ACADÉMIE ROYALE DE BELGIQUE

Extrait des Bulletins de la Classe des Sciences, 5° série, t. XV, n° 41. Séance du 9 novembre 4929, pp. 959-965.

GÉOMÉTRIE ALGÉBRIQUE.

Sur les points unis des involutions cycliques appartenant à une surface algébrique,

par L. GODEAUX, Professeur à l'Université de Liége.

(Première note.)

Soit I, une involution cyclique, d'ordre p, n'ayant qu'un nombre fini de points unis, appartenant à une surface algébrique F. Considérons un point uni A de l'involution I, et une transformée birationnelle F' de la surface F telle que A soit un point fondamental pour la correspondance entre F et F'. Au point A correspond alors sur F' une courbe exceptionnelle a', lieu de ∞^1 groupes de l'involution I' correspondant à In. Il peut se faire que tous les points de a' soient des points unis de I', ou qu'il y ait seulement deux points unis de l' sur cette courbe. D'après la nomenclature que nous avons introduite autrefois (*), dans le premier cas A est un point de coïncidence parfaite, dans le second un point de coïncidence non parfaite. Nous dirons aussi plus brièvement « point uni parfait » et « point uni non parfait ». Le premier cas se présente toujours pour p=2 (**). Supposons p>3 et envisageons le second cas. Soient A'₁, A'₂ les points unis de I'_n appartenant à la courbe a'. Chacun de ces points peut être un point uni parfait

^(*) Recherches sur les involutions douées d'un nombre fini de points de coïncidence appartenant à une surface algébrique. (Bull. de la Soc. math. de France, 1919, pp. 1-16.)

^(**) F. Severi, Sulle superficie algebriche che ammettono un gruppo continuo permutabile a due parametri di trasformazione birazionali. (Atti R. Istituto Veneto, 1907-1908, pp. 409-419.)

ou non de l'involution I_p' et nous sommes donc conduit à l'étude de trois cas suivant que les points A_1' , A_2' sont tous deux des points unis parfaits de l'involution I_p' , ou qu'un seul d'entre eux est un point uni parfait de I_p' , ou qu'aucun d'eux n'est un point uni parfait de I_p' . Dans cette note et dans celles qui lui feront suite, nous étudierons ces différents cas, ainsi que les singularités aux points de diramation correspondants des surfaces images de l'involution.

Dans cette première note, nous examinerons le premier cas

et nous démontrerons que

Si une involution cyclique d'ordre premier, n'ayant qu'un nombre fini de points unis, appartenant à une surface algébrique, possède un point uni non parfait auquel sont infiniment voisins deux points unis parfaits, cette involution est d'ordre trois.

Nous avons démontré récemment le théorème inverse (*).

1. L'involution I_p est engendrée par une transformation birationnelle T de la surface en elle-même. Nous avons montré ('*) que l'on peut construire sur F un système linéaire |C|, complet, simple, dépourvu de points-base, transformé en lui-même par T et contenant un système linéaire partiel, dépourvu de points-base, composé au moyen de l'involution I_p (et non composé au moyen d'une autre involution). Désignons par R la dimension du système |C|. En rapportant projectivement les courbes C aux hyperplans d'un espace linéaire S_R à R dimensions, nous obtenons une transformée birationnelle normale de F, que nous désignerons dorénavant par F. La transformation T est alors une homographie de période p de S_R .

^(*) Sur les points unis des involutions cycliques d'ordre trois appartenant à une surface algébrique. (Bull. de l'Acad. roy. de Belgique, 1929, pp. 533-560.) Voir aussi notre note Sur les correspondances ponctuelles entre surfaces. (Idem, pp. 408-420.)

^(**) Recherches... (loc. cit.).

Désignons par |Co| le système linéaire dépourvu de pointsbase, compris dans |C| et composé au moyen de In, par $r\left(r<\mathrm{R}
ight)$ sa dimension. Les courbes $\mathrm{C}_{\scriptscriptstyle 0}$ sont découpées sur F par les hyperplans, unis pour l'homographie T, d'un système linéaire ∞, Σ0, dont la base ne rencontre pas F. L'axe de l'homographie T, conjugué au système Σ_0 , est un espace linéaire S_r⁽⁰⁾, à r dimensions, qui rencontre F aux différents points unis de l'involution I,.

Rapportons projectivement les hyperplans Σ_0 aux hyperplans d'un espace linéaire S, à r dimensions. A la surface F correspond une surface Φ, normale, image de l'involution I,. Nous désignerons par Γ les sections hyperplanes de Φ , par n l'ordre de cette surface, par π le genre des courbes Γ . Les courbes C_0 , transformées des courbes C, et les courbes C sont alors de genre $p(\pi-1)+1$ et de degré pn. La surface F est d'ordre pn.

