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Abstract: Securidaca longepedunculata Fresen. is an overexploited forest species in the Lubumbashi
region (south-eastern DR Congo), as its roots are highly valued in traditional medicine. Conventional
propagation of this species is affected by seed dormancy and a high mortality rate during early
seedling development. To improve on existing methods, we developed an in vitro seed germination
protocol. After observing the germination rates, the effects of different doses (0.5, 1, 1.5, and 2 mg/L)
of cytokinins (6-benzylaminopurine, kinetin, and meta-topolin) on S. longepedunculata seedling
development were compared. Our results showed that soaking for 10 min in NaOCl (10%) followed
by 5 min in ethanol (70%) effectively reduced the death rate of seeds while increasing the germination
rate to almost 77%. The addition of cytokinins improved plantlet growth: a 12.2× increase in the
number of plantlets was obtained with 1.5 mg/L meta-topolin, while only a single stem was obtained
from the control. The effects of different auxin types on rhizogenesis did not differ significantly. The
best recovery and rooting were noted with microcuttings from the basal parts of S. longepedunculata
plantlets. Finally, the seedlings produced survived during the acclimatisation phase regardless of
the type of substrate used. The established protocol provides a means for large-scale production of
S. longepedunculata plantlets for the restoration of degraded landscapes and agroforestry.

Keywords: miombo woodland; medicinal plant; plant growth regulators; culture medium; microcut-
tings; agroforestry

1. Introduction

Forests provide many ecological goods and services to humanity [1]. The importance
of the ecosystem services provided by forests is hard to overstate: they contribute to global
climate stability, support biodiversity, protect soil and water resources, provide livelihoods
for local communities, offer spaces for recreation and meditation, and play an essential role
in the ecological resilience of our planet. The conservation and sustainable management of
forests is therefore essential to preserving these services and ensuring a sustainable future
for generations to come. In developing countries, more than 80% of the population depends
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on ecosystem services provided by forests [2]. This includes medicinal plants, which are
generally characterised by reduced side effects and lower costs [3–5]. Consequently, more
than half of the raw materials for modern medicines worldwide are of plant origin [6].

The excessive collection of plants for medicinal purposes can lead to deforestation. In
this context, reforestation seems to be a plausible technique for ecosystem restoration [7,8].
However, when resorting to reforestation, it can be difficult to find reliable sources of seeds
from native trees or trees adapted to local conditions in many regions [9–12]. Indeed, native
species are less used in reforestation due to their low germination capacity coupled with
high seedling mortality [13]. Reforestation can also reduce the genetic diversity of new
plantations by using seeds from a limited number of trees and often requires the collection
of seeds from natural habitats, which can lead to the disruption of existing ecosystems [14].
An alternative to manual seed collection for reforestation is micropropagation, which
enables plants to be multiplied from a small sample of selected plant material [15,16].
Micropropagation enables also the rapid multiplication of plants in the laboratory, which is
particularly useful for slow-growing or threatened species [17]. It also enables seedlings to
be produced without disturbing wild tree populations, thus contributing to biodiversity
conservation [18].

Consequently, micropropagation is a valid and reliable method for the large-scale prop-
agation of plant species [19] and can be initiated from various organs [20–22]. However, its
success depends mainly on the plant disinfection process [23], which allows the elimination
of pathogens before seeding [24]. In addition, the success of in vitro culture depends on the
species, cultivar, tissue type, composition of the culture medium, and age of the cultured
organ [25,26]. Moreover, cytokinins and auxins are both known to play an important role
in the regulation of plant cell proliferation and differentiation according to their types and
concentrations [27,28]. Bogaert et al. [29] showed that MemTR (6-(3-methoxybenzylamino)-
purine-9-riboside) performed well in the micropropagation of Petunia hybrida, while Bairu
et al. [30] reported higher multiplication rates with mT ([6-(3-hydroxybenzylamino)purine])
and MemTR cytokinins in Aloe polyphylla.

