Mathesis, juillet 1924.

SUR LES COURBES PLANES DU SIXIÈME ORDRE,

par M. L. Godeaux, professeur à l'École militaire.

Si les équations

$$f(x, y) = 0, \quad \varphi(x, y) = 0$$

représentent respectivement, en coordonnées cartésiennes, une cubique plane et une conique, la courbe du sixième ordre

$$[f(x, y)]^2 + \lambda [\varphi(x, y)]^3 = 0$$

possède six points doubles de rebroussement sur la conique $\phi=0$ (*). Nous allons montrer que réciproquement, toute courbe plane du sixième ordre possédant six points doubles de rebroussement situés sur une conique, peut être représentée par une équation de cette forme. Chemin faisant, nous démontrerons le théorème suivant, dù à M. Montesano (**) :

Si une courbe plane du sixième ordre possède six points doubles sur une conique, cinq de ces points étant de rebroussement, il en est de même du sixième.

1. Soient, dans un plan \mathfrak{w} , six points A_1 , A_2 , ..., A_6 appartenant à une conique C_2 . Considérons les cubiques planes C_3 passant par ces six points; elles sont en nombre ∞^3 et forment un système linéaire. Parmi ces courbes C_3 , il y en a ∞^2 dégénérées en la conique C_2 et en une droite du plan \mathfrak{w} . Observons que les courbes C_3 passant par un point P de \mathfrak{w} , ne passent pas, en conséquence, par un second point du plan (distinct de A_1 , A_2 , ..., A_6), car celui-ci devrait appartenir à

^(*) Nous avons rencontré cette courbe dans notre étude Sur les plans doubles de genre un et de rang trois (Annacs da Academia Polyt. do Porto, 1920, t. XIV).

^(**) M. Montesano a proposé ce théorème dans les *Esercitazioni Matematiche*, publicazione del Circolo Matematico di Catania, 1921, t. I. — (question n° 55, p. 178). Aucune solution n'en a été publiée jusqu'à présent (décembre 1923).

toutes les droites du plan passant par P, ce qui est impossible, ou bien ce second point devrait appartenir à la conique C_2 et toutes les courbes C_3 passant par P seraient dégénérées, ce qui est impossible également (pour une position arbitraire de P).

Cela étant, établissons une projectivité entre les courbes C_3 et les plans d'un espace ordinaire S. Aux points du plan $\mathfrak w$ correspondent les points d'une surface F de S et cette surface est du troisième ordre, car deux courbes C_3 se rencontrent, en dehors des points fixes $A_1,\ A_2,\ \ldots,\ A_6$, en trois points. Entre les points du plan $\mathfrak w$ et ceux de la surface F, nous avons une correspondance birationnelle, faisant correspondre aux points d'une courbe C_3 ceux d'une section plane de F.

Cette correspondance présente des exceptions : Le point qui correspond sur F au point A_1 , par exemple, est indéterminé. Puisque toutes les courbes C_3 passent par A_1 , il y a, sur chaque section plane de F, un point qui correspond à A_1 . Par suite, les points de F qui correspondent à A_1 forment une droite a_1 . De même, aux points A_2 , ..., A_6 correspondent les points de cinq droites a_2 , ..., a_6 de F.

Une courbe C_3 ne rencontre pas la conique C_2 en dehors des points A_1 , A_2 , ..., A_6 , donc une section plane de F ne peut rencontrer le lieu des points correspondants à ceux de C_2 . Par conséquent, aux points de C_2 correspond un point isolé de F. Les sections planes de F passant par ce point ont pour correspondantes, dans le plan \mathfrak{w} , les courbes C_3 formées de la conique C_2 et d'une droite du plan \mathfrak{w} . Ces sections planes sont donc rationnelles et possèdent par suite un point double. Nous allons voir que ce point double est précisément le point A de F qui correspond aux points de C_2 .

Soit P un point du plan ϖ . Par ce point passent ∞^1 courbes C_3 formées de C_2 et d'une droite variable (passant par P). A ces courbes C_3 dégénérées correspondent sur F des sections planes ayant un point double chacune et les plans de ces sections passent par A et par le point P' de F correspondant à P. Si les points doubles de ces sections planes ne tombaient pas en A, la surface F possèderait une courbe double. Or, cela est impossible, car toutes les sections planes de F, et par suite toutes les courbes C_3 seraient rationnelles, alors qu'en général ces courbes sont elliptiques. Nous voyons donc que les sections planes de F passant par A ont ce point

double, par suite A est un point double de la surface F. De plus, A est un point double conique de F, et il y a une correspondance birationnelle entre les tangentes à F en A et les points de C_2 .

Observons enfin que la conique C_2 passant par chacun des points A_1, \ldots, A_6 , les droites a_1, a_2, \ldots, a_6 doivent passer par A. (On sait d'ailleurs que par un point double conique d'une surface cubique, passent six droites de cette surface.)

