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Résumé / Summary 

Résumé 
La végétation qui se développe dans les zones riveraines des cours d’eau a une 

influence importante sur de nombreux processus au sein de l’hydrosystème. Dès 

lors, elle est souvent au cœur des pratiques de gestion visant à influencer le 

fonctionnement écologique et hydraulique de la rivière.  La mise en place d’actions 

de gestion cohérentes, intégrant les différents enjeux et acteurs liés à la rivière, 

nécessite un diagnostic et une planification adéquate à l’échelle du bassin versant. 

La télédétection peut être utilisée pour obtenir de données à jour sur l’état de la 

végétation riveraine sur des surfaces importantes et à moindre coût. Cette thèse a 

pour objectifs de développer des outils de cartographie de la végétation riveraine et 

d’évaluer leur intérêt pour la gestion de cette dernière. 

Premièrement, une revue de bibliographie a été réalisée pour obtenir une vue 

d'ensemble de l'utilisation de la télédétection pour l’étude de la végétation riveraine. 

Les résultats mettent en évidence une relation étroite entre les outils utilisés, les 

caractéristiques de la végétation riveraine étudiées et l'étendue cartographiée. Les 

données à haute résolution sont rarement utilisées pour les rivières sur plus de 100 

km ou pour la cartographie de la composition en espèces. Une partie importante des 

études réalisées s’intéressent à la dynamique des écosystèmes riverains, et les 

images aériennes et satellitaires sont appréciées en raison de la disponibilité de 

séries temporelles. Nous avons identifié les opportunités qui peuvent être saisies 

avec la disponibilité accrue de données à haute résolution dans des régions peu 

étudiées, pour de grandes étendues et sous forme de séries temporelles. Certaines 

approches ont atteint un niveau opérationnel et sont désormais utilisées à des fins de 

gestion. Pour transférer les approches de télédétection aux gestionnaires des zones 

riveraines, nous suggérons de mutualiser les réalisations en produisant des outils 

robustes et open source, qui pourront être adaptées à chaque projet spécifique. 

Deuxièmement, nous nous sommes intéressés à la cartographie de la biomasse 

aérienne des forêts riveraines, dont dépendent plusieurs fonctions clés des systèmes 

riverains. Concrètement, des données LiDAR ont été utilisées dans une approche à 

l’échelle de l’arbre pour cartographier la biomasse aérienne dans les forêts riveraines 

le long de 200 km de rivières et dans leur plaine alluviale associée, sur les bassins 

versants de la Semois et de la Chiers. Deux approches ont été testées, s'appuyant sur 

un modèle numérique de hauteur LiDAR seul ou en conjonction avec un nuage de 

points LiDAR. Les erreurs quadratiques moyennes relatives de la biomasse pour des 

parcelles de 0,3 ha étaient respectivement de 27 % et 22 % pour les deux approches. 

La cartographie a été utilisée pour mettre en lumière les facteurs environnementaux 

structurant cette biomasse riveraine à l’échelle du bassin versant étudié. Le régime 

de perturbations, surtout anthropiques, y explique en grande partie la distribution 

spatiale de la biomasse.  

Troisièmement, nous avons exploité un jeu de données LiDAR à haute densité de 

points pour cartographier la composition en espèces des forêts riveraines sur 155 km 

de la Semois et sur sa plaine alluviale. Nous avons utilisé une approche à l’échelle 
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de l’arbre, un algorithme Random Forest et des variables issues du nuage de points 

et d’images multispectrales. Les arbres ont été classés selon quatre groupes aux 

caractéristiques écologiques similaires (saules, aulnes, autres feuillus et résineux) 

avec une précision globale de l’ordre de 80%. Nous avons ensuite évalué la 

précision de la classification lors de l’agrégation de l’information obtenue à l’échelle 

de l’arbre sur des unités de plus grande taille. La précision obtenue sur des unités de 

900 m² est de 85 % pour la présence d’une espèce et de 89 % sur l’espèce 

dominante. Cette précision est encore améliorée pour des unités de plus grande 

dimension et est suffisante pour de nombreuses applications. Comme pour la 

biomasse, la distribution des espèces dans l’espace a été analysée par rapport à des 

facteurs tels que l’occupation du sol, la proximité à la rivière ou l’engorgement en 

eau du sol. La cartographie de la distribution spatiale de la composition spécifique 

confirme les patrons pressentis : les saules occupent les zones ouvertes et humides 

dans la plaine alluviale, les aulnes sont particulièrement présents dans les zones 

humides et à proximité des berges, et les feuillus à bois dur occupant les parties plus 

hautes de la zone riveraine.  

Quatrièmement, nous avons évalué le potentiel de données 3D pour décrire la 

morphologie des berges et leur évolution. En effet, ces caractéristiques ont un intérêt 

direct pour la gestion de la végétation présente sur les berges des cours d’eau. Nous 

avons d’abord comparé les performances et les limites des approches de description 

de la géométrie du lit mineur basées d’une part sur la photogrammétrie d’images 

acquises à l’aide de drones et d’autre part sur des données LiDAR aériennes. Bien 

que la photogrammétrie permette une meilleure description des parties immergées 

de la rivière, le LiDAR offre des performances convenables dans les parties 

émergées et un potentiel de montée en échelle plus important. Ensuite, une 

méthodologie simple de cartographie de la mobilité latérale des berges à l’aide de 

MNT LiDAR multi-temporels a été développée. Cette dernière montre des résultats 

cohérents avec ceux obtenus par photointerprétation d’images aériennes. 

Enfin, les approches de cartographie de la biomasse, de la composition spécifique 

et de l’érosion latérale ont été déployées sur un bassin versant comprenant 50 km de 

cours d’eau, en vue d’illustrer comment ces informations peuvent être croisées pour 

planifier et prioriser les interventions sur la végétation dans le lit mineur. 

L’accessibilité des méthodes de télédétection au plus grand nombre est discutée à 

l’aune des volumes de données à traiter et de la technicité des approches 

développées. Le manuscrit discute également de l’agrégation d’informations issues 

d’approches « à l’échelle de l’arbre » et de la montée en échelle. Enfin, des 

perspectives de recherche sont proposées pour améliorer l’interprétation des 

trajectoires de la végétation riveraine, la modélisation de processus et le suivi et 

l’évaluation de  la végétation riveraine. 
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Résumé / Summary 

Summary 
The vegetation that develops in the riparian zone has an important influence on 

many processes within the hydrosystem. As a result, it is often at the heart of 

management practices designed to influence the river's ecological and hydraulic 

functioning.  The implementation of coherent management actions, integrating the 

various river-related issues and stakeholders, requires diagnosis and appropriate 

planning at basin scale. Remote sensing can be used to obtain up-to-date data on the 

state of riparian vegetation over large areas at low cost. The aim of this thesis is to 

develop tools for mapping riparian vegetation and to assess their value for riparian 

management. 

Firstly, a literature review was carried out to obtain an overview of the use of 

remote sensing for the study of riparian vegetation. The results show a close 

relationship between the tools used, the riparian vegetation characteristics studied 

and the extent mapped. High-resolution data are rarely used for rivers over 100 km 

in length, or for mapping species composition. A significant proportion of the 

studies carried out relate to the dynamics of riparian ecosystems, and aerial and 

satellite images are valued for their availability as time series. We identified 

opportunities to seize with the increased availability of high-resolution data in little-

studied regions, for large areas and as time series. Some approaches have reached an 

operational level and are now being used for management purposes. To transfer 

remote sensing approaches to riparian managers, we suggest mutualizing 

achievements by producing robust, open-source tools that can be adapted to each 

specific project. 

Secondly, we focused on mapping the above-ground biomass of riparian forests, 

on which several key functions of riparian systems depend. Specifically, LiDAR 

data were used in a tree-centric approach to map above-ground biomass in riparian 

forests along 200 km of rivers and their associated floodplains, in the Semois and 

Chiers watersheds. Two approaches were tested, based on a LiDAR digital height 

model alone or in conjunction with a LiDAR point cloud. Relative root-mean-square 

biomass errors for 0.3 ha plots were 27% and 22% respectively for the two 

approaches. The map was used to highlight the environmental factors structuring 

riparian biomass at the scale of the watershed studied. The disturbance regime, 

mainly anthropogenic, largely explains the spatial distribution of biomass.  

Thirdly, we used a high-density LiDAR dataset to map the species composition of 

riparian forests along 155 km of the Semois river and its floodplain. We used a tree-

centric approach, a Random Forest algorithm and variables derived from the point 

cloud. Trees were classified into four groups with similar ecological characteristics 

(willows, alders, other hardwoods and conifers) with an overall accuracy of around 

80%. We then assessed the accuracy of the classification when aggregating the 

information obtained at tree level onto larger units. The accuracy obtained on 900 m² 

units is 85% for the presence of a species and 89% for the dominant species. This 

accuracy is further improved for larger units and is sufficient for many applications. 
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As with biomass, the spatial distribution of species was analyzed in relation to 

factors such as land use, proximity to the river and soil moisture. Tree species spatial 

distribution confirms the expected patterns: willows occupy open, wet areas in the 

floodplain, alders are particularly present in wet areas and near riverbanks, and other 

hardwoods occupy the higher parts of the riparian zone.  

Fourthly, we assessed the potential of 3D data to describe riverbank morphology 

and evolution. Indeed, these characteristics are of direct interest for the management 

of riparian vegetation. We began by comparing the performance and limitations of 

approaches for describing minor bed geometry based on aerial photogrammetry and 

on aerial LiDAR data. While photogrammetry provides a better description of the 

submerged parts of the river, LiDAR offers decent performance in the emergent 

parts and greater upscaling potential. We then developed a simple methodology for 

mapping bank lateral mobility using multi-temporal LiDAR DTMs. The results 

obtained are consistent with those obtained using photointerpretation of aerial 

images. 

Finally, approaches for mapping biomass, specific composition and lateral erosion 

were deployed on a catchment comprising 50 km of watercourse. We assessed how 

this information can be used to plan and prioritize interventions on vegetation in the 

minor bed. The availability of remote sensing methods to non-specialists is 

discussed regarding the volumes of data to be processed and the technicity of the 

approaches developed. The manuscript also discusses the aggregation of information 

from "tree-scale" approaches, and upscaling to watersheds. Finally, research 

perspectives are proposed to improve the interpretation of riparian vegetation 

trajectories, process modeling and the monitoring and assessment of riparian 

vegetation. 
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succédé pour m’aider à mesurer ces nombreux arbres.  

Merci au SPW qui acquiert et met à disposition de nombreuses données de 

télédétection, notamment des levés LiDAR dont j’ai fait un usage important. Merci à 
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1. General Introduction 

1.1 Riparian vegetation: definitions, stakes and management 

 Riparian zones definition and ecology 1.1.1

The concept of a river hydrosystem is used to describe the river as an eco-

complex, made up of interacting ecosystems or compartments. These compartments 

are subject to flows of matter and energy that are longitudinal (such as the flow of 

water from upstream to downstream), lateral (such as runoff from slopes and 

overflow into the floodplain) and vertical (such as exchanges with the aquifer).  

These flows are variable over time, and their main vector is water. The river 

hydrosystem is a dynamic system, whose structure reflects processes operating on 

multiple time scales (Petts and Amoros, 1996). 

A distinction is generally made between the riverbed, occupied by the river for a 

flow rate lower than its mean flow rate, and the floodplain, occupied by the river 

during floods (Bren, 1993). Valley sides have a major influence on the hydrosystem, 

for example through sediment supply (Benda et al., 2005). Numerous fluvial forms 

in the riverbed and floodplain such as oxbows, meanders and islands bear witness to 

past and present river activity (Figure 1). 

 

Figure 1: Constitutive elements of a riparian landscape 

Original plant communities develop within the hydrosystem under the influence of 

the processes taking place there. These communities are structured by gradients and 

processes linked to water flows, such as the frequency, depth or duration of 

submersion (Beumer et al., 2008; Deiller et al., 2001), sedimentary processes 

(Hortobágyi et al., 2018), propagule transfer (Nilsson et al., 2010) or proximity to 

the aquifer (Bendix, 1999). The dynamic nature of riparian environments translates 

into significant spatial complexity, itself associated with high biodiversity (Naiman 

et al., 1993). 
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Conversely, vegetation influences many processes within the hydrosystem. As 

illustrated in Figure 2, vegetation can control sediment processes through the rapid 

fixation of sediment bars or bank stabilization (Corenblit et al., 2009). Vegetation 

roughness modifies flow velocities in the channel and floodplain (Curran and 

Hession, 2013). The production of dead wood associated with vegetation 

development also has significant geomorphological consequences, with a slowing of 

flows, an increase in the frequency of overflows leading to more intense 

sedimentation in the floodplain, and a complexification of fluvial forms following 

local disturbances to flow velocity (Wohl, 2017). Vegetation has an important 

influence on stream temperature (Wondzell et al., 2019) or evapotranspiration 

phenomena in arid systems (Dahm et al., 2002), the complexity of aquatic habitats 

(Thévenet et al., 2003), trophic chains (Lobón-Cerviá et al., 2016), physico-

chemical water quality (Dosskey et al., 2010) and carbon storage in hydrosystems 

(Sutfin et al., 2016). 

 

Figure 2: Riparian vegetation can control sediment processes by promoting the creation of 

new channels, stabilizing slopes and banks, or slowing water velocity and sediment transfer 

downstream. This figure was reproduced from Cienciala (2021). 

Riparian vegetation can be broadly defined as any vegetation growing in the zone 

of influence of a watercourse, or having an influence on the watercourse. Since the 

many processes associated with riparian vegetation take place at different spatial 

scales or are expressed differently depending on the geographical context, its 

delimitation will often depend on the process or region being studied (Dufour et al., 

2019). For example, with regard to processes, direct shading by vegetation generally 

concerns a narrow band around the watercourse, whereas processes relating to 

exchanges with the water table are preferentially studied at floodplain scale. In terms 

of geographical context, in low-energy rivers, the geomorphological impact of 

vegetation is concentrated in areas immediately adjacent to the channel, whereas this 
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impact can extend further into the floodplain for torrential systems (Gurnell et al., 

2016). 

There are many nuances in the terms used to designate and define riparian 

vegetation. These may reflect the interests of the authors, the structural 

characteristics or landscape organization of the vegetation (e.g. alluvial corridors vs 

floodplain forests), or its position in the floodplain. For example, riparian forests 

refer to the woody nature of the vegetation. The widely used French term “ripisylve” 

is associated with the woody character and the presence of typical native species, 

whose ecology is linked to the presence of the watercourse. 

 Riparian vegetation: a management issue 1.1.2

Given its influence on the hydrosystem, riparian vegetation is the source of 

numerous ecosystem services, useful to human societies, as well as disamenities, 

also known as disservices. For example, the presence of luxuriant vegetation and 

dead wood in the channel locally increases its roughness, causing the water line to 

rise. An overflow caused by this rise in water level can be beneficial in less sensitive 

areas upstream of populated areas, which will see their flood peak delayed (Dixon et 

al., 2016). However, it will not be beneficial if this rise occurs in a sensitive area or 

immediately downstream. Moreover, dead wood can migrate downstream to 

sensitive areas during floods, causing damage to human infrastructure such as 

bridges. Similarly, while tree roots generally stabilize banks, high tree stems can 

increase the risk of the tree uprooting itself, dragging the bank with it. For these 

reasons, vegetation is actively managed in many river systems. In Western countries, 

the priority has long been to maintain the free flow of water, and many laws require 

vegetation maintenance for this purpose. Maintenance is sometimes entrusted to 

private individuals, sometimes to the community (Le Lay and Piégay 2007). 

Nevertheless, it is increasingly recognized that the full range of riparian vegetation 

functions needs to be integrated into its management. To achieve this, policies and 

regulations related to different issues (e.g. flood control, agriculture and nature 

conservation) need to be coordinated and take into account issues related to riparian 

ecosystems (Urbanič et al., 2022). 

Moreover, riparian ecosystems are subject to numerous pressures and threatened 

worldwide. In densely populated countries, urbanization and agricultural practices 

are often incompatible with the proper ecological functioning of riparian areas 

(Tockner and Stanford, 2002). Riparian zones are under pressure from river 

engineering (disconnection from the floodplain and flow regulation), which has 

profoundly altered processes essential to the functioning of these ecosystems 

(Hughes et al., 2012). In other regions, such as the southwestern USA, riparian 

ecosystems are threatened by insufficient flows caused by water use and biological 

invasions (Poff et al., 2011). Many riparian vegetation restoration programs aim to 

improve the biological quality of riparian zones or the associated ecosystem 

services. These may involve reconnecting the channel with its floodplain (Gumiero 

et al., 2013), fencing off livestock (Forget et al., 2013), planting (Salinas and 

Guirado, 2002), controlling invasive species (Claeson and Bisson, 2013), 
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introducing wood into the channel (Norbury et al., 2021), land-use change 

(Burmeier et al., 2011) or flow management in regulated systems (Hall et al., 2011). 

The implementation of coherent management plans that integrate the various 

issues and stakeholders linked to the river requires diagnosis and adequate planning 

on a watershed scale (Piégay and Landon, 1997; González et al., 2015). The 

effectiveness of these actions must also be monitored and assessed. Nevertheless, 

such an approach implies having up-to-date data on the condition of rivers and 

riparian areas at the watershed scale. 

Due to the dynamic nature of riparian zones and their often difficult accessibility, 

it is costly to obtain such data. Remote sensing techniques can provide an alternative 

to field inventories. Remotely sensed data are becoming increasingly available, 

including high-resolution or LiDAR products, which are of particular relevance to 

river management.  

For example, remote sensing techniques have been used to map fluvial forms and 

floodplain topography (Szabó et al., 2017), sedimentary processes (Lallias-Tacon et 

al., 2014), riparian vegetation characteristics (Michez et al., 2016b) or dynamics 

(Laslier et al., 2019b), the presence of invasive species (Martin et al., 2020). The use 

of remote sensing to study riparian vegetation will be discussed in greater detail in 

Chapter 2 and will not be developed further here. 

1.2 Remote sensing: basic principles 

The aim of this section is to briefly address the main principles of remote sensing 

that will be used in this manuscript. 

 Definitions 1.2.1

1.2.1.1 GIS  

A geographic information system (GIS) is a system designed to handle spatially-

referenced data. Its essential functions include the collection or production of such 

information (e.g. from databases or sensor-acquired information), its processing and 

analysis, and finally its representation (e.g. in the form of maps or tables) (Peuquet 

and Marble, 1990). 

The first operational geographic information systems were put into service in the 

early 70s, and the first commercial software products took off in the 80s and 90s 

thanks to the democratization of computers (Maliene et al., 2011). In four decades, 

GIS has undergone major developments, notably with the increase in processing 

possibilities (Lü et al., 2019), the advent of the internet and server-stored data 

(Agrawal and Gupta, 2017) and the growing interoperability between systems and 

available databases (Sondheim et al., 1999), evidenced by the current success of 

Open Source solutions (Löwe et al., 2022). Among the most widely used geographic 

information systems are QGIS, Arcgis, Google Earth and the GDAL library. 

Many problems have a spatial dimension. And as a result, GIS is used by a wide 

variety of professionals. For example, public authorities can use them to understand 

the impact of creating a new road, find the best location for a hospital or assess the 
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damage caused by a natural disaster. Managers of natural areas or forests can use 

them to plan management in a spatially differentiated way. Companies can use them 

to optimize their logistics or for marketing purposes. More recently, GIS is being 

used for precision agriculture (Longley et al. 2015). 

1.2.1.2 Remote sensing 

Remote sensing can be defined as the discipline of extracting information about a 

target from a distance, using sensors that exploit the electromagnetic spectrum and 

are mounted on mobile platforms (Fussell et al., 1986). 

In a remote sensing system, we need to differentiate between the vector and the 

sensor. The vector is the platform that carries the sensor. We can distinguish aerial 

platforms (airplane, helicopter, drone, balloon, etc.), which are rather flexible and 

inexpensive to deploy on a particular mission, and space platforms (satellites), 

deployed for longer missions and enabling information to be obtained regularly over 

a large part of the earth's surface. 

The sensor is the instrument that collects the scene's radiative energy to derive a 

measurable electrical signal. First of all, we can distinguish analog and digital 

sensors. Analog sensors use film to record electromagnetic radiation. The images 

produced are then used for photo-interpretation or photogrammetry (see below). 

Digital sensors offer greater possibilities in terms of spectral richness and automatic 

processing, and have undergone greater methodological development since the 

1970s (Congalton, 2010). These sensors record electromagnetic field information in 

the form of numbers, corresponding to the received signal intensity in a given 

frequency range. 

Among digital sensors, a distinction can be made between passive and active 

sensors. Passive sensors exploit the electromagnetic radiation reflected by the target 

under the effect of solar radiation. Active sensors (e.g. LiDAR or RADAR) emit 

their own electromagnetic radiation in the direction of the target, and measure the 

properties of the reflected signal. 

Remote sensing systems are often described in terms of their spectral, radiometric, 

spatial and temporal resolutions. A digital sensor often records information in 

several regions of the electromagnetic spectrum. A sensor recording information in 

four or more bands is generally described as "multispectral", while a sensor 

recording a large number of bands (several dozen or even several hundred according 

to Dian et al. (2021)) is generally described as "hyperspectral". Spectral resolution 

refers to the sensor's ability to differentiate between radiation emitted at two nearby 

wavelengths. High spectral resolution is generally associated with a large number of 

narrow spectral bands (ElMasry and Sun, 2010). Radiometric resolution, on the 

other hand, corresponds to the sensor's sensitivity to differences in the intensity of 

radiation emitted by the target (Ose et al., 2016). Temporal resolution is often used 

to designate the time interval between two data collections. For satellite platforms, 

this return time is often determined by trajectory and swath (the width covered by an 

image during one pass around the Earth). For aerial platforms and satellite platforms 

operating "on demand", this temporal resolution can be modulated by the data 
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producer (Ose et al., 2016). Spatial resolution corresponds to the footprint of a pixel 

on the ground, or the elementary unit at which spectral properties are measured. It 

depends on both the sensor and the platform used. For a given sensor, the greater the 

distance to the target, the lower the spatial resolution. As the number of pixels in an 

image is generally an intrinsic characteristic of the sensor, high spatial resolution is 

achieved at the cost of a smaller image footprint. The adjectives “high”, “very high” 

or “low” resolution are relative to the object of study: images can be considered high 

resolution when the objects of study are represented by a large number of pixels. For 

low-resolution images, the objects of study are smaller than the pixels (Strahler et 

al., 1986). In the case of riparian vegetation, we consider the boundary between high 

and low resolution to be of the order of 10 m, corresponding to the size of a mature 

tree crown. This limit is also taken up by White et al. (2016), although the latter also 

considers other classes of lower or higher resolution. For small rivers or studies 

related to bank morphology for example, this limit could be set lower. 

It is impossible to produce remote sensing data with high spatial, temporal, 

spectral and radiometric resolution over large areas at an affordable cost. It is 

therefore necessary to make a compromise according to the needs of the considered 

application (Figure 3). 

 

Figure 3: Spatial and temporal resolution required for a set of applications and 

corresponding data. This figure was originally produced by Jensen (2015) and updated by 

Vandendaele (2022). 
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Aerial platforms have been used for longer than satellite images and have long 

been the only means of obtaining high spatial resolution information (Toth and 

Jóźków, 2016). They were widely used to describe western rivers during the 20th 

century and are still widely used for their flexibility and for obtaining information at 

high spatial resolution. The first operational satellite platforms for monitoring 

natural resources came into service in the 1970s with the Landsat-1 satellites (80 m 

spatial resolution, 18-day revisit time, 4 spectral bands). Images from Landsat 7-8-9, 

commissioned in 1999, have a resolution of 30 m, four spectral bands and a revisit 

time of 16 days. The Sentinel-2 A and B satellites, commissioned in 2015 and 2017, 

offer 13 spectral bands, a resolution ranging from 60 to 10 m, and a revisit time of 

around 5 days. In parallel with government programs, numerous private satellites 

have been put into orbit with resolutions of a few meters with the Ikonos, Quickbird, 

RapidEye, Pléiades or WorldView satellite series. More recently, the use of small 

satellite constellations (PlanetLabs, SkySat) has become more common (Toth and 

Jóźków, 2016). For example, the PlanetScope constellation comprises more than 

four hundreds of satellites at the time of the writing of this thesis. Each satellite has a 

spatial resolution of 3 to 4 meters and carries a sensor that records 4 to 8 bands. The 

revisit time is about 1 day. While image quality (for example georeferencing, 

spectral or radiometric homogeneity) does not match that of other larger satellites, 

the quality of on-board sensors and image correction techniques are being gradually 

improved (Frazier & Hemingway, 2021). 

 Focus on a sensor: LiDAR 1.2.2

1.2.2.1 Definition 

LiDAR (Light Detection And Ranging) technology is an active remote sensing 

technique used to model the relief of the earth's surface. During a LiDAR 

acquisition, a light beam (generally infrared) is emitted towards the Earth and 

reflected by the various obstacles encountered (vegetation, buildings, soil). The 

properties of the reflected beam (return time and intensity) can then be analyzed. 

Often, the returns are discretized to build a point cloud, where each point 

corresponds to an obstacle encountered (Chazette et al., 2016). As the LiDAR beam 

is not completely stopped by vegetation, this technology provides information on the 

ground surface beneath the vegetation. LiDAR sensors can be mounted on aerial 

platforms (airplanes, microlights, helicopters or drones) or space platforms (GLAS 

or GEDI satellites, for example) (Sun et al., 2022). 

Point clouds are often processed to produce three types of raster products (Figure 

4). Schematically, a DSM (digital surface model) is obtained by extracting the 

altitude of the highest point (surface relief) for each pixel. The DTM (digital terrain 

model) is obtained by extracting the altitude of the lowest point (ground relief). 

Finally, the DHM (digital height model) is obtained by subtracting the elevation of a 

DSM and a DTM (Guth et al., 2021). It can be called a CHM (canopy height model) 

in forested areas. Other information can be extracted from the LiDAR signal, 

relating to the number, spatial distribution and intensity of returns. 



  

10 

Remote sensing applications for the characterization and 

management of riparian vegetation in Southern Belgium 

 

Figure 4 : Construction of the main raster products obtained using a LiDAR sensor. DSM 

= Digital surface model; DTM = Digital terrain model; CHM = Canopy height model. This 

figure was reproduced from Michez (2016). 

1.2.2.2 Applications 

These properties make LiDAR a useful tool for research and environmental 

management. According to Hyyppä et al. (2008), there are two main approaches to 

using LiDAR data for forestry applications: "area-based" and "object-based" 

approaches (Figure 5). The surface approach consists in extracting variables 

describing the LiDAR signal within a defined surface, such as a 12 m radius disk or 

a 30 m pixel. The object-based approach is implemented in two stages. First, objects 

are created by segmenting the point cloud or the CHM. These objects may 

correspond to trees, in which case the approach is referred to as individual tree 

crown approach or tree-centric approach. Variables related to the distribution of 

returns or the shape of tree crowns are then calculated at the scale of segmented tree 

crowns. Such approaches offer a clear advantage in fragmented landscapes such as 

riparian zones, where edge effects make it difficult to build fixed-area calibration 

units (Dalponte and Coomes, 2016). Other approaches based on deep learning, 

which don't fit into any of these boxes, have recently been deployed in forest 

research (Bolyn et al., 2022). 

DSM 

DTM 

Altitude (m) 

CHM 

Height (m) 



 

11 

1. General Introduction 

 

Figure 5 : Comparison of the "area-based" approach, which exploits LiDAR variables at 

the canopy scale, with a "tree-centric" approach, which exploits LiDAR variables at the scale 

of a tree crown. This figure was reproduced from Coomes et al. (2017). 

In the riparian context, LiDAR data are used to extract basic information about a 

river such as its position, width or longitudinal slope (Biron et al., 2013). LiDAR 

DTM are widely used in hydraulic modelling (Mandlburger et al., 2009) or to map 

flood vulnerability (Muhadi et al., 2020). The ability of LiDAR to describe both 

topography and vegetation (in this case, its hydrodynamic properties), has been 

exploited by several authors to parameterize terrain roughness according to the 

vegetative cover (Straatsma and Baptist, 2008; Zahidi et al., 2018). Topographic 

data from a LiDAR dataset can also be exploited by geomorphologists to identify the 

floodplain, oxbow lakes, terraces and drainage ditches (Notebaert et al., 2009), or to 

measure the height of sediment banks (Caponi et al., 2019). When several surveys 

spaced over time are available, sedimentary phenomena can sometimes be quantified 

(Lallias-Tacon et al., 2014). Applications for mapping riparian vegetation, at the 

crossroads of remote sensing applied to rivers and terrestrial vegetation, will be 

discussed in Chapter 2. The use of LiDAR data for describing the riverbed itself will 

be discussed in Chapter 5. 

 Focus on aerial photogrammetry 1.2.3

1.2.3.1 Definition and applications 

Images acquired from a camera are two-dimensional and distorted. As a result, 

they cannot be directly precisely referenced in space and measures cannot be 

directly performed on them. Photogrammetry is a technique for measuring distances 

and angles, by exploiting the parallax of images acquired from different viewpoints.  

Although photogrammetry has been around for over a century, it has undergone a 

revolution since the 2000s. This evolution is linked to the advent of digital 

photography and increased computing power. Older photogrammetry, based on 

analog photos, required expensive metric cameras and considerable know-how for 

image acquisition and processing. More recent techniques mobilize large numbers of 
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images, powerful and largely automated computer vision and computing algorithms 

(Pierrot-Deseilligny and Clery 2011). 

Aerial photogrammetry is the application of photogrammetry to images acquired 

using airborne sensors. While aerial photogrammetry has long been used in many 

fields, the increasing, low-cost availability of drones with on-board cameras has 

created renewed interest in the technique (Lisein et al., 2013).  

Products derived from aerial photogrammetry are used for a wide range of 

applications. These include the use of photogrammetric 3D models as a substitute 

for LiDAR point clouds in forestry (Michez et al., 2020), the use of 

photogrammetric point clouds to describe the geometry of a river's minor bed or the 

evolution of its morphology (Woodget et al., 2019), or even more simply, the use of 

time series of aerial images to describe the evolution of riparian landscapes. 

1.2.3.2 Image acquisition 

Photogrammetry relies on redundant images, on which a sufficient number of 

homologous points (points taken with different shots) can be found. The aerial 

platform (e.g. a plane or drone) follows parallel lines of flight and takes images at 

regular intervals, so as to achieve sufficient lateral and longitudinal overlap (Figure 

6). The camera is generally oriented at right angles to the ground: this is known as 

NADIR photography. 

 

Figure 6: Flight and image acquisition scheme for an aerial platform for subsequent 

photogrammetric processing. 

Figure 7 summarizes the most important camera parameters. Focal length is a 

fundamental characteristic of the camera lens. A long focal length (telephoto) 

produces detailed photos over a small area, while a short focal length (wide-angle) 

produces less detailed photos over a larger area. The number of pixels on the sensor 

is equal to the number of pixels that will be present on the photograph. All things 

Profile 

view 

Zenital view 

Photograph 

Ground 

Longitudinal overlap 

Lateral overlap 
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being equal, a higher pixel count leads to greater resolution. Swath depends on 

sensor dimensions (the wider the sensor, the larger the swath), focal length (the 

shorter the focal length, the larger the swath) and height (the higher the flight 

altitude, the larger the swath). 

 

Figure 7: Diagram showing the main parameters of a camera used in photogrammetry.  

1.2.3.3 Overview of a processing chain 

An overview of an SFM-MVS (Stucture from motion - Multi-view stereo) 

processing chain is shown in Figure 8. The first step is to detect characteristic points 

visible in several images: homologous points, also known as tie points. This search 

is often carried out using SIFT (scale invariant feature transform) algorithms. These 

algorithms analyze images locally to find landmarks that remain visible despite 

changes in viewpoint from one image to the next. 
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Figure 8 : Schematic diagram of an SFM-MVS processing chain. This figure was 

reproduced from Iglhaut et al. (2019). 

Tie points, camera and geographic information (platform and sensor position and 

orientation, points with known coordinates on images) are used to estimate and 

refine shot positions and orientations. Geometric distortions in the images are 

sometimes also modeled at this stage, known as camera calibration. Image 

calibration and the estimation of shot orientations (aerotriangulation) are carried out 

iteratively to minimize the error of reprojecting a tie point from one image to 

another, or the error of positioning on points with known coordinates (Egels, 2011). 

The result is a sparse point cloud that forms the skeleton of the 3D model. 

In the densification stage (dense matching or dense correlation), the pixels around 

the homologous points are added to the model, using the positions of the shots and 

the model optimized for the camera. This step results in the creation of a denser 

point cloud. This cloud is used to produce an orthophotomosaic (also known as an 

orthophoto, orthophotoplan or orthomosaic). An orthophoto is a two-dimensional 

image whose distortions have been corrected, so that it can be overlaid on a plane at 

any point (Figure 9). A digital surface model (DSM) can also be produced.  
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Figure 9: An orthophoto and a DSM are overlaid on a topographic survey. A profile is also 

extracted from the DSM to estimate the height of a wall. 

1.2.3.4 Geometric quality and georeferencing 

In the absence of geographic information, photogrammetry produces scale-free 3D 

models in an arbitrary geographic reference system. Absolute position information 

can be obtained from the GNSS positions of the platform in flight and the 

orientation of the sensor (accuracy of a few centimeters to a few meters, depending 

on the equipment used), or from points on the ground visible on the images and 

whose absolute position is known (Figure 10). 

 

Figure 10 : Control point surveyed with precision GNSS (left) and visible on a photograph 

taken with a drone (right) 

Accuracy is a measure of the geometric quality of the photogrammetric model. 

