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Abstract 
This paper presents the advantages of a strong coupled formulation to model the electro-mechanical coupling 
appearing in MEMS. The classical modeling approach is to use a staggered methodology iterating between two 
different programs to obtain the solution of the coupled problem. In this research a strong coupled formulation is 
proposed and a tangent stiffness matrix of the whole problem is computed. Using this matrix, nonlinear 
algorithms such as the Riks-Crisfield algorithm may be applied to solve the static nonlinear problem and 
accurately determine the static pull-in voltage. Moreover, the natural frequencies may be computed around each 
equilibrium positions. The dynamic behavior of the structure may also be studied and two new parameters are 
defined: the dynamic pull-in voltage and the dynamic pull-in time. This strong coupled methodology deriving 
from variational principle may also be used for topology optimization and extended finite elements. 
 
The contribution presented here is based on the following two papers: 

1. V. Rochus, D.J. Rixen, J.-C. Golinval, On the Advantages of Using a Strong Coupling Variational 
Formulation to Model Electro-Mechanical Problem, Thermal, Mechanical and Multiphysics Simulation and 
Experiments in Micro-Electronics and Micro-systems EuroSime 2006, Como, Italia, 2006 

2. V. Rochus, D.J. Rixen, J.-C. Golinval, Correlation of Experimental and Numerical Results on 
Electrostatically Actuated Micro-Beams, Ninth International Conference on Modeling and Simulation of 
Microsystems, Boston, USA, 2006 

1. Introduction 
MEMS are very small devices in which electric as well as mechanical, thermal and fluid phenomena appear and 
interact. Because of their microscopic scale, strong coupling effects arise between the different physical fields, 
and some forces, which were negligible at macroscopic scale, have to be taken into account. In order to 
accurately design such micro-electro-mechanical systems, it is important to handle the strong coupling between 
the electric and the mechanical fields. In order to understand the physical phenomena of electro-mechanical 
coupling, the reference problem shown in figure 1 is considered. It consists in a capacitor made of two parallel 
plates between which a voltage is applied. The upper plate is supported by a spring and the lower plate is 

mailto:V.Rochus@ulg.ac.be
mailto:JC.Golinval@ulg.ac.be


International Workshop 2007:  
Advancements in Design Optimization of Materials, Structures and Mechanical Systems 

 2

grounded. This mass-spring model is representative of the mode of operation of electrostatically-actuated MEMS 
devices. 
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Figure 1: Reference Problem. 

 
For the sake of simplicity, the electrodes of the capacitor are considered as infinite planes and the electric 
charges are supposed to be evenly distributed on the surfaces. This approximation allows the fringing fields to be 
neglected and the system is reduced to a one-dimensional problem. The capacitor is also considered to be in 
vacuum and no damping is considered in the model. The dynamic equilibrium equation of the system is [2]: 
 
        (1) 
 
where d is the distance between the two plates; m is the mass of the upper electrode; k is the spring stiffness and 
ε0 is the permittivity of free space. It can be noted from equation (1) that the dynamic behavior of the structure 
depends on the applied voltage V and on the initial gap between the plates d0. 
Let us consider the static equilibrium of the system. When the applied voltage increases, it creates an attraction 
force between the electrodes and the upper plate moves closer to the grounded plate. When the electric force in 
1/d 2  becomes dominant with respect to the mechanical force so that the plates stick together, a critical voltage is 
reached. This critical voltage is called the static pull-in voltage. The analytical expressions of the static pull-in 
voltage and of the corresponding pull-in distance are given in [2]: 
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When the applied voltage V is smaller than the pull-in voltage, two equilibrium positions exist: de

(1) and de
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figure 2. When V=Vpi , the two equilibrium positions merge into one point (dpi, Vpi). Beyond Vpi , no equilibrium 
position exists. 
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Figure 2: Pull-in Curve. 
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2. Numerical Methods 
Classical methods used to simulate the coupling between electric and mechanical fields are usually based on 
staggered procedures, which consist in computing quasi-static configurations using two separate models as 
shown in figure 3 (a structural model loaded by electrostatic forces and an electrostatic model). Iterations are 
then performed: the electrostatic field is first computed using, for instance, the boundary element method or the 
finite element method and it provides the electrostatic forces acting on the mechanical structure. Then a 
mechanical FEM code computes the structure deformation under the effect of electric forces. The deformed 
structure defines new boundaries for the electrostatic problem and the electric field has to be computed again. 
This method is commonly presented in the literature (see e.g. Lee et al. [3]). 
In this paper, a monolithically coupled electro-mechanical FE formulation is proposed, which allows the static 
equilibrium positions to be computed in a non-staggered way. The electric and mechanical fields are computed 
simultaneously in a unified formulation. Since the problem is non-linear, it must be solved by an iterative 
algorithm such as the Riks-Crisfield method. The solution strategy consists in the following steps. Given an 
electric potential applied on the boundaries of the structure, a first solution is obtained by considering the 
coupled problem linearized around an initial configuration. The resulting structural deformation then prescribes a 
modified electric domain and a new linearized problem is defined around the modified configuration. This 
process continues until the solution has converged, namely until the electric and mechanical equilibrium are 
satisfied up to a prescribed tolerance (Figure 4). 
 