Covering an area of approximately 2.7 million km2 in Africa, the miombo woodland
supports the survival of local populations [31–33], including those of the Lubumbashi
region in the south-eastern DR Congo. In the rural area of the city of Lubumbashi, people
attempt to secure their livelihoods by slash-and-burn agriculture and the exploitation of
forest products [34–36]. As a result, the miombo woodland cover is decreasing at an annual
deforestation rate of about 5% around Lubumbashi city [37]. In the Lubumbashi plain,
with a total landscape area of 8877 km2, a 7% loss of miombo woodland was observed
between 2005 and 2011, compared with a 3.7% regeneration [38]. Among the products
collected in this region are medicinal plants, including Sterculia quinqueloba [39], Harungana
madagascariensis [40], and Psorospermum febrifugum [41].

In particular, Securidaca longepedunculata Fresen., a forest fallow species, is used in the
treatment of various diseases, including gastrointestinal ailments, sexually transmitted
infections, skin infections, fever, pneumonia, toothache, liver disease, bronchitis, rheuma-
tism, and snakebites [42]. The extract of this plant is rich in anti-inflammatory, antiulcer,
antianemia, and antiplasmodial properties [43]. The seeds are used for snakebites, whereas
the bark is used for stomach problems and as an arrow poison antidote [44]. Because of all
these attributes, the organs of S. longepedunculata are sold in all the markets of the city of
Lubumbashi (population over 3 million), with a profit margin of almost 200% [45]. This
situation is increasing the anthropogenic pressure on S. longepedunculata and threatens the
survival of its individuals collected by uprooting before flowering [46].

Propagation methods that could facilitate the planting of S. longepedunculata in agro-
forestry systems have been identified [47]. Since its seed dormancy, seedling mortality, and
the slower growth of young plants limit its generative reproduction [48], in vitro propa-
gation using local ecotypes is beginning to emerge [47]. Indeed, in Nigeria, regeneration
of S. longepedunculata through mature zygotic embryo culture was improved by using an
appropriate concentration of sugar and plant growth regulators [43]. In Ethiopia, Lijalem
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et al. [47] revealed that germination and micropropagation of both coated and de-coated
seeds of S. longepedunculata under different combinations of phytohormones resulted in
different responses according to shoot number and length per explant.

Currently, an in vitro germination and micropropagation protocol adapted to S. longepe-
dunculata ecotypes does not exist within the region of Lubumbashi.

Therefore, the objective of the present study was to establish an in vitro regeneration
protocol for S. longepedunculata by identifying an initiation protocol and the appropriate
culture medium for the derived seedlings with different types and doses of cytokinins. We
tested the hypothesis that meta-topolin is more suitable than the classical benzyladenine to
induce a high proliferation rate.

2. Materials and Methods

This study was conducted in the city of Lubumbashi (11◦27′–11◦47′ S and 27◦19′–27◦40′ E
the capital of Upper Katanga Province in south-eastern DR Congo. The annual rainfall
in Lubumbashi is about 1200 mm, and the temperature varies between 17 and 33 ◦C [49].
During the second half of the last century, the average annual temperature was about
20.1 ◦C [50], but steady warming has been documented [50]. The characteristic soil of the
region is Ferralsol, with acidic pH, low mineral nutrient content, and high concentrations
of Fe and Al [51,52]. The dominant forest is the miombo woodland, which is undergoing
severe degradation due to anthropogenic activities [53]. Agriculture, livestock, services,
mining, and trade are the main activities in the city [54], where more than 3 million people
live [55].

2.1. Initiation of S. longipedunculata Seeds

The S. longepedunculata seeds used as explants were obtained from the Luishwishi
Reserve, a protected concession located in the north of Lubumbashi city (11◦29′26.9′′ S and
27◦35′58.9′′ E). Five healthy plants with no evidence of pathogen attack or root harvesting
were selected as mother plants for the production of physiologically mature seeds [56].
To reduce anthropogenic disturbances during fruit filling and ripening, the seed plants
were regularly monitored [47]. The trial was conducted from July to October 2022, during
the dry season in the region. After collection, seed-bearing fruits were transported to the
laboratory and placed in a freezer at 20 ◦C; only fruits of homogeneous size [57] were
kept. After sorting, the fruits obtained were soaked in tap water for 48 h and then shelled
to eliminate non-viable seeds [58,59]. The selected viable seeds were disinfected in six
solutions consisting of sodium hypochlorite (NaOCl 10%) and ethanol (70%) under different
soaking times (Table 1), in a completely randomised design with twenty-four replications,
from March to April 2022. Thereafter, seeds were rinsed three times for three minutes in
sterile distilled water under a laminar flow hood to remove the disinfectant solution [60,61]
and transferred to a jar filled with 50 mL of a solid Murashige and Skoog (MS) medium [62]
prepared according to the formulation of Mazinga et al. [63]. Seeds of S. longepedunculata as
explants were sterilised under different soaking times in the disinfection solution. The jars
were placed in the culture chamber at a temperature of 25 ◦C with an alternating light/dark
regime of 16 h/8 h [64] and were observed daily for seed contamination and rot and to
calculate germination rates [65,66].