The absolute error corresponds to the positioning error of an object between its 
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representation in the model and in reality. It is calculated using a representative 

sampling of the area. The position of check points visible on the orthophoto is 

precisely measured in the field and compared with the position of the same point on 

the orthophoto. The relative error corresponds to the error in the dimension of an 

object between its representation in the model and in reality. Indeed, it is possible to 

obtain a model whose geometric properties are correct, but whose absolute position 

in space is offset (Meinen and Robinson, 2020). 

1.3 Objectives and manuscript organization 

The aim of this thesis is to propose new mapping tools to support riparian 

vegetation management. These tools are based on high-resolution airborne remote 

sensing techniques. The first sub-objective is to develop innovative approaches for 

describing riparian vegetation at watershed scale. The second sub-objective aims to 

identify the applicative potential of remote sensing tools to support the management 

of riparian ecosystems. Figure 11 illustrates how these two sub-objectives relate to 

the chapters of the thesis. 

 

 

Figure 11: Schematic view of sub-objectives and chapters of the thesis 

A review of the literature (Chapter 2, published article) provides an overview of 

the state of the art and identifies research prospects. Based on a detailed review of 

the literature, we identify operational applications and the challenges faced by 

researchers in transferring the approaches developed to riparian ecosystem 

managers. This chapter relates to the two sub-objectives of the thesis. 
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Three approaches to mapping riparian vegetation using remote sensing are then 

deployed on the Semois and Chiers river basins in southern Belgium. The following 

three chapters relate to the first sub-objective of the thesis and address mapping of 

biomass, specific composition and bank erosion. These indicators relate to flood risk 

(production of large woody debris influenced by these three indicators) and nature 

conservation (vegetation type and diversity, maturity and dynamic character), which 

are the main stakes addressed by managers of riparian areas located in western 

countries with a temperate climate (Dufour et al., 2020).  

Chapter 3 (published article) presents a method for estimating woody biomass at 

the scale of 230 km of rivers and their floodplains, based on LiDAR data. Biomass is 

a variable of interest for riparian vegetation management. It summarizes the state of 

the vegetation and is associated with numerous functions within the hydrosystem. 

The spatial structuring of this biomass is then analyzed with regard to factors linked 

to geomorphology, history or human activity. 

Chapter 4 (original unpublished work) presents an approach to mapping the 

species composition of riparian forests at the scale of 155 km of rivers and their 

floodplains, based on LiDAR data. The spatial structuring of species composition is 

also analyzed. 

Chapter 5 (original unpublished work) deals more specifically with the description 

of riverbanks using LiDAR data and UAV images. Bank morphology and mobility 

have a direct influence on riparian vegetation and its management. The accuracy and 

limitations of both techniques are analyzed. To illustrate the potential application of 

the techniques presented, lateral bank erosion is mapped at the scale of a small 

watershed. 

Chapter 6 is structured into three subsections. Section 6.1 relates to the first sub-

objective of the thesis and discusses methodological issues relating to scale, which 

run through all the work presented in this thesis. Section 6.2 relates to the second 

sub-objective of the thesis and discusses the application of remote sensing methods 

for the benefit of river management. The concrete use of the techniques developed in 

this thesis in the context of river management is illustrated in section 6.2.1. In this 

section, the bank erosion data produced in Chapter 5 are combined with biomass and 

specific composition data to prioritize riparian management over the watershed. 

Section 6.2.2 focuses on the transfer of simplified remote sensing methods, which 

can be deployed directly by river managers. Section 6.3 discusses perspectives for 

thematic research on riparian vegetation.   
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Foreword 

This chapter provides an introduction to the use of remote sensing to characterize 

and support vegetation management. It begins with a quantitative analysis of the 

scientific literature. This is structured according to the riparian vegetation 

characteristics studied, the scale of observation, the multi-temporal nature and the 

type of data used. Secondly, operational applications are presented and challenges 

related to knowledge transfer are discussed. This chapter is adapted from an article 

published in the Journal of Environmental Management. 

 

Reference (Chapter adapted from publication) 

Huylenbroeck, L., Laslier, M., Dufour, S., Georges, B., Lejeune, P., & Michez, A. 

(2020). Using remote sensing to characterize riparian vegetation: A review of 

available tools and perspectives for managers. Journal of environmental 

management, 267, 110652. 

 

Abstract 

Riparian vegetation is a central component of the hydrosystem. As such, it is often 

subject to management practices that aim to influence its ecological, hydraulic or 

hydrological functions. Remote sensing has the potential to improve knowledge and 

management of riparian vegetation by providing cost-effective and spatially 

continuous data over wide extents. The objectives of this review were twofold: to 

provide an overview of the use of remote sensing in riparian vegetation studies and 

to discuss the transferability of remote sensing tools from scientists to managers. We 

systematically reviewed the scientific literature (428 articles) to identify the 

objectives and remote sensing data used to characterize riparian vegetation. Overall, 

results highlight a strong relationship between the tools used, the features of riparian 

vegetation extracted and the mapping extent. Very high-resolution data are rarely 

used for rivers longer than 100 km, especially when mapping species composition. 

Multi-temporality is central in remote sensing riparian studies, but authors use only 

aerial photographs and relatively coarse resolution satellite images for diachronic 

analyses. Some remote sensing approaches have reached an operational level and are 

now used for management purposes. Overall, new opportunities will arise with the 

increased availability of very high-resolution data in understudied or data-scarce 

regions, for large extents and as time series. To transfer remote sensing approaches 

to riparian managers, we suggest mutualizing achievements by producing open-

access and robust tools. These tools will then have to be adapted to each specific 

project, in collaboration with managers. 
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2.1 Introduction 

At the interface between terrestrial and aquatic biota, riparian vegetation is a 

central element in the hydrosystem, where it plays many ecological roles and 

interacts with all hydrosystem components (Naiman et al., 2005). In a broad sense, 

riparian vegetation corresponds to all vegetation types that grow within the area 

influenced by a river network (Naiman and Décamps, 1997).  

Despite covering a relatively small area, riparian vegetation provides many 

ecosystem services related to river flow (Dixon et al., 2016), sedimentary processes 

(Zaimes et al., 2004), biodiversity (Naiman and Décamps, 1997), water quality 

(Honey-Rosés et al., 2013, Brogna et al., 2018), cultural value (Décamps, 2001, 

Klein et al., 2015, Vollmer et al., 2015). However, riparian ecosystems experience 

multiple pressures (e.g. land use, water diversion, modified flood regime) (Stella and 

Bendix, 2019) and have been severely altered in many regions of the world, for 

example in Western Europe (Hughes et al., 2012), southwestern North America 

(Poff et al., 2011), in the Murray‐Darling Basin in Australia (Mac Nally et al., 2011) 

or in South Africa (Holmes et al, 2005). Consequently, riparian vegetation is often 

the focus of management practices, including restoration or rehabilitation measures 

(Dufour and Piégay, 2009; González et al., 2015; Capon and Pettit, 2018), buffer 

implementation (Lee et al., 2004) or repeated maintenance operations such as wood 

removal (Piégay and Landon, 1997; Wohl et al., 2016). 

In this context, management practices must be based on accurate and up-to-date 

information about the state of riparian vegetation (National Research Council, 

2002). Regional or national programs have thus been established in many countries 

to monitor the health of riparian ecosystems. Examples include southern Belgium 

(Debruxelles et al, 2009), Spain and more generally the European Union in the 

frame of the Water Framework Directive (Munné et al., 2003, Willaarts et al., 

2014), Australia with the South East Queensland Healthy Waterways Partnership 

(Bunn et al., 2010) or the monitoring of riparian condition in several National Parks 

in North America (Starkey, 2016). Dense sampling schemes can help target and 

implement management practices (Landon et al., 1998; Beechie et al., 2008) or 

assess their effectiveness (González et al., 2015). However, due to the spatial 

arrangement, dynamism and inaccessibility of riparian ecosystems, data acquisition 

in the field can be labor-intensive, especially for large areas (i.e. more than 100 km 

of a river) (Johansen et al., 2007). It is thus difficult to sample densely in the field, 

and the density or the extent of observations must be reduced. This can be 

problematic, because river scientists argue that small scale or discontinuous 

observations are inadequate to understand spatially continuous processes that occur 

at large spatial scales (Fausch et al., 2002; Marcus and Fonstad, 2008; see also 

Tabacchi et al., 1998 or Palmquist et al., 2018 for examples related to riparian 

vegetation). 

Remote sensing provides the ability to acquire continuous data over large extents. 

In the past few decades, the continued development of sensors, vectors and 

computational power has fueled the development of applications in environmental 
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science (Anderson and Gaston, 2013; Wulder et al., 2012). The positive contribution 

of remote sensing to the management of natural resources is addressed by many 

articles related to river or riparian management (Carbonneau and Piégay, 2012, 

Dufour et al., 2012). This is not only a theoretical issue as is it regularly raised by 

riparian managers in the grey literature (Vivier et al., 2018, Fédération des 

Conservatoires d’espaces naturels, 2018). However, it is difficult for managers to 

know whether and which remote sensing methods are relevant to a particular 

situation (Dufour et al., 2012). 

The use of remote sensing to study riparian vegetation raises specific challenges. 

These challenges are linked to the vegetation’s relative structural complexity and 

spatial organization (Naiman and Décamps, 1997), or to the difficulty to extract 

specific features or processes related to riparian vegetation functions (e.g. surface 

roughness by Straatsma and Baptist (2008), shading of streams by Loicq et al., 

2018). In a recent literature review, remote sensing emerged as a particularly 

dynamic subject in riparian studies (Dufour et al., 2019). Remote sensing of riparian 

vegetation was mentioned in several reviews addressing the remote sensing of rivers 

(Muller et al., 1993; Goetz, 2006, Tomsett and Leyland, 2019, Piégay et al., 2020). 

Specific aspects were also reviewed such as the mapping of roughness coefficients 

with remote sensing (Forzieri et al., 2012) or the use of satellite images to map 

riparian vegetation in New Zealand (Ashraf et al., 2010). Dufour et al. (2012) and 

Dufour et al. (2013) summarized and discussed several examples of remote sensing 

applications to map riparian vegetation. However, none of the aforementioned 

articles comprehensively reviewed the use of remote sensing to map riparian 

vegetation across regions, scales and researcher’s interests. Indeed, the latter are 

fragmented among several fields of knowledge (e.g. ecology, geomorphology or 

hydraulics) (Dufour et al., 2019). 

The aims of this article are 1) to provide a comprehensive overview of the 

relevance of remote sensing to support the study of riparian vegetation and 2) to 

discuss how remote sensing approaches can be valued as operational tools for 

managing riparian vegetation. To these ends, we first systematically review the 

different types of data used to study major features, functions and processes related 

to riparian vegetation across scales (section 2.3). The second part of the article 

(section 2.4) is based on expert judgment. We provide concrete examples where 

remote sensing is used in management contexts, in order to identify the challenges 

of conveying remote sensing tools from scientists to managers. 

2.2 Materials and methods 

Our approach was structured as following: we first selected relevant articles in the 

Scopus database. Second, relevant information was extracted for each article, and 

summarized into graphs. Our results were discussed in terms of trends and 

perspectives for research, and in terms of operationality and transferability to 

riparian managers. The Figure 12 synthesizes our approach. Major steps are further 

detailed in the following sections. 
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Figure 12: General workflow for the reviewing process. 

 Database collection 2.2.1

Relevant articles were selected from the Scopus database (www.scopus.com) for 

the period 1980 - April 2018, when the database was queried. We searched the title, 

abstract and the keywords for words related both to riparian vegetation and to 

remote sensing technologies. More precisely, we used the request described in the 

Figure 13. 

 

Figure 13: Keywords used for database collection 
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Our choice of keywords excluded articles that mentioned riparian zones, but not 

specifically riparian vegetation. While some of these articles could have been 

relevant for this review, including keywords related to riparian zones would have 

resulted in unmanageable noise. 

This request yielded 791 articles. We first filtered out irrelevant articles based on 

their title (672 articles kept). Then, we sorted through the remaining articles based 

on their abstracts (428 articles kept). During these two filtering steps, we removed 

mainly articles in which riparian vegetation was not an essential part of the study. 

For example, we removed geomorphological articles in which riparian vegetation 

was mentioned in the abstract but was not actually studied. Articles that used GIS 

but no remote sensing data were also removed (e.g. those using cadastral archives). 

We also built a second database using only keywords related to riparian 

vegetation, excluding those related to remote sensing. This second database was 

solely used to estimate the proportion of remote sensing studies among riparian 

vegetation studies, and was not analyzed using the analysis grid described in the 

following section. 

 Analysis grid 2.2.2

We searched for features that characterized the articles collected to perform 

quantitative analysis and statistics. We built our analysis grid (Table 1) around five 

groups of variables: “general information”, “remote sensing technology”, “study 

extent”, “type of indicator” and “multi-temporality”. In this paragraph, when not 

obvious, we highlight in bold the codes (used in figures) associated with the 

variables. ”General information” included variables such as the publication year and 

location of study area. “Remote sensing technology” described the type of remote 

sensing data used. To simplify interpretation, we recorded this information as 

common combinations of sensors and vectors. We distinguished the following: 

airplane with a RGB/GS (red-green-blue or panchromatic), digital or analog sensor 

(Plane_RGB); airplane with a multispectral or hyperspectral sensor 

(Plane_MSHS); UAV with any sensor (UAV); any vector with a LiDAR sensor 

(LiDAR); any vector with a RADAR sensor (RADAR) and satellite with a 

multispectral or hyperspectral sensor. This last variable was coded according to 

image resolution: medium (> 10 m, Satlow) or high (≤ 10 m, Sathi). Such a limit 

was also used in White et al. (2016) in forest ecosystems and separates images 

where trees or small groups of trees can be distinguished from images where they 

cannot. ”Study extent” described the extent of the study area as the length of studied 

river or area of the study area. These two variables were recorded in categories and 

then summarized into a single category to simplify interpretation: study extent. 

“Type of indicator” described the type of features extracted with remote sensing data 

to describe riparian vegetation. Delineation of riparian vegetation among other land 

cover types (DLC) is the first feature extracted for managing riparian vegetation. 

Species composition is a major feature of riparian plant formations. It is related to 

habitat provision, bank stabilization and flood regulation functions; for example, 

willow is a pioneer species that helps to stabilize banks (Hupp, 1992). We 
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distinguished studies that differentiate groups of species (Communities) and studies 

that differentiate species (SP). We also distinguished studies in which the target 

species were invasive (SP_invasive), since riparian zones are particularly prone to 

invasions (Richardson et al., 2007). We distinguished studies in which the target 

communities were succession stages, since riparian systems are pulsed systems in 

which succession is regularly reinitiated, leading to a mosaic of succession stages 

(Kalliola and Puhakka, 1988). The structure of riparian vegetation is related to many 

ecological functions. We recorded general descriptors of vegetation structure such as 

vegetation height, density, biomass and landscape structure. We also recorded 

studies interested in hydraulic properties of vegetation (Roughness), since riparian 

vegetation has tremendous effects on the hydraulic regime of rivers, especially by 

slowing river flow (Curran and Hession, 2013). Riparian shade (or overhang) 

influences fish habitats and is a major factor regulating stream temperature (Poole 

and Berman, 2001). Large woody debris (LWD) has many effects on provision of 

aquatic habitats, river morphology and flood risk prevention (Wohl, 2017). Features 

related to physiological processes, including phenology and health statuts (e.g. tree 

dieback), are a major concern for managers (Cunningham et al., 2018). Riparian 

evapotranspiration has often been studied in arid or semi-arid systems because it 

has a major effect on providing water for human use (Dahm et al., 2002). ”Multi-

temporality” included only one variable (Diachronic), which corresponded to a 

special type of study  diachronic analysis  that uses a temporal series of images to 

describe vegetation dynamics. We recorded all variables as presence/absence data to 

capture the use of several types of data or the mapping of several indicators in the 

same article. 
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Table 1: Analysis grid used for each article in the database  

Group of variables Variable Values Description 

General information Year  Publication year 

X1  Longitude of the study area 

Y1  Latitude of the study area 

Biome  World Wildlife Fund Biome of 

the study area (extracted from the 

geographical coordinates of the 

study area) 

Type of remote sensing 

data 

Plane_RGB 0/1 Use of black and white or true-

color aerial images (except 

images acquired from UAVs) 

Plane_MSHS 0/1 Use of aerial images with 4 or 

more spectral bands (except those 

from UAVs) 

Satlow 0/1 Use of satellite images with 

resolution > 10 m 

Sathi 0/1 Use of satellite images with 

resolution  10 m 

UAV 0/1 Use of images acquired from 

UAVs 

LiDAR 0/1 Use of LiDAR data 

RADAR 0/1 Use of RADAR data 

Extent of the study area Length 1 to 5 Length of the river studied (for 

studies at the scale of the minor 

bed or floodplain) 

Area 1 to 5 Area of the study area (for studies 

at the watershed scale) 

Study extent 1 to 5 Combination of Length and Area: 

 Local: Length < 10 km 

 River segment: Length 

10-100 km OR Area < 100 

km² 

 Subregional: Length 

100-1000 km OR Area 100-

1000 km² 

 Regional: Length > 

10,000 km OR Area 1000-

10,000 km² 

 Very large scale: Area > 

10,000 km² 

Type of 

indicator 

Delimitation DLC 0/1 Mapping of riparian vegetation 

(including land cover studies) 
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Species 

composition 

Communities 0/1 Mapping of several distinct 

riparian plant communities 

Succession 

 stages 

0/1 Mapping of several succession 

stages 

SP 0/1 Mapping of riparian vegetation at 

the species level 

SP_invasives 0/1 Mapping of invasive species 

Vegetation 

structure 

Height 0/1 Mapping of vegetation height 

Landscape 0/1 Calculation of landscape metrics 

(e.g. continuity) 

Density 0/1 Mapping of vegetation density 

Shade 0/1 Mapping of shade cast by 

vegetation 

Biomass 0/1 Mapping of biomass 

LWD 0/1 Large woody debris (wood in 

rivers) 

Roughness 0/1 Mapping of vegetation hydraulic 

properties 

Physiological 

processes 

Evapo-

transpiration 

0/1 Estimate of vegetation 

evapotranspiration 

Health status 0/1 Mapping of vegetation health 

status (e.g. tree dieback, 

defoliation) 

Phenology 0/1 Mapping of vegetation phenology 

Multi-temporality Diachronic 0/1 Diachronic analysis 

 Statistical analysis 2.2.3

We computed the annual number of published studies using remote sensing of 

riparian vegetation. We also computed for each year the proportion of studies that 

used remote sensing among all riparian vegetation studies. To do so, we compared 

the number of articles in the database related to remote sensing and riparian 

vegetation with the number of articles in the database related to riparian vegetation 

in general.  

The data collected with the analysis grid were summarized and plotted. We 

computed the number of articles for each WWF biome, the use of different remote 

sensing technologies through time. We then compared the use of different 

technologies according to the scale of observation, the indicator extracted and the 

multi-temporal character of studies. 

Finally, we performed a multiple correspondence analysis in order to highlight 

relationships between the type of data and the type of feature extracted. We used the 

package FactoMineR of R software. All variables were recorded as categorical 

variables. Variables related to study extent and multi-temporality were added as 

supplementary variables. 
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 Interpretation of results 2.2.4

Results were discussed in two phases. First (section 2.3), we use our quantitative 

review of the literature to establish the state of the art and main perspectives in the 

use of remote sensing to map riparian vegetation. Second (section 2.4), we discuss 

how remote sensing can be used in real management contexts. We first discuss the 

added value of remote sensing in such contexts using concrete examples from the 

grey literature and personal experience. Then, we use these examples to discuss the 

challenges that must be overcome in order to promote the use of remote sensing by 

riparian managers. Therefore, while the section 2.3 of this article is based on a 

rigorous review of the scientific literature, the section 2.4 of this article is rather 

based on expert judgment. 

2.3 Results and discussion of the systematic review 

 Location of the studies 2.3.1

Most studies in the 428 selected layed in the Northern Hemisphere (79%), 

especially in North America (40% of studies) and Europe (20% of studies) (Figure 

14). South America, Oceania, Asia (mostly Japan) and Africa represented 

respectively 9%, 9%, 11% and 5% of studies. Most represented biomes (Figure 15) 

were hardwood and mixed temperate forests (28%), temperate coniferous forests 

(14%), and deserts and xeric bushes (13%). Mediterranean biomes (10%) and 

temperate open biomes (8%) were also well represented. Well-represented biomes 

generally corresponded to those in developed countries. Conversely, boreal forests 

and tundra were least represented (< 1% of studies), though they cover a large area 

globally (> 10% of emerged land area). In addition, despite the large extent of 

tropical biomes (tropical and equatorial forests or open vegetation, ca. 30% of 

emerged land area), few studies focused on them. 
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Figure 14: Locations of the study areas of the studies reviewed. 

 

Figure 15: Locations of studies reviewed, by World Wildlife Fund biome. 
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This result highlights the lack of knowledge and studies about tropical and boreal 

riparian forests, perhaps due to the location of laboratories, which are often located 

in developed countries and temperate climates. Our results are similar to those of 

Dufour et al. (2019) for all riparian vegetation studies and those of Bendix and Stella 

(2013) for studies of vegetation/hydromorphology relationships.  

However, we suggest that the increasing quality of remote sensing data has great 

potential for research in understudied areas and at the global scale. One condition is 

that these data must be available to their potential users. Open or free remotely 

sensed data, such as Landsat, MODIS or, more recently, Sentinel images, allow 

researchers to overcome the issue of the prohibitive cost of data acquisition. This is 

particularly true for researchers in developing countries for data that are produced in 

wealthier countries (Sá and Grieco, 2016). However, to broaden the user base, it is 

also necessary to facilitate access to these data (Turner et al., 2015). Access can be 

facilitated by providing higher-level (e.g. atmospherically corrected) or derived 

products, such as global land cover maps (Gong et al., 2013), global floodplain 

models (Nardi et al., 2019) and maps of riparian zones (Weissteiner et al., 2016, at 

the European scale). Access can also be made easier by developing an open, free or 

user-friendly environment to find, visualize and process data (Turner et al., 2015).  

 Changes over time in the number of studies that used remote sensing 2.3.2
to study riparian vegetation 

Most of the 428 studies (89%) that used remote sensing to study riparian 

vegetation from 1980-2018 were published after 2000 (Figure 16A), when the 

number of studies began to increase greatly. Before 1990, few studies used remote 

sensing to study riparian vegetation. The percentage of studies using remote sensing 

among studies studying riparian vegetation increased in the 2000s (Figure 16B). 

Each year after 2000, 2-6% of all studies of riparian vegetation used remote sensing. 

Thus, even recently, relatively few studies use remote sensing data to study riparian 

vegetation, and field-based approaches dominate riparian vegetation studies despite 

the development of remote sensing and modeling approaches. This could be due to 

three main reasons. First, field-based approaches have traditionally been used and 

are straightforward. Some aspects of riparian vegetation, such as biogeochemical 

functioning and soil properties, cannot realistically be studied with remote sensing 

(Dufour et al., 2012). Second, the spatial structure of riparian vegetation makes it 

difficult to study using remote sensing. Its complexity (Naiman et al., 2005) and 

narrow shape is difficult to observe with low resolution satellite images (Johansen et 

al., 2010). Additionally, the linear shape of riparian corridors requires acquiring 

images over large areas (to cover sufficient corridor length), only to focus on small 

areas (near the river, rather than other land cover classes). For example, Weissteiner 

et al. (2016) estimated that Europe's riparian area represented ca. 1% of its total 

continental area. Third, we removed duplicate and irrelevant articles from our 

database, but did not do so when identifying all articles describing studies of riparian 

vegetation in general, which may have led us to underestimate the percentage of all 

riparian studies that used remote sensing. 
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Figure 16: A) Number of studies from 1980-2018 that used remote sensing to study 

riparian vegetation. B) Percentage of studies from 1980-2018 that used remote sensing, out 

of all studies concerning riparian vegetation (see section 2.2.3). 

 Changes in remote sensing data over time 2.3.3

The remote sensing data used most were aerial RGB/GS images (44% overall) and 

medium-resolution satellite images (> 10 m resolution, and ≤ 50 m for most studies) 

(Figure 17). Aerial multispectral images appeared in the 1990s and peaked during 

the 2000s. The use of high resolution satellite data (≤ 10 m such as IKONOS, SPOT 

5 and WorldView) started in the late 1990s and reached a plateau around 2010. The 

use of LiDAR data consistently increased during the 2000s, accounting for 20% of 

studies using remote sensing for riparian vegetation in 2017. The use of UAV 

images sharply increased in the 2010s. As the use of these technologies increased, 

the percentage of studies using RGB/GS aerial images and low resolution satellite 

images decreased slightly. Overall, less than 2% of studies used RADAR data. Their 

use peaked in the early 2000s and then decreased. 
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Figure 17: Percentage of studies that used a given technology per year. The curve was 

smoothed using a loess regression. 

The popularity of RGB/GS aerial and low resolution satellite images can be 

explained by their low cost and wide availability, including as time series. Other 

data have been used as they became available (e.g. LiDAR and high resolution 

satellite images in the 2000s, UAVs in the 2010, with earlier appearances 

corresponding to captive balloons that were assimilated to UAVs). The relative 

decrease in the use of multispectral aerial images could be due to their replacement 

by high resolution satellite images. Finally, the low percentage in the use of RADAR 

data could be due to the relative difficulty of interpretation of such data, especially 

as water surfaces can modify RADAR signals. Most studies in our database that 

used RADAR data focused on the interaction between water and riparian vegetation, 

mapping flooding events or roughness coefficients (Townsend, 2002). The early 

decrease in the use of RADAR data coincides with the increase in the use of LiDAR 

data, which also provide structural information.  

 Which technology for which study scale? 2.3.4

There was a strong relationship between the scale of the study (local to very large 

scale) and the type of remote sensing data used (Figure 18). In general, aerial images 

were used more at relatively local scales (i.e. local and river segment), while 

medium-resolution satellite images were used more at larger scales (i.e. regional or 

very large scale). There is often a tradeoff between resolution and coverage: UAVs 
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can produce images with centimetric resolution but struggle to cover large areas, 

while satellites such as Landsat and MODIS provide images at a lower resolution 

(30 m for Landsat, 250 m for MODIS) but can cover large areas.  

 

 

Figure 18: Percentage of studies that used a given remote sensing technology, by spatial 

extent of the study. 

2.3.4.1 Use of UAVs at the local scale 

At the local scale (< 10 km long), 86% of studies were based on airborne remote 

sensing (of which 79% used airplanes and 11% used UAVs). This scale of study lies 

within the range of action of relatively inexpensive UAVs that can carry RGB and 

multispectral cameras. While most UAVs were used at the local scale, the low 

percentage of local scale studies that used UAVs was surprising. This can be 

explained by the recent availability of these platforms: of studies published in the 

2010s, 20% of those at the local scale used UAVs. UAVs are considered more 

versatile than planes, and a growing number of “ready-to-fly” platforms allow end-

users to perform their own acquisitions (Anderson and Gaston, 2013). Moreover, 

UAV imagery provides very high spatial resolution imagery (up to centimetric), 

which is ideal for operator photointerpretation, which is frequently used at this scale. 
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However, most developed countries have established regulations that restrict the 

potential and spread of UAV technology (Stöcker et al., 2017). 

2.3.4.2 Use of airplanes and satellites at the segment and subregional scales 

Both airborne and spaceborne sensors were used at the segment (10-100 km) and 

subregional scales (100-1000 km). RGB/GS aerial images were used in 55% and 

39% of studies at respectively the river-segment and subregional scale (Figure 18). 

Most researchers photointerpret these images to describe riparian vegetation 

features. This method is long-standing, but remains a relevant and effective 

approach to map riparian vegetation over small watersheds or along dozens (more 

rarely hundreds) of km of rivers (Jansen and Backx, 1998; Matsuura and Suzuki, 

2013; Carli and Bayley, 2015; González del Tánago et al., 2015; Solins et al., 2018). 

However, photointerpretation of hundreds of km of river can become tedious. In this 

case, one would use more automated approaches, such as object-based approaches, 

which can decrease the time required for photointerpretation (Belletti et al., 2015).  

The effectiveness of automated techniques is strongly correlated with the 

homogeneity of spectral signatures within a single feature class (Cushnie, 1987). 

Homogeneity in spectral signatures requires homogeneous atmospheric and 

illumination conditions within the dataset. To this end, airplanes equipped with 

multispectral cameras can be used over long river segments in a short period to 

avoid variations in weather and illumination conditions (Forzieri et al., 2013; Bucha 

and Slávik, 2013). However, this approach remains challenging for large river 

networks, which decreases the possibility of automation at these scales (Dauwalter 

et al., 2015).  

In this context, the wider swath of satellite imagery would be an advantage. High-

resolution satellite images were often used to map vegetation automatically (16% 

and 9% of studies at respectively the river-segment and subregional scale) (Figure 

18). For example, Strasser and Lang (2015), Riedler et al. (2015) and Doody et al. 

(2014) used WorldView-2 data to map riparian vegetation along a few dozen km. 

Tormos et al. (2011) and Macfarlane et al. (2017) used SPOT images and GeoEye-1 

images to map vegetation along corridors respectively 60 and 90 km long. However, 

it may be difficult to acquire high-quality datasets for larger areas, for which several 

high-resolution satellite images must be combined (Goetz, 2002; Johansen et al., 

2010b; Zogaris et al., 2015).  

The percentage of studies based on LiDAR surveys decreased with scale: 19%, 

16%, 7% and 6% of studies at respectively the local, river-segment, subregional and 

regional scale (Figure 18). However, some authors were able to use LiDAR data to 

monitor narrow riparian corridors over large areas (Johansen et al., 2010; Michez et 

al., 2017). One advantage of tri-dimensional LiDAR data is that they are less subject 

to changing atmospheric and lightning conditions during the survey than spectral 

data. Moreover, LiDAR coverage is becoming more frequent at the regional/national 

scale (Parent et al., 2015; Wasser et al., 2015; Shendryk et al., 2016; Tompalski et 

al., 2017). When an initial nationwide LiDAR survey is performed, digital aerial 

photogrammetry (DAP) can be used to further update LiDAR canopy height models 
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(CHMs). DAP CHMs can be produced from aerial images acquired on a regular 

basis by national or regional mapping agencies in several countries and can 

potentially provide vegetation height data at low additional cost (Michez et al., 

2017). 

2.3.4.3 Large scale: satellite images 

The use of satellite images with medium to coarse resolution (> 10 m) increased as 

the extent increased. For studies at the regional or very large scale, satellite images 

were used in respectively 72% and 82% of cases (Figure 18). Coarse-resolution 

images (> 100 m) were not used to study riparian vegetation, which often appears as 

linear or fragmented features (Gergel et al., 2007). Medium-resolution images such 

as Landsat TM, ETM+ or OLI images are preferred. The use of these data to map 

riparian vegetation cover has yielded satisfying results in wide riparian corridors 

(Lattin et al., 2004, Yousefi et al., 2018). However, their resolution often becomes 

limiting in the case of narrow riparian corridors or small vegetation units that are a 

few Landsat pixels wide (Congalton et al., 2002, Henshaw et al., 2013). Although 

aerial images (multispectral, RGB and panchromatic) were used in 25% of studies at 

the regional scale, they were always used with medium-resolution satellite images 

(Fullerton et al., 2006; Groeneveld and Watson, 2008; Claggett et al., 2010). High-

resolution satellite images, which were used in 8% of studies at the regional scale, 

were used mostly with pansharpening methods to enhance lower resolution satellite 

images (Seddon et al., 2007; Staben and Evans, 2008; Scott et al., 2009). 

 Which technology for which riparian feature? 2.3.5

The features of interest extracted from remote sensing data to describe riparian 

vegetation were strongly related to the type of remote sensing data (Figure 19). Four 

major trends emerged. First, the study of physiological processes (e.g. phenology, 

evapotranspiration and, to a lesser extent, health status) was strongly associated with 

the use of medium-resolution satellite images and large study extents. Second, the 

study of features or processes related to vegetation structure (shade, roughness, 

height) was strongly associated with the use of LiDAR data. Third, the study of 

features related to species composition was associated with the use of high-

resolution multispectral images (acquired from satellites, planes or UAVs) or 

RGB/GS aerial images (especially for successional stages) and with small study 

extents. Fourth, the delineation of riparian vegetation was weakly associated with 

the use of RGB/GS aerial images or medium-resolution satellite images. These four 

trends are discussed in the following four sections. 
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Figure 19: Results of the multiple correspondence analysis (see section 2.2.3 for the 

methods). Supplementary variables (i.e. variables related to study extent and multi-

temporality) are represented as crosses with text in italics. The first two axes explain 19.6% 

of total variance. Ellipses were drawn arbitrarily to simplify interpretation. See Table 1 for 

code definitions. 

2.3.5.1 Delineation of riparian vegetation 

How riparian vegetation is delineated depends on how it is defined (Verry et al., 

2004). In general, riparian vegetation is defined based on its specific characteristics 

(e.g. spectral signature, texture) and on contextual information (e.g. topographic 

position, proximity to a river) (Weissteiner et al., 2016). Photointerpretation of 

RGB/GS aerial images is a traditional approach in which the operator uses both 

types of information (Morgan et al., 2010). It was used in 53% of studies that 

delineated riparian vegetation (Figure 20). Multispectral images (airborne or 

spaceborne, accounting for 45% of studies) are often used to delineate riparian 

vegetation in an automated way (Alaibakhsh et al., 2017; Johansen et al., 2010b; 

Bertoldi et al., 2011). Contextual information can be provided by ancillary data (e.g. 
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hydrographic network, as in Claggett et al. (2010) or Yang (2007)), a LiDAR digital 

terrain model (DTM) (Arroyo et al., 2010; Wagner-Lücker et al., 2013), or a Shuttle 

RADAR Topography Mission DTM (Maillard and Alencar-Silva, 2013; Weissteiner 

et al., 2016). Congalton et al. (2002) indicate that medium-resolution satellite data 

(used in 29% of studies) are not adapted for delineating narrow riparian corridors 

because the corridors do not contain enough pixels (see section 2.3.4.3). 