                                
Figure 3: Staggered method procedure.                             Figure 4: Monolithically method procedure. 

 

2.1 Computation of Pull-in voltage 
To approximate this critical voltage, the staggered method uses a “trial and error” methodology. To estimate the 
pull-in voltage, a voltage is first imposed and the algorithm searches the corresponding equilibrium position. If 
the algorithm converges to a solution, it means that the pull-in voltage is above the imposed voltage (Vi in figure 
5). On the other hand, when the algorithm does not converge, one can conclude that the pull-in voltage is under 
the imposed voltage as in iteration i+1 and so on until the pull-in voltage is approached. This method depends 
also on the robustness of the algorithm. Near the pull-in voltage, the problem becomes ill-conditioned since 
electric and mechanical stiffness contributions are nearly identical around the equilibrium point. The algorithm 
may therefore diverge before achieving the pull-in voltage. For this reason, the classical staggered method 
always underestimates the pull-in voltage. 
In the strongly coupled method, the fact that the tangent stiffness matrix is available, allows to use path-
following algorithms such as the Newton-Raphson method and the Riks-Crisfield technique [5]. Riks-Crisfield 
technique consists in constraining the distance between two computed points in the (d, V) graph to be at a 
predefined distance. Hence, instead of prescribing an increment in ΔVi from a previous equilibrium computation 
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corresponding to Vi, a new quasi-static equilibrium is searched for a combined increment in the driving 
parameter Vi+ΔVk and in the system unknown increments so that:  
         (2) 
     
where sk locates the position of the point, with respect to point i and is defined by 

 
        (3) 
 
 
This equation is a new constraint to add to the equilibrium equation. From this constraint, the incremental load 
ΔVi becomes an unknown of the problem and is modified during the process. When using such techniques it is 
possible to follow the voltage-displacement curve, pass over the pull-in voltage and enter in the unstable part of 
the curve (Figure 6). The pull-in voltage is thus well evaluated and the unstable curve gives the saddle points for 
different voltages. 
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Figure 5: Pull-in evaluation with staggered method.        Figure 6: Pull-in evaluation with monolithically method. 
 

2.2 Natural Frequency 
The natural frequency of the coupled problem may be computed around each equilibrium position of the pull-in 
curve. Staggered methods compute the natural frequency by projecting the total equation on the first purely 
mechanical eigenmode. In the finite element formulation of the mechanical problem, the equation of the motion 
is: 

       (4) 
 
where M is the mass matrix and K the stiffness matrix. The electric force Fe depends on the electric potential Φ. 
Since the boundary of the electric domain depends on the structural displacement, Φ indirectly depends on U and 
thereby generates an electric stiffness effect. 
Let us consider the first mode Q of the purely mechanical equation without electric force, namely the 
eigenvector satisfying (K-ω²M)Q=0 for the lowest ω. The structural displacements are then approximately 
represented by U=Qq where q, the amplitude of the displacement mode, is the generalized coordinate. The 
motion equation is thus reduced to a single-degree of freedom equation:  
         (5) 

 
where k, m and fe are the reduced stiffness, mass and force corresponding to the assumed mode i.e. m = QTMQ , 
k=QTKQ  and   fe=QTFe . 
In order to find the linearized equation of motion and to derive the vibration frequency, one can evaluate the 
tangent stiffness ke originating from the electric forces by finite difference. Applying a perturbation to the 
structural displacements of the form: U=U0+QΔq, (U0 defining the static equilibrium configuration), one can 
compute the corresponding electric forces. The tangent stiffness ke is obtained as follows: 
 
     (6) 
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Finally the linearized equation for the assumed mode approach is fqkqm Δ=Δ+Δ so that the approximate 
first eigenvalue is given by  

 
 
        (7) 
 
 
Obviously since the assumed displacement mode Q corresponds to the purely structural mode, the 
eigenfrequency of the system is only approximated and one can show that it is always an upper bound of the 
frequency of the complete model. This method can be generalized easily to account for more then one assumed 
mode. This method is no more valid when the electrode is reduced to a small electrode under the beam. From the 
tangent stiffness matrix the frequencies may be easily computed for the strong coupled formulation. 