2. Soit maintenant C_6 une courbe plane du sixième ordre ayant A_1 , A_2 , ..., A_6 comme points doubles. Cette courbe est par suite de genre 4. A la courbe C_6 correspond sur F une courbe Γ , de genre 4, qui est également d'ordre six, car une courbe C_3 rencontre C_6 en six points en dehors de A_1 , A_2 , ..., A_6 . La courbe Γ est nécessairement gauche et on sait qu'une courbe gauche d'ordre six et de genre quatre est nécessairement l'intersection d'une surface cubique et d'une quadrique. La courbe Γ est donc l'intersection de Γ et d'une quadrique Γ

Les deux points communs à la quadrique Q et à la droite a_1 par exemple, correspondent aux deux points de C_6 infiniment voisins de A_1 . Il en résulte que si la courbe C_6 possède en A_1 un point de rebroussement, la quadrique Q est tangente à la droite a_1 .

3. Passons à la démonstration du théorème de M. Montesano.

Supposons que C_6 ait des points de rebroussement en A_1 , A_2 , ..., A_5 . Alors, la quadrique Q est tangente aux cinq droites a_1 , a_2 , ..., a_5 .

Le cône du second ordre formé par les tangentes à la surface F en A, contient les droites a_1 , a_2 , ..., a_6 . Les cinq premières de ces droites étant tangentes à la quadrique Q, le plan polaire de A par rapport à cette quadrique passe par les points de contact de ces droites. Par suite, le cône considéré est tangent à la quadrique Q et en particulier, la génératrice a_6 de ce cône est tangente à cette quadrique. Il en résulte que A_6 est un point de rebroussement pour C_6 , et le théorème de M. Montesano est démontré.

4. Désignons par α le plan polaire de A par rapport à Q.

Toutes les quadriques inscrites au cône tangent à F en A et ayant, par rapport à A, le plan polaire α , forment un faisceau. Parmi les quadriques de ce faisceau, il y en a une formée par le plan α compté deux fois. Une autre quadrique de ce faisceau est le cône tangent à F en A. Les quadriques de ce faisceau découpent sur F des courbes Γ d'ordre six tangentes aux droites $\alpha_1, \alpha_2, \ldots, \alpha_6$ en des points fixes. A ces courbes Γ correspondent sur le plan \mathfrak{w} des courbes C_6 du sixième ordre ayant en $\Lambda_1, \Lambda_2, \ldots, \Lambda_6$ des points doubles de rebroussement, les tangentes de rebroussement étant fixes. Ces courbes C_6 forment un faiscean. Parmi les courbes de ce faisceau se trouvent la courbe qui correspond à la section de F par le plan α compté deux fois et celle qui correspond à la section de F par le cône tangent à cette surface au point A. Ces courbes déterminent le faisceau.

A la section de F par le plan α compté deux fois, correspond une courbe C_3 comptée deux fois.

Observons qu'une tangente à F en A ne rencontre plus la surface en dehors de ce point. Le cône tangent à F en A rencontre la surface suivant les six droites a_1, a_2, \ldots, a_6 . A la section de F par ce cône correspond la conique C_2 , comptée nécessairement trois fois.

Le faisceau des courbes C_6 considéré est donc déterminé par une courbe C_3 comptée deux fois et par la conique C_2 comptée trois fois. Si

$$f(x, y) = 0, \qquad \varphi(x, y) = 0$$

sont respectivement les équations de ces courbes, une courbe C_6 du faisceau a donc pour équation

$$[f(x, y)]^2 + \lambda [\varphi (x, y)]^3 = 0.$$

En résumé : Si une courbe plane du sixième ordre possède six points doubles sur une conique

$$\varphi\left(x,\,y\right) =0,$$

et si cinq de ces points sont de rebroussement, il en est de même du sixième. L'équation de cette courbe est de la forme

$$[f(x, y)]^2 + \lambda [\varphi(x, y)]^3 = 0,$$

où f(x, y) = 0 est l'équation d'une cubique plane.

Ces courbes sont en nombre ∞^4 (les points doubles élant fixés) et forment un système linéaire.

5. Remarque. Les raisonnements précèdents supposent que les courbes C_6 considérées sont de genre 4, c'est-à-dire ne possèdent pas de points singuliers en dehors des points $\Lambda_1, \Lambda_2, \ldots, \Lambda_6$. La restriction ainsi apportée au théorème établi n'est qu'apparente.

A toute courbe C_6 possédant les seuls points doubles A_1, A_2, \ldots, A_6 , correspond sur la surface F une courbe Γ appartenant à une quadrique. Les quadriques de l'espace étant en nombre ∞^9 , les courbes C_6 envisagées sont donc aussi en nombre ∞^9 (*). Toute courbe plane d'ordre six, ayant les points doubles A_1, A_2, \ldots, A_6 , et d'autres points singuliers, appartient nécessairement à ce système ∞^9 . Il lui correspond donc, sur F, une courbe Γ section de F par une quadrique et les raisonnements des n^{os} 3, 4 subsistent. Le théorème est donc général.

On peut d'ailleurs démontrer que la courbe Γ qui correspond à une courbe C_6 douée de points réguliers (en dehors des points doubles $A_1,\,A_2,\,\ldots,\,A_6$) quelconques, possède les mêmes singularités en des points simples de F, et appartient à une quadrique.

^(*) Les courbes planes d'ordre six sont ∞^{27} . Celles qui ont six points doubles sur une conique satisfont à $6 \times 3 = 18$ conditions; il résulte du texte que ces 18 conditions sont indépendantes.