 

Figure 20: Percentage of studies that used given remote sensing data to delineate riparian 

vegetation (i.e. Distinguish riparian vegetation from other land-cover types) 

2.3.5.2 Species composition 

Species composition is a recurrent subject that was studied in 42% of studies. 

Photointerpretation of RGB/GS aerial images concerned 51%, 47% and 45% of 

studies that differentiated respectively communities, species, and invasive species 

(Figure 21). This approach is widely used to describe successional stages or changes 

in their distribution (86% of such studies). Indeed, RGB/GS aerial images have been 

available since before the 1950s (González et al., 2010; Rood et al., 2010; Varga et 

al., 2013; Wan et al., 2015). However, manual interpretation of images is time-

consuming, and the discriminating power of RGB/GS aerial images is limited by 

their low spectral range (Narumalani et al., 2009; Fernandes et al., 2014). Medium-

resolution satellite images were used in 21% of studies that differentiated 

communities. These images were used mainly when vegetation patches were larger 

than the image resolution (Vande Kamp et al., 2013; Hamandawana and Chanda, 

2013; Maruthi Sridhar et al., 2010; Groeneveld and Watson, 2008; Townsend and 
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Walsh, 2001), although spectral unmixing can, to some extent, resolve this issue 

(Gong et al., 2015; Wang et al., 2013). 

 

Figure 21: Percentage of studies that used given remote sensing data to map indicators 

related to species composition. 

The most promising approaches to address this issue are based on high-resolution, 

aerial or spaceborne, multispectral or hyperspectral images. These images were used 

in 30%, 33% and 45% of studies that differentiated respectively communities, 

species and invasive species (Figure 21). The accuracy of a particular project 

depends on the context, objectives, available data and methods used to evaluate it. 

Therefore, we present recent studies that mapped species in the Table 2. In general, a 

large number of narrow spectral bands increases the ability to distinguish species. 

However, in mature, species-rich floodplain forests, it remains challenging to obtain 

classification accuracy that is satisfactory for operational use, even when using 

hyperspectral imagery (Richter et al., 2016). The use of multi-temporal images, 

which reveal the succession of phenological stages, can sometimes replace the 

spectral range. For example, Rapinel et al. (2019) used Sentinel-2 time series to 

classify grassland plant communities in a temperate floodplain using the relationship 

between inundation, grassland management and vegetation composition. Similarly, 

Michez et al. (2016b) used UAV time series to distinguish riparian tree species 

using images acquired during several phenological stages (from spring to fall). It is 
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also possible to acquire images at a single but appropriate date to take advantage of 

the singular aspect of one species at a particular phenological stage. This approach is 

especially effective when a single species has to be mapped, such as the invasive 

species Arundo donax (Fernandes et al., 2013b) or Heracleum mantegazzianum 

(Michez et al., 2016a). The spatial resolution of images must be sufficiently high to 

limit the occurrence of mixed pixels that hinder the performance of automated 

classifications (Belluco et al., 2006; Narumalani et al., 2009). However, small 

mixture of species remains a source of difficulty, even with a cm resolution (Michez 

et al., 2016a). LiDAR data, also used to classify species, can supplement 

multispectral data with vegetation height data (Forzieri et al., 2013). They can also 

be used to segment trees before classifying them (Dutta et al., 2016). They have also 

been used as the sole source of data by relating species identity to the structure of 

the point cloud (Laslier et al., 2019a). 
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Table 2: Examples of remote sensing methods used to classify riparian species 

in different settings and their accuracy 

Reference Data Classes Accuracy Comment 

Mature riparian forests 

Fernandes 

et al. 

(2013a) 

RGB-NIR 

aerial imagery 

(0.5 m 

resolution) 

3 types of mature, 

temperate/Mediterranean 

riparian forests 

61 (small) - 

78% (large 

river) 

 

Dunford et 

al. (2009) 

RGB imagery 

acquired with 

UAV (0.13 m 

resolution) 

4 tree species (Populus, 

Salix and 2 Pinus) in a 

riparian Mediterranean 

forest 

91% (for an 

image) - 71% 

(for a 

mosaic) 

 

Michez et 

al. (2016b) 

RGB-NIR 

imagery 

acquired with 

UAV (0.1 m 

resolution) 

5 tree species in a 

temperate, riparian 

forested/agricultural 

landscape 

84 (forested) 

- 80% 

(agricultural) 

Multi-temporal 

dataset 

Richter et 

al. (2016) 

Hyperspectral 

aerial imagery 

(367 bands, 2 

m resolution) 

10 tree species in a 

mature temperate 

floodplain forest 

74% (single-

date survey) 

- 78% (two-

date survey) 

 

Dutta et al. 

(2016) 

Hyperspectral 

aerial imagery 

(48 bands, 1 

m resolution) 

4 groups of tree species 

in a mature, temperate 

riparian forest 

86% 
LiDAR is used to 

segment the trees 

Laslier et 

al. (2019a) 

High density 

(> 45 

points/m²) 

LiDAR point 

cloud 

8 tree species in a 

temperate riparian 

agricultural/forested 

landscape 

67%  

Pionneer/species-poor riparian settings 

Macfarlane 

et al. 

(2017) 

Pansharpened 

GeoEye-1 

imagery 

(RGB-NIR, 

0.5 m 

resolution) 

Pioneer (Salix, Populus) 

and invasive (Tamarix) 

species in an arid context 

80%  
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Forzieri et 

al. (2013) 

RGB-NIR 

aerial imagery 

(0.2 m 

resolution); 

hyperspectral 

aerial imagery 

(102 bands, 3 

m resolution) 

and LiDAR 

data 

(DSM/DTM 

with 1 m 

resolution) 

Pioneer (Salix, Populus) 

and invasive (Arundo 

donax) species in a 

temperate context 

93%  

Invasive species 

Narumalani 

et al. (2009 

Hyperspectral 

aerial imagery 

(62 bands, 1.5 

m resolution) 

Tamarix, Elaeagnus 

angustifolia, Cirsium 

arvense, Carduus nutans 

and mixed classes 

74% 

Mixed classes are 

not well 

classified and 

decrease overall 

accuracy 

Fernandes 

et al. 

(2014) 

RGB-NIR 

aerial imagery 

(0.5 m 

resolution) 

Arundo donax 97% 

Choice of the best 

date for aerial 

survey 

WorldView 2 

imagery (8 

bands, 2 m 

resolution) 

Arundo donax 95%  

Michez et 

al. (2016a) 

RGB-NIR 

imagery 

acquired with 

UAV (0.05-

0.1 m 

resolution) 

Impatiens glandulifera 72% 

Mixture with 

native species 

hinders accurate 

classification 

Heracleum 

mantegazzianum 
97%  

Fallopia japonica 68%  

Peerbhay et 

al (2016) 

WorldView 2 

imagery (8 

bands, 2 m 

resolution) 

Solanum mauritanum 68%  

Miao et al. 

(2011) 

Hyperspectral 

aerial imagery 

(227 bands, 1 

m resolution) 

Prosopis glandulosa and 

Tamarix 
92%  

Doody et 

al. (2014) 

WorldView 2 

imagery (8 

bands, 2 m 

resolution) 

Salix 93%  
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These approaches based on high resolution data, although powerful, are mainly 

used at the local scale. We showed in the section 2.3.4.2 that upscaling such data 

was challenging beyond a few dozen km of river. However, at this scale, remote 

sensing would be a particularly useful alternative to field campaigns or 

photointerpretation. Species classification methods that are more robust to upscaling 

still need to be developed, as indicated by Fassnacht et al. (2016) in a review of 

forest tree species classification. 

2.3.5.3 Physiological processes 

Medium-resolution satellite images (> 10 m resolution and ≤ 50 m for most 

studies) were the most popular type of data used to assess physiological processes of 

riparian vegetation (100%, 73% and 54% of studies concerning respectively 

evapotranspiration, phenology and health status) (Figure 22). One advantage of 

using these images in this context is that they are often available as dense series, 

which is useful for studying cyclic processes. For example, Wallace et al. (2013) 

used AVHRR images (return period < 1 day) to detect variations in the timing of 

greening up/scenescing of vegetation. Nagler et al. (2012) used MODIS (return 

period 1-2 days) to study phases of the life cycle of the tamarix leaf beetle 

(Diorhabda carinulata) throughout the year. Cadol and Wine (2017) and Nagler et 

al. (2016) used long-term records (several years) of satellite images along with flow 

data to investigate relationships between hydrology and physiological processes in 

riparian vegetation. Zaimes et al. (2019) used a 27-year time series of Landsat 

images to study the impact of dam construction on vegetation health status. Sims 

and Colloff (2012) used MODIS images over several years to assess responses of 

riparian vegetation during and after flooding events. However, the low resolution 

often means that pixels in the image aggregate greater heterogeneity in ground 

features. Accuracy thus decreases, making it more complicated to study different 

types of vegetation separately (Tillack et al., 2014; Cunningham et al., 2018). The 

health status of vegetation is often studied with higher resolution data, occasionally 

with a single image (Tillack et al., 2014; Michez et al., 2016b; Bucha and Slávik, 

2013; Shendryk et al., 2016; Sankey et al., 2016). 
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Figure 22: Percentage of studies that used given remote sensing data to describe 

physiological indicators. 

2.3.5.4 Vegetation structure 

LiDAR appears to be the most used technology for describing vegetation structure 

features, except for Large Woody Debris, landscape metrics and vegetation cover 

(Figure 23). LiDAR appears therefore to be the most promising technology for 

describing vegetation structure and related functions such as shading or surface 

roughness. The LiDAR signal can penetrate the canopy and the water surface, and 

provides information about topography under dense canopies, the internal structure 

of canopies and bathymetry.  
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Figure 23: Percentage of studies that used given remote sensing data to map structural 

features of riparian vegetation. 

Retrieving simple structural attributes of vegetation (e.g. height, continuity, 

overhanging character) is straightforward, since they can be extracted from DTMs, 

DSMs or CHMs delivered by LiDAR data producers. These applications have 

reached an operational level. However, further methodological developments for 

processing the 3D point cloud and new generations of full-waveform LiDAR data 

must be explored before they can be transferred to management operations. For 

example, full-waveform LiDAR data have shown promising results in forestry 

applications (e.g. Koenig and Höfle, 2016), but there are few examples for riparian 

vegetation (Shendryk et al., 2016). 

LiDAR data have been used in 90% of studies (Figure 23) to map riparian shade, 

which is a major parameter that influences stream water temperature (Poole and 

Berman, 2001). Temperature regulates the habitat of aquatic species such as the 

brown trout (Salmo trutta fario L.) (Caissie, 2006; Georges et al., 2020), and the 

effect of riparian shade on stream water temperature is strong enough to affect 

aquatic communities significantly (Bowler et al., 2012). Field methods used to 

measure stream shade are expensive and time-consuming (Rutherford et al., 2018). 
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LiDAR data appears to be the most promising alternative because they can describe 

shade at a fine scale (Richardson et al., 2019). Several methods for using LiDAR 

data to measure riparian shade have been described in the literature. Richardson et 

al. (2009) calculated light penetration index raster products as a predictor of light 

conditions. LiDAR data can describe shadowing properties using a simple CHM 

derived from point clouds (Michez et al., 2017; Loicq et al., 2018; Wawrzyniak et 

al., 2017). Other studies have used 3D point clouds to retrieve the finest-scale 

information about vegetation structure. For example, Akasaka et al. (2010) used a 

LiDAR point cloud to estimate biomass overhanging the river, while Tompalski et 

al. (2017) used one to model solar shading on a given summer day. Recently, 

Shendryk et al. (2016) used full-waveform LiDAR data to estimate the dieback of 

individual riparian trees, which was related to their shadowing properties. 

LiDAR data have also been used in 61% of studies to map floodplain roughness in 

a spatially continuous manner (Figure 23). Forzieri et al. (2012) distinguished two 

main approaches for mapping floodplain roughness using remote sensing: 

classification-derived mapping and hydrodynamic modeling. In the former, thematic 

maps of land cover or vegetation classes are produced with remote sensing data. A 

roughness coefficient (often Manning’s coefficient) is then assigned to each class 

using a lookup table. In the latter, hydrodynamic properties of vegetation are 

estimated using an indicator of vegetation structure (e.g. leaf area index, stem or 

crown diameter, vegetation height). LiDAR technology has several advantages in 

this case: it measures structural attributes directly and can account for complex, 

multilayered structures (Manners et al., 2013; Jalonen et al., 2015). Hydrodynamic 

modeling is often combined with classification-derived mapping, with separate 

modeling of hydrodynamic properties of each vegetation class (Straatsma and 

Baptist, 2008; Zahidi et al., 2018). Development of restoration and multi-objective 

management practices (to promote ecosystem health while protecting people and 

goods) has increased demand for models that represent effects of vegetation on flow 

more accurately (Rubol et al., 2018). However, research on hydrodynamic 

properties of vegetation and how to measure them in the field is ongoing (Shields et 

al., 2017). 

 Multi-temporality of remote sensing riparian studies 2.3.6

Overall, 54% of studies in the database were multi-temporal (i.e. studies where 

data acquired at several dates are used to understand the dynamics of riparian 

vegetation). RGB/GS aerial images were used in more than 60% of the multi-

temporal studies (Figure 24B), such as those of Dufour et al. (2015) or Lallias-

Tacon et al. (2017). Such studies usually focus on decadal time scales. It can be 

explained by the fact that this type of images is simple to use and has been available 

over a large extent since the 1950s (Dufour et al., 2012). In most of the countries 

previously highlighted as active in riparian research, public administrations have 

performed long-term and systematic national aerial surveys for general purposes 

(e.g. urban planning) that researchers can use at low cost. Most multi-temporal 

studies that included aerial photographs used photointerpretation to describe riparian 
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vegetation features. Medium resolution satellite images were often used in multi-

temporal studies, notably for the study of physiological processes (see section 

2.3.5.3). 

 

Figure 24: Use of remote sensing data in (A) mono-temporal and (B) multi-temporal 

studies (respectively 46% and 54% of the studies). 

Conversely, more recent technologies (e.g. high-resolution satellite images, 

LiDAR data) were far more common in studies that focused on one period than in 

multi-temporal studies (Figure 24A). For example, LiDAR and high-resolution 

satellite data were used in respectively 24% and 18% of mono-temporal studies 

against 4% and 5% of multi-temporal studies. In mono-temporal studies, the 

methods developed to map riparian forest attributes were more complex and mostly 

automated, such as supervised classifications (Michez et al., 2016b; Antonarakis et 

al., 2008) and calculation of metrics (Riedler et al., 2015). 

We predict that diachronic analyses will be renewed by the increasing quality and 

availability of remote sensing data. Indeed, data acquired from new sensors, such as 

LiDAR and hyperspectral sensors, become more and more available as time series. 

For example, a LiDAR survey covers the entire region of Wallonia (southern 

Belgium) every six years. In France, in the framework of the Litto3D program, ca. 

45,000 km² of coast (bathymetry included) will be regularly covered with a dense 

LiDAR survey, in order to monitor sediment dynamics and erosion processes. These 

new data provide the opportunity to monitor changes in specific features of riparian 

vegetation, such as canopy height, species composition or fine scale physiological 

processes. In addition, acquisition frequency has increased. For example, UAVs can 

acquire dense time series easily. High-resolution satellite images such as Sentinel-1 

and Sentinel-2 (four bands at 10 m resolution) provide images of the Earth’s entire 

surface every few days. More recently, CubeSat constellations provide higher 

resolution and higher frequency. For example, the Dove constellation (Planet Labs, 

Inc., San Francisco, CA, USA) provides resolution up to 3 m and daily coverage. 

This increased frequency of image acquisition provides new opportunities to study 
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rapid riparian vegetation processes, including intra-annual ones such as phenology 

and impacts of flood events.  

2.4 Perspectives for riparian vegetation management 

The second objective of this review was to discuss how remote sensing approaches 

developed by scientists can be used by riparian managers. Research in remote 

sensing of riparian vegetation often has an applied perspective, and 38% of the 

abstracts in our database contained the words “management”, “restoration” or their 

derivatives. However, scientific articles usually do not describe how remote sensing 

developments are made available to managers, and how they can be implemented in 

management situations. 

Therefore, we completed our systematic review of the literature with an approach 

based on expert judgment, focusing on how remote sensing developments can be 

valued as operational tools available to managers. In section 2.4.1, we selected five 

examples of applications for riparian management. For each example, we highlight 

how remote sensing approaches can be embedded in operational tools, and how 

scientific developments (previously discussed in section 2.3) can contribute to these 

tools. In section 2.4.2, we further discuss the challenges of knowledge transfer from 

scientists to managers, illustrated by the five selected examples. 

 Examples of near-operational applications 2.4.1

We chose three contrasting fields of applications that we considered as particularly 

relevant for the riparian context: eradication of invasive plant species, monitoring 

ecological integrity at the regional scale and maintenance of hydraulic conveyance. 

2.4.1.1 Example 1: Managing invasive plant species at the local scale 

Riparian managers often conduct programs to eradicate invasive plant species. 

These programs require identifying and locating individuals prior to eradication 

measures and subsequent monitoring of invasive cover (i.e. to ensure that practices 

were effective and that the species do not re-emerge) (Vaz et al., 2018). These 

actions can be performed with UAVs that combine high spatial resolution (useful for 

detecting invasive plant species at an early stage, before they form large clumps) and 

high temporal resolution (invasive plant species are often more distinct from the 

background during a particular phenological phase, according to Manfreda et al. 

(2018)). Many studies have shown that detecting invasive plant species using a UAV 

could outperform ground surveys in terms of cost, effectiveness and risk mitigation 

for operators (Martin et al., 2018; Michez et al., 2016a). The detection of invasive 

plants can be performed using photo-interpretation (most simple method) or a 

supervised classification (most scalable method) of orthoimages (Hill et al., 2017). 

In the future, real-time or onboard processing (i.e. analysis of streamed imagery) 

will enable detection and eradication steps to be performed at the same time (Hill 

and Babbar-Sebens, 2019).  

In order to implement this approach, river managers must have access to skilled 

staff who are able to pilot the UAV and process the images based on the needs of 
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riparian managers. The staff can be recruited and trained within the organization, or 

work for an exterior contracting organization. For invasive species, work is often 

concentrated in time, and skilled staff must be available at that time. 

2.4.1.2 Examples 2 and 3: Monitoring ecological integrity at the regional scale 

Managers of riparian vegetation at the regional or national scale sometimes need 

information about the entire river network to assess effects of policies or define 

management strategies (e.g. to prioritize which zones should be restored). For 

example, all EU member states must monitor the state of riparian ecosystems to 

comply with the Water Framework Directive (WFD), which promotes a good health 

status of European rivers. These assessments have historically been performed 

during field visits to sites sampled throughout each river network (Hering et al., 

2010; Munné et al., 2003). They can include remote sensing techniques in different 

ways. We briefly present two contrasting approaches to include remote sensing in 

ecological assessments: a sampling- and photointerpretation-based approach using 

aerial images, or the use of regional LiDAR data to map riparian structural attributes 

automatically. 

In the first approach (hereinafter referred to as example 2), aerial images can be 

integrated with minor adaptations into a traditional field-based, sampling approach. 

Aerial images are used to target sampling sites (e.g. where riparian vegetation is 

present) and to perform certain aspects of the assessment, especially those that 

require less specific information at a larger scale. For example, the Riparian Quality 

Index, initially developed for Iberian rivers, includes measurements of width, 

continuity, strata, composition, regeneration, bank condition, lateral connectivity and 

substratum (González del Tánago and García de Jalón, 2011). Width, continuity and 

strata can be described using aerial imagery, while other attributes are assessed in 

the field.  

In the second approach (hereinafter referred to as example 3), regional LiDAR 

data can be used to assess riparian features in a spatially continuous manner. In this 

case, the strength of LiDAR data is that the 3D component is homogenous at the 

regional scale unlike spectral data (see section 2.3.4.2). Moreover, it can extract 

attributes of the channel even when it is hidden by vegetation. Riparian attributes are 

calculated with a high level of automation and can be updated at the same frequency 

as the actualization frequency of the LiDAR cover. For example, in Wallonia 

(southern Belgium), Michez et al. (2017) used LiDAR and photogrammetric point 

clouds to map riparian buffer attributes along 12,000 km of rivers (vegetation 

continuity, height and overhang; channel width and sinuosity; and lateral 

connectivity, indicated by emerged channel depth). The results are meant to be used 

as decision making tools by river managers. They are made available on an online 

platform, where river managers must plan their management practices for a six year 

period.  
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2.4.1.3 Examples 4 and 5: Improving flood modeling with better estimates of 

floodplain roughness  

Many regions of the world must address significant and increasing threats of 

flooding, as well as the need to conserve riparian ecosystems (Straatsma et al., 

2019). Floodplain vegetation can influence flood risk by increasing hydraulic 

roughness (Curran and Hession, 2013). In the Netherlands, where these challenges 

are particularly acute, several remote sensing applications integrate riparian 

vegetation management more into flood mitigation strategies. 

One example (hereinafter referred to as example 4) includes a legal map produced 

to describe the maximum roughness of vegetation cover allowed within the 

floodplains of major Dutch rivers. The legal map uses a historical situation as a 

target reference (Rijkswaterstaat, 2014). To support use of this legal map, Deltares 

(an independent applied research institute) and the Rijkswaterstaat (the 

administration responsible for river management) developed an online vegetation-

mapping tool based on free multispectral, high-resolution satellite images. In the 

Google Earth Engine environment, users can easily classify the vegetation cover 

observed on recent Sentinel-2 images to ensure that it complies with the legal 

standard. The tool is available on smartphones and can be used in the field. Actual 

vegetation can be compared to the map before each winter, when most floods occur. 

The tool provides information about the areas on which management practices 

should focus, following a dialogue with the landowners concerned (Penning, 2018).  

Modeling approaches are also useful to support decisions. To prevent flood 

damage in Dutch deltas, multiple practices, such as raising dikes or removing 

riparian vegetation, must be implemented in a coordinated manner. Straatsma and 

Kleinhans (2018) developed the RiverScape toolbox. This tool models the effects of 

riparian cutting on flow using hydrological and spatial data (including a DTM, a 

vegetation map and its associated roughness coefficients). The RiverScape toolbox 

(hereinafter referred to as example 5) can optimize the location of cutting operations 

to reduce water levels during floods. 

 Challenges of conveying tools to managers 2.4.2

The five examples given in the previous section illustrate that remote sensing 

approaches can be embedded in operational tools for riparian managers. In this 

section, we discuss more generally how scientists and managers can collaborate to 

produce and implement such tools for the management of riparian vegetation.  

We distinguish three main steps in this process (Figure 25). First, managers and 

remote sensing experts must work together to define clear objectives. Second, the 

development step implies a technological phase. Third, thorough assessment must 

be performed for accuracy, reliability and relevance for managers. Critical thinking 

is required throughout this process because the choice of a remote sensing approach 

is not neutral and has implications for how riparian vegetation is managed.  
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Figure 25: Conceptual framework of the transfer of remote sensing tools from scientists to 

managers. On the graphics to the right, the horizontal axes represent scientific challenge and 

exchange degree to be planned between managers and researchers (from low to high), while 

the vertical axes represent their dynamics from start to finish. 

2.4.2.1 Identifying the issues/needs of riparian vegetation managers 

The first step in implementing a remotely sensed application is to define the needs 

and objectives of riparian vegetation managers. Key issues must be addressed, such 

as the features to be mapped, the scale of observation, the time required to obtain 

usable information and the frequency of updating. Objectives can be refined during 

the development step, depending on the tradeoffs between costs and image quality. 

Nevertheless, thoroughly defining the objectives beforehand is clearly a factor of 

success (Kennedy et al., 2009). In the example 1 (use of UAVs to help eradicate 

invasive species, section 2.4.1.1), it is often easier to detect plants at a particular 

phenological phase. For instance, H. Mantegazzianum is easier to detect while 

flowering, thanks to its characteristic white umbels (Michez et al, 2016a). While this 

detection period might be appropriate for scientific purposes, it does not fully satisfy 

eradication requirements, since individuals must be removed before they form fruit, 

which leaves little time for eradicators to remove them. One must consider that kind 

of details when developing operational tools for management. 

The thorough definition of objectives is not straightforward. To translate 

monitoring objectives into a remote sensing approach requires an explicit space for 

collaboration between remote sensing specialists and managers (Kennedy et al., 

2009). Managers are often unsure about the operational potential of remote sensing 

approaches (Vanden Borre et al., 2011). This is increasingly true, since new 

technologies (e.g. satellites, UAVs) seem to be developed very quickly, and even 

faster than the applications for using them. Therefore, realistic monitoring objectives 

must be defined along with remote sensing specialists. Moreover, field and remote 

sensing approaches often are not perfectly interchangeable (Dufour et al., 2012). 

Challenging the work routine of managers might be required to fully benefit from 

remote sensing approaches. The collaborative process should thus be open enough to 
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consider adapting work routines. Similarly, when relevant, managers and scientists 

from different fields must be involved. It is important to combine a variety of 

scientific perspectives (e.g. geomatic, landscape planning, riparian ecology) to avoid 

too narrow or inappropriate solutions. 

In many cases at this stage, riparian vegetation is not the center of management 

operations. Many studies and management operations focus on the river channel and 

its hydrological and geomorphological components. In the example 5 (modeling the 

impact of management practices on flood hazard, section 2.4.1.3), the RiverScape 

toolbox does not only consider riparian cuttings but also raising dykes or lowering 

floodplain level.  

2.4.2.2 Developing applications that use remote sensing data 

Once the objectives have been clearly identified, the next step is to develop the 

solution to use remote sensing data to pursue the manager’s objectives. Several 

stakeholders are involved in this process. We artificially distinguish “data 

producers” from the “developers”.  

We consider “data producers” the stakeholders who provide rough datasets, such 

as raw satellite images or raw ancillary data (e.g. national space agencies such as 

NASA and CNES, UAV constructors). While they do not interact closely with 

riparian vegetation managers, their role is important in the long run since they set the 

agenda for the main future developments of new remote sensing technologies. More 

directly, they can promote the use of remote sensing data for natural resource 

managers by making the data affordable and easier to use, as mentioned in section 

2.3.1. In the example 4 (floodplain roughness monitoring with Google Earth Engine, 

section 2.4.1.3), the classification of vegetation in the floodplain is made possible by 

the availability of free temporal series of Sentinel-2 images. 

We consider “developers” the stakeholders who develop tools that use raw remote 

sensing data. They may interact more closely with riparian vegetation managers and 

provide solutions that are tailored to the latter’s needs through the previously 

mentioned space for collaboration. The main stakeholders in this category are 

academic and research institutes, as well as commercial or non-academic 

organizations, which use remote sensing data. In theory, the needs identified define 

the type of stakeholders involved. For example, if the manager’s issue has scientific 

relevance (e.g. understanding the spread of an invasive species not studied before), 

academics would logically be involved. If no scientific issue is identified, however, 

then commercial or non-academic organizations are more appropriate.  

Simple remote sensing approaches can be sometimes be deployed with only minor 

investment, such as the monitoring of riparian quality attributes with aerial images 

described in the example 2 (section 2.4.1.2). However, the fixed costs of 

implementing a remote sensing approach are often relatively high and can be 

prohibitive for many local managers, even though free solutions increasingly appear 

on the market. These costs include designing the method, deploying the platform or 

acquiring the minimum number of satellite images and possibly training personnel. 

Moreover, performing certain analyses requires technical skills (e.g. object-based 
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image analysis, machine learning approaches, LiDAR full waveform analysis). 

Therefore, remote sensing could have greater relevance when the area to be mapped 

is large and/or the operation must be repeated several times (Johansen et al., 2007). 

The approach deployed in the example 3 (monitoring river networks with LiDAR 

data) is efficient because it concerns 12.000 km of rivers and it is to be repeated 

every 6 years. However, many stakeholders with different objectives are generally 

involved, since riparian vegetation covers large geographical areas. This can reduce 

the potential for economies of scale, whether for river managers trying to develop 

their own expertise or for businesses offering their services. This narrow market 

provides relatively limited opportunities for companies to develop specific tools 

adapted for this vegetation type. Indeed, we do not expect specific UAV applications 

to become as developed for managing invasive species in riparian areas (see 

example 1 in section 2.4.1.1) as they are for precision agriculture.  

To address the challenge of attaining “critical mass” for riparian vegetation, we 

suggest a more collaborative approach, as described by Steiniger and Hay (2009). 

Processing routines developed by remote sensing scientists could be embedded into 

OpenAccess toolboxes. To benefit a large audience, these tools must be robust by 

having little sensitivity to situations that differ slightly from those for which they 

were created. For managers to use them, they need to be flexible and integrate easily 

with other processing routines or platforms (e.g. GIS platforms) (Vanden Borre et 

al., 2011). Finally, they should be based on widely available data: the tool presented 

in the example 4 (floodplain roughness monitoring using Sentinel images in the 

Netherlands, section 2.4.1.3) could potentially be replicated in many regions since 

Sentinel-2 images are available worldwide. OpenAccess tools for river or ecosystem 

management could be collected in community repositories along with other tools for 

river or ecosystem management, along with freely available datasets, as suggested 

by Tomsett and Leyland (2019) or Piégay et al (2020). These tools could form a 

foundation that commercial companies, researchers and managers could adapt to 

specific projects. 

2.4.2.3 Assessment and feedback 

The final step in conveying remote sensing tools to riparian managers involves 

accurate and effective assessment of the maps produced and the potential for future 

monitoring. Accuracy involves the statistical validity of the product, which is the 

conformity of the map to reference data (e.g. thematic accuracy, in the case of 

classification). This step is crucial because it indicates the extent to which the map 

can be trusted. Remote sensing specialists usually consider it a central element, 

although controversy remains on the reliability of popular accuracy assessment 

methods (Pontius and Millones, 2011). Moreover, users must be cautious when 

reproducing the method at another site, since accuracy is often assessed for small 

test sites, and robustness is often not assessed sufficiently (Fassnacht et al., 2016). 

However, the relevance of a remote sensing approach cannot be reduced to its 

accuracy. The relevance of the information for management purposes must consider 

the costs and benefits of obtaining such information (Kennedy et al., 2009). We 
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argue that temporality should be considered when addressing this aspect. The true 

effectiveness of a tool is often observed long after it is first produced. Moreover, the 

issue of using remote sensing data in future monitoring (or not) must be considered. 

For example, after a restoration action, vegetation must be monitored in the short 

term (i.e. after one year) and the long term (i.e. after 5-10 years). Consequently, it is 

important to define which stakeholders are involved in this future monitoring (the 

initial producer of the map, the managers themselves or an external stakeholder) and 

which methods will be used. If managers are in charge of future monitoring, training 

should be provided. The example 2 (monitoring of riparian quality attributes with 

aerial images, see section 2.4.1.2) only requires basic training in GIS and photo-

interpretation. However, for the example 3 (monitoring river networks with LiDAR 

data), training courses that include programming must be provided to river 

managers, in order to enable them to update riparian indicators based on future 

regional LiDAR coverage.  

The ease of use of the tools developed and their integration into existing 

workflows are also central aspects determining whether a manager will adopt remote 

sensing tools (Vanden Borre et al., 2011). We argue that it is crucial to obtain 

feedback from managers about the real use of the maps and features produced using 

remote sensing data. This feedback would help to develop tools that are more 

adapted to the managers’ needs. 

2.4.2.4 Issues beyond the remote sensing discipline 

The development and use of remote sensing tools to manage riparian vegetation is 

not only a technical issue. It raises at least two particular issues that must be 

addressed in an interdisciplinary or even transdisciplinary manner. First, the 

information must be scientifically relevant from a thematic perspective. In the 

example 3 (section 2.4.1.2), LiDAR data make it possible to measure vegetation 

height or continuity. However, whether this information is sufficient or relevant to 

assess a particular function of riparian vegetation must be discussed with experts 

from different disciplines (e.g. ecologists, hydrologists). Second, critical feedback 

about the use of remote sensing tools is also needed afterwards. Using these tools to 

assess environmental patterns and processes or to map natural resources is clearly 

not neutral. In some cases, these methods exclude certain stakeholders who do not 

have access to the technology, limit the understanding of certain complex 

phenomena and generate controversial data (e.g. Fairhead and Leach, 1998; Harwell, 

2000; Turner and Taylor, 2003; Rajão, 2013). In the example 5 (section 2.4.1.3), the 

RiverScape tool helps managers finding the best location for practices that aim to 

reduce flood hazard. However, the tool is not meant to be used alone to make 

decisions. Within a larger governance system, it can help stakeholders find a 

common ground through providing a large scale perspective, and through 

highlighting tradeoffs between stakes and stakeholders (Straatsma et al, 2019). More 

generally, sociological and cultural effects must be understood, and adverse effects 

of using remote sensing for natural resource management should be properly 

handled. Social scientists should be involved throughout the process to address these 

issues. 
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2.5 Conclusion 

We found a substantial body of literature in which remote sensing was used to 

study riparian vegetation. Remote sensing became considerably popular at the turn 

of the millennium, but its relative use in riparian vegetation studies remains limited 

(ca. 4%), and mostly in developed countries. In order to increase the user base, 

scientists can develop approaches that are robust to slight context changes and that 

take advantage of widely available data. These approaches can be embedded in 

Open Access or easy-to-use tools. The production, dissemination and use of large or 

global datasets concerning rivers, floodplains or land cover should also be promoted. 