3. Monolithically Finite Element Coupling  
In this paper, we propose a finite element formulation to solve the electric and mechanical problems 
simultaneously in a strong-coupled form. One of the advantages of this formulation is that the tangent stiffness 
matrix of the electro-mechanical problem can be explicitly constructed. Thus, the natural frequency of the 
electro-mechanical system can be directly evaluated around a given equilibrium configuration and the transient 
dynamic response can be more easily computed.  
The consistent way of deriving a finite element discretization to model electro-mechanical coupling consists in 
using the variational calculus. Starting from the energy of the coupled problem, nodal forces are obtained for an 
element by derivation of the energy. The tangent stiffness matrix of the coupled problem is then obtained by 
linearization of the equilibrium equations in the vicinity of an equilibrium position (see reference [2]): 
 

 
      (8) 
 
 
where subscripts u and φ refer respectively to the mechanical and electric domains; ΔU is the displacement 
vector and ΔFm is the vector of mechanical forces; ΔΦ is the electric potential vector and ΔF e is the vector of 
electric forces. It can be observed that the tangent stiffness matrix is symmetric and that coupling terms such as 

φuK  and uφK  appear between mechanical and electric degrees of freedom. It should be noted that the tangent 
stiffness matrix, unlike in the common approach, is not obtained by finite difference, but derives naturally from 
the variational approach and can be easily assembled using the finite element model. More details about the 
expression of the coupling matrix may be found in reference [2]. 

 

4. Application to a Clamped-Clamped Beam 
Let us consider the micro-bridge problem when a large distance of 6 µm exists between electrodes and the 
thickness of the beam is about 0.5 µm as shown in figure 3. Le length of the beam is about 300 µm. Due to 
geometrical effects in the structural deformation, additional non-linearities are present. Large displacement 
hypothesis has to be considered. The static pull-in voltage, the natural frequency and the dynamic behavior of the 
system are significantly altered by geometrical stiffening. To model the mechanical structure, non-conforming 
elements and quadratic elements with large displacement hypothesis may be used. 
 

L = 300 µm

d=6 µm
t=0.5 µmV

 
Figure 7: Clamped-clamped beam model. 
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4.1 Static Equilibrium 
A Riks-Crisfield algorithm is used to compute the variation of the displacement when the voltage varies and to 
estimate the value of the pull-in voltage. Because it comes from the static equilibrium equation, we will call this 
critical voltage, the static pull-in voltage. In the pull-in curve of figure 8, the dashed curve corresponds to the 
displacement of the middle point when deformation of the beam is assumed to be linear. In that case, the pull-in 
is estimated to around 18.4 V. The plain curve with dots represents the displacement when non-linear 
deformation effects due to the large displacements are accounted for. The static pull-in voltage is then estimated 
to 96.4 V. A difference of 80% is observed between the small displacement and the large displacement 
hypotheses. Hence it is essential to properly account for large displacements in this case. 

 
Figure 8: Pull-in curve for small displacements and large displacement hypotheses. 

 

4.2 Natural Frequency 
The natural frequencies are also altered by the additional geometric stiffness. On the one hand, when the beam 
moves, the additional stiffness due to the geometric effect increases. The natural frequency then rises. On the 
other hand, when the beam approaches to the substrate, the electric forces increases and reduces the stiffness of 
the coupled problem. Figure 9 shows the evolution of the first five natural frequencies with the voltage. In small 
displacement hypothesis case the frequency decreases when the voltage increases. Here the frequency increases 
due to the additional geometric stiffness, but when the voltage increases so much that the electric force becomes 
dominant compared to the mechanical stiffness, the first natural frequency of the coupled problem decreases and 
becomes zero at the pull-in voltage. 
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Figure 9: Evolution of the five first natural frequencies with the voltage. 
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Comparison with the projection method 
To estimate the natural frequency, Lee et al. [3] use a projection method as presented in the previous section. 
Such a method is accurate when the electric force does not significantly influence the eigenmodes of the coupled 
structure. So, when the voltage is uniformly applied between the beam and the substrate, electric forces are 
uniformly distributed and the coupled electromechanical mode is almost similar to the purely mechanical mode. 
Computing the eigenfrequency of the system for different voltage levels, both methods yield very similar results. 
To observe a difference between the two methodologies, a different configuration of the electrodes is considered. 
The voltage is applied at the centered 60µm length electrode as shown in figure 10. 
 