Table 1. Disinfection solutions of S. longepedunculata seeds according to soaking times, decreasing for
NaOCl (10%) and increasing for C2H5OH (70%).

Treatment Sodium Hypochlorite (10%) Alcohol (70%) Reference

Treatment 1 20 min 30 S [67]
Treatment 2 15 min 1 min [56]
Treatment 3 15 min 2 min [68]
Treatment 4 10 min 5 min [27]
Treatment 5 10 min 10 min [69]
Treatment 6 5 min 10 min [70]
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2.2. Influence of the Addition of Cytokinins to the Culture Medium

Three types of cytokinins, 6-Benzilaminopurine, kinetin, and meta-topolin, were
obtained from the in vitro culture laboratory of the University of Ghent and the Haute
Ecole Provinciale de Hainaut in Belgium and applied in four doses (0.5, 1, 1.5, and 2 mg/L).
A treatment without cytokinins was used as a control. The different treatments were
replicated six times, and the experiment was carried out in a completely randomised design.
Indole-3-acetic acid (IAA) was added as a supplement to the auxin/cytokinin hormone
balance at a dose of 0.1 mg/L [71], with the exception of the control (no hormone). The
culture medium used was that of Murashige and Skoog [61], according to the formulation
of Ilczuk et al. [72].

S. longepedunculata seeds disinfected after soaking for 48 h in tap water were then
shelled and rinsed three times in sterile distilled water under a laminar flow hood [73].
Thereafter, they were inoculated into a 50 mL test tube containing 10 mL of culture medium.
Baskets containing 24 test tubes each (with one basket considered as the experimental unit
for each treatment) were placed on a shelf in the culture chamber at 25 ◦C with a 16 h/8 h
alternation of light/darkness to allow for better seed germination [66]. The observations
included the germination rate and the number of plantlets.

2.3. Influence of Microcutting Part and Auxin Type on In Vitro Rhizogenesis of
S. longepedunculata

The S. longepedunculata microcuttings used in this phase were derived from in vitro
proliferation of seeds in a cytokinin-enriched medium (see Section 2.2). Having produced
an average of ten plantlets per seed sown, the plantlets were segmented to obtain more
rooted vitroplants in a shorter space of time. Microcuttings 1 cm in size [27] with at least
one germinal bud were selected and categorised into apical, median, and basal cuttings.
These explants were seeded in tubes packed with 10 mL of culture medium enriched with
three types of auxins (Indole-3-acetic acid, 1-naphthalene acetic acid, and indole-3-butyric
acid) + 0.1 mg/L BAP. Nine treatments were obtained from the combinations of the three
microcutting parts in culture media enriched with the three different auxin types. Auxin
type was considered as the main factor, while the microcutting part was subordinate to
it. The baskets of tubes (six baskets per treatment) were placed in the culture chamber
at a temperature of 25 ◦C, with a 16 h/8 h alternation of light and darkness [64]. In this
trial, observations included the rate of recovery and rooting of microcuttings, as well as the
number and length of roots [74].

2.4. Acclimatisation of S. longepedunculata Vitroplants

The rooted microcuttings were previously washed with distilled water to remove the
culture medium. Next, the vitroplants were acclimatised for one month and transferred to
a polyethene bag filled with one of three types of substrates (agrarian soil, undisturbed soil,
and a mixture of agrarian and undisturbed soil) in a completely randomised design with
12 replicates. Agrarian and undisturbed soils were collected to a depth of 0–50 cm with a
hoe at the University of Lubumbashi agricultural farm (11◦34′55.66′′ S and 27◦24′52.97′′ E)
and Luswishi Reserve, respectively. The seedlings were sown after watering to the field
capacity of the substrate, which had a pH of 5.5. Daily watering with 20 cl of tap water was
carried out during the acclimatisation phase. Recovery rate (30 days after plantlet planting)
and seedling height (60 days after plantlet planting) were the main observations made.