Development of new sensors and platforms has improved remote sensing 

approaches. However, most studies that use newer sensors and platforms focus on 

the local-to-river segment scale. Large-scale studies are based on medium-resolution 

satellite images. Algorithms are needed to process high-resolution data that is robust 

to upscaling. Spectral heterogeneity makes upscaling the study of species 

composition using spectral data more challenging than upscaling the study of 

vegetation structure using 3D data. 

Riparian vegetation is highly dynamic, and the multi-temporal nature of riparian 

remote sensing studies is central (54 % of studies are multi-temporal). To date, 

diachronic analyses have relied essentially on aerial photographs, and it is clear that 

these data will remain popular given their availability and simplicity of use. 

However, other data time series become increasingly available. Scientists should test 

using these data to study complex and subtle phenomena, beyond changes in the 

extent of riparian forests or plant succession. For example, temporal series of 

LiDAR data should be tested to map subtle changes in vegetation structure such as 

growth, regeneration or senescence. Higher resolution or more frequent satellite 

images could help understand physiological or community responses of riparian 

vegetation to environmental stress over large extents, yet at a finer spatial or 

temporal scale than before. 

It is often suggested that remote sensing approaches can contribute to management 

of riparian vegetation by providing objective, continuous and up-to-date data for a 

large area. This contribution was difficult to determine via a review of the scientific 

literature, and an extensive review of the gray literature could provide further insight 

into this subject. However, there are many examples of operational or near-

operational applications, not only with aerial images but also with more recent data 

(LiDAR, UAVs and satellite images). We suggest that a collaborative effort is 

required to make remote sensing approaches more robust and available, both in 

terms of cost and ease of use. However, implementing a remote sensing approach in 

actual management context still requires a tailored approach. It must include 

managers and scientists (thematicians and remote sensing scientists), be structured 

around well-defined objectives and include sufficient feedback. 
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3. What Factors Shape Spatial Distribution of Biomass in Riparian 

Forests? Insights from a LiDAR Survey over a Large Area 

Foreword 

This chapter presents a method for mapping woody biomass in riparian forests 
using LiDAR data. The method is deployed at the scale of 230 km of rivers and their 
floodplain (Semois-Chiers basin, which will also be studied in Chapters 4 and 5). 
The spatial organization of this biomass is also analyzed in relation to variables such 
as time since last disturbance, land use, topographical position or pedology.  

Biomass is a quantitative and synthetic indicator of riparian vegetation. It is one of 
the main characteristics of riparian vegetation alongside specific composition (a 
qualitative indicator), which will be discussed in Chapter 4. The joint use of these 
indicators to prioritize management operations will be discussed in chapter 6 
(section 6.2.1). 

Reference (Chapter adapted from publication) 

Huylenbroeck, L., Latte, N., Lejeune, P., Georges, B., Claessens, H., & Michez, A. 
(2021). What factors shape spatial distribution of biomass in riparian forests? 
Insights from a LiDAR survey over a large area. Forests, 12(3), 371. 

Abstract 

Riparian ecosystems are home to a remarkable biodiversity, but have been 

degraded in many regions of the world. Vegetation biomass is central to several key 

functions of riparian systems. It is influenced by multiple factors, such as soil 

waterlogging, sediment input, flood, and human disturbance. However, knowledge is 

lacking on how these factors interact to shape spatial distribution of biomass in 

riparian forests. In this study, LiDAR data were used in an individual tree approach 

to map the aboveground biomass in riparian forests along 200 km of rivers in the 

Meuse catchment, in southern Belgium (Western Europe). Two approaches were 

tested, relying either on a LiDAR Canopy Height Model alone or in conjunction 

with a LiDAR point cloud. Cross-validated biomass relative mean square error for 

0.3 ha plots were, respectively, 27% and 22% for the two approaches. Spatial 

distribution of biomass patterns were driven by parcel history (and particularly 

vegetation age), followed by land use and topographical or geomorphological 

variables. Overall, anthropogenic factors were dominant over natural factors. 

However, vegetation patches located in the lower parts of the riparian zone exhibited 

a lower biomass than those in higher locations at the same age, presumably due to a 

combination of a more intense disturbance regime and more limiting growing 

conditions in the lower parts of the riparian zone. Similar approaches to ours could 

be deployed in other regions in order to better understand how biomass distribution 

patterns vary according to the climatic, geological or cultural contexts.  
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3.1 Introduction 

Riparian ecosystems are ecotones where rivers and upland areas influence one 

another. They host specific plant communities related to water proximity and 

availability, soil anoxia or flood disturbance. They are home to an exceptional 

biodiversity (Naiman et al., 1993), and riparian vegetation produces numerous 

ecosystem services concerning water quality, flow regulation or erosion mitigation 

(Riis et al., 2020). However, they are subject to multiple pressures and have been 

degraded in many regions of the world (Stella and Bendix, 2019). Consequently, 

there has been a particular interest for several decades in the conservation or 

restoration of these ecosystems (Gonzàlez et al., 2015).  

Dybala et al. (2019b) and Matzek et al. (2018) pointed out that carbon storage for 

climate change mitigation could be a co-benefit of conservation or restoration 

policies that promote biodiversity. Indeed, vegetation biomass, which is one of the 

largest compartments for carbon storage in riparian ecosystems (Sutfin et al., 2016), 

is related to other key biophysical functions of riparian ecosystems. For example, 

vegetation biomass drives the production of large woody debris, which is a key 

process influencing habitat complexity, hydraulic and sedimentary processes (Balian 

and Naiman, 2005; Keeton et al., 2007). Vegetation biomass also has tremendous 

effects on nutrient cycling in the ecosystem (Dosskey et al., 2010; Tufekcioglu et 

al., 2003). More generally, biomass is a component of forest structure, which itself 

influences sediment stabilization (Matzek et al., 2020), hydraulic roughness 

(Forzieri et al., 2012) or habitat provisioning (Dybala et al., 2019a). 

The amount of biomass in riparian vegetation depends primarily on productivity, 

vegetation type (e.g., tree longevity or wood density) and disturbance regime. 

Productivity of riparian vegetation is notably influenced by the interplay between 

water availability (Dufour et al., 2008), soil anoxia occurring as a result of flooding 

or proximity to the water table (Megonigal et al., 1997, Rodriguez-Gonzàlez et al., 

2010) or nutrient-rich sediment brought in during floods (Marks et al., 2020). 

Disturbances related to flooding and erosion (Kramer et al., 2008), beavers (Wohl et 

al., 2012), livestock (Lucas et al., 2014), or anthropogenic disturbances related to 

agriculture and forestry (Michez et al., 2017; Wasser et al., 2015; da Silva et al., 

2017) notably reduce vegetation biomass. The aforementioned factors also influence 

the type of vegetation that establishes in one place, which in turn determines 

potential biomass storage, for example through tree longevity (Marks et al., 2020). 

However, knowledge is lacking on how these factors interact to shape vegetation 

biomass distribution, and few studies have been carried out in Europe (Riis et al., 

2020; Matzek et al., 2018; Dybala et al., 2019b). Moreover, there is a lack of 

allometric equations for estimating tree biomass in riparian forests (Fernandes et al. 

2020).  

Remote sensing is widely used for estimating biomass over wide areas in a 

spatially continuous manner (Lu, 2006; Goetz and Dubayah, 2011). However, most 

studies in the riparian context have been limited to reaches a few kilometers long 
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(Huylenbroeck et al., 2020), and used spectral data in classification-based 

approaches (Fernandes et al, 2020; Mendez-Estrella et al., 2017; Husson et al., 

2014). Such approaches do not take into account the great spatial variability and 

continuum between different vegetation types in riparian systems. LiDAR (light 

detection and ranging) data have several advantages over spectral data for biomass 

estimation. They are less subject to saturation (Mitchard et al., 2012; Filippi et al., 

2014; Forzieri, 2012; Suchenwirth et al., 2014), and are suitable for direct biomass 

modeling (Fassnacht et al., 2014). LiDAR data can be used to build digital terrain 

models (DTMs), which allow the heterogeneous topography of the riparian zone 

under the canopy to be observed, unlike spectral data. They are increasingly 

available, and have a strong potential for upscaling biomass estimates over hundreds 

to thousands kilometers of rivers (Huylenbroeck et al., 2020). LiDAR data are often 

used as point clouds, where each point corresponds to a LiDAR return. This method 

requires some skills and is computationally intensive, but it enables studying the 

internal structure of the canopy (Laslier et al., 2019a). For simplicity, LiDAR data 

are often preprocessed as a raster format CHM (Canopy Height Model), where each 

pixel represents the height of the canopy top. LiDAR data have proven to be 

effective for estimating biomass in different forest types (Zolkos et al., 2013) and in 

a riparian context (Cartisano et al., 2013). As compared to other forests, riparian 

forests have an original structure with multi-stemmed trees and shrubs (Karrenberg 

et al., 2002), high species diversity (Naiman et al., 2005), and a complex landscape 

organization with many linear patches. In this context, the high 2D and 3D 

resolution of LiDAR is a definite advantage, and biomass is preferably estimated 

using object-based approaches (with objects corresponding to trees or groups of 

trees), which are expected to improve performance and simplify field sampling in 

fragmented landscapes (Dalponte and Coomes, 2016).  

Although promising, to our knowledge, object-oriented approaches based on 

LiDAR data have not been used to estimate biomass in riparian forests. Moreover, 

remote sensing has not been used to improve understanding of spatial distribution of 

biomass patterns in riparian ecosystems according to geomorphic and anthropogenic 

factors (related studies include Mendez-Estrella et al. (2017) and Cadol and Wine 

(2016), who used satellite data to map vegetation greenness in relation to 

geomorphic factors). The objectives of this article were as follows:  

- To propose an approach to estimate aboveground biomass at tree level, and to 

compare two biomass estimates based on variables from a raster-format 

LiDAR CHM or from the original LiDAR point cloud;  

- To highlight environmental factors structuring biomass distribution in riparian 

forests at a sub-regional scale (200 km of river and their riparian zone) in the 

context of low-energy temperate rivers (Meuse catchment, Western Europe).  
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3.2 Materials and Methods  

 Study Area and Available Data  3.2.1

The study area is located in Wallonia (southern Belgium), within the Meuse 

catchment area (Figure 26). It is a publicly managed area, comprising about 200 km 

of rivers mapped from the point where their catchment area reaches 50 km2. The 

studied rivers drain an area of about 1200 km2. Public management in the study area 

is limited to the bankfull channel of rivers, as well as vegetation or other structures 

in the channel. It encompasses all actions needed in the channel to promote its 

hydraulic, ecological and social functions such as logjam removal, bank 

reinforcement, riparian planting, etc. The study area can be divided into two main 

sub-basins. In the northern part of the study area, the Semois and its tributaries have 

a gravel bed, a gentle slope and frequently overflow in winter. Downstream, the 

Semois produces broad, steeply sloping meanders (Gob et al., 2005). In the southern 

part, the Ton and its tributaries have sandy beds, flow into clayey plains and have a 

hydrological regime dominated by base flow. On the whole, these rivers have little 

activity and flow in a landscape of forests and meadows, where riparian forests are 

often reduced to a row of trees along the river. The most frequent tree species are 

alders (Alnus glutinosa (L.) Gaertner) and willows (including Salix alba x fragilis L., 

S. viminalis L., S. caprea L. and S. aurita L.), which are often multi-stemmed. 

Maple (Acer pseudoplatanus L.), ash (Fraxinus excelsior L.), oak (Quercus robur 

L.) and hornbeam (Carpinus betulus L.) are also common. Finally, even-aged spruce 

plantations (Picea abies (L.) Karst) can be found in the valley bottoms.  

 

Figure 26: (a) Study area and inventory plots. (b) Location of study area within the Meuse 

catchment area.  
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The area was covered during the winter of 2014 by an aerial LiDAR survey. The 

survey was ordered by the Walloon administration over the entire Wallonia. The 

initial aim was to produce a DTM (Digital Terrain Model) that could then be used 

for multiple purposes. The acquisition was performed with a Riegl Litemapper 

6800i, with a pulse repetition rate of 150 kHz and a maximum scan angle of 60◦. 

The flight altitude ranged from 1200 to 1500 m AGL and the flight speed was 75 

m/s. Average point density was 0.8 to 1 ground return/m2. Point positions were 

corrected during post-processing using ground references, and the mean absolute 

error in planimetry was 0.12 m. The point cloud was classified using full wave and 

morphological analysis. One-meter-resolution DTM and DSM (digital surface 

model) were created using a Natural Neighbor interpolation, using points classified 

as “ground” and points with maximum altitude, respectively. Data were provided as 

a point cloud with a non-normalized intensity and as 1-m-resolution DTM and DSM. 

A CHM was created by subtracting the DTM to the DSM. Data can be obtained on 

request to the Walloon public service (Service Public de Wallonie, 2014).  

The zone was also covered by recent (2012, 2015 and 2016) or old (several 

coverages since 1971) high-resolution orthophotos (<1 m). Finally, data from 17 

gauging stations and models of the area flooded with a recurrence of 25 years were 

available throughout the area (Service Public de Wallonie, 2020). These models 

were produced by the regional administration using hydraulic models, hydrological 

statistics or field surveys, and cover the submerged areas approximately once every 

25 years.  

 Biomass Field Data and Equations  3.2.2

The first step of the methodology aimed to obtain reliable biomass estimates for 

trees whose crown could be delineated on a LiDAR CHM. These estimates were 

subsequently used to calibrate a model based on LiDAR variables (see Section 

3.2.3).  

Nineteen plots were visited in 2016. Each plot was about 0.3 ha in size and located 

in the immediate vicinity of a river (Figure 26). While in the field, tree crowns were 

delineated on an orthophoto (year 2016, 25 cm in resolution) and the LiDAR CHM. 

Each delineated crown corresponded to the smallest unit that could be distinguished 

on images and linked to stems measured on the ground. A crown usually covered 

several stems (trees were often multi-stemmed). Species and diameter at breast 

height were described for all stems (DBH > 12 cm) under each crown. Stems that 

were not visible on aerial images were included in the crown that covered them. A 

total of 355 crowns were delineated, including 162 alders, 76 willows, 32 ashes, 25 

maples, 18 oaks, 12 hornbeams and 32 other species.  

The total wood volume of trees was estimated using volume equations for each 

stem separately (Figure 27). Volume equations relied on species, diameter and 

height data. Species and diameter were described in the field. The heights of 

dominant stems (whose canopies were visible from above) were estimated with the 

maximum height of the LiDAR CHM. The heights of suppressed stems or stems 

with aberrant LiDAR heights were modeled with Diameter-Height relationships, 
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computed on other riparian trees of known height. The Diameter-Height relationship 

was modeled for each tree species separately using a Chapman Richards curve, 

which is regularly used in this context (Corral-Rivas et al., 2014; Ahmadi et al.; 

2017). A different procedure was used to estimate total volume for alders and 

willows on one hand, and other species on the other.  

 

Figure 27: Diagram of the field estimation of tree biomass. t = tree index, s = stem index 

within the tree t, N = number of stems within the tree t, AGB = aboveground biomass, wd = 

wood density retrieved from Zanne et al. (2009), Vtot = total wood volume, Sp = species, D 

= diameter, H = tree height. A new total volume equation was developed in this study for 

Alnus and Salix. For other species, volume equations were retrieved from Dagnelie et al. 

(2013) and Longuetaud et al. (2013). 

Alders and willows were the two most frequently encountered genera. However, 

volume equations for these genera are rare and, in the case of alders, mostly limited 

to single-stemmed trees growing in forests managed for wood production. To 

estimate the total volume of these two genera, specific equations were developed on 

trees felled for the study. The total volume was measured by dividing the stem into 

two compartments: the trunk and big branches down to 12 cm in diameter on one 

hand, and the trunk and branches beyond the 12 cm crosscut on the other hand (see 

Figure S1 in Supplementary Material). Wood volume within the first compartment 

was measured in a traditional way, with successive diameter measures along the 

stem. To estimate the volume of the trunk and branches less than 12 cm in diameter, 

the wood contained in this compartment was shredded and the volume of shredded 

wood was measured. An expansion coefficient was estimated by shredding a batch 

of wood of known solid volume. The total volume was thus measured for 15 stems. 

The volume within the trunk and branches down to 12 cm in circumference was 

measured on 54 supplementary stems to ensure that the 15 stems selected for the 

total volume measurements were representative. The Equation (1), which is 

commonly used in tree allometry (Zianis et al., 2005), was fitted using the method of 

least squares: 

ln Vtot = a + b × ln D + c × ln H (1)  

where Vtot is the total wood volume, D the diameter at breast height (130 cm) and 
H the total height. The predictive bias associated with the log transformation was 
corrected by the coefficient of Baskerville (1972).  
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To estimate the total wood volume of other species, we used regional forest trunk 

and stump volume equations (Dagnelie et al., 2013) and the volume expansion 

factors of Longuetaud et al. (2013) to estimate the total wood volume, which 

includes the volume of the stump, trunk and branches, following Equation (2):  

Vtot =(Vd7 × VEF + Vstump) (2)  

where Vd7 is the volume of the trunk until 7 cm in diameter (Dagnelie et al. 

2013), Vstump the volume of the stump (Dagnelie et al., 2013), and VEF the 

volume expansion factor Longuetaud et al. (2013). We systematically used double -

entry equations (diameter and height), because the use of single-entry forest 

equations significantly overestimates the volume of riparian trees, which have a 

lower height than upland forest trees.  

The conversion of total volume to biomass was carried out using the specific infra-

density values presented in the database of Zanne et al. (2009), using the equation 

AGB = Vtot × wd, where AGB is the tree aboveground biomass and wd the wood 

infra-density.  

In addition, aboveground biomass was estimated in eight additional plots about 0.3 

ha each, using the same methods except that tree crowns were not delineated. These 

eight plots were used as complementary data for validation (see Section 3.2.5).  

Figure 28 illustrates the ecosystems encountered throughout the study area with 

their associated aboveground biomass.  
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Figure 28: In order to better visualize the diversity of vegetation structure in the study 

area, examples of encountered ecosystems and associated biomasses are presented in this 

figure. From left to right and from top to bottom: Riparian strip mainly composed of willow 

shrubs (27 t/ha); riparian strip composed of willows and alder of diverse age classes (45 

t/ha); mature riparian strip mainly composed of willow (88 t/ha); open hardwood forest 

composed of ash, maple, alder and oak (130 t/ha); mature alder forest (180 t/ha), hardwood 

forest mainly composed of hornbeam, alder and oak (200 t/ha). 
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 Biomass Prediction from LiDAR Data at Tree Level  3.2.3

A tree-level allometric relationship was then adjusted between the biomass 

calculated in the field (in Section 3.2.2) and the LiDAR variables. A total of 39 trees 

were removed from the dataset at this stage because their crowns could not be 

accurately delineated. A further 23 trees were removed for other reasons, mainly 

because they had lost a significant part of their crown between the LiDAR and the 

field survey, or because they were highly distorted, and the validity of volume 

equations was doubtful. In the end, 293 (out of 355) trees remained. The LiDAR 

variables presented in Table 3 were extracted at the scale of the digitized tree crowns 

from the CHM and from the point cloud using the std.metrics function of the lidR R 

package (Roussel et al., 2020).  

Table 3: Summary of the different variables extracted from the CHM and LiDAR 

point cloud. 

Source Variable Definition 
Interest for Biomass  

Prediction 

CHM 

H90 (m) 
90th height percentile within 

the canopy 
Tree size 

Area (m
2
) 

Tree crown area (digitized or 

automatically segmented) 
Tree size 

Point cloud 

(std.metrics) 

Zq30 (m) 
30th height percentile within 

the canopy 

Crown shape: trees 

located inside forests 

have more branches at 

the top of the crown 

Pground 

(%) 

Proportion of returns 

classified as “ground” 

Crown porosity: 

heliophilous species have 

less dense branching 

 

Two parametric models were adjusted using least squares regression method. 

Since tree biomass can differ by several orders of magnitude, a logarithmic 

transformation was applied to the explanatory and response variables in order to 

minimize the relative error on the biomass estimate rather than the absolute error. 

This procedure is common for tree allometry (Zianis et al., 2005). The first model 

m1 (Equation (3)) was based solely on variables derived from the CHM: the area of 

the crown digitized by the operator (Area) and the tree height (H90) on the CHM. 

Several combinations of variables were tested, and the best one was chosen.  

ln AGB = a + b × ln Area + c × ln H90 (3)  

The second model (m2) was based on variables from a CHM and from the LiDAR 

point cloud. After several attempts, the selected model takes the first model and adds 

a correction factor (Equation (4)). The first component of this correction factor is 

Pground, which corresponds to the proportion of returns classified as “ground” 
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within the crown. This component has a high value for crowns that are porous to the 

LiDAR signal. The second component is the ratio of the height of the 30th percentile 

of the point cloud (Zq30) to the total crown height (H90) (Table 3). When returns 

are concentrated in the upper part of the canopy, this component has a high value. 

Together, these two factors help distinguish shade tolerant trees growing in dense 

forest (dense foliage concentrated in the upper crown area) from sun-demanding 

trees growing in full light (light foliage distributed over the entire crown). These 

ecological traits are worth considering because crown structure and wood density are 

very different along this gradient. The correction factor may also be influenced by 

other factors such as health status, social status or understory vegetation.  

ln 𝐴𝐺𝐵 = 𝑎 + 𝑏 × ln 𝐴𝑟𝑒𝑎 + 𝑐 × ln 𝐻90 + 𝑑 × ln (1 +
𝑃𝑔𝑟𝑜𝑢𝑛𝑑

100
) + 𝑒 × ln(1 +

𝑍𝑞30

𝐻90
) (4) 

These tree-level allometric models were evaluated using a leave-one-out approach, 

where tree crowns from 18 plots were used to calibrate a model which was then 

validated on the digitized tree crowns of the last plot.  

 Individual Tree Segmentation  3.2.4

Tree crowns were segmented using the algorithm of Dalponte and Coomes (2016), 

implemented in the lidR package (Roussel et al., 2020) and working only with a 

CHM. The segmentation parameters were adjusted by trial and error on a 

representative area. Segmentation accuracy was assessed on the 19 inventory plots 

by analyzing the overlaps between reference and segmented tree crowns. Two 

crowns corresponded when more than 50% of a reference crown was included in a 

segmented crown and the reference crown included more than 50% of the 

segmented crown (Lamar et al., 2005). The overall accuracy of the segmentation 

was calculated using the equation 𝐺𝑙𝑜𝑏𝑎𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
2×𝑁 𝑎𝑐𝑐𝑢𝑟𝑎𝑡𝑒

𝑁 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒+𝑁 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑒𝑑
, where N 

accurate is the number of corresponding tree crowns, N reference the number of 

manually digitized tree crowns and N segmented the number of segmented tree 

crowns. 

 Validation at Plot Level  3.2.5

The allometric models m1 and m2 were validated at the scale of each inventoried 

plot. This validation was different from the assessment carried out at the tree level 

because it integrated error aggregation over several crowns and the error related to 

segmentation (Figure 29). A leave-one-out approach was deployed. For each of the 

19 plots, we adjusted the m1 and m2 allometric models based on the trees of the 

other 18 plots Figure 29A). On the validation plot, the trees were automatically 

segmented (Figure 29B) and the model built with the trees of the 18 other plots was 

applied to the segments Figure 29C). Tree biomasses were aggregated at plot scale 

(Figure 29D). The biomass estimated by remote sensing was then compared to the 

total biomass of the trees measured on the plot, including those that were not 

selected to calibrate the allometric relationship (Figure 29E). Only segments with 

more than half of the area within the plot were selected. A total of 8 independent 
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plots of about 0.3 ha in which total woody biomass was known were also used for 

validation (see Section 3.2.2). The model was thus validated on a total of 27 plots.  

 

Figure 29: General workflow for the validation of biomass remote sensing estimates. (A–

E). Processes are described in the text of Section 3.2.5. 

 Riparian Forest Delineation and Upscaling of Biomass Prediction  3.2.6

The riparian zone was delineated as the area that is flooded every 25 years. This 

outer limit corresponds to that of zone 4 defined by Gurnell et al. (2016) under a 

temperate climate. Beyond this limit, flooding no longer has a marked impact on 

ecosystem functioning. A map of the flooded area for a 25-year period was available 

for the entire study area (see Section 3.2.1). On rivers that are confined in narrow 

valleys, the flooded area does not always include vegetation patches that interact 

intensively with the river, without being periodically submerged (Clerici et al., 

2013). Therefore, a fixed buffer of 30 m was delimited on both sides of the river 

banks. The riparian zone consists of the sum of the two envelopes: a variable buffer 

corresponding to the flooded area and a fixed buffer of 30 m on either side of the 

banks (Figure 30a). A dilation followed by an erosion of 30 m were applied to this 

envelope in order to eliminate small holes in the riparian zone, which have little 

meaning from an ecological point of view.  

In this study, riparian forests were defined as native woody plant formations within 

the riparian zone. Segmented tree crowns were used as a starting point to delineate 
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riparian forests (Figure 30b). Coniferous plantations (non-native to the region) and 

buildings, which are sometimes segmented as trees by watershed algorithms, were 

filtered out using an auxiliary layer at 2 m resolution previously produced at the 

scale of the region (Radoux et al., 2019). Tree crowns were then used to generate a 

“riparian forest” envelope by applying a 10-m dilation followed by a 10-m erosion. 

This procedure enabled the inclusion of areas that were not covered by a tree crown 

in plant formations where canopy is not continuous (willow thickets for example). 

This “riparian forest” envelope was divided into zones of homogeneous age based 

on historical aerial orthophotos (Figure 30c; see also Section 3.2.7).  

It was then arbitrarily divided into vegetation units (VUs) of about 0.3 ha using the 

“Polygon divider” tool, implemented in QGIS (Figure 30d) (Huck, 2020). This area 

corresponds to a compromise between the finesse of the analysis (the environmental 

factors must be as homogeneous as possible within a VU), representativeness and 

validity of biomass estimates, which were validated on plots of similar size. The 

surface biomass of each VU (in Mg/ha) is equal to the sum of the biomasses of 

segmented crowns whose centroid lies within the VU, divided by the surface area of 

the VU. VUs less than 1000 m2 that could not be merged with another adjacent VU 

of similar age were excluded from the analysis to give equal weights to VUs with 

similar areas.  

 

Figure 30: (a) Delineation of riparian zone as the sum of two envelopes: area flooded 

every 25 year and 30-m buffer on either side of the river. (b) Segmentation of tree crowns 

within the riparian zone. (c) Morphological filtering on the segmented tree crowns and first 

division into zones of similar age (each color corresponds to a different age). (d) Division of 

this envelope into vegetation units (VUs) of approximately 0.3 ha. 
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 Analysis of Environmental Factors Structuring the Spatial 3.2.7
Distribution of Biomass  

To understand what environmental factors shape the spatial distribution of biomass, 

different explanatory variables were computed for each VU at two different scales 

(Table 4). At the VU scale, environmental variables were extracted at the scale of 

the 0.3 ha VU polygon. At the floodplain (FP) scale, the riparian zone was cut 250 m 

upstream and downstream of the VU, and environmental variables were extracted 

and summarized at the scale of the resulting polygon. Variables can be grouped into 

three main thematic groups: historical, land use and geomorphological variables.  

Table 4: Explanatory variables used to analyze VU biomass distribution.  

Thematic 

Group 
Scale Name Detail Source 

H
is

to
ry

 

Vegetation unit 

(0.3 ha) 

Age (years) 

Age estimated by photo-

interpretation of historical aerial 

images 
Historical  

orthophotos 

Planted 

Regeneration type (1 = planting, 0 

= natural regeneration or 

undescribed). Described only for 

VUs less than 40 years old 

G
eo

m
o

rp
h

o
lo

g
y

 

Vegetation unit 

(0.3 ha) 

Horizontal 

distance (m) 

Horizontal distance to the main 

channel 

Hydrographic  

Network 

Vertical distance 

(m) 

Vertical distance to river mean 

water level. 

LiDAR 

digital terrain 

model (DTM) 

Relative vertical 

distance 

Vertical distance to river mean 

water level, divided by the relative 

altitude of the 25-year flood stage. 

A value less than 1 means that the 

VU is located in the 25-year 

floodplain, while a value superior 

to 1 corresponds to valley slopes. 

Values higher than 2 were 

thresholded at 2. 

Slope (%) Terrain slope 

Waterlogging 

Waterlogging classes. Anoxia 

traces are found beyond 125 cm 

deep (class 1), between 80 and 125 

cm (class 2), between 80 and 50 

cm (class 3), between 30 et 50 cm 

(class 4), before 30 cm deep (class 

5). 

Regional soil 

map (Service 

Public de 

Wallonie, 

2015) 
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Floodplain 

(250 m 

upstream and 

downstream of 

VU) 

Width (m) Floodplain width (25-year flood) 

25-year flood 

map (Service 

Public de 

Wallonie, 

2021) 

Sinuosity River sinuosity 
Hydrographic 

network 

Catchment area 

(m
2
) 

Catchment area 

LiDAR 

digital terrain 

model (DTM) 

L
an

d
 u

se
 

Vegetation unit 

(0.3 ha) 

Artificial in VU 

(%) 
% artificial areas 

Regional land 

use map 

(Service 

Public de 

Wallonie, 

2008) 

Agriculture in VU 

(%) 
% agricultural areas 

Forest in VU (%) % forest and other natural areas 

Floodplain 

(250 m 

upstream and 

downstream of 

VU) 

Artificial in FP 

(%) 
% artificial areas 

Agriculture in FP 

(%) 
% agricultural areas 

Forest in FP (%) % forest and other natural areas 

 

Vegetation Age is presumed to be an essential variable, because many VUs in the 

study area result from recent colonization of agricultural areas, or have been cut 

down at least once during the last fifty years. Age was estimated by photo-

interpretation using available orthophotos for the years 2012, 2009, 2006, 1995–

1999 (several partial covers), 1983–1987 (several partial covers) and 1971. This step 

was performed before the final division into VUs (Figure 30c). We identified groups 

of contemporary trees that regenerated at the same time on historical orthophotos. 

The minimum size for a group of trees to be differentiated from its neighbors was 

300 m
2
. For each group of trees, the date of vegetation regeneration was chosen as 

follows: when the young recruits corresponding to contemporary trees were visible 

on an orthophoto at a particular date, this date was retained. Otherwise, when 

contemporary trees appeared between two dates, the median date was chosen. As the 

time between two successive coverages was not constant through time, the precision 

was higher for young VUs (e.g., less than 3 years for trees regenerated around 2009) 

than for old VUs (e.g., about 14 years for trees regenerating around 1975). For trees 

that were already present in 1971, an age of 60 years was assigned when the trees 

appeared to be less than 20 years old on the 1971 orthophoto. When the vegetation 

seemed to already be well established, an age of 100 years was arbitrarily assigned. 

The trees within each VU had the same age, except for recruitment over less than 

300 m
2 

following thinning. The type of regeneration (Planted or naturally 

regenerated) influences productivity in the early years, and is an important variable 

for managers (Dybala et al., 2019b). It was therefore also described for VUs when 

possible, i.e., for those that regenerated after 1971.  
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In riparian zones, many processes related to the proximity of a river can influence 

biomass production. Soil Waterlogging leads to anoxia, which inhibits tree growth 

(Kreuzwieser et al., 2004). It was characterized using a regional soil map with five 

classes of waterlogging corresponding to the depth at which traces of oxidation-

reduction were observed (Service Public de Wallonie, 2015). A low altitudinal 

position may be linked to waterlogging due to the proximity of the water table or 

flooding, but also increases tree growth due to water availability (Singer et al., 2013; 

Schifman et al., 2012) and sediment input during floods (Marks et al., 2020). It was 

characterized by the Vertical distance variable, which corresponds to the difference 

between the altitude of the VU and the altitude of the river. It was calculated 

following the method of Alber and Piegay (2011), which was implemented in the 

QGIS Fluvial Corridor Toolbox (Dunesme et al., 2020). The Relative vertical 

distance corresponds to the Vertical distance divided by the 25-year flood stage. The 

horizontal distance to the river (Horizontal distance) differentiates between VUs 

close to the current river course and subject to its direct influence, and VUs located 

on the old channels, where the sediments are generally finer. A high Sinuosity 

implies that a larger area is subject to the direct influence of the watercourse 

(Camporeale and Ridolfi, 2010), and characterizes the past activity and complexity 

of the channel (Sutfin et al., 2016). The Width of the floodplain differentiates 

between open, humid plains and the more shaded, steeper valleys. Catchment area is 

a commonly used variable that characterizes the size of the river. Finally, the terrain 

Slope essentially differentiates the alluvial floor from the valley slopes. 

Land use is a proxy for the direct impacts of human activity on riparian vegetation. 

It also has an influence on light conditions or the supply of propagules. It was 

described using a regional land use layer from 2007, with three thematic classes: 

artificial areas, agricultural areas, forest areas (Service Public de Wallonie, 2008). 

The proportion of each land-use class was expressed in percentage area at the scale 

of the VU (Artificial in VU, Agriculture in VU, Forest in VU) and at the scale of the 

floodplain (Artificial in FP, Agriculture in FP, Forest in FP). 

Explanatory variables were standardized prior to statistical analyses. A PCA 

(principal component analysis) was first realized in order to explore relationships 

between explanatory variables. A variance partition was carried out using the vegan 

package (Oksanen et al., 2020) in order to explain the share of variance in VU 

biomass explained by each thematic group (history, land use and geomorphology). 