L = 300 µm

d=6 µm
t=0.5 µm

V

l = 60 µm
  

Figure 10: Reduced electrode model. 
 

In figure 11 the first natural frequency evaluated by the power method is represented by dots and the projection 
method by circles. The difference between the two methods appears when the system comes closer to the pull-in.  

                
Figure 11: First natural frequency.                                              Figure 12: Relative error. 

 
The relative error of the projection method in comparison with the strong coupled method is plotted in figure 12. 
When the system is at 80% of the pull-in voltage an error of 3.3% is observed. At 90% the error reaches 7.4%. 
This phenomenon may be explained by the different shape of the eigenmodes used in the two cases. Figure 14 
shows the purely mechanical eigenvector (in gray) and the coupled mode (in black) at V*=0.9. Large 
displacement increases the stiffness at the beam centre. Purely mechanical eigenmode shows an additional 
stiffness at this place. For the total coupled problem, the electric forces reduced the stiffness in the neighborhood 
of the electrodes. The two contributions compensate each other and the eigenmode is modified. 

 

 
Figure 13: Electric potential for the reduced electrode at the static pull-in voltage. 

 

 
Figure 14: Eigenmodes with (black) and without (gray) electric force  

     when V*=0.9 is applied to the centered electrode. 
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4.3 Dynamic Behavior 
In this section, the transient dynamic response of the system is computed when the voltage is suddenly applied 
between the two electrodes i.e. when the time-history of the voltage corresponds to a step function as illustrated 
in figure 15. To investigate the dynamic pull-in, several voltages V were considered and applied to the beam as a 
step in time, the system being at rest initially. Using Newmark’s scheme [4] to time-integrate the problem, one 
obtains the results depicted in the phase plot of figure 16. 
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Figure 15: Step of voltage applied to the beam       Figure 16: Phase diagram for transient displacement of the 
middle node when a step of voltage is applied. 

 
From the dynamic study of the electrostatically actuated beam behavior, two new parameters are defined the 
dynamic pull-in voltage and the dynamic pull-in time. The definitions are the following: 
 

The dynamic pull-in voltage is defined as the voltage amplitude such that, when 
applied suddenly, it leads to the dynamical instability of the system. 
 
The pull-in time is defined as the time needed for the plates to stick together when the 
pull-in voltage is applied. 
 

In figure 16 the dynamic instability appears for a voltage of 83.6 V. This is the dynamic pull-in voltage. Its value 
is 13 % lower than the static pull-in voltage. The pull-in time is estimated to be 1.4 10-5 s. 
 

5 Experimental Validation 
The numerical simulations are now validated through the comparison with experimental results. MEMS were 
fabricated using the PolyMUMPS (Polysilicon Multi-User MEMS Processes) technology. The design and testing 
of these devices were performed at IEF ("Institut d'Electronique Fondamentale"), which is a CNRS research 
centre located in Paris. Different designs and structures were fabricated, but only the electrostatic actuated beams 
namely one electrostatic micro-bridge made in the first Polysilicon layer called Poly1 , and two cantilever 
beams, one made in the first Polysilicon layer (Poly1) and one in the second one (Poly2) are considered here. 
The material characteristics and the dimensions of the micro-beams are given in table 1. L is the length of the 
beam, t the thickness and d the gap. Lelec is the length of the lower electrode deposited on the substrate. A picture 
of the studied micro-bridges is shown in Figure 17. 
 

dx [m/s]

displacement [m] 
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Figure 17: Dimensions and characteristics of the studied micro-devices. 

 

5.1 Micro-Bridge 
The first type of structure considered here is a micro-bridge. Pre-stress is present in the layer due to the 
fabrication process. A buckling effect may be observed, and a displacement of about 164 µm is measured at the 
beam centre. 

Buckling Simulation 
The first step to model these micro-devices is to estimate the pre-stress induced in the mechanical structure by 
the fabrication process. To determine exactly the stress distribution on the thickness of the beam the entire 
process should be simulated. In this study, only a mean pre-stress will be added to the structure. The solution of 
the problem is found using the Riks-Crisfield algorithm. A 30 MPa pre-stress is necessary to achieve the 164 nm 
initial displacement at the centre of the beam. The deformation of the beam due to the pre-stress is shown in 
Figure 18. 
 