2.5. Data Analysis

The data set collected in this study was subjected to a Shapiro normality test, consid-
ered to be the most reliable test determining the distribution of the collected data [75]. To
test whether the duration of seeds’ soaking in the disinfection solution had an influence
on the contamination, death (seed burning), and germination rate [76]—as well as the
influence of substrate type on the acclimatisation of S. longepedunculata vitroplants—a
one-way analysis of variance (ANOVA) at the 5% level was performed using R software. A
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factorial two-way ANOVA was used to evaluate the effects of two independent factors—
namely cytokinin type and dose—on the in vitro regeneration capacity. The test was also
used to evaluate the effect of auxin type and microcutting on the rhizogenesis process of
S. longepedunculata. The mean values that showed significant differences were subjected to
the Tukey test for pairwise comparison of means.

3. Results
3.1. Sanitisation of S. longepedunculata Seeds after Soaking at Different Times in Sodium
Hypochlorite (10%) and Ethanol (70%)

The results of the ANOVA showed significant differences in the seed contamination
and death rate under different seed soaking times (p = 0.023; Table 2). Indeed, the contam-
ination rate varied from 13.2 ± 1.7% to 36.5 ± 19.1%. The seeds with a soaking time in
ethanol of less than 5 min had a high contamination rate (36.5 ± 19.1%), whereas those
with a soaking time in ethanol of 5 min showed some decontamination efficiency, with a
contamination rate lower than 20%. Finally, a low seed death rate (9.9± 5.9%) was recorded
when S. longepedunculata seeds were soaked for 15 min in NaOCl (10%) and then in C2H6O
followed by 10 min in NaOCl (10%). Conversely, the highest seed death rate (33.2 ± 22.3%)
was obtained with a 10 min soak in 10% NaOCl followed by a 10 min soak in 70% ethanol
(p = 0.022; Table 2). The next-highest seed death rate (of about 33%) was from a 5 min
soak in 10% NaOCl followed by 10 min in 70% ethanol. This suggests that with the same
soaking time (10 min) in 70% ethanol, soaking S. longepedunculata seeds beyond 5 min in
10% sodium hypochlorite solution slightly increased the death rate (Table 2).

Table 2. Contamination rate (%), death rate (%), and germination rate (%) of S. longepedunculata seeds
after disinfection in different solutions. Each treatment consisted of twenty-four replicates. Means
followed by the same letter within each column are not significantly different according to Tukey’s
test at p < 0.05.

Treatment Contamination Rate (%) Dead Rate (%) Germination Rate (%)

Treatment 1 33.2 ± 22.3 a 19.8 ± 17 ab 50 ± 17.9 ab
Treatment 2 36.5 ± 19.1 a 13.2 ± 17 ab 50.1 ± 21.2 ab
Treatment 3 29.9 ± 24.6 a 26.6 ± 26.3 ab 46.7 ± 23.5 b
Treatment 4 13.2 ± 1.7 b 9.9 ± 5.9 b 76.8 ± 22.4 a
Treatment 5 13.2 ± 1.7 b 36.5 ± 19 a 50.0 ± 17.9 ab
Treatment 6 13.3 ± 2.3 b 33.2 ± 22.3 ab 53.5 ± 23.5 ab

p 0.023 0.022 0.029
Treatment 1: 20 min in 10% sodium hypochlorite and 30 seconds in 70% ethanol; Treatment 2: 15 min in 10%
sodium hypochlorite and 1 min in 70% ethanol; Treatment 3: 15 min in 10% sodium hypochlorite and 2 min in
70% ethanol; Treatment 4: 10 min in sodium hypochlorite 10% and 5 min in ethanol 70%; Treatment 5: 10 min in
sodium hypochlorite 10% and 10 min in ethanol 70%; and Treatment 6: 5 min in sodium hypochlorite 10% and
10 min in ethanol 70%.