All variables were used at this stage. A set of variables that were poorly correlated 

with one another (i.e., whose absolute Pearson’s correlation coefficient with other 

selected variables was less than 0.5) was then constituted. A MLR (multiple linear 

regression) model predicting VU biomass was then adjusted with the following 

equation: 

 
𝐴𝐺𝐵 = 𝐾 × 𝐴𝑔𝑒 + ∑(𝐾𝑖 × 𝑋𝑖) + ∑(𝑘𝑖 × 𝐴𝑔𝑒 × 𝑋𝑖) (5) 

where Xi are explanatory variables excluding Age. The interactions of each 

variable with age were integrated because it was expected that the effect of the 
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variables influencing productivity or mortality evolves with the age of vegetation. 

The best model was selected using a stepwise procedure based on the AIC (Akaike 

information criterion). The relative importance of each selected variable was 

computed by decomposing the explained variance into non-negative contributions, 

using the method of Lindeman et al. (1980) implemented in the R package 

“relaimpo” (Groemping and Lehrkamp, 2018). 

3.3 Results 

 Volume Equations for Alnus and Salix 3.3.1

The selected model for estimating the total volume of alder and willow stems in 

the field is presented in Equation (6) (corresponding to the fitting of Equation (1) 

presented in Section 3.2.2). The conditions of null mean and normality of residuals, 

and the condition of homoscedasticity were verified respectively by a Student (p = 

1), Shapiro-Wilk (p = 0.31) and Breusch Pagan test (p = 0.77). The total volume was 

therefore retrieved according to Equation (7), which incorporates the Baskerville 

correction (Baskerville, 1972). 

ln 𝑉𝑡𝑜𝑡 = −10.8469 + 2.4079 × ln 𝐷 + 0.7703 × ln 𝐻  (6) 

(R
2
 = 0.98, RMSE = 0.16) 

 

𝑉𝑡𝑜𝑡 = 1.9721 × 10−5 × 𝐷2.4079 × 𝐻0.7703 (7) 

where Vtot is the total volume in cubic meters, D the diameter at breast height (1.3 

m) in centimeters and H the tree height in meters. 

 Biomass Prediction from LiDAR Data at Tree Level 3.3.2

The two linear models fitted with variables from CHM (Equation (8)) and the 

CHM and point cloud (Equation (9)) have the following equations: 

ln 𝐴𝐺𝐵 = −9.0796 + 0.9157 × ln 𝐴𝑟𝑒𝑎 + 1.8354 × ln 𝐻90 

(R
2
 = 0.79, RMSE = 0.63) 

(8) 

ln 𝐴𝐺𝐵 = −8.3445 + 0.8979 × ln 𝐴𝑟𝑒𝑎 + 1.4880 × ln 𝐻90 − 0.7951 

× ln (1 +
𝑃𝑔𝑟𝑜𝑢𝑛𝑑

100
) + 1.5534 × ln(1 +

𝑍𝑞30

𝐻90
) 

(R
2
 = 0.81, RMSE = 0.61) 

(9) 

Deviations from application conditions were limited, and biomass was recovered 

by introducing a Baskerville correction. M1 and m2 estimates are retrieved using 

Equations (10) and (11), respectively: 

𝐴𝐺𝐵 = 1.383 × 10−4 × 𝐴𝑟𝑒𝑎0.9157 × 𝐻901.8354 (10)  

𝐴𝐺𝐵 = 2.834 × 10−4 × 𝐴𝑟𝑒𝑎0.8979 × 𝐻901.4880 × (1 +
𝑃𝑔𝑟𝑜𝑢𝑛𝑑

100
)−0.7951

× (1 +
𝑍𝑞30

𝐻90
)1.5534 

(11) 

As expected, the m2 model (1.57 log-average error, corresponding to a 57% 

overestimation or a 36% underestimation) was slightly but significantly better than 
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the m1 model (1.59 log-average error, corresponding to a 59% overestimation or a 

37% underestimation) (Table 5). 

Table 5: Performance of m1 and m2 log-transformed models. The error was 

evaluated by a leave-one-out approach, in which a model calibrated on 18 plots is 

validated on the trees of the remaining plot. Mean absolute error (MAE) was 

significantly higher for m1 (letter a) than for m2 (letter b) according to a sign test. 

Errors are expressed in logarithmic units. In brackets: the back-transformed error 

(also called log-average error). 

Model R
2
 Mean error MAE 

m1 0.79 0.0029 (1.0029) 0.4644 
a 
(1.5911)

 

m2 0.81 0.0022 (1.0022) 0.4513 
b 
(1.5703)

 

 Individual Tree Segmentation 3.3.3

The overall median segmentation accuracy on the reference plots was 52% (see 

Section 3.2.4 for a definition). Often several crowns were aggregated into one 

segment or a crown was divided into several segments, which was expected as many 

trees were multi-stemmed. The distribution of crowns areas was not significantly 

different (p = 0.82 in a Wilcoxon test) between segmented and reference (i.e., 

manually delineated). This close similarity justified our choice to apply calibrated 

allometric relationships to segments for upscaling to the whole study area. 

 Validation at Plot Level 3.3.4

The accuracy of biomass estimation at plot level was assessed using the 27 plots 

for m1 and m2 (Table 6 and Figure 31). As a reminder, plot aboveground biomass is 

equal to the sum of the biomass of all trees in the plot. Neither of the two models 

delivered a significantly biased biomass mean. Despite a clear improvement in R2 in 

m2, the models did not differ significantly in terms of absolute error (p-values of 

0.44 and 0.27, respectively, for MAE (mean absolute error) and RMSE). 

Nevertheless, the m2 model appeared to be better than m1 for the set of criteria 

studied, and it was thus retained for the spatial analysis of biomass in relation to 

environmental factors. 
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Table 6: Evaluation of biomass predictions at plot level (27 plots studied) using 

a leave-one-out approach. For the mean error, a negative value corresponds to an 

underestimation of the prediction. n.s = not significant. The RMSEr (relative root 

mean square error) was calculated using RMSEr =
RMSE

Mean(Field AGB)
. The letters 

correspond to the groups identified by a paired test o f Student comparing the 

means of signed errors per plot (for the mean error) and a paired test of Wilcoxon 

comparing the medians of errors (for the mean absolute error MAE and the root 

mean square error RMSE). 

Model R
2
 

Mean Error 
(Mg/ha) 

MAE (Mg/ha) 
RMSE 

(Mg/ha) 
RMSEr 

m1 0.83 1.75 a (n.s.) 12.79 a 19.44 a 0.27 

m2 0.90 1.70 a (n.s.) 11.26 a 15.52 a 0.22 

 

 

Figure 31: Predicted AGB (Mg/ha) according to field AGB for the 27 plots studied and for 

the two models m1 (based on CHM) and m2 (based on CHM and point cloud). 

  



 

77 

3. What Factors Shape Spatial Distribution of Biomass in Riparian 

Forests? Insights from a LiDAR Survey over a Large Area 

 Analysis of Environmental Factors Structuring Spatial distribution of 3.3.5
biomass 

A total of 3162 VUs were selected for analysis. The results of a principal 

component analysis on explanatory variables are shown in Figure 6. Positive values 

on the first axis are associated with VUs occupying a higher altitudinal position, 

located in narrow, forested valleys, where the vegetation is older and more biomass 

accumulates in vegetation (high values for Vertical distance, Relative vertical 

distance, Slope, Age, Forest in FP and Forest in VU). Negative values are associated 

with VUs occupying a lower altitudinal position, located in wide, humid and 

predominantly agricultural valleys (high values for Agriculture in FP, Agriculture in 

VU, Width and Waterlogging). The second axis distinguishes the most humid VUs 

located in marginal depressions, in semi-open landscapes (high values for Horizontal 

distance, Waterlogging, Forest in FP and Forest in VU) and on the upper left the 

units located in more inhabited agricultural landscapes (high values for Artificial in 

VU and Artificial in FP). 

 

Figure 32: Results of principal component analysis on all explanatory variables. AGB was 

plotted as a supplementary variable. 
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Biomass within the VUs ranged from 3 to 515 Mg/ha (Figure 33). The average 

biomass for all VUs was 121 Mg/ha, and 148 Mg/ha in forested VUs (i.e., where 

forest land use class occupied more than 50% of the VU area). In the oldest VUs 

(already well established on the 1971 aerial images), the median biomass was 174 

Mg/ha and 205 Mg/ha for forested VUs only. Biomass was consistently higher on 

valley slopes (i.e., in VUs where the relative vertical distance to the river was 

superior to 1) than in the floodplain (Relative vertical distance < 1). 

 

Figure 33: Aboveground biomass of VU depending on their age and location inside 

(Forest in VU > 50%) or outside forest, in the floodplain (Relative vertical distance < 1) or 

on valley slopes. Age classes “60” and “100” are indicative values, see section 3.2.7. 

The variance partitioning carried out with all the variables explained 48% of the 

variance of the biomass (Figure 34). VU history (age and regeneration type) 

explained 34% of the variance, present land use 25% and geomorphology 26%. 

Nevertheless, a large part of the variance was shared between two or all three groups 

of variables. The variance explained exclusively by history, land use and 

geomorphology were 15, 4 and 2%, respectively. VU history was thus by far the first 

driver of biomass accumulation in riparian forests. 
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Figure 34: Venn diagram showing the contribution of each thematic group of variables to 

explain the distribution of biomass. The values shown correspond to the adjusted R2. 

Vertical and horizontal distances to the river (Vertical distance and Horizontal 

distance), VU Age, Sinuosity, land use (Artificial in VU, Forest in VU, Agriculture 

in FP), type of regeneration (Planted) and Waterlogging variables presented 

Pearson’s correlation coefficients below 50%. They were thus integrated with their 

interactions with Age into a MLR (multiple linear regression) model predicting VU 

biomass. However, it must be kept in mind that variables that were removed at this 

stage will be accounted for by remaining, correlated variables. For example, Slope 

and Relative vertical distance were highly correlated with Vertical distance, and 

Width was highly correlated with Agriculture in FP and Horizontal distance. 

The terms of the MLR model selected by a stepwise procedure are presented in 

Table 7. The age and the vertical distance to the river had a strong positive effect on 

the biomass. The percentage of forest in the VU had a strong positive effect which 

was strengthened by Age. Regeneration by plantation also had a positive effect 

strengthened by Age. It should be noted, however, that this variable always has a 

value of 0 for VUs older than 40 years, and therefore it has no effect on the oldest 

VUs. Conversely, the percentage of agriculture in the floodplain had a strong 

negative effect strengthened by Age. The percentage of artificialized areas in the VU 

and the horizontal distance to the river also had a negative impact on biomass. 

Finally, Sinuosity had a marginal, negative impact on biomass. 

  



  

80 

Remote sensing applications for the characterization and 

management of riparian vegetation in Southern Belgium 

Table 7: Results of MLR with stepwise variable selection to predict VU biomass 

(following Equation (5)). Explanatory variables were standardized prior to 

regression. Relative importance corresponds to the proportion of variance 

explained by each term. The model had an R2 of 0.50.  

Term Estimate  Std.Error Statistic p-Value 

Relative 

Importance 

(%) 

Relative 

Importance 

(Rank) 

(Intercept) 113.51 1.18 95.86 0   

Age 39.09 1.25 31.16 5.33 × 10
−186

 25.17 1 

Agriculture in FP −15.33 1.37 −11.22 1.12 × 10
−28

 9.53 2 

Vertical distance 7.99 1.28 6.27 4.20 × 10
−10

 4.8 3 

Forest in VU 10.6 1.41 7.54 6.18 × 10
−14

 4.26 4 

Age:Forest in VU 10.93 1.26 8.69 5.67 × 10
−18

 2.12 5 

Horizontal 

distance 
−5.19 1.13 −4.57 4.98 × 10

−6
 1.04 6 

Planted 25.78 4.66 5.53 3.38 × 10
−8

 0.94 7 

Age:Agriculture 

in FP 
−5.84 1.27 −4.58 4.73 × 10

−6
 0.96 8 

Artificial in VU −5.55 1.14 −4.85 1.29 × 10
−6

 0.83 9 

Age:Planted 15.57 4.31 3.62 3.04 × 10
−4

 0.23 10 

 

3.4 Discussion 

 LiDAR Biomass Estimates 3.4.1

The relative error on LiDAR biomass estimates (RMSEr of 22% on 0.3 ha plots 

for the m2 model) was in the lower range of the errors reported by Zolkos et al. 

(2013) for temperate deciduous forests. These estimates are thus satisfactory, 

especially considering other uncertainties resulting from field data and allometric 

equations. 

Tree biomass is primarily influenced by height, diameter and wood density 

(related to tree species). Tree height is assumed to be well estimated with LiDAR 

data. However, stem diameter and wood density estimates are more difficult to 

measure. At the individual tree level, the addition of variables from the point cloud 

between m1 and m2 slightly improved the model. The addition of a shape and 

porosity factor for the crown limited the biases linked to the light conditions (that 

influences the relationship between stem diameter, tree height and crown area) and 

the species (which also influences wood density). For example, this correction factor 

was significantly different depending on the species (Figure 35), and can be 

considered as a proxy for the heliophilous character. In a riparian context, the 

heliophilous character of a tree is related to its growth rate and to the density of the 

wood. For example, in general, Salix spp. are heliophilous, have a fast growth rate 

and a low wood density. When tree biomass estimates were aggregated at plot level, 

the added value of the variables derived from point cloud was no longer significant. 
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However, m2 outperformed m1 in terms of R
2
, MAE and RMSE, and the non-

significance of differences could simply be due to the small number of plots 

considered. Our results are thus more nuanced than those of Garcia et al. 2017 and 

Chirici et al. (2016), who found no significant difference between biomass models 

based on CHM or point cloud. Despite a lower performance, there are several 

advantages to using a model based solely on tree height and crown area. First, the 

use of a CHM is straightforward and does not need high computational power. The 

influence of survey parameters (e.g., point density, flight altitude or scan angle) or 

ground conditions (e.g., phenology) on CHM properties or height estimates has been 

well studied (Roussel et al., 2020; Holmgen et al., 2003; Nasset, 2004; Zhao et al., 

2018). Therefore, when working simultaneously with several CHMs (e.g., multi-

temporal or compiled from several locations), these effects can be accounted for or 

assumed to be negligible (Duncanson and Dubayah, 2018). In contrast, when using 

point clouds, it may be more difficult to do so with variables related to lower height 

percentiles, canopy closure or LAI (leaf area index) (Liu et al., 2018). A third 

advantage of CHMs beyond ease of use and robustness is that it can be updated with 

photogrammetric point clouds once a first LiDAR survey has been done (Michez et 

al., 2020). The m1 model could thus be better suited to the use of time series or to 

the comparison of sites covered by different datasets. 

 

Figure 35: value of the correction factor of the m2 model [(1 +
Pground

100
)−0.7951 ×

(1 +
Zq30

H90
)1.5534] depending on tree species. The thick line corresponds to the median 

correction factor. The species are ordered according to the average of the correction factor, 

and the letters abc correspond to the groups separated by a wilcoxon test. The values in 

brackets correspond to the wood densities for each species in Mg/m3. 
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 Spatial Distribution of Biomass and Influencing Factors 3.4.2

Age was by far the most structuring variable for biomass. Moreover, as in the 

study of Dybala et al. (2019b), planting increases production in the early years 

compared to natural regeneration. This higher productivity of plantations was at 

least partially due to the choice of fast-growing species such as poplar for 

plantations. The median values obtained for standing biomass within forested VUs 

(205 Mg/ha for VUs older than 60 years, 122 Mg/ha for VUs aged 40–60 years) 

were within the range of values reported by for a temperate climate (Dybala et al., 

2019a; Giese et al., 2003). The median value obtained here for all age classes 

combined for forest units was 121 Mg/ha. Some authors reported very high values 

for all age classes, such as 284 Mg/ha for alder forests (Fernandes et al., 2020), or 

199 Mg/ha for poplar forests and 281 Mg/ha for hardwood forests (Cierjacks et al., 

2010). Nevertheless, these studies were carried out in smaller or protected areas, 

whereas the present study includes actively managed and heavily disturbed areas. 

Finally, the values obtained within forest units were lower than the values of 

aboveground woody biomass stored within forests in general in Wallonia, which are 

about 200 Mg/ha for deciduous forests (Latte et al., 2013). Our lower values may be 

related to the lower age of the forests within the floodplain than in upland areas. 

Apart from age, land use variables had a significant impact on biomass 

distribution. The results of variance partitioning and especially those of the MLR 

tended to show that the effect of land use was more important than the effect of 

geomorphology. In agricultural or urban areas, some VUs are regularly thinned or 

pruned, which can limit the accumulation of biomass. Moreover, vegetation that 

develops spontaneously on abandoned agricultural plots does not regenerate as 

quickly as in forests: the recruitment of large trees can be blocked by pioneer shrubs 

and is not promoted by silvicultural practices. As a result, woody recruitment is 

often spatially uneven or even scattered. Wasser et al. (2015) also found a lower tree 

height in riparian corridors located in agricultural landscapes than in forested 

landscapes, related to higher disturbance (e.g., wind throw, mowing or plowing) and 

different species composition. Our results highlight the greater importance of human 

factors (land use and associated management practices, as well as vegetation age, 

which is related to human disturbance) over those of natural origin (geomorphology) 

in the study area. This stresses the relevance of taking into account the socio-cultural 

dimension of riparian ecosystems, as suggested by Dufour et al. (2019). 

Vegetation units in the lower parts of the riparian zone (i.e., lower vertical distance 

to the river) had a lower biomass at the same age than those occupying a higher 

topographical position. Two factors may explain this distribution. First, VUs located 

in lower parts of the floodplains are more heterogeneous and are subject to a more 

intense disturbance regime. These disturbances include flooding, erosion, and the 

action of beavers, which are well established throughout the area of interest. Trees in 

the more humid parts of the plain may also be more exposed to diseases such as 

Phytophtora alni (Strnadovà et al., 2010) or Hymenoscyphus fraxineus (Marçais et 

al., 2016). Tree falls may also be promoted by waterlogging (Ferry et al., 2010). 
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Apart from disturbance, waterlogging in the lower parts of the plain would have a 

greater impact on productivity than nutrients provided by sediment. In other studies, 

the balance between these two environmental variables was sometimes a dominance 

of the negative effect of waterlogging on productivity (Megonigal et al., 1997; 

Cavalcanti and Lockaby, 2006; Jolley et al., 2009), and sometimes a dominant 

positive effect of nutrients or water availability (Marks et al., 2020, Clawson et al., 

2001). In particular, Rodriguez-Gonzalez et al. (2010) found lower radial wood 

growth in the wettest areas for Alnus glutinosa and Salix atrocinerea forests in the 

Iberian Peninsula, which are quite similar to those considered in our study. In our 

study, a combination of both factors—waterlogging stress and a more intense 

disturbance regime—explains the lower biomass found in the lower parts of the 

floodplain. 

Finally, VUs located far from the main channel (i.e., higher horizontal distance to 

the river) had a lower biomass. This effect was most noticeable beyond the first fifty 

meters from the channel. In the study area, VUs far from the river were actually 

located in wide sections of the floodplain, in marginal depressions or in old channels 

disconnected from the river bed. These areas are enriched with fine sediments and 

are poorly drained. They are often occupied by shrubs such as Salix aurita, which 

have a low biomass. 

The factors structuring riparian biomass distribution are not yet well known in 

most regions of the world (Sutfin et al., 2016). The proposed approach could be 

replicated in other regions in order to compare biomass distribution patterns. For 

example, with a drier climate, water availability may be more limiting (Amlin and 

Rood, 2003). The response of biomass to the vertical distance to the river, which 

was monotonous in our study, could in these cases present a peak at intermediate 

altitudes as proposed by Odum et al. (1979). It would also be possible to compare 

areas receiving more or less rich sediments (Schilling and Lockaby, 2006), to study 

the distribution of biomass in other geomorphological contexts, such as in braided 

rivers where mortality due to erosion may be higher (Francalanci et al., 2020), in 

larger catchment areas (by going further upstream or downstream), or in less 

anthropized areas. 

 Perspectives for Generalization of the Approach 3.4.3

Our method essentially exploits LiDAR data, which are increasingly available at 

regional scales (Michez et al., 2017). Most of the auxiliary data used are available in 

many countries (land use, river network) or can be derived from a LiDAR dataset 

(vertical distance to the river, slope, floodplain boundaries). Most countries do not 

have soil maps as precise as those available in Belgium, where the map is based on 

about two survey plots per hectare. However, soil variables seemed to be accounted 

for by topographical variables, and were not kept in the final MLR model. The age 

and type of regeneration can nevertheless be costly or tedious to obtain, as they rely 

on photo-interpretation of historical orthophotos, whose accessibility is uneven from 

one country to another. 
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An advantage of the individual trees approach used in this study is its flexibility 

regarding spatial scale. For the needs of the study, segmented trees were grouped in 

0.3 ha vegetation units. However, trees can easily be re-aggregated differently 

depending on pursued objectives. For example, one could study biomass in the 

immediate vicinity of the river (e.g., first 30 m from the water edge, where bio-

geomorphic interactions are most intense) using the same delineated crowns and 

associated biomass estimates. 

We estimated only one compartment of the carbon stored by riparian ecosystems: 

the aboveground woody biomass. This is justified because it is the most variable 

compartment at a fine spatial scale and the most dynamic on time scales of a few 

decades (Suchenwirth et al., 2014; Cierjacks et al., 2010). Storage within the other 

compartments (especially in roots, soil and dead wood) is more difficult to measure, 

but it can have a significant magnitude and spatial variation, as shown by Wohl et al. 

(2012). These compartments are difficult to study by remote sensing, but could be 

modeled using topographic or geomorphological data, as in Suchenwirth et al. 

(2014). 

3.5 Conclusions 

Our individual-tree, LiDAR-based approach enabled us to map aboveground 

biomass over 200 km of rivers with an error of 22% at the scale of 0.3 ha units. The 

addition of variables derived from the point cloud did not significantly improve 

CHM-based biomass estimates. For practitioners, the marginal improvement when 

working with point clouds must be balanced with the advantages of working with 

CHMs: robustness to varying survey conditions, ease of use, low computational 

requirements and possible update with photogrammetric point clouds. 

The biomass map was used to better understand the patterns of biomass 

distribution within the riparian zone. In the study area, vegetation age was the most 

important variable. Present land use was second, followed by geomorphological 

variables. Over the study area, anthropogenic factors (land use and vegetation age, 

which are related to human practices) were more important than geomorphic factors 

concerning biomass accumulation within vegetation. 

Surface biomass was higher inside forest, in higher topographical parts of the 

riparian zone and close to the river rather than in remnant patches in the agricultural 

landscape, and in low-lying areas further away from the river. The implementation 

of similar approaches in other catchments will be eased by the growing availability 

of LiDAR data at regional scales. Ultimately, remote sensing approaches could help 

understand how spatial biomass distribution patterns vary depending on the 

ecological context, and inform land use, conservation or restoration policies in 

riparian zones. 
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4. Mapping species composition 

4.1 Introduction 

Riparian ecosystems are ecotones (transition zones between two ecosystems) 

where terrestrial and aquatic systems influence each other. In riparian areas, plant 

communities are linked to the proximity and availability of water, soil anoxia and 

flood disturbance (Naiman and Décamps 1997). 

These plant communities, in particular riparian forests, provide numerous 

ecosystem services or disservices linked to water flow, sedimentary processes and 

habitat provision (Riis et al., 2020). These services depend themselves on the 

species present and their ecological specificities. In Western Europe, floodplain 

forests are rich in woody species that may or may not be river-dependent. These 

species occupy a mosaic of environments in the floodplain created by ancient and 

recent sediment processes or flooding (Dufour and Piégay, 2006; Schnitzler, 1995). 

Among these, the salicaceae (willows and poplars) include fast-growing, short-lived 

pioneer species with a high potential for vegetative reproduction. They have a major 

influence on sedimentary processes in the active fringe of the riparian zone. Indeed, 

they are capable of rapidly colonizing and stabilizing sediment bars (Hortobágyi et 

al., 2018; Politti et al., 2018). Willows (Salix spp.) are also host to a large number of 

herbivorous insects, which through their role in the trophic chain can be considered 

founder species, at the base of characteristic ecosystems (Brändle and Brandl, 2001; 

Cronk et al., 2015). Alder (Alnus glutinosa) is a heliophilous species with a root 

system that penetrates deep into waterlogged soils (Claessens et al., 2010). It is a 

nitrogen fixer whose litter has a major influence on the trophic regime of rivers 

(Alonso et al., 2021; Seena et al., 2017). Ash (Fraxinus exelsior) is a key species of 

hardwood alluvial forests, which develop on the better-drained, rarely flooded soils 

of the alluvial plain. Host to a large number of species, including lichens and fungi, 

ash populations are threatened by severe dieback in Europe due to the pathogen 

Hymenoscyphus fraxineus (Pautasso et al., 2013, Łubek et al., 2020). Lastly, 

numerous species that are less tolerant of flooding and more tolerant of shade thrive 

on the higher parts of the alluvial plain, such as Acer pseudoplatanus, Quercus robur 

or Carpinus betulus (Dufour and Piégay, 2006). 

The species composition of riparian forests is evolving in many regions as a result 

of changes in the hydrological regime of the river, themselves linked to climate 

change or flow regulation (Rivaes et al., 2014, Tonkin et al., 2018). Changes in bed 

morphology (bank stabilization, rectification or deepening) also alter species 

composition and successional trajectories (Janssen et al., 2020). Riparian zones are 

also particularly sensitive to biological invasions (Stohlgren et al., 1998), such as by 

Robinia pseudoacacia (Nadal-Sala et al., 2019) or Acer Negundo (Saccone et al., 

2013). The species composition of riparian forests is also influenced more directly 

by silviculture (poplar plantations or, in the Ardenne valleys discussed in this study, 

spruce plantations) and agriculture. These alterations in species composition can in 

turn lead to biodiversity losses, changes in the trophic regime of rivers and 

alterations to the hydrological regime (Kominoski et al., 2013). 
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Remote sensing provides information on the specific composition of riparian 

forests over large areas. Species composition is a key factor in the functioning of 

riparian forests, whose knowledge can be used to guide management actions 

(Huylenbroeck et al., 2020). Concretely and in a non-exhaustive manner, maps of 

specific composition produced with remote sensing have been exploited to 

understand the distribution of invasive species (Martin et al., 2020), to assess the 

biological quality of Natura 2000 habitats (Strasser et al., 2013; Riedler et al., 2015; 

Belcore et al., 2021), to identify priority areas for restoration (Macfarlane et al., 

2017), to improve hydraulic models (Belcore et al., 2021, Chaulagain et al., 2022), 

to monitor the response of riparian vegetation following restoration (Laslier, 2018), 

climate change (Pace et al. 2021) or change in river dynamics (Durning et al., 2021; 

Kui et al., 2017; Lallias-Tacon et al., 2017). 

As explained in Chapter 2, mapping species composition in riparian forests is 

generally carried out using high-resolution data (< 10 m) and object-oriented 

approaches, due to its spatial organization (linear and fragmented formations) and 

specific richness (multi-species forests). Species mapping was mainly carried out on 

limited areas using multispectral data. The image acquisition period is important, 

and the use of images acquired on several dates often improves results 

(Huylenbroeck et al., 2020). On-demand acquisition of high-resolution multispectral 

images over long linear distances and at a chosen date is costly. To obtain high-

resolution satellite images over large areas at low cost, Latte and Lejeune (2020) and 

Bolyn et al. (2022) merged Planet and Sentinel-2 images. These images were then 

used to map the specific composition of mixed forests. 

While LiDAR data has often been used to complement multispectral imagery (e.g. 

for object segmentation or to differentiate trees from low vegetation), it can also be 

used as a primary or sole source of data for species mapping (Korpela et al., 2010; 

Heinzel and Koch, 2011; Cao et al., 2016; Shi et al., 2018; Budei et al., 2018). 

Indeed, it provides information on both canopy structure (variables based on the 

position of returns) and leaf reflectance and orientation (variables based on the 

intensity of returns). However, variables linked to the intensity of returns are 

sensitive to acquisition conditions, and more or less complex intensity corrections 

must be made before data can be exploited (Kashani et al., 2015).  

LiDAR technology is particularly well-suited to the riparian context, as it also 

provides data on river topography. Moreover, this type of data is increasingly 

available on a regional or national scale, making it possible to consider operational 

applications for operators in charge of river management (Michez et al. 2017). Yet 

few studies have focused on mapping the specific composition of riparian forests 

using LiDAR data (Laslier et al., 2019a; Ba et al., 2020).  

The objectives of this study were twofold: 

- assess the potential of a high-density LiDAR dataset and multispectral 

satellite images (Sentinel-2 and PlanetScope fusion) for tree species 

classification in a riparian context at sub-regional scale (150 km of river 

and associated floodplain) ; 
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- highlight the spatial distribution and structuring environmental factors of 

riparian species composition over the study area. 

4.2 Methods 

 Study area 4.2.1

The study area is located in Wallonia (southern Belgium), within the Meuse 

watershed (Figure 36). It comprises a 155 km stretch of the Semois. Within the 

study area, the Semois flows mainly through Ardenne, except upstream where it 

makes a few incursions into Lorraine. The Semois has a gravel bed and an average 

gradient of 0.1%. In the study area, it produces wide, steeply-sloping meanders, 

except in the Lorraine region where the alluvial plain widens and the landscape is 

more open. The river is not very active and regularly overflows its banks in winter. 

The Semois flows through a landscape composed mainly of forests and meadows. 

There are few large towns along the river, but numerous tourism infrastructures 

(campsites) are located in the downstream third of the area. At the study area's outlet 

(the border with France), the watershed has a total surface area of almost 13,000 

km², mostly covered by forests and meadows. The mean flow at Membre 

(downstream of the study area) is 28.90 m³/s, the mean annual maximum flow is 245 

m³/s (winter floods) and the low flow (p05) is 2.19 m³/s (Service Public de 

Wallonie, 2023). 

 

Figure 36: Location of study area 
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The main tree species are alders (Alnus glutinosa) and willows (mainly S. aurita, 

Salix fragilis x alba and S. caprea), which often have a multi-stemmed structure. 

Maple (Acer pseudoplatanus), ash (Fraxinus exelsior), oak (Quercus robur), 

hornbeam (Carpinus betulus) and birch (Betulus pendula and B. pubescens) are also 

common. Finally, there are numerous even-aged plantations of spruce (Picea abies) 

in the valley bottoms. 

The riparian zone was defined as the area flooded with a 100-year return period, 

plus a 30-meter buffer zone. The extent of the 100-year flood was defined on the 

basis of the flood hazard map (Service Public de Wallonie, 2021). The study area 

thus constituted covers about 2,900 hectares. 

 Data used and collected 4.2.2

4.2.2.1 Field data 

In order to calibrate a tree-centric predictive model of the species, 1,700 

broadleaved tree crowns were delineated at 39 separate sites during the summers of 

2019 and 2020 (Figure 37). Data collection was carried out in the field using a 

precision GNSS and a computer with access to mapping resources. These included 

orthophotos (Service Public de Wallonie, 2018) and a CHM created on the basis of 

the LiDAR dataset described in section 4.2.2.2. Species and crown diameter were 

described. The crowns were digitized as pure discs, containing a single tree species. 

Exact positioning was carried out on the CHM to limit positioning errors. Only 

dominant trees, whose crowns were visible on the ortophotos, were retained. 

Coniferous tree crowns were also digitized by photointerpretation, without a field 

visit. 

 

Figure 37: Location of inventory plots used for calibration and validation of tree species 

classification 

A second field survey was carried out to validate the model at the scale of 30 m 

quadrats (Figure 38). This second campaign was carried out using an approach 

combining orthophotos based on drone images and a ground survey. Four sites were 
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flown over using a DJI Phantom 4 to produce orthophotos at 3 cm resolution. As it 

is not easy to distinguish species on the basis of an RGB orthophoto, these 

orthophotos were interpreted directly in the field, iteratively validating the 

photointerpretation result with field observations until a reliable interpretation of the 

images could be obtained. A total of 206 quadrats were photointerpreted on four 

distinct sites, representing 18.5 hectares. The use of a different dataset than that used 

for calibration has several advantages. First, it is completely independent from the 

dataset used for calibration, which limits overfitting or spatial auto-correlation 

between calibration and validation datasets. Second, data acquisition was faster for 

the validation dataset since trees were not individually and as precisely 

georeferenced as in the calibration dataset, and since only four species classes were 

distinguished. Therefore we were able to measure a large number of validation plots. 

Finally, this validation scheme allowed us to study the effect of VU size on 

classification accuracy, by merging adjacent quadrats (see section 4.2.3.3).  

 

Figure 38: Reference data used for calibration (left) and validation (right). Calibration 

crowns were surveyed in the field as discs containing a single species. Validation data were 

obtained by delimiting areas containing a single species group (willows, alder, conifers, other 

deciduous) by photointerpretation of high-resolution orthophotos. Species proportions were 

then calculated on 30 m quadrats. 

4.2.2.2 Remote sensing data 

A LiDAR flight was carried out in May 2018 over the entire study area at an 

altitude of 400 meters. The sensor used was the Titan DualWave, which emits two 

beams at 532 nm (green) and 1064 nm (infrared).  

Multispectral satellite images were obtained using a fusion of Sentinel-2 and 

PlanetScope data (the latter being used to improve resolution of the former). Two 
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multispectral images were produced for winter 2018-2019 and summer 2019. In 

order to obtain cloud-free images, winter images were produced using Sentinel 

images acquired between 17 November 2018 and 1
st
 April 2019, with more weight 

given to dates close to the 23 January 2019. In practice, most used images were 

acquired in the second half of February 2019. PlanetScope images were acquired in 

three dates in February and March 2019. Summer images were produced using 

Sentinel images acquired between 12 July 2019 and 15 September 2019, with more 

weight given to dates close to the 16 July 2019. PlanetScope images were acquired 

on the 23 July 2019. Resulting images have 10 bands corresponding to the original 

10 m and 20 m resolution bands of Sentinel-2 images, but with 2.5 m resolution. The 

production of these images is described in detail in Latte and Lejeune (2020) and in 

Bolyn et al. (2022) for the weighting of images acquired at different dates. 

