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Introduction
Motivation

• Thermoplastic composites with remolding capabilities [1 
Burgoa 2023]

• High mechanical loads and temperatures (~200 ◦C) 

• Need for a finite strain thermoviscomechanical  model 
for polymers - Geometric and Material nonlinearities!

Modelling Requirements

• Adaptability to high strain rates 

• Glass Transition Phenomena  (Glass <-> Rubber)

 - Steep decline in material moduli and strengths

 - Range of temperatures 

 - Variable Tg range 

• Material dependency 

 - Calibration -> Experiments 
Cyclic Loading Experiments 
(Provided by Experimental Partner - Leartiker)

Experimental Data

Uniaxial compression or 

polycarbonate (PC) at 

strain rate of 0.01s-1 (top) 

and temperature of 25 ̊C 

(bottom) [2 Richeton 2006].
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Generalised Thermo(visco)mechanics

Compression Tests on RTM6 Epoxy [3 morelle 2017]

Thermo(Visco)Elasticity (TVE) – Maxwell Model + TTSP

Additional Effects – Elastic Hardening [4 Srivatsava 2010]

Thermo(Visco)Plasticity (TVP) – Power Law YF + Perzyna Flow 
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• Hookean Hyperelastic term (𝜓∞) - Bilogarithmic in logarithmic strain 
tensor (Ee) .

• Hookean Viscoelastic Free Energy (𝜓𝑣𝑒) – Bilogarithmic in log strain 
tensor (Ee) and internal variable tensor (𝚪𝑖). 

• Consistent Corotational Kirchhoff stress (𝜏) in volumetric and deviatoric 
terms.

• Hyperelastic extra branch (𝜓∞
𝑒𝑥𝑡𝑟𝑎) -> 𝑎 and 𝑏 scalars as sigmoid functions 

of the log strain. 

Thermo(Visco)Elastic Model

Generalised Maxwell model

ODEs for internal variable (𝚪𝑖). To solve for 𝚪𝑖  using TTSP! 

Assuming, 𝑘𝑖  = 𝑔𝑖  and constant Poisson’s ratio.



TVE - Time Temperature 
Superposition Principle (TTSP) 

Integrations are instead performed in material time -> 
shifted laboratory time. Implemented using TTSP.

• Stress relaxation in shifted laboratory time.

• WLF Shift Factor (aT), Tref is taken a little lower than Tg.

 

• Convolution Integrals for stress.

• Solution with recursive addition for previous time 
steps.

Shift factor 
obtained from 
DMA.



Planned Experiments

1. DMA Tension Mode - TVE shift factor and relaxation 
spectrum.

2. QS Tension Tests - Stress strain isotherms for TVP calibration.

3. Thermal Property Tests 

• DSC -> Specific Heat (Cp) 

• TMA -> Coefficient of Thermal Expansion (CTE) – 
zero/small force

4. QS Compression Tests – Tension-compression asymmetry.

5. Cyclic Loading Tests - Stress strain isothermal cycles at 
different temperatures.

Experimental Campaign (with Leartiker)

Choice of Polymer – Polypropylene 

• Thermoplastic - reversible glass transition, 
recyclable.

• Stiffer relative to PEs. 

• Sufficiently high melting point - broader 
temperature sweeps into rubbery region.  



Experimental Data – 
  DMA Tension Mode 

Negative 
exponential fit of 
horizontal shifts -> 
WLF shift factor

Master Curve data of 
Storage Modulus-> 
least squares 
optimization for 
2*N+1 terms in 
Relaxation Spectrum 

Shift factor and Relaxation Spectrum Data from DMA 

Tension Master Curve                          

       𝐸′ 𝜔, T = 𝐸′ aT 𝜔 , Tref

       where, Tref is the reference temperature. Rigid shifts 

in the log-log plot. WLF shift factor calibrated using the 

above relation. 



TVE Preliminary Results – Uniaxial Tests

• Tg assumed to be ~293 K. 

• Possibility to improve the slope using N = 
30 terms.

• Over-stiff and linear viscoelasticity at low 
elongations.



TVP Model Elements

Extended yield surface ( ത𝐹) defined using regular yield 
surface (𝐹) and viscous (rate-dependent) term.

Extended yield surface with various regimes [5  

Nguyen 2016 – Session Wednesday morning A4-206].

Elements

• Extended Drucker-Prager Power Yield Function ( ത𝐹) – pressure 
dependency, a2, a1, a0  - functions of tensile and compressive yield 
strength.

• Perzyna Flow Rule with temperature-dependent viscosity (η), 
quadratic plastic potential (P).

• Chaboche NLKH – for backstress.
 

Flow Normal (Q)

Temperature Dependency:

Yield strengths, kinematic hardening modulus (HX) and 
viscosity (η) scaled with temperature dependent negative 
exponential functions like WLF shift factor (aT). 



TVP – Loss of Commutavity

• Solution to convolution integrals with recursive addition for 
previous time steps.

