Sur les surfaces algébriques dont les sections hyperplanes sont les courbes canoniques,

par Lucien GODEAUX, Membre de la Société. (Seconde note.)

Dans cette seconde note (1), nous nous proposons de construire une surface projectivement canonique de l'espace à quatre dimensions, ayant le diviseur $\sigma = 2$.

6. Soit, dans un espace linéaire S_9 , V_3^8 la variété obtenue en rapportant projectivement aux hyperplans de cet espace les quadriques d'un espace S_3 . Nous dirons que V_3^8 est la variété de Veronese à trois dimensions.

A une surface du quatrième ordre de S_3 correspond, sur V_3^8 , la section de cette variété par une hyperquadrique, et réciproquement Cette section est donc une surface de genres un ($p_a = P_4 = 1$).

Supposons que S_9 soit un hyperplan d'un espace linéaire S_{40} et soit O un point de cet espace n'appartenant pas à cet hyperplan. Soit V_4^8 le cône projetant de O la variété de Veronese V_3^8 .

La section de V_4^8 par une hyperquadrique Q_4 de S_{40} est une variété V_3^{46} à sections hyperplanes de genres un. Par conséquent, d'après le premier des théorèmes de M. Enriques cités au début de la première note, la section de V_3^{46} par une hyperquadrique Q_2 est une surface F projectivement canonique, d'ordre 32.

Dans un espace linéaire S_{40} , l'intersection d'un cône projetant une variété de Veronese à trois dimensions et de deux hyperquadriques, est une surface projective nent canonique de genres $p_a = p_g = 11$, $p^{(4)} = 33$.

7. Désignons par x_4 , x_2 , x_3 , x_4 les coordonnées des points de S_3 et posons

 $\rho X_{ik} = x_i x_k$ (i, k = 1, 2, 3, 4).

Les équations de la variété de Veronese V_3^8 s'obtiendront en exprimant que le déterminant

⁽¹⁾ La première note est parue dans ce Bulletin, 1937, pp. 92-96.

est de caractéristique un. Dans S_{40} , ces équations représentent le cône V_4^8 .

Supposons que dans S_{40} , l'hyperplan S_9 ait pour équation $X_0=0$. Les équations de la surface F s'obtiendront en ajoutant aux équations de V_4^8 celles des hyperquadriques Q_4 , Q_2 .

Considérons dans S₃ l'homographie biaxiale harmonique

$$\frac{x_4'}{x_4} = \frac{x_2'}{x_2} = \frac{x_3'}{-x_3} = \frac{x_4'}{-x_4}.$$

Elle donne lieu, dans S_9 , à une homographie harmonique transformant en elle-même la variété V_3^8 . Considérons alors, dans S_{40} , l'homographie harmonique H d'équations

$$\begin{split} \frac{X_{44}^{\prime}}{X_{11}} &= \frac{X_{22}^{\prime}}{X_{22}} = \frac{X_{42}^{\prime}}{X_{12}} = \frac{X_{33}^{\prime}}{X_{33}} = \frac{X_{44}^{\prime}}{X_{44}} = \frac{X_{34}^{\prime}}{X_{34}} = \rho, \\ \frac{X_{0}^{\prime}}{X_{0}} &= \frac{X_{43}^{\prime}}{X_{13}} = \frac{X_{44}^{\prime}}{X_{14}} = \frac{X_{23}^{\prime}}{X_{23}} = \frac{X_{24}^{\prime}}{X_{24}} = -\rho. \end{split}$$

L'homographie H possède deux axes ponctuels σ_4 , σ_5 respectivement d'équations

$$X_{44} = X_{22} = X_{42} = X_{33} = X_{44} = X_{34} = 0,$$

 $X_0 = X_{43} = X_{44} = X_{23} = X_{24} = 0.$

Le premier ne rencontre pas le cône V₄, le second coupe ce cône suivant deux coniques appartenant à V₈.

Prenons pour Q_1 , Q_2 deux hyperquadriques invariantes pour H mais ne passant pas par les axes σ_4 , σ_5 de cette homographie. Nous obtenons une surface F transformée en elle-même par H et sur laquelle celle-ci détermine une involution I_3 d'ordre deux, privée de points unis

8. Désignons par |C| le système des sections hyperplanes de F (système canonique de la surface), par $|C_4|$ le système découpé sur F par les hyperplans passant par σ_5 , par $|C_2|$ celui qui est découpé sur F par les hyperplans passant par σ_4 . Les systèmes $|C_4|$, $|C_2|$ sont composés au moyen de l'involution I_2 .