Several 30 cm resolution orthophotos are also available over the study area, but 

these were used only for photointerpretation during the calibration field survey.  

 Tree species classification 4.2.3

4.2.3.1 Data preparation 

LiDAR data were received as a discretized point cloud with a maximum of four 

returns per pulse. The point cloud was processed using version 3.2.3 of the lidR 

package (Roussel et al., 2020). For the sake of simplicity, to limit data volume and 

the number of features to compute for classification, and to maintain a reproducible 

approach with widely distributed datasets, only the infrared channel was used (40 

pulses per m² on average). Indeed, most authors have pointed that the inclusion of 

features from the 532 nm channel did not significantly improved classification 

models (Yu et al., 2017; Amiri et al., 2018; Hakula et al., 2023, Goodbody et al., 

2020), especially when multispectral images were integrated in models (Kukkonen 

et al., 2019). 

Intensity was corrected using the formula presented in Kukkonen et al. (2019): 

𝐼𝑐𝑜𝑟𝑟 = 𝐼𝑟𝑎𝑤 ∗ (
𝑅𝑎𝑛𝑔𝑒

𝑅𝑎𝑛𝑔𝑒_𝑟𝑒𝑓
)𝑓  where Icorr is the corrected intensity, Iraw the raw 

intensity, Range the distance from the sensor to the target, Range_ref the median 

distance from the sensor to the target, and f a constant set at 2. 

Height was normalized. Ground points were classified by the data provider using 

TerraScan software. Vegetation points were classified by considering points 

belonging to beams with several returns and a height greater than two meters. Only 

points classified as "ground" and "vegetation" were retained.  

The point cloud was segmented using a watershed algorithm (segment_trees 

function, Dalponte2016 algorithm in the lidR package). The selection of the best 

parameters was carried out visually and qualitatively on a test area, so as to obtain 

segments of a similar size to the observed crowns.  

A geometric relationship was empirically calibrated to link the digitized tree 

crowns in the field to the automatically segmented crowns. If a segment includes 

more than 30% of points intersecting reference discs corresponding to the same 
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species, the segment is considered to be belonging to that species. This tolerant 

threshold generates few attribution errors in practice. 

Predictive variables were computed at the scale of segments. Variables derived 

from the LiDAR point cloud were computed using the tree_metrics function in the 

lidR package, with the stdtreemetrics parameter as input. The values of each band 

within the segments were also averaged for each multispectral satellite image (10 

bands and three years, i.e. 30 multispectral variables). A summary of the variables 

selected in the model is shown in Table 8. 

Table 8: Description of variables computed at the scale of each segment  

Lidar metrics Description 

zmax, zmean Maximum and mean of height of point cloud. 

zsd, zskew, zkurt, 

zentropy 

Standard deviation, skewness, kurtosis and entropy of 

height distribution. 

pzabovezmean, 

pzabove2 

Percentage of height distribution above zmean value and 

above 2 m 

zq95, zq90, … , zq5 95th, 90th, …, 5th percentile of height distribution. 

zpcumx Cumulative percentage of points in x
th

 equal depth layer of 

10, where x is 1 to 9. 

itot Sum of return intensity 

imax, imean, isd, iskew, 

ikurt 

Descriptive statistics of intensity distribution of point 

cloud. 

ipcumzk Percentage of intensity returned below the kth percentile of 

height, where k = 10, 30, 50, 70, 90. 

ipground Percentage of intensity from ground returns 

p1th, p2th, ... , pground Percentage of first, second,… , ground returns 

Multispectral metrics Description 

ms[w/s][n] 

 

Spectral band. The [w/s] letter corresponds to the season of 

acquisition during winter 2018-2019 or summer 2019, and 

[n] corresponds to the band’s central wavelength (490, 560, 

665, 705, 740, 783, 842, 865, 1610 and 2190 nm). 

 

4.2.3.2 Tree species classification 

The tree crowns were divided into four species groups: conifers, alders, willows 

and other deciduous species (Table 9). These four groups were separated according 

to their ecological characteristics and their interest in riparian ecosystem 

management, which were mentioned in section 4.1. The possibility of discrimination 

using the available dataset was also taken into account. The contrasting signatures of 

tree species in LiDAR and multispectral datasets will be further discussed in section 

4.4.1.  
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Table 9: Species classes and number of reference crowns for each class  

Classification Species Number of reference 

trees 

Willow Salix spp. 440 

Alder Alnus glutinosa 385 

Other deciduous  

Acer pseudoplatanus 247 

Fraxinus excelsior 227 

Quercus robur 253 

Other (mainly Carpinus 

betulus, Betula spp., 

Corylus avellana, 

Populus spp.) 

326 

Conifers Not identified (mostly 

Picea abies) 

809 

The numbers of trees within classes were balanced by randomly removing trees 

the over-numbered classes in the training dataset. Variable selection was performed 

in a stepwise procedure using the R package VSURF (Genuer et al., 2015). Random 

Forest classification was performed using the R Ranger package (Wright and 

Ziegler, 2017). 

In order to assess the contribution of LiDAR and multispectral images for species 

classification, three models were built. The LiDAR model relies solely on LiDAR 

data, the Multispectral model relies solely on multispectral images and the LiDAR-

Multispectral combines LiDAR data and multispectral images. 

4.2.3.3 Spatial aggregation and validation 

The classification into four species groups was applied to all segments in the study 

area. The proportion of cover for each species was then aggregated to the scale of 

30x30 m units (i.e. 900 m²), that will be called vegetation units (VU). Only VUs 

with at least 200 m² of vegetation were retained. 

The map was independently validated on 206 VUs using a field survey (section 

4.2.2.1). To quantify the accuracy of predicting species mix, we used the method 

developed by Bolyn et al. (2022). A species was considered dominant when it 

occupied at least 60% of the canopy's surface. A species was considered present in a 

vegetation unit when it occupied more than 10% of the canopy's surface.  

The Mean Score (MS) corresponds to the proportion of correct attributions 

(presence or absence) within a vegetation unit. 

𝑀𝑆 =
1

𝑛
∑

𝑐𝑖

4

𝑛

𝑖

 

Where n corresponds to the number of validation VU and for VUi, ci corresponds 

to the number of correct attributions (presence or absence) among the four classes. 
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The Mean Producer Score (MPS) corresponds to the proportion of correct 

attributions (presence) in relation to the reference data. 

𝑀𝑃𝑆 =
1

𝑛
∑

𝑡𝑖

𝑐𝑟𝑖

𝑛

𝑖

 

Where n corresponds to the number of validation VUs and, for VUi, ti corresponds 

to the number of true positives among the cri number of species actually present in 

VUi. 

The Mean User Score (MUS) is the proportion of correct attributions (presence) 

compared with the predicted data. 

𝑀𝑈𝑆 =
1

𝑛
∑

𝑡𝑖

𝑐𝑝𝑖

𝑛

𝑖

 

Where n corresponds to the number of validation VU and, for VUi, ti corresponds 

to the number of true positives among the cpi number of species predicted in VUi. 

A traditional confusion matrix was also produced for vegetation units where one 

class was dominant. 

In order to assess the impact of VU size on classification quality, Mean Score and 

overall accuracy for vegetation units dominated by one class were also calculated for 

units of 225 m², 450 m², 1800 m², 3600 m², 8100 m² and 14400 m². 

 Spatial analysis 4.2.4

Variables were calculated 1) at VU scale or 2) at the floodplain scale. The latter 

scale is obtained by cutting the riparian zone 250 m upstream and downstream of the 

VU under consideration. Environmental variables are then extracted from the 

resulting polygon (Table 10). Variables can be grouped into two main families: 

variables relating to land use and variables relating to geomorphology, topographical 

position or soil conditions. Computed variables are described in more detail in 

section 3.2.7. 

Table 10: Explanatory variables used to analyze VU species distribution 

Thematic 

Group 
Scale Name Detail Source 

G
eo

m
o

rp
h

o
lo

g
y

 

Vegetation 

unit (900 m²) 

 

HD_to_river 
Horizontal distance to 

river edge (m) 

Hydrographic 

network 

(Service Public 

de Wallonie, 

2020) 

VD_to_river 

Vertical distance to river 

water altitude (m). Values 

greater than 10 m were 

replaced by 10 m. 
LiDAR DTM 

Slope Average terrain slope 
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Waterlogging 

Drainage class: 

hydromorphy spots 

beyond 125 cm (class 1), 

between 80 and 125 cm 

(class 2), between 80 and 

50 cm (class 3), between 

30 and 50 cm (class 4) 

and before 30 cm depth 

(class 5). 

Soil map 

(Service Public 

de Wallonie, 

2015) 

Position 

ValleySlope : outside 

floodplain 

River_Banks: in the 

floodplain, less than 30 m 

horizontally from the 

minor bed; 

Terrace: in flood zone but 

more than 3 m above the 

minor bed; 

Floodplain: in the 

floodplain, less than 3 m 

above the minor bed. 

LiDAR DTM ; 

hydrographic 

network 

(Service Public 

de Wallonie, 

2020) ; flood 

hazard map 

(Service Public 

de Wallonie, 

2021) 

Floodplain 

(250 m 

upstream and 

downstream 

of the 

considered 

VU) 

Sinuosity 

River sinuosity 

(ratio between river 

length and euclidean 

distance between points 

located 250 m upstream 

and 250 downstream of 

VU) 

Hydrographic 

network 

(Service Public 

de Wallonie, 

2020) 

L
an

d
 u

se
 

Vegetation 

unit (900 m²) 
S_vg 

Area covered by tree 

vegetation (2 m MNH 

threshold) 

LiDAR point 

cloud 

Floodplain 

(250 m 

upstream and 

downstream 

of the the 

considered 

VU) 

LC_artif % of built-up area 

Land use maps 

(Radoux et al., 

2022) 

LC_agri 
% of land occupied by 

agriculture 

LC_forest 

% of surface occupied by 

forest and other 

subnatural environments 

LC_water 

% of surface area 

occupied by water 

surfaces 

 

Two variance partitions were performed using the vegan package (Oksanen et al., 

2020) to explain the proportion of variance in alder and willow cover that were 

explained by the two thematic groups of variables. The significance of the 
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individualized fractions of the variable groups was assessed using the method of 

(Legendre et al., 2011) implemented in the vegan package. 

Finally, a canonical correlation analysis (CCA) was performed between the 

proportions of the four species groups and the environmental variables. 

4.3 Results 

 Classification quality at tree scale 4.3.1

The three classification models were built on the basis of 1540 trees (385 per 

class). Following variable selection, 16, 8 and 17 predictors were retained 

respectively for the LiDAR model, the Multispectral model and the LiDAR-

Multispectral model (Table 11). 

The most important LiDAR variables in the LiDAR and LiDAR-Multispectral 

models were maximum height (zmax) and other height quantiles (notably zq50 and 

zq95) and proportion of fourth returns (p4th). Intensity metrics were selected in both 

models but had a lesser importance. The most important multispectral variables in 

the Multispectral and LiDAR-Multispectral models were winter spectral variables 

(msW490, msW665, msW842 and msW2190). Several summer spectral variables 

were also selected in both models, especially in the short wave infrared (msS2190 

and msS1610) and near infra-red (msS740) regions of the spectrum. 
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Table 11: Presentation of selected variables for the three classification models, 

ranked by importance (Varimp function, VSURF r package). Feature definitions 

can be found in Table 8. 

LiDAR Model Multispectral Model LiDAR-Multispectral Model 

Feature 
Variable 

importance 
Feature 

Variable 

importance 
Feature 

Variable 

importance 

zmax 105,2 msW490 183,1 msW490 123,7 

p4th 97,0 msW665 160,5 zmax 105,8 

zq50 92,0 msW842 153,0 p4th 102,8 

zq45 86,6 msW2190 148,4 zq95 91,6 

zq95 81,8 msS2190 143,0 msW665 86,0 

zsd 77,1 msS1610 127,0 msW2190 79,2 

area 77,0 msS560 124,7 msS2190 64,2 

zmean 74,9 msS740 114,5 iskew 60,1 

p3th 70,1 
  

msW560 59,1 

imean 69,3 
  

msS1610 56,7 

pzabov2 68,9 
  

msW1610 51,6 

isd 54,5 
  

msW865 47,1 

ipcmz70 52,0 
  

msS490 47,1 

iskew 50,8 
  

msS740 46,5 

ikurt 49,8 
  

p2th 46,1 

ipcmz50 47,3 
  

msW783 45,1 

    
msW740 41,7 

 

The internal accuracy at tree scale was respectively 76%, 73% and 82 % for the 

LiDAR, multispectral and LiDAR-Multispectral models. The addition of 

multispectral variables to the LiDAR model improved the accuracy for each class, 

especially for the “conifers” and “other deciduous” classes. The addition of LiDAR 

variables to the multispectral model improved the accuracy for each class, with a 

marked impact on the three deciduous classes (Table 12). 
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Table 12: Producer, user and global accuracy for each class of the three species 

classification models.  

 

Model 1 (LiDAR) 
Model 2 

(Multispectral) 

Model 3 (LiDAR + 

Multispectral) 

PA (%) UA (%) PA (%) UA (%) PA (%) UA (%) 

Other 

deciduous 
58 66 60 63 72 72 

Alder 74 70 57 59 74 77 

Willows 82 74 78 72 85 80 

Conifers 88 93 96 95 97 99 

Global 76 73 82 

 

In the LiDAR-Multispectral model that was retained for further analysis, the 

"conifer" class was the best predicted, followed by willow, alder and other 

deciduous. The most frequent confusions concern alders with other deciduous or 

willows with other deciduous (Table 13). 

Table 13: out-of-bag error matrix for the LiDAR-Multispectral model. This 

matrix was calculated on the basis of the 1,540 trees used to calibrate the 

classification. 

 

Other 

deciduous 
Alder Willows Conifers Total 

Producer 

accuracy (%) 

Other deciduous 278 66 39 2 385 72 

Alder 57 286 41 1 385 74 

Willows 39 18 326 2 385 85 

Conifer 10 0 1 374 385 97 

Total 384 370 407 379 1540 82 

User accuracy (%) 72 77 80 99 82 
 

 

 Aggregation at VU scale 4.3.2

The Mean Score at the VU scale (900 m²) is 84%, the Mean User Score is 94% 

and the Mean Producer Score is 78%. The analysis of attributions (presence within a 

plot) is presented in Table 14. The "Other deciduous" class is the best predicted (89 

and 91% respectively for Producer and User accuracy), followed by the "Conifers" 

class (80 and 84%). The "Willows" and "Alder" classes have high user accuracies 
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(100 and 92% respectively for alder and willows), but low producer accuracies (68 

and 61%). 

Table 14: Results of the independent assessment of classification quality for 

“presence” values. The "True positives" column corresponds to the number of 

plots in which a species is present (> 10% cover) in both the reference data and the 

prediction. The "Present (reference)" and "Present (prediction)" columns 

correspond to the number of plots in which a species is present, in the reference 

and predicted data respectively. Producer and user accuracies are calculated from 

these values. 

 
True positives 

Present 

(référence) 

Present 

(prédiction) 

Producer 

accuracy (%) 

User 

accuracy 

(%) 

Other 

deciduous 
135 152 149 89 91 

Alder 87 142 95 61 92 

Willows 56 82 56 68 100 

Conifers 33 41 39 80 85 

 

As for the prediction of the dominant species, the overall accuracy is 89%. Most of 

the poorly predicted cells are alder, willow or conifer-dominated cells that are 

predicted to be dominated by other deciduous trees (Table 15). 

Table 15: Dominant species confusion matrix, calculated on the 141 plots where 

one species accounted for more than 60% of the cover according to field data.  

Reference/ 

predicted 

Other 

deciduous 
Alder Willows Conifers Total 

Producer 

accuracy (%) 

Other deciduous 58 1 0 0 59 98 

Alder 6 25 0 0 31 81 

Willows 3 1 25 1 30 83 

Conifers 3 0 0 18 21 86 

Total 70 27 25 19 141 
 

User accuracy 

(%) 
83 93 1 95 

 
89 

The impact of VU size on classification quality is shown in Figure 39. For small 

units, the Mean Score and overall accuracy on units with a dominant species is close 

to the accuracy of tree-scale classification. Classification performance improves 

with increasing size of aggregation units. 
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Figure 39: Mean score (top) and overall accuracy of plots with a dominant species 

(bottom) according to VU size (in square meters, logarithmic scale). The numbers below the 

points correspond to the number of plots considered for quality assessment. The number of 

plots with a dominant species is insufficient to assess the overall accuracy of the 8100 and 

14400 m² units. The point corresponding to the selected VU size (900 m²) is framed. 
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An example of how species proportions can be represented on a map is shown in 

Figure 40. 

 

Figure 40: Sample from the species map. The symbology has been chosen so that all 

species covering more than 20% of the canopy area within a VU are represented. When more 

than two species each covered more than 20% of the canopy area, the class "Mixture" was 

assigned. 

 Spatial distribution 4.3.3

The results of the variance partition are shown in Figure 41. The variance of 

willow proportion explained by environmental variables is 21.5%, and 7.8% for 

alder. These low values indicate significant noise on canopy proportions, but the 

effect of environmental variables is significant. The proportion of willow is 

determined by land use and to a lesser extent by geomorphological factors. In 

comparison, the proportion of alder is also linked to geomorphological factors, and 

only weakly to land use.   
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Figure 41: Venn diagram showing the contribution of each thematic group of variables in 

explaining the proportion of alder (left) and willow (right). The values shown correspond to 

the adjusted R². All fractions are significant. 

The CCA results are shown in Figure 42. The proportion of willow is associated 

with the openness of the environment (positive association with LC_agri and 

LC_artif, negative association with LC_forest and s_vg), low topographic position 

and wet soils (positive association with Waterlogging and Floodplain position, 

negative association with Valley_slopes or VD_river). The proportion of alder is 

associated with soil waterlogging and low topographic position (positive association 

with Waterlogging and negative association with VD_to_river), and River banks 

position. The proportion of conifers is associated with the forest context (LC_forest). 

Finally, the proportion of other deciduous is associated with valley slopes (positive 

association with Slope, Valley Slopes position and VD_to_river and negative 

association with Waterlogging). 
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Figure 42: CCA results explaining the proportion of species groups according to 

environmental variables. Slope = Slope, VD_to_river = vertical distance to the river; 

HD_to_river = Horizontal distance to the river; River banks, Valley slopes and Floodplain 

refer to the position of the VU, Waterlogging = soil waterlogging, S_vg = area covered by 

woody vegetation within the VU, LC_artif, LC_agri, LC_forest, LC_water = proportion of 

land-use classes in the floodplain. 

4.4 Discussion  

 Important variables and classification quality 4.4.1

LiDAR data were useful to differentiate between functional groups of trees with 

very different structures, coinciding with distinct ecological characteristics. In the 

temperate riparian context, LiDAR is particularly well suited to separating pioneer 

and heliophilous formations (willow stands, alder stands and probably cottonwood 

stands in other geographical contexts) from hardwood forests (oak-ash-elm stands, 

beech stands). The LiDAR model was driven by variables linked to height 

distribution and variables linked to signal penetration through the canopy (number of 

returns per beam and to a lesser extent distribution of intensity values). The response 

of alder was characterized by a large number of returns per beam (high values for 

p4th) with low intensity on average (low value for imean) and a skewed distribution 
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with many low intensity returns (Figure 43). These properties could be linked to the 

orientation of alder leaves in all directions, as opposed to sycamore maple or willow, 

whose foliage is planophilic (Pisek et al., 2022). Indeed, horizontal leaves tend to 

generate higher intensity returns (Korpela et al., 2010; Budei et al., 2018). The low 

number of returns associated with willows (low p4th value) and the relatively high 

proportion of returns below 2 meters (low pzabov2) may be related to their light and 

single-layered foliage, which separates them from other deciduous that exhibit a 

higher number of returns. Ash shows an intermediate response between alder and 

other deciduous and was found to be frequently confused with the alder class. Ash 

has plagiophilic foliage, with inclined leaves (Pisek et al., 2022). The low intensity 

of the returns (low value for imean) could also result from the presence of exposed 

branches, themselves linked to frequent defoliation by Hymenoscyphus fraxineus. 

Indeed, exposed branches have a lower reflectance for the wavelength used than 

branches with leaves (Fassnacht et al., 2016). Finally, height (notably zmax) 

contributes to the classification of willows, which rarely exceed around fifteen 

meters, and conifers, whose height is often over thirty meters (Figure 43). 

The Multispectral model relied both on winter and summer spectral signatures. 

Leaf-off images were helpful to distinguish coniferous and deciduous trees. Selected 

bands included blue (msW490), which is related to bare soil under leaf-off trees, and 

red/infrared bands (msW665, msW842 and msW2190) which are related to the 

presence or absence of foliage. The summer spectral signature was especially useful 

to distinguish willows from other deciduous species, which explains the relatively 

high classification accuracy for this species in the multispectral model (Figure 43). 

The LiDAR-Multispectral model showed higher accuracies than models relying 

solely on LiDAR or multispectral data. Classification was primarily driven by winter 

spectral response (notably msW490) that helped distinguish conifers from deciduous 

species, height (zmax and zq95) that helped distinguished conifers from willows, 

and p4th that helped distinguish alders from willows. Intensity skewness, whose 

high values characterized the alder class, and summer spectral response, that helped 

distinguish willow from other species, were used to a lesser extent.  The limited 

added value of summer multispectral images in the LiDAR-Multispectral model 

differed from the results obtained by other authors exploiting LiDAR and 

multispectral data with tree-centric approaches (Holmgren et al., 2008; Deng et al., 

2016; Hartling et al., 2019; Shi et al., 2018; Michałowska and Rapiński, 2021). 

Several factors may explain the low presence of the summer spectral signature in our 

model. Firstly, images display significant noise linked to the shadows cast by trees 

on one another, particularly in a context of irregular forests. Additional noise is 

generated by ground spectral signature for trees located in zones with sparse canopy 

cover. Secondly, the fusion of images acquired at different times of the growing 

season may have led to a homogenization of the spectral signatures of different 

species. Finally, in our dataset, the summer spectral signature was particularly useful 

to separate conifers from willows, which were already well separated using LiDAR 

variables or the winter spectral response.  
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Figure 43: Distribution of six selected variables for each species. From left to right and top 

to bottom: p4th (proportion of fourth LiDAR returns), zmax (maximum height), imean 

(mean intensity of all returns), pzabov2 (proportion of returns above 2 meters), msW490 

(winter reflectance, wavelength 490 nm)  and msS2190 (summer reflectance, wavelength 

2190 nm). 
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In view of these results, the model could probably be further improved by the use 

of multispectral images acquired at a single date, during spring or autumn where 

phenological differences between species are more important (Michez et al., 2016b, 

Lisein et al., 2015, Grabska et al., 2019). A different computation of certain LiDAR 

variables could also enable an improvement in the proposed classification. For 

example, intensity variables could be calculated only on the first return, where the 

specific response is assumed to be the most original (Shi et al., 2018). Using the 

undiscretized signal (full waveform) could also reveal new variables useful to 

distinguish species (Yu et al., 2014). Finally, a more readable model could have 

been built by removing highly correlated variables and by using spatially separated 

folds during model calibration at the scale of individual trees, in order to reduce 

spatial autocorrelation which can be a source of overfitting in our setting according 

to Ploton et al. (2020). 

The model's performance was enhanced by the spatial aggregation of tree crowns 

into vegetation units. We were unable to identify any saturation of accuracy with 

increasing unit size. As far as dominant species are concerned and for 900 m² units, 

the overall accuracy of almost 90% is satisfactory for many uses. As far as 

presence/absence prediction is concerned, the user's accuracy was satisfying: the 

model rarely detects species that are not present. However, alders and willows 

present in mixtures with other deciduous trees are more difficult to detect. On the 

one hand, mixed crowns can make classification more difficult. On the other hand, 

in a closed landscape, alder and some willow species may present a structure that 

makes them more difficult to differentiate from other deciduous, with foliage 

concentrated in the top of the tree. For example, Racine et al. (2021) have shown in 

monospecific forest plots that, for a given species, the distribution of points can be 

influenced by the proportion of tree cover. 

 Species distribution 4.4.2

These results confirm those obtained during field surveys carried out in the same 

region. Alder is present in strips along riverbanks and in clumps in valley bottoms. 

The presence of alder is associated with waterlogged soils. It is consistent with its 

autoecology as alder can tolerate anoxia (Claessens et al., 2010). In riparian buffer 

strips in open areas, it is often found in association with willows. In forest 

environments, it is found with other deciduous trees such as ash, maple, oak or 

hornbeam. Thus, while alder is considered as a heliophilous species, it is relatively 

unaffected by variables related to ecosystem openness (land use variables or 

vegetation cover), probably because floodplain forests in the study area are 

relatively open and disturbed. In contrast, ecosystem openness is the primary factor 

explaining willow distribution. Indeed, willow species can thrive in a wide variety of 

hydric and trophic conditions. They are often dominant in buffer strips in open areas, 

as observed by Claessens et al. (2009). Eared willow (Salix aurita) is locally 

dominant in more closed areas, in marginal depressions of the floodplain, far from 

the river and on permanently waterlogged soils (Mertens, 2011). Although the factor 

was not included in the model, the natural region has an impact, with willows more 
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frequently encountered in the Lorraine part of the study area (Figure 36), as 

observed by Debruxelles and Claessens (2008).  Finally, valley sides in the study 

area are steep. They are dominated by deciduous trees such as oak, hornbeam and 

maple, and even beech at the top of the valley slope.  

Our results support the view that, as far as major functional groups of tree species 

are concerned, riparian vegetation is not structured along a simple gradient of 

inundation frequency (represented here by the vertical distance from river). It is also 

structured by other drivers. These drivers may vary longitudinally (e.g. land use, 

valley confinement, geologic region) or more locally under the influence of 

geomorphological or anthropogenic features that tend to define patches (e.g. position 

in the vicinity of river banks or in marginal depressions, direct human intervention), 

as proposed by Scown et al. (2016) or van Coller et al. (2000).  

A multi-scale framework could be used to gain a better understanding of spatial 

distribution, as in Hough-Snee et al. (2014). Multiple pixel sizes or VU types could 

be used (e.g. longitudinal fractioning of floodplains which are expected to highlight 

larger scale longitudinal drivers, linear units along banks which are expected to be 

more influenced by fluvial processes). Environmental variables could also be 

produced at different scales in order to quantify explained variance in species 

proportions associated with these different scales. In addition, spatial auto-

correlation could be included in the distribution model as local species abundance 

can be expected to influence recruitment of young trees. 

4.5 Conclusion  

Our object-oriented approach, based on a high-density LiDAR point cloud and 

multispectral satellite imagery, delivers tree-scale accuracy of 81% for a four-class 

model. This accuracy is improved when the data are aggregated, with an accuracy on 

the dominant species of the order of 89% at the scale of 900 m² vegetation units for 

the four-class model. LiDAR variables were most important for differentiating alder, 

willows and other deciduous, while multispectral data were most useful for 

distinguishing deciduous trees from conifers. With the increasing availability and 

improved quality of regional LiDAR datasets and of high resolution multispectral 

images, the mapping of key riparian tree species is becoming increasingly 

accessible, making it possible to envision operational applications. 

Spatial distribution analysis confirms the expected patterns of tree distribution in 

riparian landscapes, which is structured as a mosaic influenced by lateral and 

longitudinal gradients. Alder is found in the wettest areas, both in forests and in 

more open landscapes, and along riverbanks. Willow is found in wet, open areas, 

and other deciduous in higher parts of the riparian zone.  
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5.1 Introduction 

The previous three chapters have dealt with the use of remote sensing to 

characterize riparian vegetation. Nevertheless, the management of the latter cannot 

be dissociated from the management of the physical component of the minor bed 

(Urbanič et al., 2022). Characterization of riparian zones as ecosystems often 

includes variables relating to stream sinuosity, morphology or bank stability 

(Tompalski et al., 2017; Michez et al., 2017; Johansen et al., 2010). Thus, remote 

sensing techniques focused on the physical component of rivers are also tools that 

can support riparian vegetation management.  

Longitudinal and cross-sectional profiles of rivers provide essential information 

for understanding their hydraulic and sedimentary functioning. These profiles are 

traditionally obtained by ground operators equipped with GNSS and total stations. 

Among the many remote sensing alternatives available today, approaches based on 

LiDAR data and photogrammetric processing of UAV images are becoming 

increasingly available. However, the presence of water poses a challenge for both 

technologies: light refraction through the water surface biases photogrammetric 

measurements, and the infrared beam used in LiDAR does not penetrate water 

(Woodget et al., 2015).  

Furthermore, sedimentary processes are an essential process in the hydrosystem, 

whose understanding is essential for planning the management of rivers and 

floodplains. In particular, bank erosion is one of the main mechanisms through 

which wood enters the river (Comiti et al., 2016), and riparian vegetation has an 

important influence on sedimentary processes (Politti et al., 2018). Field methods 

for quantifying erosion are only feasible for limited areas (Papanicolaou et al., 2012; 

Stoffel et al., 2013). For larger areas, aerial photographs are regularly used (Hughes 

et al., 2006; Hooke and Yorke, 2010). However, this approach is difficult to 

automate, and cannot be implemented when vegetation shadows the banks on 

photographs. Furthermore, aerial photographs provide information limited to the 

lateral displacement of banks; they miss other phenomena and don't allow eroded 

volumes to be calculated (Grove et al., 2013). Consequently, digital terrain models, 

field observations and cross-sectional profiles are sometimes used to complement 

aerial photographs and obtain more complete information on erosion phenomena 

(Spiekermann et al., 2017; De Rose and Basher, 2011). At a local scale, 

photogrammetric techniques (often based on UAV images) can also be used 

(Hamshaw et al., 2019). Photogrammetric approaches are based on the subtraction 

of diachronic digital terrain models and enable erosion-deposition phenomena to be 

visualized and quantified. Several authors have used multi-temporal LiDAR surveys 

to quantify or understand erosion phenomena, usually on a local scale or on river 

segments a few tens of kilometers long, on braided (Baggs Sargood et al., 2015; 

Grove et al., 2013; Lallias-Tacon et al., 2014) or more rarely meandering (Kessler et 

al., 2012) rivers. The growing availability of regional and multi-temporal LiDAR 

surveys is multiplying the possibilities for large-scale monitoring. The infrared 

beams generally used for LiDAR are absorbed by water surfaces, so there is no 
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information on submerged surfaces (Bailly et al., 2012). As a result, incision or 

deposition phenomena are more difficult to study than the lateral displacement of 

banks (Nardi and Rinaldi, 2014), except when erosion or deposition heights are well 

above the height of the water surface (Scorpio et al., 2018). Topo-bathymetric 

systems exploiting multiple wavelengths can be used to overcome this limitation 

(Lague and Feldmann, 2020). Nevertheless, these are not widely available compared 

with conventional LiDAR datasets, which many countries are acquiring on a large 

scale for use in a wide range of applications.   

The aims of this chapter are as follows:  

- Quantify the accuracy of two methods using remotely sensed data to 

extract information on riverbank morphology (LiDAR and aerial 

photogrammetry); 

- Map lateral bank erosion in a small watershed using two LiDAR datasets 

acquired 7 years apart. 

5.2 Methods 

 Accuracy assessement of 3D LiDAR and photogrammetric models for 5.2.1
describing bank morphology 

Two remote sensing approaches for topographic surveying were evaluated on two 

Ardenne rivers (Figure 44). The first site is the Lhomme in Bras (commune of 

Libramont). At the study site, the river is straight with a gradient of around 5‰, has 

a catchment area of 12 km² and has banks eroded by cattle trampling. The second 

site is the Sûre à Volaiville (commune of Léglise). On the study site, the Sûre has a 

catchment area of 114 km², an average gradient of around 4‰, and flows through a 

landscape of forests and meadows. Re-meandering had just been carried out at the 

time of the flight. The two stretches studied have no woody vegetation and a low 

sediment load.  

For the Lhomme river, we used a DJI Phantom 4 Pro UAV flying at an altitude of 

40 m, with the camera oriented at 80°. Flight lines followed the river in a 

longitudinal way, then crossed it transversally for each flight line (cross grid flight 

plan). For each flight line, longitudinal overlap was 85% and lateral overlap was 

80%. Such a flight plan may not be the best configuration according to Meinen & 

Robinson (2020) or Manfreda et al. (2019) who recommend using both NADIR and 

convergent images. However, it was designed to collect images with a variety of 

perspectives in order to minimize model distortion, especially dome-like distortions 

that are frequent in linear settings (Tournadre et al., 2015). 20 well-distributed 

control points were used to georeference and adjust the model, which covers around 

400 m of the river (area of 40.000 m²) with around 600 images. Such a GCP density 

is in line with the recommendations of a minimum of 3 GCP for 100 images emitted 

by Sanz-Ablanedo et al. (2018). Average image resolution was 1.03 cm. Geometric 

accuracy was assessed with 10 independent check points. Planimetric RMSE was 

2.1 cm and altimetric RMSE was 6.7 cm. 
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For the Sûre, we used a DJI mini flying at an altitude of 20 m, with the camera 

oriented at 90°. Flight plan was a single grid with lateral and longitudinal overlaps 

of 80%. 6 well-distributed control points were used for georeferencing and model 

adjustment. The study area covered a linear distance of around 100 m or 7.000 m², 

216 images were used. The average resolution of the images was 0.5 cm. Geometric 

accuracy was assessed with 4 independent check points. Planimetric RMSE was 4.1 

cm and altimetric RMSE was 3 cm. 