A discrimination between mean values was obtained from an ANOVA on the germi-
nation rate of S. longepedunculata seeds under the influence of disinfection time (p = 0.029).
None of the treatments are significantly different except Treatment 3, which is signifi-
cantly worse than Treatment 4. Indeed, seeds disinfected with NaOCl (10%) coupled with
C2H5OH (70%) for 10 and 5 min of soaking, respectively, had a better germination rate
(76.8 ± 22.4%), whereas soaking for 15 min in NaOCl (10%) and then 2 min in C2H5OH
(70%) had a 46.7 ± 23.5% germination rate—the lowest value (Table 2).

3.2. Proliferation of S. longepedunculata Plantlets after Enrichment of the Culture Medium with
Different Types and Doses of Cytokinins

The two-factor ANOVA results for the interaction between the type and concentration
of cytokinins showed significant differences in the number of plantlets (Table 3), but not in
the germination rates. Overall, the obtained results show that the number of plantlets was
high with a concentration of cytokinin of 1.5 mg/L (11.69, 12.04, and 12.21, respectively,
with BAP, Kin, and mT) and 2 mg/L (10.82, 11.47, and 11.91, respectively, with BAP, Kin,
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and mT). Regardless of the type of cytokinin, a low number of plantlets (6.87± 0.8 plantlets
for kinetin, 7.45 ± 1.4 plantlets for 6-benzylaminopurine, and 7.52 ± 1.1 plantlets for
meta-topolin) was recorded at concentrations of 0.5 mg/L. In contrast, the medium culture
without cytokinins yielded one plantlet (1.2 ± 0.4) per seed sown (Table 3; Figure 1).

Table 3. Germination rate (%) and number of plantlets produced by seeds of S. longepedunculata
under the influence of cytokinin type and concentration. Each treatment consisted of six replicates.
Means followed by the same letter within each column are not significantly different according to
Tukey’s test at p < 0.05.

Type of Cytokinin Concentration of
Cytokinin (mg/L)

Germination Rate
(%) Plantlets Number

Without 0 79.17 ± 41.4 1.2 ± 0.4 g

BAP

0.5 91.67 ± 28.23 7.45 ± 1.4 f
1 95.83 ± 20.41 9.61 ± 1.2 e

1.5 95.83 ± 20.41 11.69 ± 1.4 abc
2 95.83 ± 20.41 10.82 ± 1.6 bcde

Kin

0.5 95.83 ± 20.41 6.87 ± 0.8 f
1 95.83 ± 20.41 10.21 ± 1.2 de

1.5 91.67 ± 28.23 12.04 ± 1.3 ab
2 95.83 ± 20.41 11.47 ± 1.2 abcd

mT

0.5 95.83 ± 20.41 7.52 ± 1.1 f
1 91.67 ± 28.23 10.63 ± 1.1 cde

1.5 95.83 ± 20.41 12.21 ± 1.5 a
2 95.83 ± 20.41 11.91 ± 1.04 abc

p 0.74 0.000
BAP: 6-benzylaminopurine; Kin: kinetin; mT: meta-topolin; 0.5: 0.5 mg/L; 1: 1 mg/L; 1.5: 1.5 mg/L; and
2: 2 mg/L.
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Figure 1. In vitro regeneration of S. longepedunculata in hormone-free culture medium (a) and in
cytokinin-enriched (meta-topolin 1.5 mg/L) medium, inducing plantlet proliferation (b). The tubes
are placed on a grey-bottomed shelf in the culture chamber.

3.3. Recovery and Rooting of S. longepedunculata following Microcutting Culture-Medium
Enrichment with Different Types and Doses of Auxins

The results of the recovery rate, rooting rate, number of roots per microcutting, and
root length due to the interaction between auxin type and microcutting part showed
significant differences in the two-factor ANOVA (p = 0.001, p = 0.000, p = 0.000, and
p = 0.012, respectively). For the rooting rate, the results obtained showed that all treatments
were similar, with the exception of basal cuttings combined with IAA (90.00%), which was
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better than basal cuttings, whatever the type of IAA (35%, 32.5%, and 30%, respectively
with IAA, NAA, and IBA). Furthermore, whatever the type of auxin, all treatments showed
similar performance, with the exception of apical cuttings, which showed poor performance
in terms of root number (between 38.57 and 47) and length (1.33 cm, 1.66 cm, and 1.5 cm,
respectively, with IAA, NAA, and IBA) compared with basal cuttings. Finally, although the
ANOVA results showed significant differences between treatments, the results obtained
show similar values (around 1) for rooting rate (Table 4).

