

⁽¹⁾ Sur les lignes asymptotiques d'une surface et l'espace réglé (Bulletin de l'Académie royale de Belgique, 1927, pp. 812-826; 1928, pp. 31-41). Voir aussi La Géométrie différentielle des surfaces considérées dans l'espace réglé (Mémoires in-8° de l'Académie royale de Belgique, 1964).

⁽²⁾ TERRACINI, Sulle superficie aventi un sistema, o entrambi, de asintotiche in complessi lineari (Appendice IV au second volume de La Geometria projectiva differenziale de Fubini et Cech, Bologne Zanichelli, 1927).

Les points U, V sont transformés de Laplace l'un de l'autre et appartiennent à une suite de Laplace

...,
$$U^n$$
, ..., U^1 , U , V , V^1 , ..., V^n , ... (L)

Le point U^1 est le pôle par rapport à Q de l'hyperplan $UV^1V^2V^3$ qui représente un complexe linéaire Σ^u . Il en résulte que le point U^1 ne dépend que de v, comme les complexes Σ^u . La suite L s'arrête au point U^1 en présentant le cas de Laplace. Pour une raison analogue, la suite L s'arrête au point V^1 en présentant également le cas de Laplace.

Il en résulte que la quadrique Φ^1 est fixe.

Les directrices de Wilczynski sont représentées sur Q par les intersections de cette hyperquadrique avec la droite U^1V^1 . Il en résulte que les directrices de Wilczynski en un point x de la surface (x), sont les directrices de la congruence linéaire commune aux complexes Σ^u , Σ^v relatifs aux courbes u, v passant par le point x.

2. Reprenons la surface (x) et la suite de quadriques Φ , Φ^1 , ..., Φ^u , ... et recherchons dans quelles conditions la quadrique Φ^n soit fixe, c'est-à-dire indépendante de u, v. Les génératrices rectilignes de la quadrique Φ^n sont représentées par les intersections de Q avec les plans $U^nU^{n+1}U^{n+2}$ et $V^nV^{n+1}V^{n+2}$, conjugués par rapport à cette hyperquadrique. Pour que Φ^n soit fixe, ces plans doivent être fixes.

Considérons une courbe u sur la surface (U^{n-1}) . Les tangentes aux courbes v aux points de cette courbe u doivent former une développable dont l'arête de rebroussement doit appartenir à la surface (U^n) . Or celle-ci est un plan, dont cette développable se réduit à un cône dont le sommet U^n se trouve dans le plan en question. La suite L s'arrête donc au point U^n en présentant le cas de Laplace et U^n ne dépend que de v.

D'une manière analogue, on voit que la suite L s'arrête au point V^n en présentant le cas de Laplace, V^n ne dépendant que de u.

A la quadrique Φ^n correspondent les sections de Q par les plans $U^nU^n_vU^n_v$ et $V^nV^n_vV^n_v$.

3. Nous allons maintenant étudier les cas où la quadrique Φ^n dépend d'une seule des variables u, v, par exemple de v.

Supposons que seul le point Uⁿ soit un point d'arrêt pour la suite,

en présentant le cas de Laplace, mais que la courbe (U^n) ne soit pas comme dans le cas précédant une courbe plane.

M. Bompiani a démontré que dans le cas général, la suite L s'arrêtait au point V^{n+2} en présentant le cas de Goursat (1). Si la courbe (U^n) n'appartient pas à un hyperplan, le pôle de l'hyperplan $U^nU^n_vU^n_{vv}U^n_{vvv}U^n_{vvv}$ est le point V^{n+2} qui décrit une courbe (V^{n+2}) quand v varie.

L'espace à quatre dimensions $U^nU_v^nU_{vv}^nU_{vvv}^n$ est conjugué par rapport à Q à une droite. Le pôle de l'hyperplan $U^{n-1}U^nU_v^nU_{vv}^nU_{vvv}^n$ est le point V^{n+1} qui parcourt cette droite quand u varie. Cette droite est d'ailleurs tangente à la courbe (V^{n+2}) .

Le pôle du plan $U^{n-2}U^{n-1}U^nU^n_vU^n_vv$ est le point V^n qui lorsque u varie décrit une courbe dans le plan conjugué au plan osculateur à la courbe (U^n) . Les tangentes à cette courbe doivent rencontrer la droite (V^{n+1}) , donc elle est située dans un plan passant par (V^{n+1}) . Ce plan oscule la courbe (V^{n+2}) . On voit donc que les quadriques Φ^n sont représentées par les plans osculateurs aux courbes (U^n) et (V^{n+2}) . Elles dépendent donc de v.

4. Si l'on suppose que la courbe (U^n) appartient à un hyperplan, le point V^{n+2} est le pôle de cet hyperplan et est donc fixe. La suite L s'arrête au point V^{n+2} en présentant le cas mixte.

Le point V^{n+1} décrit quand u varie une droite passant par V^{n+2} et le point V^n une courbe située dans un plan passant par cette droite. La quadrique Φ^n dépend encore d'une seule variable v.

5. Supposons enfin que la courbe (U^n) appartienne à un espace à trois dimensions R et soit r la droite conjuguée de cet espace par rapport à Q.

A l'hyperplan $U^{n-1}R$ correspond un point de la droite r et lorsque u varie, ce point décrit cette droite

Le pôle V^n de l'hyperplan $U^{n-2}U^{n-1}U^nU^n_vU^n_{vv}$ lorsque u varie, décrit une courbe située dans le plan conjugué du plan $U^nU^n_vU^n_v$. Les tangentes à cette courbe doivent rencontrer la droite r, donc le plan de cette courbe passe par r. Il en résulte que les quadriques Φ^n ne dépendent que de v.

⁽¹⁾ BOMPIANI, Sull'equazione di Laplace (Rendiconti del Circolo Matematico di Palermo, 1912, t. 34, pp. 383-407).

6. En résumé, la condition nécessaire et suffisante pour que la quadrique Φ^u reste fixe lorsque u et v varient est que la suite L s'arrête aux points U^n , V^n en présentant le cas de Laplace.

La condition nécessaire et suffisante pour que la quadrique Φ^u ne dépende que de v est que la suite de Laplace s'arrête au point U^n en présentant le cas de Laplace.

Liège, le 13 février 1973.