 

 
 

Figure 18: Initial deformation of the structure due to the pre-stress (10x). 

Pull-in Curve 
Starting from the buckled configuration a voltage is applied between the electrode and the beam. The electro-
mechanical problem is solved using a Riks-Crisfield algorithm. The exact geometry of the anchor was not 
accurately measured. The different geometries presented in Figure 19 were considered. For each ones the mean 
pre-stress is adapted to obtain the observed initial deformation. The displacements of the beam centre when the 
voltage increases are plotted in Figure 19 for each anchor shape. The geometry of the anchor has thus a certain 
effect on the pull-in curve. In Figure 19 the numerical results represented by dots, diamonds and squares 
overestimate the experimental data represented by circles. 



International Workshop 2007:  
Advancements in Design Optimization of Materials, Structures and Mechanical Systems 

 10

 
Figure 19: Pull-in curve for different shapes for the anchor of micro-bridge.  

 

5.2 Poly1 Cantilever Micro-Beam 
The second device treated here is a cantilever beam made in the layer Poly1. The initial configuration of the 
beam is relatively flat. 

Pull-in Curve 
The static electro-mechanical problem is solved using a Riks-Crisfield algorithm. The displacement of the 
extremity of the beam is plotted in Figure 20 when voltage increases. The numerical results are plotted in black 
dots, and the experimental results are in circles. The numerical results overestimate the experimental data.  
 

 
Figure 20:  Pull-in curve for the cantilever beam. 

5.3 Poly2 Cantilever Micro-Beam 
We consider now a beam realized in the Polysilicon layer Poly2. The beam is thinner than the Poly1 ones, and 
the gap between the electrodes is larger. 

Pre-stress 
The beam is initially deformed due to a gradient of pre-stress inside the structure. In a cantilever beam, a uniform 
pre-stress as shown in Figure 21 is relaxed when the beam is released. To have an initial deformation of the 
beam such as in the measured initial configuration, a gradient of pre-stress such as in Figure 22 has to be added 
in the mechanical element. 
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Figure 21: Constant pre-stress.                           Figure 22: Gradient of pre-stress. 

 
Using a Riks-Crisfield algorithm the beam is deformed as shown in figure 23. The deformation is magnified by 
30. The maximum pre-stress necessary to achieve the measured deformation of the beam is about 2 MPa.  
 

 
Figure 23: Initial deformation of the structure due to the pre-stress (30x). 

Pull-in Curve 
Starting from the pre-stressed beam the Riks-Crisfield algorithm is used to compute the deformation due to the 
electrostatic force. The displacement of the extremity of the beam is plotted in Figure 24 when the voltage 
increases. The black dots represent the numerical results and the circles the experimental data. The pre-stress 
bends the beam down so that the voltage needed to deform it is lower. 
 

 
Figure 24: Displacement of the extremity of the beam due to the electrostatic forces. 

 

5.4 Model Updating 
In all the previous examples, the numerical results overestimate the experimental data. A lot of reasons may 
cause this difference namely the shape of the anchor, the dispersion on Young's modulus and other external 
parameters such as the ambient temperature. For a better agreement between numerical predictions and 
experimental results Young's modulus of the polysilicon is updated. The Poly1 cantilever beam is taken as 
reference beam, because no pre-stress influences its pull-in curve. To fit the experimental data of the Poly1 beam 
the Young's modulus is reduced to 112 GPa as shown in figure 25. The updated value of Young's modulus is 
then applied to the Poly2 cantilever beam problem. The gradient of pre-stress to obtain the measured 
displacement is reduced to 1.4 MPa on the surface. The numerical results fit very well the experimental data as 
shown in figure 25. By using the same Young's modulus for the micro-bridge the mean pre-stress is reduced to 
22 MPa. The numerical results (line) and the experimental data (circle) are compared for the micro-bridge in 
Figure 25. The numerical results are in good agreement with experimental data. 
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Figure 25: Comparison between the numerical (line) and experimental (circle) results for the cantilever beams 

and the micro-bridge. 

6. Conclusion 
This paper has shown the advantages of using a monolithically formulation to model electro-mechanical 
coupling effects in MEMS. Compared to classical staggered approaches, the proposed methodology allows a 
better understanding of the dynamic behavior of electrostatically-actuated MEMS devices and more specifically 
a better prediction of the dynamic and static pull-in voltages. It paves the way to a better design of such coupled 
systems using for example topology optimization tools. 
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