Table 4. Recovery rate (%), rooting rate (%), length of root, and number of roots of S. longepedunculata
microcuttings under the influence of auxin type: (IAA: indole-3-acetic acid, NAA: 1-naphthalene
acetic acid, and IBA: indole-3-butyric acid) and the part of the cutting (apical, median, and basal).
Each treatment consists of six replicates. Means followed by the same letter in each column are not
significantly different according to the Tukey test at p < 0.05.

Auxin Types Cutting Part Rooting Rate (%) Number of Roots Length of Roots (cm) Rooting Rate (%)

IAA
Apical 35.00 ± 27.77 b 38.57 ± 20.35 c 1.33 ± 0.51 c 0.79 ± 0.40 bc

Median 50.00 ± 33.81 ab 48.00 ± 24.66 bc 1.83 ± 0.40 bc 1.04 ± 0.19 ab
Basal 90.00 ± 10.69 a 82.50 ± 15.81 a 2.75 ± 0.46 a 1.22 ± 0.21 a

NAA
Apical 32.50 ± 23.75 b 45.00 ± 12.25 bc 1.66 ± 0.51 c 0.75 ± 0.22 b

Median 42.50 ± 36.15 ab 64.00 ± 16.73 abc 1.60 ± 0.54 c 0.75 ± 0.25 b
Basal 75.00 ± 33.38 ab 85.71 ± 15.12 a 2.57 ± 0.53 ab 1.07 ± 0.31 ab

IBA
Apical 30.00 ± 33.81 b 47.50 ± 15.00 bc 1.50 ± 057 c 0.81 ± 0.23 abc

Median 42.50 ± 29.15 ab 73.33 ± 10.33 ab 1.83 ± 0.40 bc 0.91 ± 0.30 abc
Basal 72.50 ± 33.70 ab 85.71 ± 15.12 a 2.71 ± 0.48 ab 1.21 ± 0.36 a

p 0.001 0.000 0.000 0.012

3.4. Acclimatisation of S. longepedunculata Vitroplants

The recovery rate of seedlings ranged from 85.00± 16.79% (agrarian soil + undisturbed
soil) to 85.63 ± 20.32% on agrarian soil, with similar values to those recorded on undis-
turbed soil. However, the agrarian soil yielded low-growing seedlings of 15.71 ± 2.07 cm,
whereas the high growth performance of S. longepedunculata plants was noted on undis-
turbed soil at 18.95± 2.07 cm. Despite this, the results of the ANOVA showed no significant
difference between the types of substrates on all parameters observed in the acclimatisation
phase on S. longepedunculata vitroplants (Table 5).

Table 5. Recovery and growth of S. longepedunculata vitroplants microcut under the influence of
substrate type in the nursery. Each treatment consisted of twelve replicates. The presence of identical
letters in the same column means that there was no difference between the treatments according to
an analysis of variance at a 5% threshold.

Substrate Types Recovery Rate (%) Height of Plantlets (cm)

Agrarian soil 85.63 ± 20.32 a 15.71 ± 2.07 a
Undisturbed soil 85.63 ± 20.32 a 18.95 ± 2.07 a

Undisturbed soil + agrarian soil 85.00 ± 16.79 a 16.72 ± 2.11 a

p 0.986 0.498

4. Discussion
4.1. What In Vitro Regeneration Protocol Is Best for S. longepedunculata, a Species Overexploited
for Its Medicinal Virtues in the Lubumbashi Region?