The sites are covered by a 2021 LiDAR DTM (4 pulses/m²), whose altimetric 

accuracy was also quantified. A traditional topographic survey was carried out at 

each site to characterize the accuracy of the LiDAR and photogrammetric digital 

terrain models. 

 

 

Figure 44: Two remote sensing approaches for topographic surveying (LiDAR and UAV 

image photogrammetry) were evaluated on two Ardennes rivers: the Sûre (left) and the 

Lhomme river (right). 

Digital terrain models produced by photogrammetry are not correct on water 

surfaces. The tie points found on these surfaces are incorrectly positioned, notably 

due to the refraction of light as it passes from air to water (Figure 45). Several 

methods exist to correct the altitude at water surfaces. The most effective method 

has been developed by Dietrich (2017). It exploits the information contained in each 

tie point on the water surface: knowing the position of the water interface and the 

position of the incident rays for each tie point, the position of each tie point can be 

corrected. However, the method is computationally intensive (requiring the 

manipulation of point clouds and iterative photogrammetric processing). Another 

simpler method, developed by Woodget et al. (2015), was deployed on both study 

sites. If the images are acquired with a quasi-NADIR orientation and the rays are 

homogeneously distributed (an assumption not verified for the edges of the surveyed 

area), there is a constant relationship between apparent and actual depth. The 
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apparent depth is simply underestimated by a factor of 1.34 (refraction coefficient of 

water). The method of Woodget et al. (2015) requires the altitude of the water 

surface to be known at every point. The altitude read on the DSM is incorrect at the 

water surface, but it is correct at the land-water interface. Therefore, we need to 

extract the DSM elevation at points along the land-water interface and interpolate 

this elevation to create a raster with the local water elevation at each point. Real 

depth and bottom elevation can then be calculated by correcting the apparent depth 

with the water's refraction coefficient. 

 

Figure 45 : Refraction of light as it crosses a water surface, and its impact on the 

photogrammetric process. The green and blue lines represent two drone shots. The apparent 

position corresponds to the position of the tie point in the photogrammetric model. It is 

located at a higher altitude than the actual position. The diagram was adapted from Feurer 

(2009). 

The altimetric accuracy associated with the LiDAR and photogrammetric DTMs 

was first quantified using a network of independent validation points surveyed with 

precision GNSS (116 emerged points and 45 submerged points for the Lhomme, 10 

emerged and 7 submerged points on the Sure). On five representative profiles of the 

Lhomme site, three parameters were calculated to synthetically describe the bank 

geometry: bankfull width, bankfull depth and bankfull cross-sectional area (Figure 

46). The values of these three parameters were compared for the traditional, LiDAR 

and photogrammetric approaches. 

Real position 

Apparent 

position 
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Figure 46: Schematic representation of the three parameters evaluated: bankfull width, 

bankfull depth and bankfull cross-sectional area. 

 Using multi-temporal LiDAR data to quantify lateral bank erosion  5.2.2

5.2.2.1 Study area and available data 

The study area covers the Ton sub-basin. This has an area of around 300 km² and 

comprises 50 km of watercourses, taken from the point where their catchment area 

reaches 50 km² (Figure 47). The watershed includes the Ton, the Vire, the Chevratte 

and part of the Chiers (whose the Ton is a tributary). The watershed is mainly 

agricultural (livestock farming) and forested. The rivers have mostly natural banks, 

except where they cross the villages of Virton, Saint-Mard, Signeulx and Lamorteau. 

Rivers are low-gradient with banks composed of uncohesive sand. Le Ton, upstream 

of its confluence with the Vire, is a stream dominated by a base flow, like the 

Chevratte. The Vire has a more pronounced seasonal dynamic, which is reflected in 

the Ton downstream of its confluence with the Vire. 
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Figure 47: Location of study area (Ton sub-basin in Meuse basin, Wallonia) 

Two LiDAR dataset cover the area. The first was completed in April 2014 with a 

density of around 0.8 pulses per square meter. The second was carried out in March 

2021 with a density of around 4 pulses per square meter. Both campaigns were 

carried out under similar flow conditions. Data were supplied in the form of 

interpolated DTMs. The water surface was delineated in 2014 based on LiDAR 

return intensity in Michez et al. (2017), and manually edited. 

5.2.2.2 Verification of water levels during LiDAR surveys 

LiDAR point clouds provide little or no information on submerged river beds. The 

elevation read on an interpolated DTM does not correspond to the bottom elevation, 

as the LiDAR infrared beam is absorbed by water surfaces. This altitude can be 

expected to be close to the nearest emerged points on the river banks. Therefore, for 

a LiDAR dataset with a sufficiently high point density, the level should be close to 

the water level during the acquisition campaign.  

This hypothesis was verified by comparing the elevation read on the 2014 and 

2021 DTMs with the elevation of five water level gauges in the study area, where 

the water elevation during the survey was known (see section 5.3.2). This 

verification of water levels on both flight dates also ensures that water levels are 

similar on both dates, and that they are not too high. In the event of a difference in 

water levels, the conditions for detecting erosion presented in section 5.2.2.3 need to 

Studied rivers 
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be adapted. On the other hand, if water levels are high or overflowing during one of 

the flights, the possibilities of mapping bank erosion will be reduced.  

5.2.2.3 Detection and quantification of erosion 

 The simple subtraction of two DTMs generates significant noise that must be 

removed in order to distinguish erosion phenomena (Lallias-Tacon et al., 2014). 

Firstly, the elevation read over submerged surfaces is very different for the two 

surveys. The main reason is that, since the 2014 survey has a coarser resolution, the 

first visible emergent points are generally located higher up the bank than for 2021. 

Therefore, areas submerged in 2014 were masked on the differential DTM. On the 

other hand, an area emerged in 2014 and submerged in 2021 at an equal or lower 

altitude was considered as eroded. Only negative differences have been retained: 

depositional phenomena are explicitly ignored. Only pixels located at a distance of 

less than 12 meters from the surface submerged in 2014 were retained. 

Three methods were then tested to remove noise on the differential DTM created 

(Figure 48). The Method 1 consisted in retaining only differences greater than 50 

cm. Such a threshold visually removes much of the noise. Based on the estimated 

altimetric accuracy on flat surfaces of the LiDARs used, Baggs Sargood et al., 

(2015) used a threshold of 44 cm for erosion detection, close to the threshold we 

used.  Nevertheless, river banks are often steep and the altimetric error can be 

greater. This is why the following methods also filter differences according to the 

width of the erosion detected. The most aggressive Method 3 also includes a 

morphological filtering process that retains only pixel groups over 1.5 meters wide 

and 3 m² in area. For the Method 2, a buffer is applied to the selected pixel groups in 

the Method 3. The width of the buffer was chosen equal to the square root of the 

pixel group area. All pixels corresponding to a difference of more than 50 cm within 

this buffer were then retained. Compared with Method 3, which only retains the core 

of the erosion zones detected, Method 2 enables the shape and size of these zones to 

be retained. The volume eroded was also calculated by integrating the values of the 

differential DTM on the eroded surface. 
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Figure 48: Noise elimination according to three methods. From top to bottom: zones of 

erosion (orange-red) and deposition (blue-green) on a differential DTM; erosion zones 

retained for filtering Method 1 (threshold of 50 cm difference in altitude); according to 

Method 2 (threshold of 50 cm difference in altitude and morphological filtering); according 

to Method 3 (threshold of 50 cm difference in altitude, 1.5 m wide and 3 m² area). 
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The total eroded area was normalized by the length of the stretch considered and 

the river width (2014 value). The three methods of calculating the eroded area were 

validated on twelve 300-meter stretches of watercourse, where the eroded areas were 

digitized manually on the basis of orthophotos contemporary with the LiDAR 

campaigns and field knowledge (Figure 49). The eroded volume has not been 

validated. 

 

Figure 49: Validation of the eroded area by photointerpretation. Top: comparison between 

the area mapped by photointerpretation and the area mapped after filtering method 2 on the 

LiDAR differential DTM. Bottom: comparison of the situation in 2012 (corresponding to the 

LiDAR flight carried out in 2014) and in 2021 (corresponding to the LiDAR flight carried 

out in 2021) on an eroded area. 
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5.3 Results 

 Assessing the accuracy of photogrammetric and LiDAR surveys 5.3.1
compared with a conventional topographic survey 

The photogrammetric surveys carried out on the Sûre and Lhomme rivers show 

centimetric altimetric accuracy (Table 16). Bathymetric correction removes the bias 

associated with water refraction on both sites, confirming the results obtained by 

other authors (Woodget et al., 2015; Dietrich, 2017). The use of a LiDAR DTM 

generates satisfactory results for emerged points, although altimetric accuracy is 

slightly lower. On the other hand, the elevation of submerged points is significantly 

overestimated on both sites. 

Table 16: Overall error in elevation of corrected photogrammetric, uncorrected 

photogrammetric and LiDAR points in relation to the reference survey, according 

to their emerged or submerged position. The * in the "Mean error" column 

corresponds to the significance of the bias, verified by a Student's t test. The 

letters abc in the "Mean absolute errors" column correspond to the significance of 

the differences between the DSMs, assessed by Wilcoxon tests (conditions unmet 

for a Student test), paired in the case of the comparison of submerged points with 

or without bathymetric correction.  

Five representative cross-sectional profiles of the Lhomme site are shown in 

Figure 50. Measurements of bankfull width, depth and cross-sectional area and 

associated errors are presented in Table 17. Photogrammetric approaches yield 

cross-sections similar to a traditional approach when bathymetric correction is 

applied, with insignificant biases on cross-sectional area and width values, and a 

slight overestimation of depth. The main limitation of photogrammetric approaches 

 
Lhomme Sûre 

 

Mean error 

(cm) 

Median 

absolute 

error (cm) 

Mean error 

(cm) 

Median 

absolute 

error (cm) 

Emerged points 

(photogrammetric DSM) 
-0,5 2

a 
2,5 3

a 

Submerged points (uncorrected 

photogrammetric DSM ) 
10,0* 7,9

c
 7,3*

 
5,6

a 

Points immergés (corrected 

photogrammetric DSM) 
0,5 5,9

b
 -0,4 2,3

a
 

Emerged points (LiDAR) 4.3* 5.0
b
 -1,6 5,1

a 

Submerged points (LiDAR) 34.4* 32.0
d
 51,9* 46,3

b 
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is that the cross-sections are not valid in the presence of vegetation, as in the case of 

cross-section N°1, for which the cross-sectional area is significantly underestimated 

(Figure 50). This limitation is particularly problematic for narrow rivers, where the 

presence of vegetation along the entire length prevents the extraction of valid cross-

sections. In wider rivers, representative cross-sections can be extracted preferentially 

in open areas (without riparian vegetation), and the herbaceous vegetation present on 

the banks generates low relative errors on key profile parameters such as bankfull 

cross-sectional area. In comparison, LiDAR technology systematically overestimates 

the altitude of the river bed: infra-red beams are absorbed by water surfaces and the 

thalweg value must therefore be interpolated from the higher banks. As a result, the 

maximum depth and cross-sectional area are significantly underestimated. 

Measuring bankfull width only requires the use of emerged points, and LiDAR 

technology provides values that are close to reality. The longitudinal profile 

illustrated in Figure 51 shows that LiDAR elevations in the riverbed are close to the 

water surface elevations.  
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Figure 50: Representative cross-sections obtained with traditional, photogrammetric 

(uncorrected or corrected for refraction) and LiDAR methods. 
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Figure 50 (continued): Representative cross-sections obtained with traditional, 

photogrammetric (uncorrected or corrected for refraction) and LiDAR methods. 

  

Cross-section 3 

Cross-section 4 

Cross-section 5 
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Table 17: Measured values for bankfull cross-sectional area, maximum bankfull 

depth and bankfull width for 5 cross-sections representative of the Lhomme study 

site. Reference values were calculated from a field survey. The significance of the 

mean error was tested using a Wilcoxon signed-rank test (* p-value < 0.1, ** p-

value < 0.05), and the error distributions for the photogrammetric and LiDAR 

methods were tested using a Wilcoxon paired-rank test (letters a and b, 10% 

probability threshold).  

 

 

1 2 3 4 5

Mean error 

(m²)

Relative 

mean error

Reference 1,74 6,34 5,90 4,62 3,99

Photogrammetric 1,35 6,67 5,82 4,35 4,01 -0,08 (a) -2%

LiDAR 0,92 4,84 4,48 3,10 3,36 -1,18 (*) (b) -26%

1 2 3 4 5

Mean error 

(m²)

Relative 

mean error

Reference 0,77 1,01 1,01 0,96 0,78

Photogrammetric 0,83 1,10 1,02 0,97 0,85 0,04 (*) (a) 5%

LiDAR 0,48 0,69 0,70 0,60 0,63 -0,29 (*) (b) -32%

1 2 3 4 5

Mean error 

(m²)

Relative 

mean error

Reference 5,23 9,90 14,72 9,82 8,96

Photogrammetric 5,30 11,10 14,94 9,86 7,69 0,05 (a) 1%

LiDAR 4,77 10,01 12,78 9,49 7,22 -0,87 (b) -9%

Bankfull cross-sectional area (m²)

Maximum depth (m)

Bankfull width (m)
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Figure 51: Illustration of a longitudinal profile of the Lhomme river, obtained with a 

traditional field survey, a LiDAR DTM and a photogrammetric DTM with bathymetric 

correction. The LiDAR elevation (in red) follows the water surface elevation (in orange). 

 Using multi-temporal LiDAR data to quantify lateral bank erosion 5.3.2

Water stages measured on the 2014 and 2021 LiDAR DTMs for five gauging 

stations in the Ton sub-basin are presented in Table 18. Water levels measured at the 

gauging stations during the 2014 flight were slightly lower than in 2021. The 

greatest difference in water level was observed on the Chiers, with 36 cm. As 

expected, the 2021 DTM delivers an altitude closer to the water level recorded 

during the survey than the 2014 DTM. For the latter, the altitude read on the DTM is 

systematically higher than the water level recorded at the station. According to these 

results, the hypothesis of equivalence of water levels during the two LiDAR surveys 

was considered valid. 
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Table 18: Comparison of altitudes extracted from LiDAR DTMs and limnimeter 

readings taken during the LiDAR flight, for the years 2014 and 2021.  

 

2021 2014 

Limnimetric 

station 
Flight date 

Alt. 

Limni. 

(m) 

Alt. 

LiDAR 

(m) 

Error 

(m) 
Flight date 

Alt. 

Limni. 

(m) 

Alt. 

LiDAR 

(m) 

Error 

(m) 

L6440 Ton in 

Virton 
01-03-21 207,70 207,68 -0,02 18-04-14 207,70 207,91 0,21 

L6030 Vire in 

Latour 
01-03-21 206,22 206,38 0,16 18-04-14 206,26 206,45 0,19 

L5220 Ton in 

Harnoncourt 
01-03-21 193,86 193,84 -0,02 18-04-14 193,68 194,01 0,33 

L7660 

Chavratte 
01-03-21 201,48 201,48 0,00 18-04-14 201,41 201,6 0,19 

9741 Chiers in 

Torgny 
01-03-21 189,97 189,95 -0,02 18-04-14 189,61 190,34 0,73 

 

The results of the validation of normalized eroded area on twelve 300 meters long 

stretches are shown in Figure 52. All filtering methods show a non-significant 

intercept. The second method, involving morphological filtering and extraction of 

erosion pixels in a buffer around the selected pixel groups, shows an R² of 0.84 that 

is higher than the other two methods. These characteristics indicate that this method 

effectively erases noise for stretches with little erosion, and yields a value correlated 

with that obtained by photointerpretation of orthophotos. This filtering method was 

therefore selected for the production of the erosion map. Nevertheless, the area 

estimated by method 2 is on average 1.85 times smaller than the area estimated by 

photointerpretation. 
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Figure 52: Comparison of normalized eroded areas estimated by photointerpretation 

(ordinate) and LiDAR (abscissa) according to three filtering methods. 

Figure 53 shows the results for normalized eroded volume. This value is much less 

sensitive to the method used. The second filtering method is also the best in this 

case. 
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Figure 53: Comparison of normalized eroded volumes estimated by photointerpretation 

and LiDAR (ordinate) and using LiDAR (abscissa) according to three filtering methods. 

 Mapping at basin scale 5.3.3

The map of normalized eroded area is shown in Figure 54. The Ton is little active 

upstream of its confluence with the Vire (banks moved less than 2% of river width 

in 7 years). The Vire and the Chavratte show intermediate activity (2 to 5% of their 

width in 7 years). Finally, the Ton downstream of its confluence with the Vire and 

the Chiers is more active (over 10% of their width in 7 years). Activity is higher on 

the more sinuous stretches and lower on stretches that are straight or that flow 

through urban areas. 
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Figure 54: Map of normalized eroded area over the Ton basin, at the scale of 300 m long 

units. 

5.4 Discussion  

 Comparison of photogrammetric and LiDAR surveys to describe bank 5.4.1
morphology and erosion 

Two sources of data have been used to describe bank morphology in this chapter. 

The following paragraphs summarize the strengths and limitations of each method. 

When LiDAR surveys are available, they can be used to obtain information on the 

width of a river or bank mobility. The greater the point density, the more detailed the 

information. The data can be used over long linear distances, even in the presence of 

woody vegetation. Most of the processing is carried out by the data provider, and the 

use of digital terrain models is relatively straightforward: the presented method for 

mapping bank erosion essentially requires knowledge of GIS (see section 5.2.2). 

However, the submerged parts of the river are not described. Techniques have been 

developed to exploit LiDAR data on emerged parts and optical data for bathymetry, 

but these techniques are labor-intensive and difficult to deploy over large areas (see 

for example Legleiter (2012)).  

Under the application conditions for photogrammetric surveys based on UAV 

images (little vegetation, shallow bed with visible bottom), these enable finer 

mapping of the minor bed and its evolution, including in its submerged parts. Our 

results confirm those of Woodget et al. (2019) and Woodget et al. (2015), and 
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complement them with a comparison with key parameters measured with traditional 

surveys (bankfull cross-sectional area, bankfull maximum depth and bankfull 

width). The very high-resolution orthophotos produced simultaneously with the 3D 

models are useful for interpretation. The main constraint is having the necessary 

equipment and know-how to carry out a good survey. Nevertheless, the marginal 

cost of acquisition is low. The river length that can be covered is limited by the 

amount of work required (surveying a stretch of one to a few kilometers takes a day, 

and data processing half a day) and by the conditions of application, which are rarely 

encountered on long stretches. Photogrammetric surveying is therefore an alternative 

or a complement to traditional topographic surveying, particularly for monitoring 

over time or when cross-sections are highly variable.  

In all cases, sedimentation is more difficult to observe than erosion. Indeed, 

sedimentation results in increments of a few centimetres, which can be masked by 

the presence of vegetation or slight elevation biases linked to acquisition conditions. 

In addition, the results of these different methods need to be cross-checked and 

critically interpreted, as the 3D products generated are not free of artifacts. 

 Prospect for erosion mapping over large areas 5.4.2

Although bi-temporal LiDAR datasets have been used in other studies to quantify 

erosion phenomena, there has been little methodological development on this 

subject. Errors associated with the estimation of eroded volumes have notably been 

analyzed by Kessler et al. (2012) for lateral erosion in meandering rivers, and by 

Lallias-Tacon et al. (2014) who carried out the sediment budget of a braided river. 

Error assessment is not generally based on in situ erosion measurements, which are 

rarely available. It is mainly based on a calculation of error propagation on LiDAR 

DTMs and on sensitivity analyses. Lallias-Tacon et al. (2014) have shown that 

estimated erosion values can be highly sensitive in relation to the quality of LiDAR 

datasets and the method used (co-referencing of LiDAR coverages, whether or not 

submerged surfaces are taken into account and processed, thresholds set for 

elevation differences). Our study also shows that the noise filtering method has a 

significant influence on the absolute value of the eroded area. Eroded volume seems 

less affected by the noise filtering method. However, comparison with an approach 

based on photointerpretation is not a true evaluation of error; it merely ensures that 

our method accounts for the contrast between more and less eroded stretches. 

In order to mobilize erosion maps within an institutional framework (for example, 

to support the definition of standards for land-use planning, or as part of watershed 

management plans), we need to be able to extend mapping to the scale of a region or 

larger watersheds, i.e. over thousands of kilometers of watercourses. This upscaling 

involves a number of challenges. Firstly, we used two LiDAR surveys carried out 

under similar limnimetric conditions, with average water levels. This assumption 

cannot be systematically verified. As a result, eroded area will be underestimated in 

basins with higher water levels, and will be positively or negatively influenced when 

the difference in water levels between the two LiDAR coverages is significant. 

Secondly, river width, bank height and bank mobility will also influence the 
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indicator value. In the watershed studied, some streams are five meter wide and 

show little activity. These streams often have values of normalized eroded area equal 

to zero, with no contrast from one stretch to another. The proportion of erosion 

contained in patches over 1.5 m wide is expected to be small in relation to total 

erosion in these stretches, and the underestimation of actual erosion is therefore 

expected to be significant. As far as bank height is concerned, it must be greater than 

the altimetric difference threshold selected (a condition met here with a threshold of 

50 cm). Indeed, the higher the banks, the more aggressive filtering can be performed 

on the difference in elevation without significantly affecting eroded volumes 

according to Kessler et al. (2012). Nevertheless, we can expect bank erosion to be 

underestimated for streams with low bank heights. Generally speaking, the value of 

the bank lateral erosion indicator will be essentially comparable between different 

stretches of the same river or between several rivers in the same catchment area. 

Further comparisons could only be achieved by correcting the erosion value for the 

fraction of undetected erosion. 

Further studies could focus on the improvement of the method (use of co-

referenced datasets, improved and automated delimitation of water surface), as well 

as on the better characterization of accuracy and biases in contrasted river settings. 

5.5 Conclusion  

Two data sources were compared to describe cross-sections of a river. Under 

favorable conditions, a photogrammetric approach based on images acquired using 

UAVs and incorporating bathymetric correction provides cross-sections equivalent 

to those obtained by a traditional survey. The use of LiDAR provides a satisfactory 

description of the emerged part of the banks, although the resolution may be 

limiting. 

Taking advantage of these properties, two LiDAR surveys spaced seven years 

apart were exploited to generate an indicator of bank lateral erosion over a 

watershed comprising 50 km of watercourse. Our estimates of eroded area are 

consistent with estimates made by photointerpretation and with field knowledge. 

Nevertheless, the method lacks sensitivity for smaller or less active streams. This 

sensitivity, which varies according to the river under consideration, as well as the 

different limnimetric conditions at the time of the LiDAR surveys, pose challenges 

for scaling up to larger watersheds. 
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6.1 Scale considerations 

When it comes to scale, we need to differentiate between the scale at which the 

results are represented (size and shape of the map's elementary units, be they pixels, 

objects or successive river stretches), and the area over which the results are 

produced (a section of river, a watershed or a region, for example). Considerations 

relating to these two scales are discussed in sections 6.1.1 and 6.1.2 respectively. 

 Scale for displaying results 6.1.1

When producing a vegetation map, it is necessary to choose the elementary unit 

for which the selected features will be calculated. The choice of these elementary 

units (their shape, size and boundaries) poses particular questions in the case of 

mapping riparian vegetation, and riparian ecosystems in general (Alber and Piégay, 

2011). Riparian vegetation is fragmented and organized in the form of a network 

whose constituent elements vary in dimension according to the size of the river, the 

width of the floodplain or the degree of fragmentation.  Moreover, variations can 

occur both longitudinally and laterally.  

The "tree-centric" approaches deployed in chapters 3 and 4 give spatially fine 

results, which can then be re-aggregated. In the case of mapping woodland and 

herbaceous ecosystems, the tree-centric approach is compatible with "object-

oriented" approaches regularly used in the riparian context (Rommel et al., 2022; 

Macfarlane et al., 2017). The aggregation scale must be defined in a way that is 

consistent with the objective pursued. Four examples of aggregation scales that were 

used in this manuscript are shown in Figure 55. In Chapter 3, the aim was to 

understand the distribution of biomass stored in riparian ecosystems within the 

floodplain, so patches of native vegetation of similar age (the main variable 

explaining biomass) were considered as reference units (Figure 55a). These were 

then re-cut so they had a similar size of 1000 to 3000 m². As determining the age of 

the patches was manual and therefore tedious, it was necessary to disregard the 

smallest vegetation patches. In Chapter 4, specific composition was mapped using 

square vegetation units, comparable to pixels and chosen for their ease of use 

(Figure 55b). These vegetation units do not require any assumption concerning 

riparian spatial structure and provide the best possible visualization of both 

longitudinal and lateral gradients, as well as local drivers (Scown et al., 2016). If we 

are interested in mapping a narrow corridor along the watercourse (e.g. in order to 

support bank maintenance in a low-energy river), a riparian corridor of constant 

width can be divided into stretches of equal length (Figure 55c). This division has 

been used in the context of the use of remote sensing for minor bed management 

(Chapter 6, section 6.2.1). Such a division into stretches is also feasible for the entire 

floodplain (Figure 55d): it allows us to relate the riparian vegetation to a portion of 

the river and neutralize the effect of the width of the alluvial plain. However, it does 

not allow us to observe lateral gradients within the floodplain. 
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Figure 55: Four types of elementary units for characterization of riparian vegetation. The 

color levels indicate the areal biomass of riparian vegetation. A) Division into vegetation 

units of similar age and with a size between 1000 to 3000 m². B) Division into 30 m x 30 m 

vegetation units. C) Division of a 12 m wide riparian corridor on either side of the river into 

100 m long stretches. D) Longitudinal division of the floodplain into 100 m-long units. 

When aggregating tree-level information into larger spatial entities, an 

improvement in accuracy can be expected. In Chapter 4, a species classification 

model at tree scale is shown to have an overall accuracy of around 80%. When 

aggregated into 900 or 3600 m² vegetation units, accuracies can exceed 90%, with a 

more rapid increase for species dominance than for absence/presence predictions 

(that will intrinsically benefit less from error averaging). In Chapter 3, the 

aggregation into 3000 m² units reduces a relative error of the order of 40-60% for 

individual trees to a relative error of the order of 20-30% for 3000 m² units. Zolkos 

et al. (2013) observed similar improvements in a review of the accuracy of forest 

a) b) 

c) d) 
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biomass estimates with LiDAR data, and linked it to error averaging and a 

diminution of co-registration errors between field plots and LiDAR datasets. In our 

case, accuracy improvement can be assumed to be essentially linked to error 

averaging. Indeed, co-registration errors were limited as reference trees were 

directly delineated on the LiDAR dataset. It is to be noted however that 

segmentation errors were found to have a limited impact on biomass estimates. It 

can be explained by the fact that biomass followed a quasi-linear relationship with 

crown area. Therefore, when LiDAR pixels are wrongly attributed to a neighboring 

tree with similar height, the resulting impact on biomass estimates will be 

attenuated.   

Our results show that it is essential to assess the quality of classifications not only 

at the tree level (which helps us to understand the model's functioning), but also and 

above all at the scale of the aggregated units that will be used as a decision-making 

tool or as basic data to answer research questions. 

 Extent of area of interest 6.1.2

Most of the methods presented in this manuscript (with the exception of the work 

based on UAV images presented in section 5.2.1) have been applied or are relevant 

on scales ranging from a few dozen to several hundred kilometers of watercourse. At 

these scales, airborne or satellite sensors are used (Figure 56). It can be difficult to 

obtain multispectral data with good spectral homogeneity and spatial resolution over 

such large areas. However, for the species classification model presented in Chapter 

4, spectral data have limited weight (both for the high-resolution satellite images 

used in the model and for the four-band multispectral aerial images tested and not 

retained).  
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Figure 56: Percentage of use of different data sources according to the size of the study 

area, taken from the literature review (Chapter 2). For data sources : Plane_RGB = aerial 

images, plane_MSHS: multispectral aerial images (> 3 bands), Satlow: moderate resolution 

satellite images (> 10m), Sathi: high resolution satellite images (<= 10 m), UAV: aerial 

images acquired using a drone, LiDAR: LiDAR sensor, RADAR: RADAR sensor. For 

scales: Local: < 10 km, segment: 10 to 100 km or < 100 km², sub-regional: 100 to 1000 km 

or 100 to 1000 km², regional: > 10,000 km or 1000 to 10,000 km², VLscale: >10,000 km². 

The algorithms used for species classification and biomass estimation are very 

different in nature, and this may have an impact on potential upscaling. Biomass is a 

quantitative variable for which a simple model is used, where the response variable 

is directly related to the explanatory variables (tree dimensions extracted from a 

LiDAR dataset). If equivalent variables can be extracted from a second dataset, the 

model can remain valid under certain conditions. This may be a nearby area with 

similar vegetation characteristics, or the same area covered by a second, more recent 

LiDAR survey. This potential is exploited in section 6.2.1 (see Appendix 1) to 

update biomass estimates using a new LiDAR dataset. In contrast, specific 

composition is a qualitative response, for which Machine learning and explanatory 

variables indirectly linked to the response variable are used. The large number of 

explanatory variables makes it very difficult to extract comparable variables, and a 

new training dataset has to be constituted each time the algorithm is applied for 

classification (see section 6.2.1 and Appendix 1).  
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Furthermore, the main challenges associated with upscaling are not necessarily to 

be found in the processes linked to the images, their processing or the allometric 

relationships defined. For example, while the bank erosion detection method 

proposed in section Chapter 5 is very simple in terms of algorithms and image 

processing, upscaling is complicated by the need to integrate the local specificities 

of each river, such as differences in flow between two acquisitions (not the same 

from one watershed to another), the type of section encountered (bank height 

influences the erosion detection threshold) or geomorphological characteristics (type 

of erosion encountered and possibility of detecting it with the method used). For 

riparian vegetation mapping, GIS operations or the delimitation of the floodplain 

and riparian zone may be limiting for upscaling. Indeed, it is often necessary to 

integrate various types of geographical information (hydrographic network, 

hydraulic or statistical flow models, soil maps, etc.), whose processing and 

compilation can become prohibitive over large areas. Finally, the interpretation of 

indicators is a challenge in its own right when they are available at the scale of entire 

hydrographic networks, as they are influenced by many factors other than those of 

interest, which act on the ecosystem at different scales (e.g. regional effect linked to 

geology and climate VS local alteration of anthropogenic origin in Michez et al. 

(2017)). 

6.2 Using remote sensing tools to support riparian ecosystem 

management 

This discussion is structured in three subsections. Section 6.2.1 puts biomass, 

specific composition and erosion mapping in the context of riparian management. 

The aim is to show how the approaches developed can be used to support riparian 

management planning. Section 6.2.2 discusses knowledge-transfer and the use of 

presented methods, sometimes simplified, by river managers themselves.  

 Use of indicators for intervention planning 6.2.1

6.2.1.1 A Walloon framework for planning interventions in riparian zones  

In Wallonia, the minor bed and river banks whose catchment area exceeds 100 

hectares are directly managed by the State, and the level of authority depends on the 

size of the river. The administration carries out maintenance work, such as 

vegetation cutting, removing logjams, dredging and bank stabilization. One effect of 

this low threshold of 100 hectares is that public authorities are responsible for a 

significant river length. Since 2016, PARIS programs (Programmes d'Actions sur les 

Rivières par une Approche Intégrée et Sectorisée) have aimed to evolve river 

management around several key principles (Figure 57). Greater planning is required 

for interventions. Managers set six-year objectives for each sector (river stretch), 

based on local stakes such as flood control or nature conservation. Actions 

consistent with these objectives are then planned and evaluated at the end of the 

period. The PARIS programs formalize consultation between the stakeholders 
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involved in various river management issues, and include monitoring of actions 

carried out at catchment scale (Service Public de Wallonie, 2022). 

 

Figure 57: Steps in developing a PARIS action program (figure adapted from the Walloon 

region's riparian zone management guide (Huylenbroeck et al., 2019)). 

Planning, diagnosis and monitoring require up-to-date data on the condition of the 

river network and riparian areas. In rural watersheds, vegetation management and 

related phenomena can account for the majority of maintenance work carried out. 

Remote sensing can be used to assess the state of vegetation at basin scale, with a 

view to planning maintenance work. 

6.2.1.2 A concrete example of the application of the tools developed in this 

thesis 

The three indicators of riparian condition and bank mobility developed as part of 

this thesis were mapped at the scale of a small watershed, in order to target priority 

areas for vegetation maintenance in the context of flood prevention. The river 

network was divided into 300 m long stretches, on which biomass, species 

composition and normalized eroded area were described. This scale was chosen 

because it is comparable to the average length of an intervention on riparian 

vegetation. Species classification (willow, alder, poplar, other deciduous and 

coniferous) and biomass estimation were carried out according to the methods 
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presented in chapters 3 and 4 of this thesis. The method and results specific to this 

section are presented in Appendix 1. The normalized eroded area was calculated at 

the scale of the study area in Chapter 5. 

The two main factors for the production of dead wood in the watershed considered 

are forest ageing and erosion-driven treefall. Ignoring the mobility of wood, which 

remains limited given the size of the considered rivers (river width is less than tree 

height, see Gurnell, 2003), we can consider that local wood production zones 

correspond to areas at risk of log jams. In order to target the areas where the risk of 

flow obstruction is greatest, we have highlighted the stretches verifying one of the 

criteria presented in Table 19. Treefall caused by erosion is favored by the presence 

of species with shallow roots or by the presence of a high above-ground biomass 

(high leverage effect). Regarding ageing, it occurs more rapidly in riparian forests 

composed of pioneer species.  