2. Supposons p > 2 et soit A un point uni non parfait de Ip; soit A* le point de diramation correspondant sur Φ. Parmi les courbes Co, nous avons montré qu'il y en avait, formant un système linéaire, ayant en A la multiplicité p, les tangentes en ce point étant variables avec la courbe. Désignons ces courbes par Co. Les p points infiniment voisins de A sur une courbe Co forment un groupe Ip. Si les courbes Co assujetties à passer par A (*) étaient les courbes \overline{C}_0 , les courbes $\overline{\Gamma}$, sections de & par les hyperplans passant par A*, auraient un point simple en A* et seraient donc de genre π. La formule de Zeuthen, appliquée à la correspondance (1, p) entre une courbe $\overline{\Gamma}$ et la courbe \overline{C}_0 homologue, donne pour le genre de la première la valeur $\pi - \frac{1}{2}(p-1)$. Il s'ensuit que les courbes Co assujetties à passer par A ont en ce point une multiplicité a inférieure à p. Cette multiplicité a est d'ailleurs

^(*) Nous supposons que les courbes Co passant par A ne passent pas en consé quence par un autre point uni.

supérieure à l'unité, car l'involution d'ordre p existant sur une courbe C₀ passant par A doit avoir plus d'un point uni.

L'homographie T détermine, dans le plan tangent à F en A, une homographie possédant deux droites unies t_1 , t_2 passant par A. Appelons C_1 les courbes C_0 passant par A. Les α tangentes à ces courbes en A coïncident nécessairement avec t_1 , t_2 ; nous indiquerons par α_1 le nombre de celles qui coïncident avec t_1 , par α_2 le nombre de celles qui coïncident avec t_2 .

Puisque α est inférieur à p, il y a sur une courbe C_1 α groupes de I_p infiniment voisins de A (et qui sont d'ailleurs des points unis de I_p). Par suite, la courbe Γ de Φ homologue de C_1 a la multiplicité α en A^* . Il en résulte que le point A^* est multiple d'ordre α pour la surface Φ , puisque toutes les sections hyperplanes de Φ passant par A^* correspondent à des courbes C_1 . Nous désignerons par Γ_1 ces courbes Γ passant par A^* .

Le système linéaire $|\Gamma_4|$ a le degré de $n-\alpha$; par suite, le système linéaire $|C_4|$ a le degré $pn-p\alpha$ et deux courbes C_4 ont $p\alpha$ points d'intersection absorbés en A.

3. Projetons la surface F à partir du point A sur un hyperplan S_{n-1} de Σ_0 ne passant pas par A. Nous obtenons une surface F' d'ordre n-1, transformée en elle-même par T et sur laquelle cette homographie détermine une involution I_p' , projection de I_p .

Au point A correspond une droite exceptionnelle a' de F', dont les points représentent les points de F infiniment voisins de A. Par hypothèse, cette droite a', unie pour l'homographie T, n'est pas lieu de points unis de cette homographie. La droite a' possède deux points unis de I_p qui sont le point A'_1 où t'_1 rencontre a' et le point A'_2 où t'_2 rencontre cette droite. La droite a' s'appuie donc en A'_1 , A'_2 sur des axes de l'homographie T, communs à tous les hyperplans du système Σ_0 .

Aux courbes C_1 correspondent sur F' des courbes C_1' ayant une certaine multiplicité $\alpha_1' \leq \alpha_1$ en A_1' et une certaine multiplicité $\alpha_2' \leq \alpha_2$ en A_2' . De plus, les courbes C_1' rencontrent la droite a' en α_1 points confondus en A_1' et en α_2 points confondus en A_2' .

Projetons de même la surface Φ à partir du point A^* sur un hyperplan S_{r-1} de S_r ne passant pas par A^* . Nous obtenons ainsi une surface Φ' d'ordre $n-\alpha$, image de I_p , dont les sections hyperplanes Γ'_1 correspondent aux courbes Γ_1 . Aux points de Φ , infiniment voisins de A^* , correspondent les points d'une certaine courbe de Φ' ; ces points correspondent aux points de F'_1 infiniment voisins de A'_1 , A'_2 , comme on le verra dans la suite.

4. Le plan tangent $AA'_1A'_2$ à la surface F en A ne peut avoir que le point A en commun avec l'axe $S_r^{(0)}$ de l'homographie T, car autrement les courbes C_1 seraient en nombre de ∞^r , ce qui est impossible. Par conséquent, l'homographie T détermine, dans le plan uni $AA'_1A'_2$, une homographie non homologique ayant pour points unis A, A'_1 , A'_2 . Soit T' cette homographie.

On peut déterminer, d'une infinité de manières, un espace linéaire S_{R-3} , à R-3 dimensions, uni pour T et ne rencontrant pas le plan $AA_1'A_2'$. Il suffit de prendre l'intersection d'un hyperplan de Σ_0 ne passant pas par A et de deux hyperplans unis ne passant pas l'un par A_1' , l'autre par A_2' . Cela étant, projetons les courbes C_0 de cet espace S_{R-3} sur le plan $AA_1'A_2'$; nous obtenons des courbes d'ordre pn transformées en ellesmêmes par T' et ne passant pas en général par les points unis de cette homographie. Celles de ces courbes que l'on assujettit à passer par le point A seront les projections des courbes C_1 . On sait que les courbes ainsi obtenues ont toujours les droites AA_1' , AA_2' comme tangentes. Par conséquent, les nombres α_1 , α_2 ne peuvent être nuls.