Soient Φ une surface image de l'involution I_2 ; $|\Gamma_4|$, $|\Gamma_2|$ les systèmes linéaires de courbes correspondant sur Φ aux systèmes $|C_4|$, $|C_2|$ respectivement. On obtiendra des modèles projectifs Φ_4 , Φ_2 de Φ en rapportant projectivement soit les courbes C_4 aux hyperplans d'un espace S_4 , soit les courbes C_2 aux hyperplans d'un espace S_5 .

Nous avons établi que le système canonique de Φ est celui des systèmes $|\Gamma_1|$, $|\Gamma_2|$ qui a la dimension minimum (1); c'est donc actuellement le système $|\Gamma_1|$. La surface Φ_1 est donc projectivement canonique.

La surface Φ a les genres $p_a = p_g = 5$, $p^{(4)} = 17$. De plus, comme l'involution I_2 est dépourvue de points unis, le diviseur de Severi de Φ est $\sigma = 2$ (2).

9. Pour obtenir les équations de la surface Φ_i , observons que les équations des hyperquadriques Q_i , Q_2 peuvent s'écrire, en tenant compte des équations du cône V_4^8 , sous la forme

$$\begin{split} X_{43}^2 \ X_{23}^2 \ X_{24}^2 \ \phi_2 \left(X_0, X_{43}, X_{44}, X_{23}, X_{24} \right) + X_{24}^2 \ X_{12}^2 \ \alpha_4 \left(X_{13}, X_{23} \right) \\ + \ X_{13}^2 \ X_{34}^2 \ \alpha_4' \left(X_{23}, X_{24} \right) = 0 \, , \\ X_{13}^2 \ X_{23}^2 \ X_{24}^2 \ \psi_2 \left(X_0, X_{13}, X_{14}, X_{23}, X_{24} \right) + X_{24}^2 \ X_{12}^2 \ \beta_4 \left(X_{43}, X_{23} \right) \\ + \ X_{13}^2 \ X_{24}^2 \ \beta_4' \left(X_{23}, X_{24} \right) = 0 \, , \end{split}$$

où φ_2 , ψ_2 sont des formes quadratiques, α_4 , α_4' , β_4 , β_4' des formes biquadratiques

L'élimination de X₁₂, X₃₄ donne, comme équations de Φ_4 ,

Ces deux hypersurfaces ont en commun la surface Φ_i et les plans

$$X_{43} = X_{23} = 0, X_{23} = X_{24} = 0$$
 (2)

comptés chacun huit fois.

L'intersection des hypersurfaces (1) se compose des plans (2) comptés chacun huit fois et d'une surface Φ_1 projectivement canonique, de genres $p_a=p_g=5$, $p^{(4)}=17$ et de diviseur $\sigma=2$.

10. On peut aisément obtenir les équations de la surface Φ_2 dans S_5 . Cette surface appartient tout d'abord aux deux hyperquadriques

$$X_{12}^2 - X_{11} X_{22} = 0, X_{34}^2 - X_{33} X_{44} = 0.$$
 (3)

 $^{^{(1)}}$ Sur les involutions cycliques dépourvues de points unis appartenant à une surface régulière. (Bull. de l'Acad. roy. de Belgique, 1932, pp. 672-679.)

⁽²⁾ Sur certaines surfaces algébriques de diviseur supérieur à l'unité. (Bull. de l'Acad. des Sc. de Cracovie, 1914, pp. 362-368.)

Observons ensuite que les équations de Q₁, Q₂ peuvent s'écrire, en tenant compte des équations de V⁸, sous la forme

$$\begin{split} X_0^2 + X_0 \phi_1(X_{13}, X_{44}, X_{23}, X_{24}) + \phi_2(X_{14}, X_{22}, X_{12}, X_{33}, X_{44}, X_{34}) &= 0, \\ X_0^2 + X_0 \psi_1(X_{13}, X_{44}, X_{23}, X_{24}) + \psi_2(X_{14}, X_{22}, X_{12}, X_{33}, X_{44}, X_{34}) &= 0. \end{split}$$

L'élimination de X₀ entre ces équations donne

$$(\phi_2\psi_1-\psi_2\phi_1)\,(\phi_1-\psi_1)-(\phi_2-\psi_2)^2=0.$$

 φ_1 et ψ_1 se représentent dans cette équation par leurs combinaisons φ_1^2 , φ_1 ψ_1 , ψ_1^2 , que l'on peut écrire, grâce aux équations de V_4^8 , en fonction de X_{11} , X_{22} , ..., X_{34} Nous obtenons donc une hypersurface V_5^4 de S_5 qui, avec les équations (3), donne la surface Φ_2 , d'ordre seize.

Liége, le 13 avril 1937.

M. HAYEZ, Imprimeur de l'Académie royale de Belgique, rue de Louvain, 112, Bruxelles.