Table 19: Grid for targeting areas of deadwood production  

Variable Criterion 
Targeted 

mechanism 

Species composition Conifer and poplar cover > 20% Treefall following 

lateral erosion Erosion Normalized eroded area > 5% 

Biomass Biomass > 100 t/km Treefall following 

lateral erosion Erosion Normalized eroded area > 5% 

Species composition Willow cover > 50% 
Tree ageing 

Biomass Biomass > 100 t/km 

Species composition 
Mixed cover with more alders and willows 

than other deciduous or conifers Tree ageing 

Biomass Biomass > 250 t/km 

Species composition 
Mixed cover with more other deciduous or 

conifers than alders and willows Tree ageing 

 
Biomass Biomass > 350 t/km 

 

 Areas with increased risk of logjams were then intersected with areas of housing 

or other sensitive infrastructure in the floodplain, in order to target priority areas for 

intervention. The result of this intersection is shown in Figure 58. Thirty 300-meter 

stretches (out of the 154 studied) combine at least one of the risk factors identified in 

Table 19 with the presence of sensitive infrastructures. These thirty stretches are 

concentrated in around fifteen zones. The results of this selection are consistent with 

the vegetation management work planned or recently carried out in the watershed. 

The upstream part of the catchment is mainly affected by the ageing of well-

developed riparian zones made up of alders and other deciduous. Downstream, 

erosion is more intense and plays a greater role in deadwood production. 
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Figure 58: Identification of priority areas for riparian vegetation maintenance. The colors 

correspond to stretches with increased deadwood production, and the circled areas 

correspond to the thirty stretches combining sensitive infrastructures and a deadwood 

production factor.  

6.2.1.3 Perspectives and operational application 

The cartographic approach proposed for planning riparian interventions provides a 

synoptic representation of the state of the riparian forest at a given point in time. 

Targeted areas on the map can be visited to confirm the need for intervention. In 

addition to highlighting the zones most at risk of tree fall, this synoptic view can 

help authorities to adopt a readable management approach to riparian vegetation, 

based on objective data and consistent across the watershed. This approach can be 

fully integrated into a planning process such as the PARIS approach developed by 

the Walloon administration. The reference period for this approach is six years, 

which is comparable to the updating of LiDAR data in Wallonia.  

The indicators produced can also be integrated into a broader database that also 

includes information collected in the field, such as the presence and condition of 

artificial riverbanks (Bernier et al., 2021) or the generally well-known actively 

managed areas (urban areas, critical infrastructures). With regard to riparian 

vegetation, other indicators that can be extracted from a LiDAR point cloud include 

tree health and the number of dead trees (Kamińska et al., 2021). Flow obstruction 

by woody vegetation could also be quantified by looking at the number or 
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distribution of LiDAR returns in the minor bed, following the method of Jalonen et 

al. (2015), who quantified the characteristic surface area of foliage and branches in 

the channel at tree scale and with terrestrial LiDAR.  

 Use of tools by managers in an operational context 6.2.2

The use of the methods presented in Chapters 3 to 5 of this thesis requires specific 

skills, which are not necessarily mastered by river managers. Nevertheless, many 

uses require little technological expertise and are available to professionals whose 

main activity is not the processing of geographic information.  

In Wallonia, where the work for this thesis took place, many river managers 

regularly use orthophotos or LiDAR DTMs available on a regional scale. 

Nevertheless, these data remain under-utilized in relation to their potential. In 

addition to the need for appropriate training, tools, methods and data are not all 

available in the same place. Moreover, the sheer volume of data associated with 

high-resolution remote sensing can be daunting for managers, especially when they 

don't have access to sufficient computing power or storage facilities. 

Several tools have been developed or compiled within toolboxes, such as the 

Fluvial Corridor Toolbox, which is embedded in the most common GIS programs 

and facilitates geoprocessing in the context of rivers (Dunesme et al., 2021). Other 

examples include the RCAT and BRAT models dedicated to assessing the ecological 

status of riparian zones (Macfarlane et al., 2018). However, it's worth mentioning 

that the ease of use, documentation and maintenance of these tools is uneven. 

The growing availability of OpenSource and interoperable data and tools makes it 

possible to design tailor-made training courses, adapted to the needs of field 

operators and sometimes backed up by research projects. For example, at the request 

of river managers, we have designed a GIS training course including an analysis of 

the limitations of each remote sensing technique (e.g. the behavior of LiDAR beams 

or photogrammetric models in water) and the implementation of a number of 

flexible approaches specific to the river context. Course material can be obtained on 

request from the author. 

In the following paragraphs, we first consider challenges relative to the volume of 

datasets similar to those dealt with in this thesis. We then present considerations 

relating to the tools available to river managers for diagnosing erosion and mapping 

riparian vegetation. 

6.2.2.1 Data volume 

Table 20 presents data volumes associated with different sources of data used in 

this thesis, for a reference study area corresponding to 200 km of rivers. The use of 

UAV images generates important data volumes but is rare at such scale. Data 

volume is considerably larger (about ten times) when images or point clouds cover 

the whole watershed, compared to when only tiles relative to the river and its 

floodplain are selected. However, it is clear that data storage facilities (volume and 

prompt availability, for example through SSD storage or appropriate network) can 

be limiting in some institutions to work comfortably with high resolution remote 
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sensing data over large areas. This is particularly true for dense LiDAR datasets, 

with up to 1000 GB that must be processed (from .las format) to cover 200 km of 

rivers with 40 pulses/m². Thus, one must consider the costs and benefits of acquiring 

such large datasets depending on the intended use. In this thesis, considerably less 

dense LiDAR datasets (4 pulses/m²) seemed to give comparable performances for 

the classification of species composition (see Chapter 4 and Appendix 1), and we 

argue that similar or slightly higher densities would be satisfying for most 

applications regarding riparian forest or riverbank erosion.  

Table 20: Indicative volumes associated to different sources of data used to map 

a reference study area of 200 km of rivers with their associated floodplain. 

Alternatively, datasets cover associated watersheds of 2000 km².  Such a study area 

corresponds approximately to that used in Chapter 3 relative to riparian biomass. 

File sizes related to LiDAR point clouds were presented in the compressed format 

.laz (used for storage) and .las (preferentially used during processing). Individual 

file size corresponds to the size of tiles or images, as specified in brackets in the 

“format” column. 

Type of data Format 
Size 

(Gb) 

Individual 

file size 

(mb) 

UAV images, 

2 cm GSD 

60.000 photographs 420 7 

Orthophotomosaic (200 X 1 km-long surveys) 200 1000 

Satellite 

images, 3 m 

res., 8 bands 

4 X 600 km² images 8 2000 

Aerial images, 

0,3 m res., 4 

bands 

Orthophotomosaic (200 X 1 km² tiles) 8 40 

Orthophotomosaic (associated 2000 km² watershed) 80 80.000 

LiDAR data, 1 

pulse/m² 

LAZ point cloud (50 X 4 km² tiles) 2 40 

LAS point cloud (50 X 4 km² tiles) 12 240 

1 m res. DTM (20 X 4 km² tiles) 1 20 

1 m res. DTM (associated 2000 km² watershed) 10 10.000 

LiDAR data, 4 

pulses/m² 

LAZ point cloud (200 X 1 km² tiles) 8 40 

LAS point cloud (200 X 1 km² tiles) 48 240 

0,5 m res. DTM (200 X 1 km² tiles) 4 20 

0,5 m res. DTM (associated 2000 km² watershed) 40 40.000 

LiDAR data, 

40 pulses/m² 

LAZ point cloud (800 X 0,25 km² tiles) 200 250 

LAS point cloud (800 X 0,25 km² tiles) 1000 1250 

0,15 m res. DTM (800 X 0,25 km² tiles) 40 50 

0,15 m res. DTM (associated 2000 km² watershed) 400 400.000 
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However, the use of high resolution data can be further limited by processing time, 

as processing facilities are relatively expansive as compared to data storage. As 

processing time highly depends on optimization and hardware, it is difficult to set an 

indicative time for a particular process. With an adequate, relatively powerful 

desktop computer (i.e. 32 GB RAM a 6-core 4Ghz CPU), one can assume that 

normalizing a point cloud from .las files in the lidr environment should take the 

order of 5 s/km² for a LiDAR dataset with 1 pulse/m² (15 minutes for the 200 km 

long study area) and 200 s/km² for a LiDAR dataset with 40 pulses/m² (10 hours for 

the 200 km long study area). It is thus clear that high data volumes penalize 

availability for managers, and processing high resolution data requires adequate 

hardware, habits and skills (e.g. tiling, code optimization, running processes at night 

or on distinct computers).  

6.2.2.2 Erosion diagnosis 

As we saw in Chapter 5, remote sensing data can be used to detect or quantify 

changes in river morphology. Several data sources can be used to diagnose the 

extent of erosion. The first reflex is usually to consult historical aerial images. This 

technique makes it possible to go back in time and identify erosion of at least one 

meter. Quantification is difficult, except in the case of major erosions or erosions 

occurring over long periods of time. In the presence of tree cover, the technique is 

ineffective. 

A second reflex is to carry out a conventional topographic survey, for comparison 

with an existing survey. Alternatively, two topographic surveys can be carried out in 

succession. This is a well-established technique, where the emphasis can be placed 

on acquiring the information required (sedimentation of a sandbar, lateral bank 

erosion, stream incision). Nevertheless, the diagnosis is carried out on discrete 

profiles, a problematic feature for many scenarios (localized erosion between two 

profiles, search for low points on a levee, profiles not exactly taken at the same point 

for streams with highly variable cross-sections). In addition, there may be a 

pronounced operator effect, linked in particular to the choice and density of 

measurement points, or to the definition of the bottom when the latter is soft or 

composed of coarse sediments. 

Alternatively, when two LiDAR DTMs are available, comparing them can help 

diagnosing erosion. It can distinguish bank retreats of the same order as the 

resolution of the coarser DTM. For local diagnosis, unlike automatic processing over 

a large area (see 5.2.2.2), human intelligence can be mobilized to a certain extent to 

differentiate noise from information (Figure 59). Under these conditions, advanced 

GIS skills are not required to operate two LiDAR surveys. Nevertheless, the 

frequency of surveys is generally not controlled by the river manager, which is a 

major limitation for diagnosing recent erosion. 
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Figure 59: The figure shows a case study for monitoring erosion on the Ton at Virton. The 

town's sports facilities were built in the 1970s in an area with intense lateral erosion. Two 

digital terrain models from 2021 and 2014 were compared to highlight areas of erosion 

(orange) and deposition (blue-green). The part of the watercourse submerged in 2014 was 

masked, as were differences in elevation of less than 50 cm. Two meanders have been 

stabilized. Two other meanders have experienced recent activity, with forthcoming damage 

to infrastructure and meander cutoff. The erosion-deposition map helps to diagnose the 

extent and spatial structure of river movements. 

Finally, UAV photogrammetric surveys can be carried out (Figure 60). These 

provide accurate, spatially continuous results (see section 5.3.1) and can be used in 

areas where no aerial imagery or LiDAR coverage is available. Nevertheless, they 

require specialized skills and are applicable in a limited range of situations. 

Although the marginal cost of these acquisitions is low, the fixed costs (particularly 

for acquiring the necessary skills) are relatively high. This approach only makes 

sense in the context of sufficiently large organizations, where a limited number of 

people can specialize in GIS and remote sensing. 
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Figure 60 : Study of the erosion of a meander of the Lhomme river using different 

methods. From left to right and top to bottom: use of orthophotos acquired by plane between 

2012 and 2020 to delimit the location of the right bank, use of a differential photogrammetric 

DSM for the beginning and end of 2020, comparison of bank profiles from photogrammetric 

DSMs, overlay of orthophotos produced using drones. 

Irrespective of the technique chosen, the results of these different methods need to 

be cross-checked and critically interpreted, as cartographic products produced on the 

basis of remotely sensed data are not always free from artifacts (distortions in a 

photogrammetric model, interpolations in a LiDAR DTM, etc.). 

6.2.2.3 Vegetation mapping 

Two approaches to vegetation mapping have been described in Chapters 3 and 4 of 

this thesis. These approaches require a significant investment in know-how, field 

data and development before they can be deployed. In comparison, structured 

photointerpretation approaches are available to the widest possible audience and 

offer maximum flexibility for vegetation mapping. To achieve this, the following 

steps are carried out:  

- Extract a hydrographic network of interest to be mapped; 

- Geoprocess the lines into stretches 200 m long and 12 m wide; 

- Interpret the orthophotos on each stretch to describe the riparian vegetation 

according to an interpretation grid (an example grid is shown in Table 21); 

- Visualize riparian development indicators using a suitable symbology 

(Figure 61). 

  

Lateral migration 

Aquatic vegetation in 

december 2020 
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Table 21: Multicriteria grid for describing riparian vegetation with regional 

orthophotos 

Criteria 0 1 2 3 4 

Tree size 
Tree 

absence 

Diameter of 

tree crowns 

mostly < 6 m 

Diameter of 

tree crowns 

mostly 

between 6 m 

and 12 m 

Diameter of 

tree crowns 

mostly 

between 12 m 

and 18 m 

Diameter of 

tree crowns 

mostly over 

18 m 

Canopy 

cover 

Tree 

absence 

Trees on < 

1/3 of length 

Trees on  1/3 

to 2/3 of 

length 

Discontinuous 

cover over 

more than 2/3 

of length 

Continuous 

tree cover 

Senescence 

and 

potential 

for flow 

obstruction 

Tree 

absence 

Absence of 

fallen, 

overhanging 

or dead trees 

A few dead or 

overhanging 

trees 

Many dead or 

overhanging 

trees, big 

fallen trees 

 

Diversity of 

species or 

strata 

Tree 

absence 

1 species or 

strata (all tree 

crowns look 

alike) 

2 to 4 species 

or strata can 

be 

distinguished 

More than 4 

species or 

strata can be 

distinguished 

 

Width of 

riparian 

buffer 

Vegetation 

absence 

Riparian strip 

with 

spontaneous 

vegetation < 

12 m on either 

side of the 

river with 

adjacent 

intensive land 

use (crop, 

road, 

buildings) 

Riparian strip 

with 

spontaneous 

vegetation < 

12 m on either 

side of the 

river with 

adjacent 

extensive land 

use 

(grassland) 

Riparian strip 

with 

spontaneous 

vegetation > 

12 m on either 

side of the 

river (forest 

or wetland) 
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Figure 61 : Photointerpretation map of riparian species diversity and strata along a ten-

kilometer stretch of river. On this river, diversity is lower in the immediate vicinity of 

urbanized areas. 

Depending on the images available, different criteria can be interpreted. For 

example, interpretation of the age of the riparian vegetation requires several 

historical images, but can be carried out using orthophotos with a resolution of one 

meter. Such an approach was deployed in Chapter 3 of this thesis: its application on 

the floodplain of 230 km of rivers (i.e. 900 hectares of riparian vegetation) was 

achieved in a week by a well-trained operator. Identifying dominant species on the 

basis of orthophotos is more difficult. Even with images of centimetric resolution 

(UAV images), it is necessary to gather species by group and to have training data. 

A season of acquisition that takes advantage of the singular look of certain species at 

a given phenological stage, or the use of multispectral images, can help differentiate 

between riparian species (Figure 62). 

Number of species or strata 

0 

1 

2 to 4 

More than 4 
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Figure 62 : Orthophotos obtained using a multispectral camera (top, blue-green-near 

infrared color composition) and a conventional camera (bottom, red-green-blue composition) 

mounted on a commercial UAV. In this image, maple and ash trees stand out for their rough 

canopy and predominantly blue color. Alder trees stand out for their near-infrared 

dominance, and willows for their green dominance. 

Similar approaches can be deployed using 3D models derived from LiDAR or 

mixed LiDAR-photogrammetric data (Michez et al., 2020). Some indicators, such as 

riparian height or canopy proportion, can be obtained automatically using simple 

aggregations of pixel values within predefined units. We have reproduced the 

approach presented in section 6.2.1 for dead wood production, using only operations 

that can be performed within a GIS. Three risk factors were mapped and intersected: 

lateral bank erosion (see section 5.2.2), canopy cover and tree height. Woody 

vegetation was delineated using a 2021 LiDAR CHM, retaining only vegetation with 

a minimum height of 3 meters. Buildings were masked out using an auxiliary layer. 

This step can also be performed using morphological filters. The average height of 

the vegetation corresponds to the average height of the CHM within the "woody 

vegetation" envelope. The potential for deadwood production was approximated by 

the product of the three risk factors mapped separately. Four relative risk classes 

were thus defined (Figure 63). The risk map is broadly in line with the results of the 

detailed approach presented in section 6.2.1. 
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Figure 63 : Spatialized estimate for deadwood production potential along 12 km of the 

Ton downstream of Virton, using a simplified approach. 

Thus, managers' approach to mapping riparian vegetation can be structured 

according to the following steps: 

- define the objective (for example, to define a riparian vegetation 

regeneration plan); 

- define the relevant indicators for this objective (e.g. proportion of vegetation 

cover, erosion intensity or land use); 
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- define the working scale (e.g. 100 m long stretches); 

- define the indicator extraction method (photointerpretation of aerial images 

or automatic extraction of spatialized statistics) and translate this method 

into algorithmic form (photointerpretation grid or script); 

- intersect the indicators to display spatial variation with an adequate level of 

contrast (for example, show areas of moderate erosion without riparian 

vegetation in grassland areas); 

- interpret the map critically, confirming the information contained in the map 

by mobilizing field data or scheduling confirmation visits; 

- exploit the data (draw up a plan of priority areas for planting or fencing). 

 

6.3 Perspectives  

Prospects for improvement of the tools developed or further studies using them 

have already been proposed in the various chapters. These include: 

- The replication and comparison of biomass distribution studies in 

contrasting catchments, in order to identify how biomass drivers vary 

according to the geographic context (Chapter 3); 

- The prediction of other biomass compartments (notably underground 

biomass), using allometry or soil models (Chapter 3); 

- The improvement of species classification, notably with the use of high 

resolution multispectral images acquired at different times (but not merged) 

throughout the growing season (Chapter 4); 

- The use of more complex distribution models for species compositon, 

allowing to distinguish which drivers operate at which scale (Chapter 4); 

- A thorough assessment of the sensitivity of bank erosion estimates to 

varying conditions (river width and activity, bank height,…) (Chapter 5); 

- The addition of new, complementary indicators in the model aiming to 

prioritize riparian maintenance operation (notably flow obstruction and tree 

health) (Chapter 6, section 6.2.1.). 

These perspectives are not discussed further in this section. Instead, we focused on 

perspectives that relate to several chapters of this thesis. We structured this section 

according to the work of Rodriguez-Gonzalez et al. (2022), who identified 10 

challenges to address in order to improve riparian science and management (Figure 

64). 
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Figure 64: Ten challenges to enhance riparian vegetation science and management. From 

Rodriguez-Gonzalez et al. (2022). 

A better integration of spatial scale and context was identified as a key challenge 

(challenge 4).  Indeed, processes are mainly studied at the scale of a limited number 

of chosen river stretches. Yet these processes are often dependent on the local 

context, and management objectives often rely on the combination of these 

processes at watershed scale. The tools developed to map riparian forests using 

LiDAR data open up possibilities for better integrating this spatial dimension into 

thematic research on riparian ecosystems. This cross-cutting issue will be discussed 

through the contribution of our work to three other identified challenges, namely the 

study of emergent issues and trajectories (challenge 6), the improved modeling of 

riparian processes (challenge 8) and the improvement of monitoring and assessment 

protocols (challenge 9). 

 Emerging issues and trajectories 6.3.1

Our landscape-scale analyses of biomass and species compositon allowed us to 

better understand its spatial patterns and driving factors. Numerous studies have 
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studied the impact of land use and agricultural practices (e.g. Sawtschuk et al., 2013, 

Fernandes et al., 2011) or geomorphology, topography and soils on riparian forests 

(e.g. Rodriguez-Gonzalez et al., 2010, Godfroy et al., 2022). When the two types 

factors were integrated, one of two was often represented with a simple, monotonic 

gradient (e.g. Grijseels et al., 2021, Bruno et al., 2014). The inclusion of multi-

directional gradients and more local drivers (e.g. soil type, proximal land use) for 

both types of factors has been far less common. In the studied rural catchments, we 

showed that both anthropogenic disturbance and geomorphological factors had to be 

taken into account. The impact of land use was stronger on biomass than on species 

composition, probably due to the fact that the latter responds more slowly to this 

factor (Sawtschuk et al., 2013). Preliminary tests indicate that the inclusion of 

vegetation age (as computed for the biomass distribution model) could significantly 

improve the prediction of willow and other deciduous proportions, which could 

indicate succession mechanisms.  

The diachronic analysis of riparian forest maps produced as part of our research 

can help us to interpret their trajectory in greater detail and propose appropriate 

management strategies. Such monitoring is relevant to understand changes affecting 

many watersheds such as channel incision (Godfroy et al., 2023), biological 

invasions (Thomas et al., 2015), climate change (Latella et al., 2020) or changes in 

agricultural practices (Sawtschuk et al., 2013). Altough unstudied to our knowledge, 

several drivers may have modified riparian forest dynamics over the last decades 

such as policy changes (rather ancient such as state takeover of vegetation 

management in the riverbed in 1950’s or more recent with obligations to fence 

pastures along rivers), reservoir or hydroelectric dams, catastrophic floods (as 2021 

floods in several catchments), tree dieback (alder and ash) or beaver recolonization.  

Altough historical reference data are not available with comparable quality 

(especially regarding spatial coverage and location accuracy), trajectories can also 

be inferred from forest structure using contemporary data. In Chapters 3 and 4, 

biomass and composition were mapped separately and only total biomass was 

computed, irrespective of its distribution among size and species classes. However, 

the distribution of age classes can indicate forest dynamics such as regeneration, 

persistence of early successional species or senescence (Gonzalez et al., 2010). In 

order to be fully operational for such purposes, the classification model should also 

be improved in order to distinguish other species such as Fraxinus Exelsior, or to 

encompass indicators of tree health. Tree structure could also be predicted from 

LiDAR data (e.g. single or multi-stemmed) as this characteristic can indicate clonal 

or sexual regeneration (Rodriguez-Gonzaez et al., 2010).  

 Improved modeling of riparian processes 6.3.2

Riparian forests have an important but complex effect on erosion-deposition 

phenomena (Camporeale et al., 2013). Roots have a stabilizing effect on the bank, 

but the stems generate additional weight which can provoke bank failure. In 

addition, flow diversification linked to vegetation or dead wood can stimulate 

erosion-deposition processes. The methods developed in this thesis could be used to 
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better understand how vegetation characteristics influence bank erosion processes 

under natural conditions and at the catchment scale. For example, a sediment model 

(e.g. SHETRAN, Jane et al. (2017)) could be calibrated over the study area on the 

basis of erosions estimated using LiDAR and hydrological data over the observation 

period. Variables related to the distribution of tree sizes (or biomass) by species 

could be calculated at the segment scale and subsequently added as explanatory 

variables to identify riparian vegetation characteristics influencing lateral bank 

erosion.    

Maps of species composition, biomass and erosion could also be relevant to model 

wood supply to rivers. While the approach developed in section 6.2.1 is simple and 

only gives an indication of wood supply potential, spatially explicit models have 

been developed to predict it quantitatively. These models use data on fluvial 

processes (topography, discharge, erosion, etc.), forest characteristics and reference 

data on wood supply to calibrate the model (Steeb et al., 2023). The descriptive 

maps of riparian vegetation produced in this thesis can provide local riparian forest 

characteristics (senescence, exposure to erosion and resistance to uprooting) that 

could help spatialize inputs at any point in the hydrographic network.  

 Improving monitoring and assessment protocols 6.3.3

According to the Water Framework Directive, member states of the European 

Union must assess the hydromorphological status of all rivers. Such assessment is 

currently heavily reliant on field-based data and expert opinion. Bizzi et al. (2016) 

identified an opportunity in the use of remote sensing to provide replicable 

indicators of river hydromorphological quality. Those remotely-sensed indicators 

can be integrated in a multi-scale framework such as the River Hierarchical 

Framework, that aims to understand processes occurring at multiple, nested scales 

(catchment, landscape unit, segment, reach, and geomorphic unit) (Gurnell at al., 

2016). 

Gonzalez de Tanago et al. (2021) point out that riparian vegetation is poorly 

characterized in most hydromorphological assessment schemes, being mostly 

assessed with simple indicators such as presence/absence or percentage of cover 

along rivers. With such indicators, the importance and indicator power of 

vegetation-related processes for the good ecological functioning of rivers is 

disregarded.  

Vegetation-related indicators that were produced in this thesis (as well as 

riverbank erosion estimates) can be adequate to assess hydromorphological quality 

at multiple scales. At the catchment scale, ecological quality could be defined by the 

area covered by indigenous riparian vegetation or the continuity of riparian forest, as 

assessed by Michez et al. (2017). However, other indicators would be more adequate 

for assessing proper functioning at the segment and reach scale. Such indicators 

could include the diversity and typicity of riparian tree species, the age (or biomass) 

classes per species (indicating regeneration and self-sustainability or riparian tree 

populations), biogeomorphological coupling (for example, presence of pioneer 
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species saplings on exposed bars), or the presence of large trees (that provide unique 

habitats for certain species according to Pollock & Beechie, 2014).  

The Figure 65 shows an example of visualization of riparian forests that could be 

relevant for assessing ecological integrity. Quantitative metrics may be 

automatically computed to reflect aforementioned indicators of good functioning. 

These quantitative metrics could in turn be compared to reference values extracted 

in sites with little disturbance to comply with WFD standards. However, before 

integrating such indicators in routine assessment, further studies would be needed to 

identify best variables, scales of observation, reference values and thresholds for 

good functioning (e.g. Van Looy & Piffady, 2017) on a variety of rivers.  

 

Figure 65: Visualization of riparian vegetation on a relative DEM. Trees are represented 

as discs, with color corresponding to tree species and size to tree biomass. The upper part of 

the river stretch (flowing in southward direction, in the right on the map), riparian vegetation 

is composed almost exclusively of planted poplars of similar, large size. River channel 

topography shows little diversity and sinuosity. Downstream (bottom of the map), channel is 

more sinuous and active. Alders, willows and other hardwoods are present in various 

dimensions. Willow saplings can be observed in the inner side of meanders, indicating 

biogeomorphic coupling. 
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7. Conclusion 

7.1 Characterize riparian vegetation 

The first objective of the thesis was to develop innovative approaches to map 

riparian vegetation. We reviewed the existing literature. More recently available data 

(LiDAR and high-resolution multispectral images) are mainly deployed on a local 

scale, and rarely as part of multi-temporal monitoring. For structural characteristics, 

LiDAR data are often preferred, while specific composition and physiological 

processes are mostly described using spectral data. The increasing availability of 

high-resolution data, regional or global datasets (hydrographic networks, 

floodplains) and processing tools opens up new prospects for monitoring vegetation 

over large areas, in lesser-known regions or with greater spatial (resolution) or 

thematic (variables studied) detail. These prospects can benefit both research and 

operational applications. 

We then developed an approach for mapping riparian vegetation biomass at the 

scale of a watershed comprising 230 km of rivers and their floodplains (Semois-

Chiers basin). This is a tree-centric approach based on a simple allometric 

relationship, fed by variables derived from the LiDAR point cloud or alternatively 

from a CHM. Individual tree biomasses are then summed by 3000 m² vegetation 

units, with an error of around 22% on average for the best model. 

Specific composition was also characterized on the scale of a 155 km stretch of the 

Semois river and its associated floodplain. This is again a tree-centric approach with 

subsequent aggregation, based on a Random Forest algorithm and variables derived 

from a LiDAR point cloud and multispectral images. Trees were classified 

according to a limited number of species groups sharing similar ecological 

characteristics. The impact of the size of the aggregation unit or the number of 

classes on accuracy was assessed. For a simple four-class model, accuracy ranged 

from 80 to 90%, depending on the performance indicator and the size of the 

aggregation unit considered.   

These "tree-centric" approaches offer great flexibility when aggregating trees into 

larger units. Here, they yielded reliable results on the scale of watersheds comprising 

around a hundred kilometers of watercourses, for both biomass and specific 

composition.  

Spatial distributions of biomass and specific composition were analyzed in relation 

to edaphic, geomorphological, topographical, historical and human activity factors. 

The riparian landscape studied is marked by anthropogenic disturbances, particularly 

regarding biomass. Other factors, mainly related to waterlogging or topographical 

position, continue to exert a major influence on specific composition, and a more 

discreet influence on biomass. 

Tools for mapping riparian vegetation must be complemented by tools for 

characterizing the physical component of the minor bed, as it has a major impact on 

riparian vegetation and its management. Several techniques for mapping the minor 

bed and its evolution have been tested. Techniques based on the photogrammetry of 

UAV images provide remarkable accuracy in both emerged and submerged parts of 
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the bed, but are only applicable in a limited range of conditions (limited vegetation 

cover, visible bottom). Conversely, LiDAR technology, which is generally coarser 

(lower resolution and lack of information on submerged parts), offers considerable 

potential for scaling up and generalizing the mapping of lateral bank mobility.  

7.2 Support riparian management using remote sensing 

methods 

The second sub-objective was to identify the applicative potential of remote 

sensing tools to support the management of riparian ecosystems. 

Remote sensing can be used to produce spatialized indicators of the state of 

riparian ecosystems. These indicators can in turn be used for monitoring or planning 

riparian interventions.  Approaches for mapping biomass, specific composition and 

lateral bank mobility were deployed in a watershed comprising some 50 km of 

watercourses. The results were used to generate a map of deadwood production 

potential (linked to bank erosion and vegetation senescence). This can be used as 

part of a planning process for riparian interventions, to target priority areas for 

management.  

A number of tools are now available to help managers carry out GIS operations or 

process and even acquire remote sensing data. In addition, high-resolution remote 

sensing data and other associated data (hydrographic networks, DTM, land use 

maps) are increasingly available and of growing quality. In this context, it is 

essential to provide managers with robust, interoperable data and tools. In addition, 

personalized synthesis and training to these tools is still required, so that managers 

who so wish can appropriate these techniques. 

Finally, the tools developed in this thesis can help better integrate scale issues in 

riparian research through the interpretation of trajectories, process modeling or 

improved monitoring and assessment or riparian vegetation.  
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Appendix 1: Methods and results for 

mapping specific composition and biomass 

on the Ton watershed (section 6.2.1) 
Methods 

For species mapping, five species groups were considered: willow, alder, poplar, 

conifer and other deciduous. The Random Forest model was trained on a dataset 

comprising 62 trees from each group. The proportions of the surface area occupied 

by the crowns of each group were aggregated at the scale of stretches 300 m long 

and 12 m wide on either side of the watercourse. 

Biomass was estimated using the first model calibrated in Chapter 3 of the thesis, 

applied to the segmented LiDAR tree crowns of 2021. The model is based solely on 

crown dimension and 90th height quantile, variables considered to have little 

dependence on the characteristics of the LiDAR used. The biomasses calculated in 

2014 and 2021 were compared at the scale of 300-meter stretches as follows: 

∆𝐴𝐺𝐵 (%) =
𝐴𝐺𝐵2021 − 𝐴𝐺𝐵2014

𝐴𝐺𝐵 2021 + 𝐴𝐺𝐵 2014
∗ 2 ∗ 100% 

Results 

The internal accuracy of the species mapping model at the tree crown scale is 

81%, which is very close to that obtained for a four-class model in chapter 4 of this 

thesis (Table 22). Given the larger scale of aggregation (around 7000 m² compared 

with 900 m² for the study presented in Chapter 4), it is expected that the accuracy on 

300 m units will be at least equal to that obtained in Chapter 4. 

Table 22: Confusion matrix for species classification at tree level  

 
Alder 

Other 

deciduous 
Poplar Conifer Willows 

User’s 

accuracy 

(%) 

Alder 50 4 0 2 6 80,6 

Other 

deciduous 
8 42 2 2 7 68,9 

Poplar 1 3 54 0 3 88,5 

Conifer 0 0 1 61 0 98,4 

Willows 10 8 0 0 42 70,0 

Producer’s 

accuracy (%) 
72,5 73,7 94,7 93,8 72,4 81,3 

 

Biomass estimates have not been validated. Nevertheless, given that the method 

employed, the geographical context and the aggregation area are comparable to the 
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study presented in chapter 3 of this thesis, a similar accuracy can be expected, i.e. of 

the order of 27% mean relative error for the 300 m long stretches. 

The maps describing the riparian vegetation at basin scale are shown in Figure 66 

and Figure 67. In terms of specific composition, the willow group is the most 

represented (Figure 66). Upstream of the watershed (Chavratte, Vire and Ton 

upstream of its confluence with the Vire), the riparian vegetation is composed of 

willows, alders and other deciduous trees in equal proportions. In rivers downstream 

of the basin (Ton downstream of its confluence with the Vire and Chiers rivers), 

willow becomes dominant, often representing over 50% of the canopy. Biomass 

distribution is largely influenced by the urbanization of valley bottoms, with lower 

biomass in the Signeulx, Lamorteau and Virton crossings (Figure 67). Biomass is 

also low downstream of Lamorteau. 

 

Figure 66: Specific composition map at management sector scale. The diameter of the pie 

charts is proportional to the length of the sector considered. 
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Figure 67: Biomass map at the scale of 300-metre-long stretches. 

Finally, the relative difference between biomass calculated in 2021 and 2014 is 

shown in Figure 68. Overall, the riparian forest is capitalizing, with an average 

increase in biomass of 15%. The areas where biomass has decreased correspond for 

the most part to areas where vegetation maintenance work was carried out during the 

period under consideration, essentially on the Vire river, where flooding issues are 

concentrated. 
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Figure 68: Map of biomass evolution at the scale of 300-meter-long stretches, between 

2014 and 2021



 

 

 