5. Supposons que le point A_1' soit un point uni parfait de l'involution I_p' . Tous les points de F' infiniment voisins de A_1' sont unis par I_p' . Supposons qu'à ces points puisse correspondre un même point de la surface Φ' . Aux courbes Γ_1' ne passant pas par ce point correspondent sur F' des courbes C_1' ne passant pas par A_1' . On a donc alors $\alpha_1' = 0$ et par suite $\alpha_1 = 0$, ce qui est impossible. Il en résulte qu'aux points infiniment voisins de A_1' sur F' correspondent les points d'une courbe (rationnelle) a_1 de la surface Φ' .

Les courbes Γ'_1 rencontrant la courbe a_1 en des points variables, les courbes C'_1 ont des tangentes variables en A'_1 et par suite on a $\alpha'_1 = \alpha_1$. De plus, la courbe a_1 est d'ordre α_1 .

La transformation birationnelle existant entre les surfaces Φ' et Φ fait correspondre à la courbe a_1 une courbe infiniment petite du domaine de premier ordre du point A^* , car autrement les courbes C_0 passeraient toutes par A, ce qui est absurde.

6. Supposons en outre que le point A'_2 soit un point uni parfait de l'involution I'_1 . Aux points de F' infiniment voisins de A'_2 correspondent sur Φ' les points d'une courbe rationnelle a_2 , d'ordre α_2 , et l'on a $\alpha'_2 = \alpha_2$.

On peut montrer immédiatement que les courbes a_1 , a_2 ont un et un seul point commun. Aux ∞^1 groupes de l'involution I'_p appartenant à la droite a' ne peuvent correspondre sur Φ' les points d'une courbe, car alors les courbes de C'_1 rencontreraient a' en dehors de A'_1 , A'_2 , ce qui est impossible. Aux groupes de I'_p situés sur a' correspond donc un seul point de Φ' et puisque a_1 passe par les points A'_1 , A'_2 , le point de Φ' ainsi obtenu appartient aux courbes a_1 , a_2 .

Inversement, soit A_1^* un point commun aux courbes a_1 , a_2 . Aux courbes Γ_1' passant par A_1^* correspondent des courbes C_1' dont la partie variable passe $\alpha_1'' \leq \alpha_1 - 1$ par A_1 et $\alpha_2'' \leq \alpha_2 - 1$ fois par A_2' . Les courbes qui correspondent sur Φ à ces courbes Γ_1' sont d'ordre n; par suite les courbes qui

correspondent sur F aux parties variables des courbes C_1' envisagées sont d'ordre pn. Il en résulte que ces courbes sont des courbes C_1 ayant en A une multiplicité supérieure à α . On en conclut que les courbes C_1' en question sont obtenues en assujettissant les courbes C_1' à passer par un point de a' distinct de A_1' , A_2' . Ces courbes forment un système linéaire unique, le point A_1^* est unique et l'on a de plus $\alpha_1'' = \alpha_1 - 1$, $\alpha_2'' = \alpha_2 - 1$.

7. Les courbes C_1 ont en A un point multiple d'ordre α auquel sont infiniment voisins, sur t_1 , t_2 , des points respectivement multiples d'ordre α_1 , α_2 . Le point A absorbe donc $\alpha^2 + \alpha_1^2 + \alpha_2^2$ points d'intersection de deux courbes C_1 . On a par suite

$$\alpha p = \alpha^2 + \alpha_1^2 + \alpha_2^2 = 2(\alpha_1^2 + \alpha_2^2 + \alpha_1 \alpha_2),$$
 (1)

puisque |C| et $|C_4|$ sont respectivement de degré pn, $p(n-\alpha)$. Soit π_4 le genre d'une courbe Γ_4 . La formule de Zeuthen, appliquée à la correspondance (1, p) existant entre une courbe Γ_4 et la courbe C_4 homologue, donne la relation

$$2p\left(\pi_{1}-1\right)+\alpha\left(p-1\right)=2p\left(\pi-1\right)-\alpha\left(\alpha-1\right) \\ -\alpha_{1}\left(\alpha_{1}-1\right)-\alpha_{2}\left(\alpha_{2}-1\right),$$

c'est-à-dire

$$2p\pi_{4} = 2p\pi - \alpha(2p - 3).$$

Il en résulte que $\alpha(2p-3)$ doit être divisible par p. Or, p étant premier et α inférieur à p, 2p-3 doit être multiple de p, ce qui n'a lieu que pour p=3.

Les courbes a_1 , a_2 sont alors deux droites coplanaires et le point A^* est double biplanaire ordinaire pour la surface Φ .

Nous avons ainsi démontré le théorème énoncé au début de cette note.

Liége, le 30 septembre 1929.