For its best expression in in vitro culture, the explant should be free of pathogens, and
several disinfection solutions are used for this purpose [70,77]. Since no single disinfectant
is able to kill the pathogens that can develop on the propagating organs, several types of
disinfectant in various proportions are used. We found that soaking S. longepedunculata
seeds in ethanol for less than five minutes resulted in a contamination rate of 30%, while
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longer durations of soaking in ethanol (10 min) resulted in a loss of seeds due to burning.
In line with our results, Lijalem et al. [47] revealed that increasing Clorox concentration
increased the decontamination but decreased the viability of S. longepedunculata seeds
in in vitro propagation. Indeed, the extension of the soaking time beyond five minutes
becomes harmful for the seeds because of the toxicity of the solution. Guanih et al. [78]
found that sterilisation of seeds of the medicinal plant Dryobalanops lanceolata with 50%
Clorox concentration for more than 20 min broke the seed coat and reduced seed viability.
Badou et al. [24] and Contreras-Loera et al. [79] stated that when soaking the explant in a
sanitising solution, a short soaking time led to contamination, while a long soaking time
led to burning—two factors responsible for the reduction in the germination rate. The
results we obtained on the contamination and death rate of S. longepedunculata confirm our
hypothesis that an intermediate soaking time (between 5 and 10 min) would be the most
suitable for the sanitation of S. longepedunculata seeds.

Furthermore, cytokinins play various roles during plant development, acting in collu-
sion with other hormones—preferentially auxins—on the regulation of cell division and
differentiation [80]. Thus, the addition of cytokinin quantities to the culture medium in this
study allowed a significant proliferation of axillary stems in S. longepedunculata [19]. This
result confirms the postulation of Bultynck and Lambers [81] that cytokinins induce cell
division, one of the physiological functions necessary for plant propagation. Furthermore,
when using cytokinins or any other hormones, two factors influence the response of the ex-
plant: namely, the form (type) and the quantity supplied [81]. Lower doses of exogenously
applied cytokinins increased the activation of mitogen-associated protein kinase, while
higher doses decreased its activation, suggesting a balanced level of cytokinins is required
to increase plantlet production [82,83]. Our results also show that meta-topolin resulted in
a slightly higher number of plantlets, corroborating the results of the micropropagation
of A. polyphylla seedlings [84]. Cara et al. [85] obtained an increase in the number of ax-
illary stems in C. spinosa by enriching the culture medium with 1.4 mg/L of a cytokinin
and not at any other concentration. Mazinga et al. [86] also obtained better proliferation
of banana shoots in in vitro culture using meta-topolin. Indeed, the response of plants
to different types and concentrations of growth regulators varies because of differences
in their endogenous levels of growth regulators [47]. Our results confirm that an inter-
mediate concentration of cytokinins induces a significant proliferation of axillary stems
in S. longepedunculata, and that meta-topolin promotes greater proliferation compared to
other cytokinins.

No significant difference was obtained in the recovery and growth in the size of
S. longepedunculata seedlings on different substrates. This result is similar to that obtained
by Mazinga et al. [56] on Moringa oleifera Lam., suggesting that plant recovery is more de-
pendent on material quality and climatic conditions, such as water [87] or temperature [88].
Indeed, the similar height growth of S. longepedunculata vitroplants, regardless of the type of
substrate, is justified by the fact that plantlets were grown on unique soil types (Ferralsols),
one of the main characteristics of which is the deficiency of major mineral elements [89].

Obtaining adventitious roots is the major constraint to be overcome in order to achieve
successful plant cuttings [90]. Indeed, the appearance of roots on cuttings is a unique and
complex process [91]. In S. longepedunculata, this process varied depending on the part
of the microcutting produced: basal cuttings had a higher recovery rate than the median
and apical cuttings. Henselova et al. [92] also observed better recovery of basal cuttings
due to their physiological maturity and thermal plasticity, which facilitates adaptability to
recovery. De Klerk [93] reported that, depending on the species, the basal part lends itself
to easy rooting, which is also confirmed by our results. However, our results highlight the
absence of a preference of S. longepedunculata for a particular auxin type, which contrasts
with Ansar et al. [94], who noted a better performance of indole-3-butyric acid in Olea
europaea L. root proliferation. Pierik [95] reported that culture medium supplemented
with auxin at low concentrations in combination with cytokinin promoted the growth and
formation of new shoots, consequently increasing the plantlet multiplication rate.
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4.2. Conservation Implications