• Loss of commutativity of corotational Kirchhoff stress (τe) with 
log strain (Ee) ->  2nd PK Stress (Se) does not commute with left 
Cauchy strain (Ce) -> Loss of symmetricity of Mandel Stress (Me) 

• Loss of thermomechanical consistency (δ<0) in finite isotropic 
plasticity

Solution: Modified stress measure -> Se and Ce commute.

• New Definition of Mandel Stress 

Non-linear Equation of Effective Stress

• Resolving commutativity requires implicit solution of effective stress 
(𝝓 = Me - X) –> additional internal Newton-Raphson loop. 

Where, B is the corrector tensor and ҧ𝜏∞ is the extra-branch stress.



Numerical Results – Significance of Extra Branch

• Works for Uniaxial loading 
using TVE+TVP! 

• Inaccurate unloading curves in 
Cyclic loading.

• Fix using extra branch 
functionality!

• Better cyclic loading results. 
Sigmoid non-linearity in the 
elastic regime

Low unloading stress

Yielding starts here

Sigmoid non-linearity in elastic regime
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Numerical Results – Extra Branch

• TVE + sigmoid non-linearity 
followed by saturated isotropic 
hardening.

• Good results obtained in linear 
loading.



Future Developments

• Mullin’s effect to lower the stress in 
unloading using a damage variable ( 𝜂 -> 1 
to 𝜂𝑚𝑖𝑛) functional of deformation energy 
[7 Ricker 2021]. 

• Compression asymmetry in 
elastic regime!

• Can be fixed using different bulk 

and shear relaxation times. 
Remove assumption of 𝑘𝑖 = 𝑔𝑖  
and variable Poisson’s ratio [6 
Wu 2023].

Under-stiff in compression

Compression Linear Loading

Mullin’s Effect in Unloading

Negative exponential
 curves in unloading
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Elements

• Self Heating: Heat generated by elasticity and irreversible 
processes. Mechanical source is intended as the resulting 
heat flux. 

• TVE: Heat generated by viscoelasticity.

• TVP: Heat generated by plastic power and isotropic 
hardening.

Specialized Definition of Hardening Stress

• Isotropic Hardening Stress (R): Using negative exponential functions for 
temperature dependency of hardening coefficients. 

Where, 𝜎𝑐0
 is the initial yield stress,

Appendix 0 - Mechanical Source



𝜓∞
𝑒𝑥𝑡𝑟𝑎 such that 𝑎 and 𝑏 are 

sigmoid functions of the log strain -> 
exponential non-linearity in elastic 
regime. Temperature dependence 
in V and D parameters only. 

• Hookean Viscoelastic Free Energy (𝜓𝑣𝑒 )

• Consistent Corotational Kirchhoff stress (𝜏) conjugated to logarithmic 
strain tensor (Ee).

• ODEs for internal variable (𝝘i). To solve for 𝝘i.

Appendix 1 – TVE Equations

Generalised Maxwell model with N+1 branches - Ψ is the 
free energy, Υ is the coefficient of viscosity, extra is the 
additional hyperelastic branch

Viscous 
Overstress 

= 𝜏i - Qi  

• Maxwell model + Hookean Free 
Energy with log strain -> Stresses 
decrease with temperature.

• Thermal coupling -> Heat flux 
definition from Fourier’s law, 
temperature dependent CTE and 
thermal conductivity.

Solve 
using 
TTSP



Appendix 2 – TVP Equations

Elements

• Extended Drucker-Prager Power Yield Function ( ത𝐹) – pressure 
dependency and temperature and equivalent plastic strain (∆𝛾) 
dependent coefficients (a2, a1, a0), and the flow parameter (Γ). a2, a1, 
a0  - functions of tensile and compressive yield strength.

• Perzyna Flow Rule with temperature-dependent viscosity (η), 
quadratic plastic potential (P).

• Chaboche NLKH – coefficients are functions of equivalent plastic 
strain for cyclic loading performance; temperature term for 
performance under high temperatures.
 

Flow Normal (Q)

For cycling loading Static Recovery Temperature term

TVP Internal Variables:

• Equivalent plastic strain (∆𝛾): Solved using a rate equation. (k is a 
material parameter) 

• Flow parameter (Γ): Solved using  ത𝐹.

Two Equations: yield function ( ത𝐹=0) and ∆𝛾 rate equation !

Two unknowns: Γ and ∆𝛾 !

Temperature Dependency:

Yield strengths, kinematic hardening modulus (HX) and 
viscosity (η) are scaled with temperature dependent 
negative exponential functions like the WLF shift factor 
(aT). For a parameter:



Appendix 3 - Elasto-Plastic 
Algorithm

Summary

1. Initialise elastic predictor step, get predictor stresses (τe , Me).

2. Check Yield Function ( ത𝐹). If ത𝐹  ≤ 0, exit. 

3. If ത𝐹 >0, get derivatives with respect to equivalent plastic strain (𝛾) 
and flow parameter (Γ), solve simultaneously. Solve the effective 
stress equation ( J(𝝓) ). Iterate until ത𝐹 convergence.

4. Update the stresses (τe , Me). Get Piola-Kirchhoff stress (P).

Then, get the stress derivatives with respect to deformation and 
temperature, get thermal flux term and its derivatives, sources ….
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