In the Lubumbashi region, there is a currently significant increase in people using
medicinal plants, including S. longepedunculata, for the relief of various diseases [95–97].
Such heavy reliance on miombo woodland for the collection of therapeutic plants—coupled
with other practices, such as cutting of trees for charcoal production, urbanisation, and
mining activities, mortgages the existence of the forest [31,34,98]. The ability to propose a
rapid propagation protocol for a forest species that has a low regeneration capacity in the
wild is important for the sustainability of its populations. Indeed, as S. longepedunculata
is highly prized in Lubumbashi, its rapid regeneration would allow it to be integrated
into a program restoring degraded landscapes [9,99,100]. A large number of plantlets
obtained from microcutting can serve as explants for rhizogenesis induction [10,69,101].
Furthermore, after root production, these seedlings will be acclimatised and eventually
used in the reforestation program. They can also be associated with crops: this option
is particularly interesting, as S. longepedunculata leaf litter may be used to increase crop
yields [102], as well as increase farmers’ incomes [103]. In addition, with the constant
regression of green wooded areas in Lubumbashi [52], urban forestry is expanding into
residential plots through the planting of ornamental and utility species, including those of
medicinal value [104,105]. S. longepedunculata seedlings can therefore be planted in plots as
a local source of fresh medicinal roots for the community, thus better preserving their active
ingredients. Furthermore, studies have shown the potential of in vitro regeneration to
improve the concentration of secondary metabolites in wild medicinal plants [106], which
may broaden their pharmacological applications. In an environment where most foodstuffs
sold contain high levels of toxic metals [107], in vitro micropropagation also appears to be
a low-cost way to limit the soil-to-plant transfer of toxic metals [108].

Our study of the in vitro multiplication of S. longepedunculata—while potentially very
useful and beneficial—also has certain limitations. The first relates to cost and complexity.
Indeed, in vitro multiplication techniques can be costly and require specialised equipment,
facilities, and skills [108,109]. Secondly, in vitro cultures are susceptible to microbial con-
tamination, which can compromise the purity of cultures and the validity of results [110].
Thirdly, in vitro propagation can lead to a reduction in genetic diversity compared with
the mother plants, which may have implications for the genetic stability and medicinal
efficacy of plants [111]. Fourthly, in vitro culture conditions can be very different from the
natural conditions under which plants grow [112]. This can lead to differences in the bio-
chemical and medicinal properties of plants produced in vitro compared with those found
in their natural environment [113]. Finally, the transfer of results to large-scale production
is also a challenge, as cultural conditions need to be adapted to ensure consistent yield and
quality [114]. Despite these limitations, in vitro propagation remains a valuable tool for the
rapid and controlled propagation of plant species of medicinal interest [115]. However, it
is essential to recognise these limitations and take them into account when assessing the
relevance and applicability of the results of such a study [116].

5. Conclusions

This study aimed to achieve rapid proliferation of S. longepedunculata plantlets by
elucidating the optimal type and effective amount of cytokinins after seed disinfection.
This was conducted through two trials and under a completely randomised design.

The obtained results confirm that the average soaking time of S. longepedunculata seeds
in a disinfection solution allows for efficient sanitation. Soaking for 10 min in NaOCl
followed by 5 min in ethanol was identified as the most effective method, as it increased
the germination rate by significantly reducing the rates of contamination and scorching.
Furthermore, the addition of intermediate doses of cytokinins increased the proliferation of
plantlets from a single explant, while meta-topolin slightly increased the number of plantlets
compared to other types of cytokinin at the same dose. The culture medium enriched with
1.5 mg/L meta-topolin promoted the induction of a high number of S. longepedunculata
plantlets. However, no significant differences were obtained with the three auxin types in
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the rhizogenesis process. Microcuttings of the basal parts of the stem had a higher recovery
rate, rooting rate, number of roots per microcuttings, and mean root length than the apical
parts. The results of the ANOVA showed no significant difference between the types of
substrates on all parameters observed in the acclimatisation phase on S. longepedunculata
vitroplants.

By producing many plantlets from a single seed, this study opens the way for the rapid
proliferation of S. longepedunculata with the use of plantlets as explants in rhizogenesis. The
seedlings produced can be used to restore degraded landscapes, used in association with
crops to increase yield and farmer income, or installed in residential plots.
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